2020高考模拟数学科试题(全国Ⅰ卷)——文科

合集下载

2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B 2C 2D .22、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .14、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是8、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…9、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 三棱锥四个面的面积中最大的值是32所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为( ) A .12B .25C .38D .1312、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。

2020高考最新仿真模拟数学科试题(全国Ⅰ卷)及答案——文科

2020高考最新仿真模拟数学科试题(全国Ⅰ卷)及答案——文科

2020高考仿真模拟数学试题(全国Ⅰ卷)——文科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={y |x +y =1,x ∈R },N ={y |x ﹣y =1,x ∈R },则M ∩N =( ) A .(1,0)B .{(1,0)}C .{0}D .R2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.对任意实数x ,y ,定义运算x ⊗y ={x ,x −y ≤0y ,x −y >0,设a =ln24,b =ln39,c =ln416,则(b ⊗c )⊗a 的值是( ) A .aB .bC .cD .不能确定4.已知x ,y 的取值如下表所示,若y 与x 线性相关,则y =b ^x +a ^过定点( )x 0 1 3 4 y2.2 4.3 4.8 6.7A .(1.5,4)B .(2,4.5)C .(1.5,4.5)D .(2,4)5.函数y =x 2e |x|+1(其中e 为自然对数的底)的图象大致是( )A .B .C .D .6.《庄子.天下篇》中有一句话:“一尺之棰,日取其半,万世不竭”.如果经过n 天,该木锤剩余的长度为a n (尺),则a n 与n 的关系为( ) A .a n =12nB .a n =1−12nC .a n =1nD .a n =1−1n7.已知向量a →=(1,2),b →=(﹣2,1),c →=(x ,y ),若(a →+b →)⊥c →,则b →在c →上的投影为( ) A .±√102B .±√105C .−√102D .−√1058.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是( )A .n <5B .n <6C .n ≤6D .n <99.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是( ) A .14B .12C .18D .1310.已知三棱锥A ﹣BCD 中,BC ⊥CD ,AB =AD =√2,BC =1,CD =√3,则该三棱锥的外接球的体积为( ) A .4π3B .8π3C .8√2π3D .36π11.已知F 1,F 2是椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23B .12C .13D .1412.已知关于x 的方程[f (x )]2﹣kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x时,实数k 的取值范围是( ) A .(﹣∞,﹣2)∪(2,+∞)B .(4e +e 24,+∞)C.(8e,2)D.(2,4e+e24)第II卷二、填空题:本题共4小题,每小题5分,共20分。

2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)(有解析)

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)(有解析)

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)一、单项选择题(本大题共12小题,共60.0分)1.设i是虚数单位,若z2−i=1+i,则复数z=()A. 2+iB. 1+iC. 3+iD. 3−i2.设集合A={0,2,4},集合B={x∈N|log2x≤1},则A∪B=()A. {2,4}B. {0,1,4}C. {1,2,4}D. {0,1,2,4}3.设a∈R,则|a|>1是1|a|<1的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件4.下图给出的是某市2017年2月至2018年1月二手房单价的大致情况,则下列说法错误的是()A. 这段时间该市的二手房的平均单价高于17500元/平方米B. 由图可知,2017年4月的二手房单价最低C. 2017年4月到5月二手房单价的增长率是这12个月份中最高的D. 2017年3月到4月二手房单价呈现负增长5.在等比数列{a n}中,a3=2,a3+a5+a7=26,则a7=()A. 12B. 18C. 24D. 366.已知a⃗为单位向量,b⃗ =(0,2),且a⃗⋅b⃗ =1,则向量a⃗与b⃗ 的夹角为()A. π6B. π4C. π3D. π27.已知α是第二象限的角,tan(π−α)=512,则sinα=()A. 15B. −15C. 513D. −5138.执行图的程序框图,若输出的S是62,则①应为()A. n≤5?B. n≤6?C. n≤7?D. n≤8?9.已知函数f(x)=e x+e−x,则y=f(x)的图象大致为()A. B.C. D.10.某三棱锥的三视图如图所示,则该几何体的体积为()A. 2B. 43C. 23D. 1311.设双曲线x2−y29=1的左、右焦点分别为F1,F2,直线x=1与双曲线的其中一条渐近线交于点P,则△PF1F2的面积是()A. 3√10B. 13√10 C. 6√2 D. 23√212.若函数f(x)={alnx−x2−2(x>0)x+1x+a(x<0)的最大值为f(−1),则实数a的取值范围()A. [0,2e2]B. [0,2e3]C. (0,2e2]D. (0,2e3]二、填空题(本大题共4小题,共20.0分)13.曲线y=xe x−2x2+1在点(0,1)处的切线方程为______.14.袋中共有大小相同的4只小球,编号分别为1,2,3,4.现从中任取2只小球,则取出的2只小球的编号之和是奇数的概率为________.15.已知各项均为正数的等比数列{a n}中,a2=3,a4=27,S2n为该数列的前2n项和,T n为数列{a n a n+1}的前n项和,若S2n=kT n,则实数k的值为________.16.已知,在△ABC中B=π,b=2,S▵ABC的最大值为________.3三、解答题(本大题共7小题,共82.0分)17.某中学高三年级有学生500人,其中男生300人,女生200人.为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150)分别加以统计,得到如图所示的频率分布直方图.(Ⅰ)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;(Ⅱ)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?附:随机变量k2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(k2≥k0)0.250.150.100.050.025k0 1.323 2.072 2.706 3.841 5.02418.已知数列{√a n−n}是等比数列,且a1=9,a2=36.(1)求数列{a n}的通项公式;(2)求数列{√a n}的前n项和S n.19.在四棱锥P−ABCD中,AD//BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2√3,∠DAC=30°,M为PB中点.(1)证明:AM//平面PCD;(2)若三棱锥M−PCD的体积为√3,求M到平面PCD的距离.620.已知函数f(x)=e xx+elnx−ax在x=1处取的极值.(Ⅰ)求实数a的值;(Ⅱ)求证:f(x)≥0.21.已知椭圆E:x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,P为E上的一个动点,且|PF2|的最大值为2+√3,E的离心率与椭圆Ω:x22+y28=1的离心率相等.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M//F2N时,求四边形F1F2NM面积的最大值.22.在平面直角坐标系xOy中,直线C1的参数方程为{x=3+tcosπ4y=2+tsinπ4(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为ρ=4cosθsin2θ.(Ⅰ)求C1和C2的直角坐标方程;(Ⅱ)过点P(3,2)作直线C1的垂线交曲线C2于M,N两点,求|PM|⋅|PN|.23.设函数f(x)=|x−a|.(1)当a=2时,解不等式f(x)≥4−|x−1|;(2)若f(x)≤1的解集为[0,2],1m +12n=a(m>0,n>0),求证:m+2n≥4.【答案与解析】1.答案:C解析:本题主要考查复数的四则运算,属于基础题.解:由题意得z=(1+i)(2−i)=3+i故选C.2.答案:D解析:本题考查并集及其运算,属于基础题,先求出集合B,再求出A∪B即可.解析:解:由B={x∈N|log2x≤1}={1,2},又A={0,2,4},∴A∪B={0,1,2,4},故选D.3.答案:C解析:解:根据倒数的性质可知:若|a|>1,则0<1|a|<1成立.若1|a|<1,则|a|>1成立.故|a|>1是1|a|<1的充要条件.故选:C.根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.解析:本题主要考查了折线图,属于基础题.从图中提取数据,逐一分析选项即可.解:A:这段时间该市的二手房的平均单价高于17500元/平方米,正确;B:由图可知,2017年4月的二手房单价最低,正确;C:2017年4月到5月二手房单价的增长率没有5月到6月和6月到7月高,所以错误;D:2017年3月到4月二手房单价呈现负增长,正确;故选C.5.答案:B解析:本题考查了等比数列的通项公式,设等比数列{a n}的公比为q,由题意得a1q2=2,a3(1+q2+q4)= 26,解得q2=3,a1=2,即可得出结果.3解:设等比数列{a n}的公比为q,∵a3=2,a3+a5+a7=26,∴a1q2=2,a3(1+q2+q4)=26,,解得q2=3,a1=23×33=18,则a7=23故选B.6.答案:C解析:解:|a⃗|=1,|b⃗ |=2;∴a⃗⋅b⃗ =1⋅2cos<a⃗,b⃗ >=1;∴cos<a⃗,b⃗ >=1;2∴a⃗,b⃗ 夹角为π.3故选C.根据条件可知,|a⃗|=1,|b⃗ |=2,从而根据a⃗⋅b⃗ =1即可求出cos<a⃗,b⃗ >的值,从而得出向量a⃗与b⃗考查单位向量的概念,向量数量积的计算公式,以及向量夹角的概念.7.答案:C解析:解:由tan(π−α)=512,得−tanα=512,∴tanα=−512. 联立{sinαcosα=−512sin 2α+cos 2α=1,解得{sinα=513cosα=−1213或{sinα=−513cosα=1213.∵α是第二象限的角,∴sinα=513. 故选:C .由已知求得tanα,再与平方关系联立即可求得sinα的值.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.8.答案:A解析:本题考查了算法中的循环结构,以及等比数列求和,是基础题.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S =2+22+⋯+2n 的值,当不满足条件时,输出S .解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S =2+22+⋯+2n 的值,当不满足条件时,输出S .∵S =2+22+⋯+26=62,再执行下一步n =n +1后,n 的值为6,此时应退出循环,不满足条件,∴①中应填n ≤5. 故选A .9.答案:A解析:本题考查函数的图象以及应用,属于基础题.根据偶函数以及特殊点的函数值,运用排除法,即可得到答案. 解:因为f(−x)=f(x),所以f(x)为偶函数,故排除C ,D ;又f(0)=2,故排除B.故选A.10.答案:C解析:本题考查通过三视图求解几何体的体积,考查空间想象能力以及计算能力,属于基础题.通过三视图画出几何体的直观图,利用三视图的数据求解几何体的体积即可.解:如图所示,由三视图可知,在三棱锥P−ABC中,PA⊥平面ABC,底面△ABC为等腰三角形,且底边长为2,高为1,故三棱锥的体积为V P−ABC=13⋅S△ABC⋅PA=13×12×2×1×2=23.故选C.11.答案:A解析:求得双曲线的a,b,c,可得焦距,求得双曲线的一条渐近线方程,代入x=1可得P的坐标,再由三角形的面积公式计算即可得到所求值.本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查三角形的面积的求法,考查运算能力,属于基础题.解:双曲线x2−y29=1的a=1,b=3,c=√a2+b2=√10,即有|F1F2|=2c=2√10,双曲线的一条渐近线方程为y=3x,代入x=1,可得P(1,3),即有△PF1F2的面积是12×3×2√10=3√10.故选:A.12.答案:B解析:解:由f(−1)=−2+a,可得alnx−x2−2≤−2+a在x>0恒成立,即为a(1−lnx)≥−x2,当x=e时,0>−e2显然成立;当0<x<e时,有1−lnx>0,可得a≥x2lnx−1,设g(x)=x2lnx−1,0<x<e,g′(x)=2x(lnx−1)−x(lnx−1)2=x(2lnx−3)(lnx−1)2,由0<x<e时,2lnx<2<3,则g′(x)<0,g(x)在(0,e)递减,且g(x)<0,可得a≥0;当x>e时,有1−lnx<0,可得a≤x2lnx−1,设g(x)=x2lnx−1,x>e,g′(x)=2x(lnx−1)−x(lnx−1)2=x(2lnx−3)(lnx−1)2,由e<x<e 32时,g′(x)<0,g(x)在(e,e 32)递减,由x>e 32时,g′(x)>0,g(x)在(e 32,+∞)递增,即有g(x)在x=e 32处取得极小值,且为最小值2e3,可得a≤2e3,综上可得0≤a≤2e3.故选:B.求得f(−1),由题意可得alnx−x2−2≤−2+a在x>0恒成立,讨论x的范围,分x=e,0<x<e,x>e,运用参数分离和构造函数,求得导数和单调区间,可得最值,进而得到a的范围.本题考查函数的最值的求法和应用,注意运用参数分离和分类讨论的思想方法,以及构造函数法,求出导数和最值,考查化简整理的运算能力,属于中档题.13.答案:y=x+1解析:本题考查利用导数求曲线的切线方程,考查计算能力,是基础题.求导函数,确定切线的斜率,利用点斜式,可得切线方程.解:求导函数可得,y′=(1+x)e x−4x当x=0时,y′=1∴曲线y=xe x−2x2+1在点(0,1)处的切线方程为y−1=x,即y=x+1.故答案为:y=x+1.14.答案:23解析:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.先求出基本事件总数,再由列举法得到这两个球编号之和为奇数的事件个数,由此能求出这两个球编号之和是奇数的概率.解:一个袋子中有号码为1,2,3,4大小相同的4个小球,从袋中任取两个球(不放回),有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),基本事件总数为6个,这两个球编号之和为奇数的有(1,2),(1,4),(2,3),(3,4),共4个,∴则这两个球编号之和为奇数的概率为46=23,故答案为23.15.答案:43解析:本题主要考查等比数列的通项公式及前n项和公式等知识,考查考生的运算求解能力,考查的核心素养是数学运算,属中档题.等比数列{a n}中,S2n=1×(1−32n)1−3=32n−12,数列{b n}为等比数列,公比q′=9,所以T n=3×(1−9n)1−9=3(32n−1)8,求实数k.解:因为各项均为正数的等比数列{a n}中,a2=3,a4=27,所以a1=1,公比q=3,所以S2n=1×(1−32n)1−3=32n−12,a n=3n−1.令b n=a n a n+1=3n−1·3n=32n−1,所以b1=3,数列{b n}为等比数列,公比q′=9,所以T n=3×(1−9n)1−9=3(32n−1)8.因为S2n=kT n,所以32n−12=k⋅3(32n−1)8,解得k=43.故答案为43.16.答案:√3解析:先表示出三角形面积,利用正弦定理换元2sin B,剩下sin A sin C,利用两角和公式化简,求得面积的最大值.属难题.解:∵a sinA=b sinB=c sinC=2sinπ34√33,∴三角形面积S=12acsinB=12×4√33sinA4√33sinCsinB=83sinAsinBnC=4√33sinAsinC=2√33[cos(A−C)−cos(A+C)]=2√33[cos(A−C)+12]当A=C时,S max=√3故答案为√3.17.答案:解:(Ⅰ)由已知得,抽取的100名学生中,男生60名,女生40名.分数小于110分的学生中,男生有60×0.05=3(人),记为A1,A2,A3;女生有40×0.05=2(人),记为B1,B2.从中随机抽取2名学生,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),其中,两名学生恰好为一男一女的可能结果共有6种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),故所求的概率P=610=35.(Ⅱ)由频率分布直方图可知,在抽取的100名学生中,男生有“数学尖子生”60×0.25=15(人),女生有“数学尖子生”40×0.375=15(人).据此可得2×2列联表如下:数学尖子生非数学尖子生合计男生154560女生152540合计3070100所以得K2的观测值k=100×(15×25−15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“数学尖子生与性别有关”.解析:解析:本题考查古典概型及独立性检验,同时考查分层抽样及频率分布直方图,属基础题.(Ⅰ)由直方图及分层抽样得男生和女生抽取的人数,然后利用古典概型求解即可; (Ⅱ)由已知得2×2列联表,然后计算K2的观测值即可求解.18.答案:解:(1)设等比数列{√a n−n}的公比为q,则q=√a2−2√a−1=6−23−1=2.从而√a n−n=(3−1)×2n−1,故a n=(n+2n)2.(2)∵√a n=n+2n,∴S n=n(n+1)2+2(1−2n)1−2,=2n+1+n2+n−42.解析:本题考查数列的通项公式的求法及应用,数列的前n项和公式的应用,属于基础题.(1)直接利用定义求出数列的通项公式.(2)利用分组法求出数列的和.19.答案:(本小题满分12分)解:取PC的中点为N,连结MN,DN(1)∵M是PB的中点,∴MN//BC,MN=12BC∵AD//BC,且BC=2AD,∴NM//AD且NM=AD,∴四边形AMND为平行四边形,∴AM//ND,又∵AM⊄平面PCD,ND⊂平面PCD所以AM//平面PCD(6分)(2)∵M是PB的中点,∴V三棱锥M−PCD =12V三棱锥B−PCD=√36∵V三棱锥B−PCD=V三棱锥P−BCD=13⋅S△BCD⋅PA=13×12×2√3×1×PA=√33PA=√33所以PA=1∵CD⊥AD,CD⊥PA,∴CD⊥平面PAD,∴CD⊥PD 又∵PA=1,AD=√3,∴PD=2,∴S△PCD=1设点M到平面PCD的距离为h,则V三棱锥M−PCD =13⋅S△PCD⋅ℎ=13×1×ℎ=√36,∴ℎ=√32,故M到平面PCD的距离为√32(12分)解析:(1)取PC的中点为N,连结MN,DN,利用AD//BC,通过证明NM//AD,推出AM//ND,即可证明AM//平面PCD.(2)利用三棱锥M−PCD的体积为√36,转化求解V B−PCD,设点M到平面PCD的距离为h,通过体积,求解M到平面PCD的距离.本题考查几何体的体积的求法,直线与平面平行的判定定理的应用,考查计算能力.20.答案:解:(Ⅰ)∵f′(x)=e x(x−1)x2+ex−a①,依题意知f′(1)=0,∴a=e;(Ⅱ)由(Ⅰ)知f(x)=e xx+elnx−ex(x>0),则f′(x)=(x−1)(e x−ex)x2,令g(x)=e x−ex②,则g′(x)=e x−e,由g′(x)=0,得x=1,∵当0<x≤1时,g′(x)≤0,当x>1时,g′(x)>0,∴函数y=g(x)在(0,1]上递减,在(1,+∞)上递增,∴当0<x≤1时,g(x)≥g(1)=0,当x>1时,g(x)>g(1)=0,∴对∀x∈(0,+∞),g(x)≥0,即e x≥ex③∴由②③,当0<x≤1时,x−1≤0,f′(x)≤0,当x >1时,x −1>0,f ′(x)>0,∴函数y =f(x)在(0,1]上递减,在(1,+∞)上递增, ∴f(x)≥f(1)=0.解析:本题考查了函数的单调性、最值问题,考查导数的应用,属于中档题. (Ⅰ)由导数的几何意义直接求解即可.(Ⅱ)求导利用导函数研究函数的单调性,即可证明f(x)的最小值f(1)=0. 21.答案:解:(1)由题意可得{a +c =2+√3c a=√1−28, 解得a =2,c =√3 则b 2=a 2−c 2=1, 故E 的方程为x 24+y 2=1.(2)延长MF 1交E 于点M′, 由(1)可知F 1(−′√3,0),F 2(√3,0), 设M(x 1,y 1),M′(x 2,y 2),设直线MF 1的方程为x =my −√3,由{x =my −√3x 24+y 2=1可得(m 2+4)y 2−2√3y −1=0, ∴y 1+y 2=2√3mm 2+4,y 1y 2=−1m 2+4∴|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√12m 2(m 2+4)2+4m 2+4=4√m 2+1m 2+4,设F 1M 与F 2N 的距离为d ,则四边形的F 1F 2NM 面积S =12(|F 1M|+|F 2N|)d =12(|F 1M|+|F 2M′|)d =12|MM′|d =S △MF 2M′,∴S =S △MF 2M′=S △F 2MF 1+S △F 2M′F 1=12|F 1F 2||y 1−y 2|=4√3√m 2+1m 2+4=4√3√m 2+1+3√2≤4√32√3=2,故四边形F 1F 2NM 面积的最大值为2.解析:(1)由题意可得{a +c =2+√3c a=√1−28,解得a =2,c =√3则b 2=a 2−c 2=1,即可求出; (2)设直线MF 1的方程为x =my −√3,由{x =my −√3x 24+y 2=1可得(m 2+4)y 2−2√3y −1=0,利用韦达定理定理求出y 1−y 2|,由题意可得S =12|F 1F 2||y 1−y 2|,利用基本不等式求得最值.本题考查椭圆方程的求法,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,属中档题22.答案:解:(Ⅰ)直线C 1的参数方程为{x =3+tcos π4y =2+tsin π4(其中t 为参数)消去t 可得:x −y −1=0,由ρ=4cosθsin 2θ得ρ2sin 2θ=4ρcosθ,的y 2=4x.(x ≠0)(Ⅱ)过点P(3,2)与直线C 1垂直的直线的参数方程为:{x =3−√22ty =2+√22t (t 为参数),代入y 2=4x 可得t 2+8√2t −16=0设M ,N 对应的参数为t 1,t 2,则t 1t 2=−16, 所以|PM||PN|=|t 1t 2|=16.解析:(Ⅰ)直线C 1的参数方程为{x =3+tcos π4y =2+tsinπ4(其中t 为参数)消去t 可得:x −y −1=0,由ρ=4cosθsin 2θ得ρ2sin 2θ=4ρcosθ,的y 2=4x.(x ≠0);(Ⅱ)代入直线的参数方程到曲线C 2中,利用参数的几何意义可得. 本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(I)当a =2时,不等式f(x)≥4−|x −1|,即为|x −2|≥4−|x −1|,①当x ≤1时,原不等式化为2−x ≥4+(x −1),得x ≤−12,故x ≤−12;②当1<x <2时,原不等式化为2−x ≥4−(x −1),得2≥5,故1<x <2不是原不等式的解;③当x ≥2时,原不等式化为x −2≥4−(x −1),得x ≥72,故x ≥72.综合①、②、③知,原不等式的解集为(−∞,−12]∪[72,+∞). (Ⅱ)证明:由f(x)≤1得|x −a|≤1,从而−1+a ≤x ≤1+a , ∵f(x)≤1的解集为{x|0≤x ≤2}, ∴{−1+a =01+a =2得a =1,∴1m +12n =a =1.又m >0,n >0,∴m +2n =(m +2n)(1m +12n)=2+(2nm +m2n )≥2+2√2nm ⋅m2n =4, 当且仅当2nm =m2n 即m =2n 时,等号成立,此时,联立1m +12n =1,得{m =2n =1时,m +2n =4,故m +2n ≥4,得证.解析:本题考查绝对值不等式的解法以及不等式证明,属中档题.(1)本小题考查绝对值不等式的解法,将a =2代入函数的解析式中,利用分段讨论法解绝对值不等式即可.(2)本小题考查不等式证明,先由已知解集{x|0≤x ≤2}确定a 值,再将“m +2n ”改写为“(m +2n)(1m +12n )”,展开后利用基本不等式可完成证明.。

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

2020年高考第一次模拟考试数学(文科)试卷(含答案)

2020年高考第一次模拟考试数学(文科)试卷(含答案)

2020年高考第一次模拟考试数学(文科)试卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1≤x ≤5},B={x|x 2-2x >3},则A ∩B=A.{x|3<x ≤5}B.{x|-l ≤x ≤5} C .{x|x<-l 或x>3} D .R2.已知复数z 满足i(3+z )=1+i ,则z 的虚部为A .-iB .iC .-1D .13.已知函数⎩⎨⎧>≤-=1,ln ,1,)1()(3x x x x x f 若f(a))>f(b),则下列不等关系正确的是 A .111122+<+b a B .33b a > C .ab a <2 D .)1ln()1ln(22+>+b a 4.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数( PMl)如下图所示,则下列结论中错误的是A .12个月的PMI 值不低于50%的频率为31 B .12个月的PMI 值的平均值低于50% C .12个月的PMI 值的众数为49. 4% D .12个月的PMI 值的中位数为50.3% 5.已知函数)42sin()(π-=x x f 的图象向左平移ϕ)0(>ϕ个单位后得到函数)42sin()(π+=x x g 的图象,则ϕ 的最小值为 A .4π B .83π C .2π D .85π 6.已知数列{a n }满足a n+1-a n =2,且a 1,a 3,a 4成等比数列,若{a n }的前n 项和为S n ,则S n 的最小值为A. - 10 B .- 14 C .-18 D .-207.已知32)2019cos(-=+a π,则=-)22sin(a π A .97 B .95 C .-95 D .-97 8.已知双曲线C: 2222by a x -=l(a>0,b>0)的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M 点,MF 的中点恰好在双曲线C 上则C 的离心率为 A .5-1 B .2 C .3 D .59.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为A .S> -1?B .S<0?C .S<-l?D .S >0?10.过抛物线E:x 2 =2py(p>0)的焦点F 作两条相互垂直的弦AB ,CD ,没P 为抛物线上的一动点,Q(1,2).若41||1||1=+CD AB ,则|PF|+|PQ|的最小值是 A .1 B .2 C .3 D .411.已知函数f(x)=x 3 -ax -1,以下结论正确的个数为①当a=0时,函数f(x)的图象的对称中心为(0,一1);②当a ≥3时,函数f(x)在(-1,1)上为单调递减函数;③若函数f(x)在(-1,1)上不单凋,则0<a<3;④当n =12时f(x)在[-4,5]上的最大值为15.A .1B .2C .3D .412.已知四棱锥E-ABCD ,底面ABCD 是边长为1的正方形,ED=1,平面ECD 上平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为A. 62 B .31 C .32 D.1 二、填空题:本题共4小题.每小题5分.共20分.13.已知向量a =(l ,1),|b |=3,(2a +b )•a =2,则|a -b |=14.为激发学生团结协作、敢于拼搏、不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛l 场,目前(一)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为____. 15.将底面直径为4,高为3的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为16.如图,已知圆内接四边形ABCD ,其中AB =6,BC =3,CD =4,AD =5,则=+BA sin 2sin 2 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17 - 21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n }的各项都为正数,a 1 =2,且.1211+=++n n n n a a a a。

2020届全国1卷高考仿真模拟试卷文科数学含答案

2020届全国1卷高考仿真模拟试卷文科数学含答案
2020 届全国 1 卷高考仿真模拟试卷 文科数学
数学(文科)答案及解析
一、选择题
1. 【答案】C 【解析】因为 A {x | log2 x 3} {x | 0 x 8},B {0,1,2} , 所以 A B {1,2} ,所以 ðU ( A B) {0 ,3,4} .故选 C.
2 022 2 023 2 023
12.【答案】C
【解析】由题得 f (x) x2 2ax a ,由函数 f (x) 在 x1 ,x2
(x1 x2 ) 处的导数相等,得 x1 x2 2a , f (x1 x2 ) m 恒成立, m f (2a)(a 1) 恒成立, 令 g(a) f (2a) 1(2a)3 a(2a)2 a 2a 1
13.【答案】 380 9
【解析】设所抽取的这 100 名住户的年龄的中位数为 m ,
则有10 (0.005 0.015 0.020) ( m 40) 0.045 0.5 ,
解得 m 380 . 9
14. 【答案】 (- 3,- 47 ) 24
【解析】由题意得, f (x) 2x 2 .当 2x 2 3 时,

x
1 k
y
1 ,代入
y2
4x
,得
y2
4 k
y
4
0
.设
A(x1 ,y1),
B(x2 ,y2 ) ,则
y1 y2
4 ,所以
x1x2
y12 4
y22 4
( y1y2 )2 16
1 ,因
为 OA OB x1x2 y1y2 1 4 3 0 ,所以 AOB 为钝角,即
OAB 为钝角三角形.故选 B.
3 4 a3 2a2 1(a 1) ,则 g(a) 4a2 4a 4a(a 1) .

(完整版)2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

(完整版)2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)


A. 5 2
B.5
C.3
D. 5
【答案】D
【解析】由题意可得: OA 4,3 , OB 1, 2 ,则:
OA tOB 4,3 t 1, 2 4 t,3 2t
4 t 2 3 2t 2
5t2 20t 25 ,
Sufferi 第 2 页, 共 6 页
s to o n 结合二次函数的性质可得,当 t 2 时, OA tOB 5 4 20 2 25 5 . l min y o 本题选择 D 选项.
16
31 D.
32
so 【答案】C
me 【解析】i 1 ,
thi (1) x 2x 1,i 2 , ng a (2) x 22x 11 4x 3,i 3, nd (3) x 24x 31 8x 7,i 4 ,
A. 4
B. 4
C. 1 3
1
D.
3
【答案】C
【解析】因为
cos
2
a tim A.
1 3
,
B.
1 3
,
C.
1 2
,
D.
1 2
,
e a 【答案】D nd 【解析】设 F1F2 2c ,令 PF1 t ,由题意可得: t c 2a2 , t c 2a1 ,
All th 据此可得:a1 a2
c
1
,则:
e1
1 e2
1 , e1
e2 , e2 1
2
n,
2
,因此选
A.
thin 9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1点出发,在正方体表面上沿逆时针方向
g a 运动一周后,再回到 B1 的运动过程中,点 M 与平面 A1DC1 的距离保持不变,运动的路程 x 与 nd l MA1 MC1 MD 之间满足函数关系 l f x ,则此函数图象大致是( )

2020年全国数学试卷(文科)(新课标Ⅰ)模拟卷附答案及解析

2020年全国数学试卷(文科)(新课标Ⅰ)模拟卷附答案及解析

2020年全国某校考数学试卷(文科)(新课标Ⅰ)一、选择题1.(2020·全国·高考真卷)已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A. {−4,1}B.{1,5}C.{3,5}D.{1,3}2.(2020·全国·高考真卷)若z=1+2i+i3,则|z|=()A.0B.1C.√2D.23.(2020·全国·高考真卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.√5−14B.√5−12C.√5+14D.√5+124.(2020·全国·高考真卷)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.15B.25C.12D.455.(2020·全国·高考真卷)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:∘C)的关系,在20个不同温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,⋯,20)得到下面的散点图:由此散点图,在10∘C至40∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+be xD.y=a+blnx6.(2020·全国·高考真卷)已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A.1B.2C.3D.47.(2020·全国·高考真卷)设函数f(x)=cos(ωx+π6)在[−π,π]的图象大致如图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π28.(2020-2021·江苏·月考试卷)设alog34=2,则4−a=()A.116B.19C. 18D.169.(2020·全国·高考真卷)执行下面的程序框图,则输出的n=()A.17B.19C.21D.2310.(2020-2021·江苏·月考试卷)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+ a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(2020-2021·湖北·月考试卷)设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )A.72B.3 C.52D.212.(2020·全国·高考真卷) 已知A ,B ,C 为球O 的球面上的三个点, ⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A.64π B.48π C.36π D.32π二、填空题13.(2020-2021·江西·月考试卷) 若x ,y 满足约束条件{2x +y −2≤0,x −y −1≥0,y +1≥0, 则z =x +7y的最大值为________.14.(2020-2021·山东·月考试卷) 设向量a →=(1,−1),b →=(m +1,2m −4),若a →⊥b →,则实数m =________.15.(2020-2021·广东·月考试卷) 曲线y =lnx +x +1的一条切线的斜率为2,则该切线的方程为________.16.(2020-2021·广东·月考试卷) 定义数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=________. 三、解答题17.(2020·全国·高考真卷) 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?18.(2020-2021·福建·月考试卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150∘.(1)若a =√3c ,b =2√7,求△ABC 的面积;(2)若sinA +√3sinC =√22,求C .19.(2020·全国·高考真卷) 如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90∘.(1)证明:平面PAB ⊥平面PAC ;(2)设DO =√2,圆锥的侧面积为√3π,求三棱锥P −ABC 的体积.20.(2020·全国·高考真卷) 已知函数f(x)=e x −a(x +2). (1)当a =1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a 的取值范围.21.(2020·全国·高考真卷) 已知A ,B 分别为椭圆E : x 2a 2+y 2=1 (a >1) 的左、右顶点,G 为E 的上顶点, AG →⋅GB →=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.22.(2020·全国·高考真卷) 在直角坐标系xOy 中,曲线C 1的参数方程为{x =cos k t ,y =sin k t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcosθ−16ρsinθ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标.23.(2020·全国·高考真卷) 已知函数f(x)=|3x +1|−2|x −1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.参考答案与试题解析2020年全国某校考数学试卷(文科)(新课标Ⅰ)一、选择题1.【答案】D【考点】一元二次不等式的解法交集及其运算【解析】先求出一元二次不等式的解,从而得到集合A,最后根据交集的运算法则求解.【解答】解:由x2−3x−4<0,解得−1<x<4,所以A={x|−1<x<4}.又因为B={−4,1,3,5},所以A∩B={1,3}.故选D.2.【答案】C【考点】复数的模【解析】利用复数的运算法则,将复数z化为z=a+bi的形式,然后再根据模的计算公式求解即可.【解答】解:因为z=1+2i+i3=1+2i−i=1+i,所以|z|=√12+12=√2.故选C.3.【答案】C【考点】棱锥的结构特征【解析】先做出正四棱锥的高,连接垂足和底面边长的中点,形成直角三角形,从而建立底面边长、四棱锥的高和侧面三角形的高的关系而得解.【解答】设正四棱锥边长为a , 有{ℎ2=12am ,(12a)2+ℎ2=m 2,∴ 12am +14a 2=m 2, 整理得4m 2−2am −a 2=0, 令m a =t ,∴ 4t 2−2t −1=0, ∴ t 1=1+√54,t 2=1−√54(舍去).故选C . 4. 【答案】 A【考点】列举法计算基本事件数及事件发生的概率 【解析】先求出基本事件总数,再求出三点共线的基本事件个数,然后利用概率公式求得三点共线的概率. 【解答】 解:如图,,从O ,A ,B ,C ,D5个点中任取3个有{O,A,B },{O,A,C },{O,A,D },{O ,B ,C },{O,B ,D }, {O,C ,D },{A,B,C},{A,B, D},{A,C,D },{B,C,D },共10种不同取法,3点共线只有{A,O,C }与{B,O,D }共2种情况, 由古典概型的概率计算公式知,取到3点共线的概率为210=15. 故选A . 5.D【考点】散点图【解析】将散点图近似判断为所学函数图象,根据近似函数图象选择合适的回归方程即可. 【解答】解:由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适宜作为发芽率y和温度x的回归方程类型的是y=a+blnx.故选D.6.【答案】B【考点】与圆有关的最值问题【解析】根据题意,将圆的一般方程转化为圆的标准方程,找到圆心坐标和圆的半径,然后判断出定点在圆内,结合已知条件可知当过点P的直线与直线CP垂直时弦长最短,最后利用弦长公式得出结果.【解答】解:圆x2+y2−6x=0化为(x−3)2+y2=9,所以圆心C坐标为C(3,0),半径为3,设P(1,2),当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2.故选B.7.【答案】C【考点】三角函数的周期性及其求法余弦函数的图象【解析】首先将图中余弦函数图象所经过的点代入函数f(x)中解出ω的值,进而根据周期公式求出函数f(x)的最小正周期.【解答】解:由题图可得:函数图象过点(−4π9,0),将其代入函数f(x)可得:cos(−4π9⋅ω+π6)=0;又(−4π9,0)是函数f(x)图象与x轴负半轴的第一个交点,所以−4π9⋅ω+π6=−π2,解得:ω=32,所以函数f(x)的最小正周期为T=2πω=2π32=4π3.故选C.8.【答案】B【考点】对数的运算性质【解析】利用对数运算法则以及指数式与对数式互化求解即可.【解答】解:由alog34=2可得log34a=2,所以4a=9,故有4−a=19.故选B.9.【答案】C【考点】程序框图【解析】根据题意,模拟程序框图的运行过程,即可得知输出的结果.【解答】解:依据程序框图的算法功能可知,输出的n是满足1+3+5+⋯+n>100的最小正奇数.因为1+3+5+⋯+n=(1+n)(n−12+1)2=14(n+1)2>100,解得n>19,所以输出的n=21.故选C.10.【答案】D【考点】等比数列的通项公式【解析】先利用等比数列的通项公式和已知条件求出公比q,进而利用转化的方法进行最后求解. 【解答】解:设等比数列{a n}的公比为q,则a1+a2+a3=a1(1+q+q2)=1,a2+a3+a4=a1q+a1q2+a1q3=a1q(1+q+q2)=2,故q=2,因此a6+a7+a8=a1q5+a1q6+a1q7=a1q5(1+q+q2)=q5=32.故选D.11.【答案】B【考点】双曲线的应用双曲线的定义【解析】根据已知条件结合双曲线的焦点先判断△PF1F2为直角三角形,再根据双曲线的定义和直角三角形的性质即可得解.【解答】解:由题知,a=1,b=√3,c=2,F1(−2,0),F2(2,0).∵|OP|=2,故点P在以F1F2为直径的圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义知||PF1|−|PF2||=2a=2,∴|PF1|2+|PF2|2−2|PF1||PF2|=4,∴|PF1||PF2|=6,|PF1||PF2|=3.∴ △PF1F2的面积为12故选B.12.【答案】A【考点】正弦定理球的表面积和体积【解析】结合题意画出图形,利用已知条件求出O1A,OO1,从而求得球的半径,进而求球的表面积.【解答】解:设圆O1半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB=2rsin60∘=2√3,∴OO1=AB=2√3,根据圆截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的表面积为S=4πR2=64π.故选A.二、填空题13.【答案】1【考点】求线性目标函数的最值简单线性规划【解析】由已知条件作出不等式组对应的可行域,根据目标函数的几何意义,数形结合得到使目标函数取得最优解的点,联立方程组求出最优解的坐标,代入目标函数即可求得答案.【解答】解:绘制不等式组表示的平面区域如图所示,目标函数z=x+7y即y=−17x+17z,其中z取得最大值时,其几何意义表示直线在y轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:{2x +y −2=0,x −y −1=0,可得点A 的坐标为A (1,0).所以目标函数的最大值为:z max =1+7×0=1.故答案为:1.14.【答案】5【考点】平面向量数量积数量积判断两个平面向量的垂直关系【解析】根据垂直的两个向量的数量积为零,结合向量数量积的坐标公式,列出关于m 的方程,解之可得m 的值.【解答】解:由a →⊥b →,可得a →⋅b →=1×(m +1)+(−1)×(2m −4)=0,解得m =5.故答案为:5.15.【答案】y =2x【考点】利用导数研究曲线上某点切线方程【解析】先求得函数的导数,根据切线的斜率,求出切点坐标,进而得到所求切线的方程.【解答】解:设切线的切点坐标为(x 0,y 0),y =lnx +x +1,y ′=1x +1,y ′|x=x 0=1x 0+1=2, 故x 0=1,y 0=2,所以切点坐标为(1,2),所求的切线方程为y −2=2(x −1),即y =2x .故答案为: y =2x . 16.【答案】7【考点】数列递推式数列的求和【解析】由已知数列递推式,可求得n分别为奇数和偶数时的递推式,利用累加法得到n为奇数时a n与a1的关系,同时根据n为偶数时的递推式求出偶数项的和,得到S16与a1的关系,从而求得a1.【解答】解:a n+2+(−1)n a n=3n−1,当n为奇数时,a n+2=a n+3n−1;当n为偶数时,a n+2+a n=3n−1.设数列{a n}的前n项和为S n,S16=a1+a2+a3+a4+⋯+a16=a1+a3+a5+⋯+a15+(a2+a4)+⋯+(a14+a16)=a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)+(5+17+29+41)=8a1+392+92=8a1+484=540,∴a1=7.故答案为:7.三、解答题17.【答案】=0.4,解:(1)由表可知,甲厂加工出来的一件产品为A级品的概率为40100=0.28.乙厂加工出来的一件产品为A级品的概率为28100(2)甲分厂加工100件产品的总利润为:40×(90−25)+20×(50−25)+20×(20−25)−20×(50+25)=1500(元),所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为:28×(90−20)+17×(50−20)+34×(20−20)−21×(50+20)=1000(元),所以乙分厂加工100件产品的平均利润为10元每件.故厂家应选择甲分厂承接加工任务.【考点】众数、中位数、平均数古典概型及其概率计算公式【解析】(1)根据频数分布表中数据得到甲乙A级品的频数,然后利用概率公式求得概率;(2)根据所给数据先分别求出甲乙的平均利润,然后比较所求的利润的大小即可.【解答】=0.4,解:(1)由表可知,甲厂加工出来的一件产品为A级品的概率为40100=0.28.乙厂加工出来的一件产品为A级品的概率为28100(2)甲分厂加工100件产品的总利润为:40×(90−25)+20×(50−25)+20×(20−25)−20×(50+25)=1500(元),所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为:28×(90−20)+17×(50−20)+34×(20−20)−21×(50+20)=1000(元),所以乙分厂加工100件产品的平均利润为10元每件.故厂家应选择甲分厂承接加工任务.18.【答案】解:(1)由余弦定理可得:b2=28=a2+c2−2ac⋅cos150∘=7c2,∴c=2,a=2√3,∴△ABC的面积S=12acsinB=√3.(2)∵A+C=30∘,∴sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(C+30∘)=√22.∵0∘<C<30∘,∴30∘<C+30∘<60∘,∴C+30∘=45∘,∴C=15∘.【考点】两角和与差的正弦公式解三角形余弦定理【解析】(1)根据已知条件和余弦定理,可求得c和a,进而通过三角形面积公式求得结果;(2)根据已知条件和三角形内角和,用C表示A,代入已知式子,结合C的取值范围即可求得C.【解答】解:(1)由余弦定理可得:b2=28=a2+c2−2ac⋅cos150∘=7c2,∴c=2,a=2√3,∴△ABC的面积S=12acsinB=√3(2)∵A+C=30∘,∴sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(C+30∘)=√2.2∵0∘<C<30∘,∴30∘<C+30∘<60∘,∴C+30∘=45∘,∴C=15∘.19.【答案】(1)证明:连结CO,延长CO交AB于点E,如图,∵ O是正三角形ABC外接圆的圆心,∴ CO⊥AB.∵ 在圆锥中易知PO⊥平面ABC,AB⊂平面ABC,∴ PO⊥AB.又CO,PO⊂平面POC,CO∩PO=O,∴ AB⊥平面POC.又PC⊂平面POC,∴ AB⊥PC.∵ ∠APC=90∘,∴ PC⊥AP.又∵ PA,AB⊂平面PAB,PA∩AB=A,∴ PC⊥平面PAB.又∵ PC⊂平面PAC,∴ 平面PAC⊥平面PAB.(2)解:由DO=√2,圆锥的侧面积为√3π,设底面圆半径为r,母线长为l,⋅2πrl=√3π,r2+(√2)2=l2,12∴ r=1,l=√3,∴ AB=BC=AC=√3.∵ PA⊥PC,PA=PC,∴ PA=PC=√6.2在直角三角形APO中,AO=1,PA=√6,2∴ PO=√22,∴V P−ABC=13S△ABC⋅PO=√68.【考点】平面与平面垂直的判定直线与平面垂直的判定柱体、锥体、台体的体积计算【解析】(1)先根据线面垂直的判定定理证明PC⊥平面PAB,然后根据面面垂直的判定定理证明平面PAC⊥平面PAB;(2)先根据已知和圆锥的侧面积求出圆锥的半径和母线长,进而求出三棱锥的底面边长和高,最后利用三棱锥的体积公式求出体积.【解答】(1)证明:连结CO,延长CO交AB于点E,如图,∵ O是正三角形ABC外接圆的圆心,∴ CO⊥AB.∵ 在圆锥中易知PO⊥平面ABC,AB⊂平面ABC,∴ PO⊥AB.又CO,PO⊂平面POC,CO∩PO=O,∴ AB⊥平面POC.又PC⊂平面POC,∴ AB⊥PC.∵ ∠APC=90∘,∴ PC⊥AP.又∵ PA,AB⊂平面PAB,PA∩AB=A,∴ PC⊥平面PAB.又∵ PC⊂平面PAC,∴ 平面PAC⊥平面PAB.(2)解:由DO=√2,圆锥的侧面积为√3π,设底面圆半径为r,母线长为l,r2+(√2)2=l2,12⋅2πrl=√3π,∴ r=1,l=√3,∴ AB=BC=AC=√3.∵ PA⊥PC,PA=PC,∴ PA=PC=√62.在直角三角形APO中,AO=1,PA=√62,∴ PO=√22,∴V P−ABC=13S△ABC⋅PO=√68.20.【答案】解:(1)由题知f(x)的定义域为(−∞,+∞),且f′(x)=e x−a.当a=1时,f′(x)=e x−1,令f′(x)=0,解得x=0.当x∈(−∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.∴f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当a≤0时,f′(x)>0恒成立,f(x)在(−∞,+∞)上单调递增,不符合题意;②当a>0时,令f′(x)=0,解得x=lna.当x∈(−∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0,∴f(x)在x∈(−∞,lna)上单调递减,在x∈(lna,+∞)上单调递增,∴f(x)min=f(lna)=a−a(lna+2)=−a(1+lna),∴要使f(x)有两个零点,则f(lna)<0即可,则1+lna>0⇒a>e−1.综上,若f(x)有两个零点,则a∈(e−1,+∞).【考点】利用导数研究与函数零点有关的问题利用导数研究函数的单调性【解析】(1)先求出导函数的零点,由导函数的零点对定义域分段,再由导函数在各区间段内的符号求得原函数的单调性;(2)利用导数可得函数单调性,得到函数最值,结合题意由最小值小于0即可求得a的取值范围.【解答】解:(1)由题知f(x)的定义域为(−∞,+∞),且f′(x)=e x−a.当a=1时,f′(x)=e x−1,令f′(x)=0,解得x=0.当x∈(−∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.∴f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当a≤0时,f′(x)>0恒成立,f(x)在(−∞,+∞)上单调递增,不符合题意;②当a>0时,令f′(x)=0,解得x=lna.当x∈(−∞,lna)时,f′(x)<0;当x ∈(lna,+∞)时,f ′(x )>0,∴ f (x )在x ∈(−∞,lna )上单调递减,在x ∈(lna,+∞)上单调递增,∴ f (x )min =f (lna )=a −a (lna +2)=−a (1+lna ),∴ 要使f (x )有两个零点,则f (lna )<0即可,则1+lna >0⇒a >e −1.综上,若f (x )有两个零点,则a ∈(e −1,+∞).21.【答案】(1)解:依题意作出如下图象,由椭圆方程E:x 2a 2+y 2=1(a >1),可得: A (−a,0),B (a,0),G (0,1),∴ AG →=(a,1),GB →=(a,−1),∴ AG →⋅GB →=a 2−1=8,∴ a 2=9,∴ 椭圆方程为: x 29+y 2=1.(2)证明:设P (6,y 0),则直线AP 的方程为: y =y 0−06−(−3)(x +3), 即: y =y 09(x +3).联立直线AP 的方程与椭圆方程可得:{x 29+y 2=1,y =y 09(x +3),整理得:(y 02+9)x 2+6y 02x +9y 02−81=0,解得: x =−3或x =−3y 02+27y 02+9. 将x =−3y 02+27y 02+9代入直线y =y 09(x +3), 可得: y =6y 0y 02+9, 所以点C 的坐标为(−3y 02+27y 02+9,6y0y 02+9). 同理可得:点D 的坐标为(3y 02−3y 02+1,−2y 0y 02+1). ∴ 直线CD 的方程为y −(−2y 0y 02+1)=6y 0y 02+9−(−2y 0y 02+1)−3y 02+27y 02+9−3y 02−3y 02+1(x −3y 02−3y 02+1),整理可得: y +2y 0y 02+1=8y 0(y 02+3)6(9−y 04)(x −3y 02−3y 02+1)=8y 06(3−y 02)(x −3y 02−3y 02+1),整理得: y =4y 03(3−y 02)x +2y 0y 02−3=4y 03(3−y 02)(x −32), 故直线CD 过定点(32,0).【考点】圆锥曲线中的定点与定值问题椭圆的标准方程平面向量数量积【解析】(1)根据椭圆的几何性质,可写出A ,B 和G 的坐标,再结合平面向量的坐标运算列出关于a 的方程,解之即可;(2)设P 点坐标,写出直线AP 的方程,联立直线AP 的方程与椭圆方程,消去y ,解出x 的值代入直线AP 的方程中,从而得直线CD 过定点.【解答】(1)解:依题意作出如下图象,由椭圆方程E:x 2a 2+y 2=1(a >1),可得: A (−a,0),B (a,0),G (0,1),∴ AG →=(a,1),GB →=(a,−1),∴ AG →⋅GB →=a 2−1=8,∴ a 2=9,∴ 椭圆方程为: x 29+y 2=1(2)证明:设P (6,y 0),则直线AP 的方程为: y =y 0−06−(−3)(x +3),即: y =y 09(x +3).联立直线AP 的方程与椭圆方程可得:{x 29+y 2=1,y =y 09(x +3),整理得:(y 02+9)x 2+6y 02x +9y 02−81=0,解得: x =−3或x =−3y 02+27y 02+9. 将x =−3y 02+27y 02+9代入直线y =y 09(x +3), 可得: y =6y 0y 02+9,所以点C 的坐标为(−3y 02+27y 02+9,6y 0y 02+9).同理可得:点D 的坐标为(3y 02−3y 02+1,−2y 0y 02+1). ∴ 直线CD 的方程为y −(−2y 0y 02+1)=6y 0y 02+9−(−2y 0y 02+1)−3y 02+27y 02+9−3y 02−3y 02+1(x −3y 02−3y 02+1),整理可得: y +2y 0y 02+1=8y 0(y 02+3)6(9−y 04)(x −3y 02−3y 02+1) =8y 06(3−y 02)(x −3y 02−3y 02+1),整理得: y =4y 03(3−y 02)x +2y0y 02−3=4y 03(3−y 02)(x −32), 故直线CD 过定点(32,0). 22.【答案】解:(1)当k =1时,曲线C 1的参数方程为{x =cost ,y =sint (t 为参数),两式平方相加得x 2+y 2=1, 所以曲线C 1表示以坐标原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4t ,y =sin 4t(t 为参数), 所以x ≥0,y ≥0,曲线C 1的参数方程化为{√x =cos 2t ,√y =sin 2t(t 为参数), 两式相加得曲线C 1方程为√x +√y =1, 得√y =1−√x , 平方得y =x −2√x +1,0≤x ≤1,0≤y ≤1. 曲线C 2的极坐标方程为4ρcosθ−16ρsinθ+3=0, 曲线C 2直角坐标方程为4x −16y +3=0,联立C 1,C 2方程{y =x −2√x +1,4x −16y +3=0,整理得12x −32√x +13=0, 解得√x =12或√x =136 (舍去),∴ x =14,y =14, ∴ C 1,C 2公共点的直角坐标为(14,14). 【考点】圆的参数方程参数方程与普通方程的互化直线的极坐标方程与直角坐标方程的互化【解析】(1)利用平方关系消去参数,可得圆的直角坐标方程;(2)利用开方消去参数得到曲线C 1的直角坐标方程,结合极坐标与直角坐标的互化公式得到C 2的直角坐标方程,联立C 1与C 2易求公共点的直角坐标.【解答】解:(1)当k =1时,曲线C 1的参数方程为{x =cost ,y =sint (t 为参数),两式平方相加得x 2+y 2=1,所以曲线C 1表示以坐标原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4t ,y =sin 4t(t 为参数), 所以x ≥0,y ≥0,曲线C 1的参数方程化为{√x =cos 2t ,√y =sin 2t(t 为参数), 两式相加得曲线C 1方程为√x +√y =1,得√y =1−√x ,平方得y =x −2√x +1,0≤x ≤1,0≤y ≤1.曲线C 2的极坐标方程为4ρcosθ−16ρsinθ+3=0,曲线C 2直角坐标方程为4x −16y +3=0,联立C 1,C 2方程{y =x −2√x +1,4x −16y +3=0,整理得12x −32√x +13=0,解得√x =12或√x =136 (舍去), ∴ x =14,y =14,∴ C 1,C 2公共点的直角坐标为(14,14). 23.【答案】解:(1)因为f(x)={x+3,x≥1,5x−1,−13<x<1,−x−3,x≤−13,作出f(x)的图象,如图所示:(2)将函数f(x)的图象向左平移1个单位,可得函数f(x+1)的图象,由−x−3=5(x+1)−1,解得x=−76,所以不等式的解集为(−∞,−76).【考点】绝对值不等式的解法与证明函数的图象【解析】(1)先将函数的定义域进行分段,然后将含绝对值的函数转化为分段函数,即可作出图象;(2)先将函数f(x)的图象向左平移1个单位得到f(x+1)的图象,然后结合图象易得不等式的解集.【解答】解:(1)因为f(x)={x+3,x≥1,5x−1,−13<x<1,−x−3,x≤−13,作出f(x)的图象,如图所示:(2)将函数f(x)的图象向左平移1个单位,可得函数f(x+1)的图象,由−x−3=5(x+1)−1,解得x=−76,所以不等式的解集为(−∞,−76).。

2020年高考全国I卷 数学(文科)

2020年高考全国I卷 数学(文科)

2020年高考全国I 卷数学(文科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B. {}1,5 C. {}3,5 D. {}1,32.若312z i i =++,则z = A.0 B.1 C.2D. 23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.514- B.512- C.51+ D. 51+4. 设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概率为A. 15B. 25C. 12D. 455. 某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i y i =(x 1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A. y a bx =+ B. 2y a bx =+ C. x y a be =+ D. ln y a b x =+6. 已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为B. 2C. 3D. 47. 设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A. 109πB. 76πC. 43πD. 32π8. 设3a log 42=,则-a 4A.116 B. 19C. 18D. 169.执行右面的程序框图,则输出的n = A. 17 B. 19 C. 21 D. 2310.设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=B. 24C. 30D. 3211. 设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP | =2,则∆12PF F 的面积为A. 72B. 3C. 52D. 212. 已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆. 若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前|铭师堂试题
2020高考模拟数学试题(全国Ⅰ卷)——文科
(考试时间:120分钟 试卷满分:150分)
第I 卷
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={y |x +y =1,x ∈R },N ={y |x ﹣y =1,x ∈R },则M ∩N =( ) A .(1,0)
B .{(1,0)}
C .{0}
D .R
2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2i
B .−√2i
C .1﹣i
D .√2−√2i
3.对任意实数x ,y ,定义运算x ⊗y ={x ,x −y ≤0
y ,x −y >0
,设a =ln2
4,b =ln3
9,c =ln4
16,则(b ⊗c )
⊗a 的值是( ) A .a
B .b
C .c
D .不能确定
4.已知x ,y 的取值如下表所示,若y 与x 线性相关,则y =b ^
x +a ^
过定点( )
x 0 1 3 4 y
2.2 4.3 4.8 6.7
A .(1.5,4)
B .(2,4.5)
C .(1.5,4.5)
D .(2,4)
5.函数y =
x 2e |x|+1
(其中e 为自然对数的底)的图象大致是( )
A .
B .
C .
D .
6.《庄子.天下篇》中有一句话:“一尺之棰,日取其半,万世不竭”.如果经过n 天,该木锤剩余的长度为a n (尺),则a n 与n 的关系为( ) A .a n =
1
2n
B .a n =1−
12n
C .a n =1
n
D .a n =1−1
n
7.已知向量a →
=(1,2),b →
=(﹣2,1),c →
=(x ,y ),若(a →
+b →
)⊥c →
,则b →
在c →
上的投影为( ) A .±√10
2
B .±√10
5
C .−√10
2
D .−√10
5
8.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112
,则判断框中填写的内容可以是( )
A.n<5B.n<6C.n≤6D.n<9
9.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()
A.1
4
B.1
2
C.1
8
D.1
3
10.已知三棱锥A﹣BCD中,BC⊥CD,AB=AD=√2,BC=1,CD=√3,则该三棱锥的外接球的体积为()
A.4π
3
B.8π
3
C.8√2π
3
D.36π
11.已知F1,F2是椭圆C:x2
a
+y
2
b
=1(a>b>0)的左、右焦点,A是C的左顶点,点P
在过A且斜率为√3
6
的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为
()
A.2
3
B.1
2
C.1
3
D.1
4
12.已知关于x的方程[f(x)]2﹣kf(x)+1=0恰有四个不同的实数根,则当函数f(x)=x2e x 时,实数k的取值范围是()
A.(﹣∞,﹣2)∪(2,+∞)B.(4
e
+e
2
4
,+∞)
C.(8
e
,2)D.(2,
4
e
+e
2
4

第II卷
二、填空题:本题共4小题,每小题5分,共20分。

13.已知S n,是等比数列{a n}的前n项和,且S3,S9,S6成等差数列,a2+a4=6,则a8=.14.曲线y=x sin x+1+ln(x+1)在x=0处的切线方程为.
15.已知样本x1,x2,x3,…,x n方差s2=2,则样本2x1+1,2x2+1,2x3+1,…,2x n+1的方差为.
16.已知抛物线y2=4x上有三点A,B,C,直线AB,BC,AC的斜率分别为3,6,12,则△ABC的重心坐标为.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:
球队胜球队负总计甲参加22b30
甲未参加c12d 总计30e n 求b,c,d,e,n的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;
附表及公式:
P (K 2≥k )
0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072
2.706
3.841
5.024
6.635
7.879
10.828
K 2
=
n(ad−bc)
2
(a+b)(c+d)(a+c)(b+d)

18.设函数f (x )=A sin (ωx +φ)(A ,ω,φ为常数,且A >0,ω>0,0<φ<π)的部分图象如图所示.
(1)求函数f (x )的解析式和单调减区间;
(2)若不等式f (x )﹣m ≤2在x ∈[0,5π
12]上恒成立,求实数m 的取值范围.
19.如图,在三棱锥P ﹣ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (Ⅰ)求证:平面BDE ⊥平面P AC ;
(Ⅱ)若P A ∥平面BDE ,求三棱锥E ﹣BCD 的体积.
20.已知椭圆C :
x 2a
2
+y 2b 2
=1(a >b >0)的离心率为
√2
2
,过左焦点F 的直线与椭圆交于A ,B
两点,且线段AB的中点为(−2
3
,1
3
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M为C上一个动点,过点M与椭圆C只有一个公共点的直线为l1,过点F与MF垂直的直线为l2,求证:l1与l2的交点在定直线上,并求出该定直线的方程.21.已知函数f(x)=ae x﹣2x,a∈R.
(1)求函数f(x)的极值;
(2)当a≥1时,证明:f(x)﹣lnx+2x>2.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

[选修4-4:坐标系与参数方程](10分)
22.在平面直角坐标系xOy中,已知直线l的参数方程为{x=−2+t
y=t
2
+3(t为参数),曲线C的
参数方程{x=2cosθ
y=√3sinθ(θ为参数).设M为曲线C上的动点,求点M到直线l的距离的
最小值.
23.设a、b、c均为正数.
(Ⅰ)证明:a2+b2+c2≥ab+bc+ca;
(Ⅱ)若ab+bc+ca=1,证明a+b+c≥√3.。

相关文档
最新文档