抽样分布习题及答案培训资料

合集下载

抽样分布习题及答案

抽样分布习题及答案

抽样分布习题及答案抽样分布习题及答案抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本后,样本统计量的分布情况。

在实际应用中,我们经常需要利用抽样分布来进行统计推断,因此对于抽样分布的理解和掌握是十分必要的。

本文将介绍一些常见的抽样分布习题,并提供相应的答案。

1. 问题:某公司有1000名员工,其中400人是女性。

现从中随机抽取100人,求抽取样本中女性人数的抽样分布。

解答:在这个问题中,我们可以将女性的出现看作是一个二项分布的实验,成功的概率为0.4。

因此,抽取样本中女性人数的抽样分布是一个二项分布。

根据二项分布的性质,我们可以计算出不同女性人数的概率。

2. 问题:某电商平台有1000个用户,他们的购买金额服从均值为100元,标准差为20元的正态分布。

现从中随机抽取50个用户,求抽取样本的平均购买金额的抽样分布。

解答:在这个问题中,样本的平均购买金额的抽样分布是一个服从均值为100元,标准差为20/√50元的正态分布。

根据正态分布的性质,我们可以计算出不同平均购买金额的概率。

3. 问题:某城市的居民年收入服从均值为50000元,标准差为10000元的正态分布。

现从中随机抽取200个居民,求抽取样本的平均年收入的抽样分布。

解答:在这个问题中,样本的平均年收入的抽样分布是一个服从均值为50000元,标准差为10000/√200元的正态分布。

根据正态分布的性质,我们可以计算出不同平均年收入的概率。

4. 问题:某医院每天接诊的患者数服从均值为50人,标准差为10人的泊松分布。

现从中随机抽取30天,求抽取样本的平均每天接诊的患者数的抽样分布。

解答:在这个问题中,样本的平均每天接诊的患者数的抽样分布是一个服从均值为50人,标准差为10/√30人的正态分布。

根据正态分布的性质,我们可以计算出不同平均每天接诊的患者数的概率。

通过以上几个习题的解答,我们可以看到不同问题中抽样分布的情况是不同的,需要根据具体的问题来确定抽样分布的类型和参数。

(完整版)抽样调查习题及答案

(完整版)抽样调查习题及答案

第四章习题抽样调查一、填空题1.抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。

2.采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。

3.只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。

4.参数估计有两种形式:一是点估计,二是区间估计。

5.判别估计量优良性的三个准则是:无偏性、一致性和有效性。

6.我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。

7.常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。

8.对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。

若Δ扩大一倍,则抽样单位数为原来的1/4。

9.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。

10.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。

二、判断题1.抽样误差是抽样调查中无法避免的误差。

(√)2.抽样误差的产生是由于破坏了随机原则所造成的。

(×)3.重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。

(√)4.在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。

(√)5.抽样调查所遵循的基本原则是可靠性原则。

(×)6.样本指标是一个客观存在的常数。

(×)7.全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。

(×)8.抽样平均误差就是抽样平均数的标准差。

(×)三、单项选择题1.用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A.2倍B.3倍C.4倍D.5倍2.事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A.分层抽样B.简单随机抽样C.整群抽样D.等距抽样3.计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A.最小一个B.最大一个C.中间一个D.平均值4.抽样误差是指(D)A.计算过程中产生的误差B.调查中产生的登记性误差C.调查中产生的系统性误差D.随机性的代表性误差5.抽样成数是一个(A)A.结构相对数B.比例相对数C.比较相对数D.强度相对数6.成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A.全面调查B.非全面调查C.一次性调查D.经常性调查8.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A.甲产品大B.乙产品大C.相等D.无法判断10.抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A.甲企业较大B.乙企业较大C.不能作出结论D.相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A.是不可避免要产生的B.是可以通过改进调查方法来避免的C.是可以计算出来的D.只能在调查结果之后才能计算E.其大小是可以控制的2.重复抽样的特点是(AC)A.各次抽选相互影响B.各次抽选互不影响C.每次抽选时,总体单位数始终不变D每次抽选时,总体单位数逐渐减少E.各单位被抽中的机会在各次抽选中相等3.抽样调查所需的样本容量取决于(ABE)A.总体中各单位标志间的变异程度B.允许误差C.样本个数D.置信度E.抽样方法4.分层抽样误差的大小取决于(BCD)A.各组样本容量占总体比重的分配状况B.各组间的标志变异程度C.样本容量的大小D.各组内标志值的变异程度E.总体标志值的变异程度5.在抽样调查中(ACD)A.全及指标是唯一确定的B.样本指标是唯一确定的C.全及总体是唯一确定的D.样本指标是随机变量E.全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

(完整版)抽样调查习题及答案

(完整版)抽样调查习题及答案

(完整版)抽样调查习题及答案第四章习题抽样调查⼀、填空题1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。

2. 采⽤不重复抽样⽅法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。

3. 只要使⽤⾮全⾯调查的⽅法,即使遵守随机原则,抽样误差也不可避免会产⽣。

4. 参数估计有两种形式:⼀是点估计,⼆是区间估计。

5. 判别估计量优良性的三个准则是:⽆偏性、⼀致性和有效性。

6. 我们采⽤“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差⼤⼩的尺度。

7. 常⽤的抽样⽅法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。

8. 对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩⼩⼀半,抽样单位数必须为原来的4倍。

若Δ扩⼤⼀倍,则抽样单位数为原来的1/4。

9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。

10. 在同样的精度要求下,不重复抽样⽐重复抽样需要的样本容量少,整群抽样⽐个体抽样需要的样本容量多。

⼆、判断题1. 抽样误差是抽样调查中⽆法避免的误差。

(√)2. 抽样误差的产⽣是由于破坏了随机原则所造成的。

(×)3. 重复抽样条件下的抽样平均误差总是⼤于不重复抽样条件下的抽样平均误差。

(√)4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增⼤到9倍。

(√)5. 抽样调查所遵循的基本原则是可靠性原则。

(×)6. 样本指标是⼀个客观存在的常数。

(×)7. 全⾯调查只有登记性误差⽽没有代表性误差,抽样调查只有代表性误差⽽没有登记性误差。

(×)8. 抽样平均误差就是抽样平均数的标准差。

(×)三、单项选择题1. ⽤简单随机抽样(重复)⽅法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩⼤为原来的(C)A. 2倍B. 3倍C. 4倍D. 5倍2. 事先将全及总体各单位按某⼀标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织⽅式叫做(D)A. 分层抽样B. 简单随机抽样C. 整群抽样D. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A. 最⼩⼀个B. 最⼤⼀个C. 中间⼀个D. 平均值4. 抽样误差是指(D)A. 计算过程中产⽣的误差B. 调查中产⽣的登记性误差C. 调查中产⽣的系统性误差D. 随机性的代表性误差5. 抽样成数是⼀个(A)A. 结构相对数B. ⽐例相对数C. ⽐较相对数D. 强度相对数6. 成数和成数⽅差的关系是(C)A.成数越接近于0,成数⽅差越⼤B.成数越接近于1,成数⽅差越⼤C.成数越接近于0.5,成数⽅差越⼤D.成数越接近于0.25,成数⽅差越⼤7. 整群抽样是对被抽中的群作全⾯调查,所以整群抽样是(B)A. 全⾯调查B. ⾮全⾯调查C. ⼀次性调查D. 经常性调查8. 对400名⼤学⽣抽取19%进⾏不重复抽样调查,其中优等⽣⽐重为20%,概率保证程度为95.45%,则优等⽣⽐重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,⼄产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A. 甲产品⼤B. ⼄产品⼤C. 相等D. ⽆法判断10. 抽样调查结果表明,甲企业职⼯平均⼯资⽅差为25,⼄企业为100,⼜知⼄企业⼯⼈数⽐甲企业⼯⼈数多3倍,则随机抽样误差(B)A. 甲企业较⼤B. ⼄企业较⼤C. 不能作出结论D. 相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A. 是不可避免要产⽣的B. 是可以通过改进调查⽅法来避免的C. 是可以计算出来的D. 只能在调查结果之后才能计算E. 其⼤⼩是可以控制的2. 重复抽样的特点是(AC)A. 各次抽选相互影响B. 各次抽选互不影响C. 每次抽选时,总体单位数始终不变D 每次抽选时,总体单位数逐渐减少E. 各单位被抽中的机会在各次抽选中相等3. 抽样调查所需的样本容量取决于(ABE)A. 总体中各单位标志间的变异程度B. 允许误差C. 样本个数D. 置信度E. 抽样⽅法4. 分层抽样误差的⼤⼩取决于(BCD)A. 各组样本容量占总体⽐重的分配状况B. 各组间的标志变异程度C. 样本容量的⼤⼩D. 各组内标志值的变异程度E. 总体标志值的变异程度5. 在抽样调查中(ACD)A. 全及指标是唯⼀确定的B. 样本指标是唯⼀确定的C. 全及总体是唯⼀确定的D. 样本指标是随机变量E. 全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职⼯3000⼈,现从中随机抽取60⼈调查其⼯资收⼊情况,得到有关资料如下:(1)试以0.95的置信度估计该公司⼯⼈的⽉平均⼯资所在范围。

概率论与数理统计 第六章抽样分布 练习题与答案详解

概率论与数理统计 第六章抽样分布 练习题与答案详解

概率论与数理统计 第六章 抽样分布练习题与答案详解(答案在最后)1.设n X X X ,,,21 为取自总体X 的样本,总体方差2σ=DX 为已知,X和2S 分别为样本均值,样本方差,则下列各式中( )为统计量.(A)21)(∑=-ni iEX X(B) 22)1(σS n - (C) i EX X - (D) 12+nX2.设总体) ,(~2σμN X ,其中μ已知,2σ未知,n X X X ,,,21 是来自X的样本,判断下列样本的函数中,( )是统计量.(A) σ++21X X (B) 221)(S X ni i∑=-μ(C) ),,,min(21n X X X (D)212σ∑=ni iX3.今测得一组数据为12.06,12.44,15.91,8.15,8.75,12.50,13.42,15.78,17.23.试计算样本均值,样本方差及顺序统计量*1X ,*9X .4.设总体) ,(~2σμN X ,样本观测值为3.27,3.24,3.25,3.26,3.37,假设25.3=μ,22016.0=σ,试计算下列统计量的值:(1) nX U σμ-=,(2) 251221)(1∑=-=i iX Xσχ,(3) 251222)(1∑=-=i iXμσχ.5.某厂生产的电容器的使用寿命服从指数分布,但参数λ未知,为统计推断需要,任意抽查n 只电容器测其实际使用寿命.试问此题中的总体,样本及其分布各是什么?6.某市抽样调查了一百户市民的人均月收入,试指出总体和样本. 7.某校学生的数学考试成绩服从正态分布) ,(2σμN .教委评审组从该校学生中随机抽取50人进行数学测试,问这题中总体,样本及其分布各是什么?8.设1621,,,X X X 是来自正态总体) ,2(~2σN X 的样本,X 是样本均值,则~1684-X ( ) (A) )15(t (B) )16(t (C) )15(2χ (D) 1) ,0(N9.设总体) ,0(~2σN X ,n X X X ,,,21 为其样本,∑==n i i X n X 11,212)(1∑=-=n i i n X X n S ,在下列样本函数中,服从)(2n χ分布的是( ). (A)σnX (B)∑=ni iX1221σ (C)22σnnS (D)nS n X 1- 10.设总体) ,(~2σμN X ,n X X X ,,,21 为X 的简单随机样本,X ,2nS 同上题,则服从)1(2-n χ分布的是( ).(A)nX σμ- (B)1--n S X nμ (C)22σnnS (D)212)(1∑=-ni iXμσ11.设总体) ,(~2σμN X ,n X X X ,,,21 是X 的样本,X ,2S 是样本均值和样本方差,则下列式子中不正确的有( )(A))1(~)(2212--∑=n X Xni iχσ (B))1 ,0(~N X σμ-(C) )1(~--n t nSX μ (D))(~)(2221n Xni iχσμ∑=-12.设n X X X ,,,21 和n Y Y Y ,,,21 分别取自正态总体) ,(~21σμN X 和) ,(~22σμN Y ,且X 和Y 相互独立,则以下统计量各服从什么分布?(1) 22221))(1(σS S n +-; (2)nS S Y X )()()(222121+---μμ;(3) 2221221)]()[(S S Y X n +---μμ. 其中X ,Y 是X ,Y 的样本均值,21S ,22S 是X ,Y 的样本方差.13.设n X X X ,,,21 是正态总体) ,(~2σμN X 的样本,记2121)(11∑=--=n i i X X n S , 2122)(1∑=-=n i i X X n S , 2123)(11∑=--=n i i X n S μ, 2124)(1∑=-=n i i X n S μ, 则服从自由度为1-n 的t 分布的随机变量有( )(A) 11--n S X μ (B) 12--n S X μ (C) n S X 3μ- (D) nS X 4μ-14.设321 , ,X X X 是来自正态总体)9 ,(~μN X 的样本,232212)()(μχ-+-=X b X X a ,则当=a ____,=b ____时,22~χχ(___).15.设921,,,X X X 和1621,,,Y Y Y 分别为来自总体)2 ,(~21μN X 和)2 ,(~22μN Y 的两个相互独立的样本,它们的样本均值和样本方差分别为X ,Y 和21S ,22S .求以下各式中的621,,,ααα .(1) 9.0})({91221=<-<∑=i i X X P αα;(2) 9.0}|{|31=<-αμX P ;(3) 9.0)(||416122=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=αμi i Y Y Y P ;(4) 9.0815621225=⎭⎬⎫⎩⎨⎧<<ααS S P . 16.在天平上重复称量一个重为a (未知)的物品.假设n 次称量结果是相互独立的,且每次称量结果均服从).20 ,(2a N .用n X 表示n 次称量结果的算术平均值.为使n X 与a 的差的绝对值小于0.1的概率不小于%95,问至少应进行多少次称量?17.根据以往情形,某校学生数学成绩)10 ,72(~2N X ,在一次抽考中,至少应让多少名学生参加考试,可以使参加考试的学生的平均成绩大于70分的概率达到0.9以上?18.在均值为80,方差为400的总体中,随机地抽取一容量为100的样本,X 表示样本均值,求概率}3|80{|>-X P 的值.19.设总体)5 ,40(~2N X ,从中抽取容量64=n 的样本,求概率}1|40{|<-X P 的值.20.设总体X 与Y 相互独立,且都服从)2 ,30(2N ,从这两总体中分别抽取了容量为201=n 与252=n 的样本,求4.0||>-Y X 的概率.21.设总体)2 ,0(~2N X ,而1521,,,X X X 是X 的样本,则)(221521121021X X X X Y ++++= 服从什么分布,参数是多少?又问当a 为何值时,215272621X X X X a F ++++= 服从)9 ,6(F ?22.设总体)4 ,0(~N X ,1021,,,X X X 是X 的样本,求(1) }13{1012≤∑=i i X P ;(2) }76)(3.13{2101≤-≤∑=i i X X P .23.从总体) ,(~2σμN X 中抽取容量为16的样本,2S 为样本方差,求}041.2{22≤σS P .24.从总体)2 ,12(~2N X 中随机抽取容量为5的样本521,,,X X X ,求} 284.44)12( {512>-∑=i i X P .答案详解1.B(A)中含总体期望EX 是未知参数,(C)中EX EX i =也是未知参数,都不是统计量,而(D)不是样本的函数,当然不是统计量.2.B ,C3.样本容量9=n ,利用计算器的统计功能键,算出92.12=x ,65.9)107.3(22==s ,观察921,,,x x x ,可得最小值15.8*1=x ,最大值23.17*=n x .注 上面得到的x ,2s ,*1x ,*nx 依次是统计量∑==ni i X n X 11,),,,max( ),,,,min( ,)(1121*21*1212n n n n i i X X X X X X X X X X n S ==--=∑=的观察值.注意统计量与统计量的观察值的区别,前者是随机变量,后者是具体的数值4.258.3=x ,00017.02=s (1) 118.1=u ; (2) 656.221=χ;(3) 906.322=χ,提示 为了计算22χ的值,先将其展开为)52(1251512222μμσχ+-=∑∑==i i i iX X ,其中,∑=512i iX ,∑=51i i X 均可由计算器的统计功能键求出来5.“电容器的使用寿命”是总体X ,其服从参数为λ的指数分布,即X 的概率密度为⎩⎨⎧≤>=-0.x , 0 0,x ,)(x X e x f λλ“抽查的n 只电容的使用寿命”是容量为n 的样本n X X X ,,,21 .由于n X X X ,,,21 相互独立且每个i X 与总体X 具有相同的分布,所以,样本的联合概率密度为⎩⎨⎧=>=∏=+++-=., 0,,,1 ,0,)(),,,()(12121其它n i x e x f x x x f i x x x n i X ni n n λλ 6.总体X 为该市市民户的人均月收入,容量为100的样本10021,,,X X X 为抽查的100户市民的人均月收入7.总体X 为该校学生的数学考试成绩,容量为50的样本5021,,,X X X 为抽取的50人的数学成绩总体) ,(~2σμN X ,即其概率密度为222)(21)(σμσπ--=x X ex f ,样本5021,,,X X X 的概率密度为∑⎪⎪⎭⎫⎝⎛==--50122)(2150502121),,,(i i x e x x x f μσσπ8.D因为) ,2(~2σN X ,根据正态总体的抽样分布),2(~2nN X σ,)1 ,0(~)2(4162222N X X n X U σσσ-=-=-=9.(A) 因) ,0(~2σN X ,由正态总体的抽样分布,有) ,0(~2nN X σ,所以)1 ,0(~2N nX nXU σσ==.(B) 因) ,0(~2σN X i ,得)1 ,0(~N X iσ,n i ,,1 =,且这n 个标准正态变量相互独立,所以由2χ分布的定义知,)(~1212122n X X ni i ni i χσσ∑∑==⎪⎭⎫⎝⎛=.(C) 2122)1()(S n X X nS ni i n-=-=∑=,由正态总体的抽样分布知)1(~)1()(22221222--=-=∑=n S n X XnSni iχσσσ.(D) ()nS X X n n n S n i i n 2122)1(11=--=-∑=,由正态分布的抽样分布知 )1(~11--=-=-=n t S n X n S X nSX T nnμ, 或者,由(A),(C)的结果,根据t 分布的定义有)1(~1)1(22--=-=n t S n X n nS n X T nn σσ.综上可知,应选B . 10.C 11.B12.(1) )22(2-n χ; (2) )22(-n t ; (3) )22 ,1(-n F 13.B 14.181=a ,91=b 时,)2(~22χχ 15.(1) 由正态总体的抽样分布得∑=-91222)8(~)(21i iX Xχ,因此,}44)(4{})({2912191221αααα<-<=<-<∑∑==i ii i X XP X X P9.0}4)8({}4)8({2212=>->=αχαχP P ,令95.0}4)8({12=>αχP ,05.0}4)8({22=>αχP ,根据2χ分布得上侧临界值的定义,查表可得,733.2)8(4295.01==χα,955.21)8(4205.02==χα,即932.104733.21=⨯=α,82.874955.212=⨯=α注 一般来说,满足条件{}αχ-=<<12B A P的数(临界值)A ,B 有很多对,这里我们采用的取法是使A ,B 满足{}{}222αχχ=≥=≤B P A P .通常认为这样的取法比较好,对于F 分布也类似(2) 由正态总体的抽样分布)1 ,0(~91N X σμ-,即)1 ,0(~321N X μ-, 得9.0}23||23{}|{|3131=<-=<-αμαμX P X P ,根据)1 ,0(N 分布得双侧临界值的定义,查表得645.1232/10.03==u α,所以097.132645.13=⨯=α.(3) 由正态总体的抽样分布)15(~1622t S Y μ-,即)15(~)(422t S Y μ-,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=422241612215||)(||αμαμS Y P Y Y Y P i i 9.0154)(4 422=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=αμS Y P .根据t 分布的双侧临界值的定义,并查表得75.1)15(1542/10.04==t α,于是,113.015475.14==α.(4) 由正态总体得抽样分布)8 ,15(~222212222122F S S S S =,得90.005.095.0158158815621225621225=-=⎭⎬⎫⎩⎨⎧<<=⎭⎬⎫⎩⎨⎧<<ααααS S P S S P , 查F 分布上侧临界值表,得645.21)15 ,8(1)8 ,15(15805.095.05===F F α, 22.3)8 ,15(15805.06==F α, 所以,709.08645.2155=⨯=α,038.6709.081522.36==⨯=α 16.16≥n ,即至少应进行16次称量提示 对该物品进行独立重复称量的所有可能结果,看成总体X ,则n 次称量结果n X X X ,,,21 就是X 的一容量为n 的样本,n X 即样本均值.由题意知,).20 ,(~2a N X ,根据正态总体的抽样分布,)2.0 ,(~2na N X n ,按条件95.0}1.0 || {≥<-a X P n 来求出n17.至少要42个学生参加抽考18.0.1336提示 该总体并非正态总体,然而100=n 为大样本,所以)100400,80(~N X 19.0.8904 20.约等于0.3446 21.)5 ,10(~F Y ;23=a 22.(1) 因为)4 ,0(~N X i ,)10,,1( =i 且1021,,,X X X 相互独立,所以)10(~421012χ∑=i i X , }4134{}13{10121012∑∑==≤=≤i i i iX P X Pαχ-=>-=1}25.3)10({1 2P ,由于25.3)10(2=αχ,反查2χ分布表,得,975.0=α,故025.0975.01}13{1012=-=≤∑=i i X P .(2) 因为)9(~49)(2221012χσS X Xi i=-∑=,所以, }194932.3{}76)(3.13{21012≤≤=≤-≤∑=S P X X P i i 2122}19)9({}32.3)9({ ααχχ-=>->=P P , 由32.3)9(21=αχ及19)9(22=αχ,反查2χ分布表,得95.01=α及025.02=α,所以,925.0025.095.0}76)(3.13{1012=-=≤-≤∑=i i X X P23.0.99 24.0.05。

抽样分布习题及答案

抽样分布习题及答案

抽样分布习题及答案1. 题目:从一个容器中随机取出30个样本,每个样本的体积服从正态分布,均值为150,标准差为10。

计算样本均值的抽样分布的标准差。

解答:我们知道,样本均值的抽样分布的标准差(也称为标准误差)可以通过总体标准差除以样本容量的平方根来计算。

标准误差 = 总体标准差/ √样本容量在本题中,总体标准差为10,样本容量为30,代入公式可得:标准误差= 10 / √30 ≈ 1.83因此,样本均值的抽样分布的标准差约为1.83。

2. 题目:某电视台进行了一项调查,随机抽取了500名观众,其中有380人表示喜欢该电视节目。

根据该样本数据,计算其样本比例的抽样分布的标准差。

解答:样本比例的抽样分布的标准差可以通过以下公式计算:标准误差= √((样本比例 × (1 - 样本比例)) / 样本容量)在本题中,样本比例为380/500 = 0.76,样本容量为500,代入公式可得:标准误差= √((0.76 × (1 - 0.76)) / 500) ≈ 0.018因此,样本比例的抽样分布的标准差约为0.018。

3. 题目:某商品的包装袋上注明每袋重量服从正态分布,均值为500克,标准差为10克。

为了确定该注明是否准确,随机抽取了100袋该商品,计算抽取样本的平均重量的抽样分布的标准差。

解答:抽取样本的平均重量的抽样分布的标准差可以通过总体标准差除以样本容量的平方根来计算。

标准误差 = 总体标准差/ √样本容量在本题中,总体标准差为10克,样本容量为100,代入公式可得:标准误差= 10 / √100 = 1因此,抽取样本的平均重量的抽样分布的标准差为1克。

4. 题目:某超市进行了一次促销活动,随机抽取了50个顾客进行调查,得知他们购买的平均金额为200元,标准差为50元。

计算该样本的平均金额的抽样分布的标准差。

解答:样本的平均金额的抽样分布的标准差可以通过总体标准差除以样本容量的平方根来计算。

第四章 抽样与抽样分布习题及答案

第四章 抽样与抽样分布习题及答案
答案:对
5.参数是总体的某种特征值,而统计量是一个不含未知参数的样本函数。
答案:对
6.在计算样本容量时,成数方差P(1-P)在完全缺乏资料的情况下,可用成数方差P(1-P)的极大值0.5 0.5来代替。
答案:对
A.前者高说明后者小
B.前者高说明后者大
C.前者变化而后者不变
D.两者没有关系
答案:a
6.在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应( )。
A.增加8倍
B.增加9倍
C.增加倍
D.增加2.25倍
答案:b
7.当总体单位数较大时,若抽样比为51%,则对于简单随机抽样,不重复抽样的平均误差约为重复抽样的( )。
3.抽样极限误差是( )。
A.调查性误差
B.一定可靠程度下的抽样误差可能范围
C.最小抽样误差
D.等于抽样平均误差
答案:b
4.在其它条件相同的情况下,重复抽样的抽样平均误差和不重复抽样的相比( )。
A.前者一定大于后者
B.前者一定小于后者
C.两者相等
D.前者可能大于、也可能小于后者
答案:a
5.抽样推断的精确度和极限误差的关系是( )。
抽样与抽样分布习题及答案
单选题
1.抽样调查抽选样本时,遵循的原则是( )。
A.随机原则
B.同质性原则
C.系统原则
D.主观性原则
答案:a
2.抽样误差是指( )。
A.在调查过程中由于观察、测量等差错所引起的误差
B.在调查中违反随机原则出现的系统误差
C.随机抽样而产生的代表性误差
D.人为原因所造成的误差
答案:c
A.51%
B.49%

统计学-抽样调查的基本方法习题及答案

统计学-抽样调查的基本方法习题及答案

统计学-抽样调查的基本方法习题及答案一、选择题1. 抽样调查是指从人口中随机抽取个体作为调查对象,并通过对这些个体的调查研究来推断总体特征。

下面哪种抽样方法是最常用的?- A. 简单随机抽样- B. 系统抽样- C. 分层抽样- D. 整群抽样选择答案:A2. 如果我们希望对某个地区的顾客群体进行调查,首先将地区划分为多个不同的区域,然后从每个区域中随机选取一些顾客进行调查,这种抽样方法称为:- A. 简单随机抽样- B. 系统抽样- C. 分层抽样- D. 整群抽样选择答案:C3. 在统计调查中,"样本容量"是指:- A. 做出判断的人数- B. 地区划分数- C. 调查问卷的页数- D. 参与调查的个体数量选择答案:D二、填空题1. 抽样误差是指抽出的样本与总体之间的差异。

为了减小抽样误差,可以增加样本的<div style="">容量</div>。

2. "抽样分布"是指在相同的总体中,根据不同的抽样数据得出的统计量的<div style="">分布</div>。

3. "简单随机抽样"是一种可能的抽样方法,其中每个个体都有相同的<div style="">机会</div>被选中。

三、问答题1. 请简要说明简单随机抽样的基本步骤。

答案:简单随机抽样的基本步骤包括:- 确定总体和样本的定义;- 根据总体的特征确定抽样目标;- 设定样本容量;- 使用随机数生成器或其他随机选择方法,从总体中随机选取样本;- 进行调查或实验,收集样本数据;- 对样本数据进行统计分析,得出结论,并推断总体特征。

2. 请详细描述分层抽样的原理和适用场景。

答案:分层抽样是根据总体的特征将总体划分为多个层级,然后从每个层级中随机选取样本。

统计量及其抽样分布练习题

统计量及其抽样分布练习题

第六章统计量及其抽样分布练习题一、填空题 (共10题,每题2分,共计20分)1.简单随机抽样样本均值X的方差取决于__ 和______ ,要使X的标准差降低到原来的50%,则样本容量需要扩大到原来的倍。

22. 设X1,X2,L , X17是总体N( ,4)的样本,S2是样本方差,若P(S2 a) 0.01,则a___ 。

3.若X : t(5) ,则X2服从分布。

4.已知F0.95(10,5) 4.74 ,则F0.05 (5,10)等于_ 。

5.中心极限定理是说:如果总体存在有限的方差,那么,随着的增加,不论这个总体变量的分布如何,抽样平均数的分布趋近于__________________________________________________________ 。

6. 总体分布已知时,样本均值的分布为__ 抽样分布;总体分布未知,大样本情况下,样本均值的分布为___ 抽样分布。

7. 简单随机样本的性质满足__ 和_______ 。

8. 若X : N (2,4) ,查分布表,计算概率P(X 3) = 。

若P(X a) 0.9115 ,计算 a ______ 。

229. 若X1 ~ N(0, 2), X2 ~ N(0, 2), X1与X2独立,则(X12 X22)/2服从__ 分布。

10. 若X ~ N (16,4) ,则5X 服从____ 分布。

二、选择题 (共10题,每题1分,共计10分)1.中心极限定理可保证在大量观察下( )A.样本平均数趋近于总体平均数的趋势B.样本方差趋近于总体方差的趋势C.样本平均数分布趋近于正态分布的趋势D. 样本比例趋近于总体比例的趋势2.设随机变量 X : t(n)(n 1),则Y 1/ X 2服从(A.正态分布B.卡方分布C. t分布D. F分布3.某品牌袋装糖果重量的标准是( 500±)5克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498 克。

抽样分布练习题

抽样分布练习题

抽样分布练习题
抽样分布是统计学中一个重要的概念,它是指从总体中抽取样
本并计算样本统计量的分布。

通过对抽样分布的理解和应用,我们
可以进行各种统计推断和假设检验。

以下是几个关于抽样分布的练
习题,希望能帮助大家理解和掌握这一概念。

1. 抽样分布的定义是什么?请简要解释。

2. 在一个总体中,平均值为μ,标准差为σ的情况下,从该总体
中随机抽取样本大小为n,计算平均值。

当n趋近于∞时,这个样
本平均值的抽样分布是什么?
3. 如果从一个服从正态分布的总体中抽取样本大小为n,计算
平均值,这个样本平均值的抽样分布是什么?
4. 抽样分布和总体分布之间有什么关系?请解释。

5. 如何通过样本均值的抽样分布来进行统计推断?
6. 抽样方法对于抽样分布的形状和性质有何影响?请举例说明。

7. 在进行假设检验时,抽样分布起到了什么作用?请解释。

8. 为了确定一个样本平均值的抽样分布,我们应该进行几次抽样?为什么?
9. 抽样分布的中心位置和变异性如何影响统计推断的结果?
10. 抽样分布理论适用于哪些统计推断方法?请列举几个例子。

11. 你了解的抽样分布的相关公式有哪些?请简要介绍。

12. 抽样分布在质量控制和市场研究等领域有什么应用?请举例说明。

以上是关于抽样分布的练习题,希望通过这些练习题,大家能够更好地理解和应用抽样分布的概念,并在统计推断和假设检验中能够灵活运用。

抽样分布是统计学中非常重要的一个概念,对于数据分析和研究具有重要的指导意义。

希望大家能够通过不断练习和实践,掌握和运用好抽样分布的知识。

概率统计——抽样分布课后练习(附答案)

概率统计——抽样分布课后练习(附答案)

课后练习:一、单项选择:1、抽样误差是指:()A.抽样推断中各种原因引起的全部误差B.工作性误差C.系统性代表误差D.随机误差 D2、重复抽样的抽样误差()A.大于不重复抽样的抽样误差B.小于不重复抽样的抽样误差C.等于不重复抽样的抽样误差D.不一定 A3、在简单重复抽样下,若总体标准差不变,要使抽样平均误差变为原来的一半,则样本单位数必须()A.扩大为原来的2倍B.减少为原来的一半C.扩大为原来的4倍D.减少为原来的四分之一 C4、在抽样之前对每一个单位先进行编号,然后使用随机数字表抽取样本单位,这种方式是()A.等距抽样B.分层抽样C.简单随机抽样D.整群抽样 C5、一个连续性生产的工厂,为检验产品的质量,在一天中每隔1小时取5分钟的产品做全部检验,这是()A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样 C6、某工厂连续生产,为检验产品质量,在一天中每隔半小时取一件产品做检验,这是()A.简单随机抽样B.整群抽样C.机械抽样D.类型抽样 C7、为了了解某工厂职工家庭收支情况,按该厂职工名册依次每50人抽取1人,对其家庭进行调查,这种调查属于()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样 B8、抽样平均误差的实质是()A. 总体标准差B. 抽样总体的标准差C. 抽样误差的标准差D. 抽样平均数的标准差 D9、为调查某消费群体的消费习惯,将消费者按受教育层次分类后,再确定比例抽取样本,此抽样方法属于()A. 纯随机抽样B. 分层抽样C. 机械抽样D. 整群抽样 B10. 抽样调查必须遵循的基本原则是()A. 灵活性原则B. 准确性原则C. 随机原则D. 可靠性原则 C11. 抽样误差是()A. 代表性误差B. 登记性误差C. 系统性误差D. 随机误差 D12. 抽样平均误差和极限误差的关系是()A. 抽样平均误差小于极限误差B.抽样平均误差大于极限误差C. 抽样平均误差等于极限误差D. 抽样平均误差可能大于、等于或小于极限误差 D13. 在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A. 扩大为原来的4倍B. 每个大为原来的2倍C. 缩小为原来的1/4倍D. 缩小为原来的1/2倍 A14. 一般来说, 在抽样组织形式中,抽样误差较大的是()A. 简单抽样B. 分层抽样C. 整群抽样D. 等距抽样 C15. 根据抽样的资料, 一年级优秀生比重为10%, 二年级为20%,在人数相等时,优秀生比重的抽样误差()A. 一年级较大B. 二年级较大C.相同 D. 无法判断16. 根据重复抽样的资料, 甲单位工人工资方差为25,乙单位为100,乙单位人数比甲单位多3倍, 则抽样误差()A. 甲单位较大B. 无法判断C.乙单位较大 D. 相同17. 最符合随机原则地抽样组织形式是( )A. 整群抽样B. 类型抽样C. 阶段抽样D. 简单随机抽样二、判断题1、 抽样调查必须遵循的原则是灵活性原则。

第1讲抽样方法与总体分布的估计练习含答案

第1讲抽样方法与总体分布的估计练习含答案

第十一章 统计与概率第1讲 抽样方法与总体分布的估计一、选择题1. 对某商店一个月内每天的顾客人数进行了统计, 得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是 ( ). A .46,45,56 B .46,45,53 C .47,45,56D .45,47,53解析 样本共30个,中位数为45+472=46;显然样本数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A. 答案 A2.小波一星期的总开支分布如图(a)所示,一星期的食品开支如图(b)所示,则小波一星期的鸡蛋开支占总开支的百分比为 ( ).A .30%B .10%C .3%D .不能确定解析 由题图(b)可知小波一星期的食品开支共计300元,其中鸡蛋开支30元.又由题图(a)知,一周的食品开支占总开支的30%,则可知一周总开支为1 000元,所以鸡蛋开支占总开支的百分比为301 000×100%=3%. 答案 C3.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ). A .101B .808C .1 212D .2 012解析 甲社区驾驶员的抽样比例为1296=18,四个社区驾驶员总人数的抽样比例为12+21+25+43N =101N ,由101N =18,得N =808. 答案 B4.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.答案 C5.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( ). A .13,12 B .13,13 C .12,13D .13,14解析 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=(a 3)2=64,(8-2d )(8+4d )=64,(4-d )(2+d )=8,2d -d 2=0,又d ≠0,故d =2,故样本数据为4,6,8,10,12,14,16,18,20,22,样本的平均数为(4+22)×510=13,中位数为12+142=13,故选B. 答案 B6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ). A .n <m B .n >m C .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y ,x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y , ∴n x +m y =(m +n )αx +(m +n )(1-α)y , ∴⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α),于是有n -m =(m +n )[α-(1-α)]=(m +n )(2α-1), ∵0<α<12,∴2α-1<0,∴n -m <0,即m >n . 答案 A二、填空题7.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析设第1组抽取的号码为b,则第n组抽取的号码为8(n-1)+b,∴8×(16-1)+b=126,∴b=6,故第1组抽取的号码为6.答案 68.某学校为了解学生数学课程的学习情况,在1 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图可估计这1 000名学生在该次数学考试中成绩不低于60分的学生人数是________.解析低于60分学生所占频率为(0.002+0.006+0.012)×10=0.2,故低于60分的学生人数为1 000×0.2=200,所以不低于60分的学生人数为1 000-200=800.答案8009.沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.解析由n600+500+550=11550,得n=33(人).答案3310.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是____________.解析 成绩在[16,18]的学生的人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54. 答案 54 三、解答题11.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取. 解 用分层抽样方法抽取. 具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本. 12.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.解 (1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25. (2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.13.汽车行业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,对CO 2排放量超过130 g/km 的MI 型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI 型品牌的新车各抽取了5辆进行CO 2排放量检测,记录如下(单位:g/km):经测算发现,乙类品牌车CO 2排放量的均值为x 乙=120 g/km. (1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO 2的排放量稳定性好,求x 的取值范围. 解 (1)甲类品牌汽车的CO 2排放量的平均值x 甲=80+110+120+140+1505=120(g/km),甲类品牌汽车的CO 2排放量的方差s 2甲=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)25=600.(2)由题意知乙类品牌汽车的CO2排放量的平均值x乙=100+120+x+y+1605=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的CO2排放量的方差s2乙=(100-120)2+(120-120)2+(x-120)2+(220-x-120)2+(160-120)25,因为乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,所以s2乙<s2甲,解得90<x<130.14.已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工(2)的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.解(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x=110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个.4 10=2 5.故所求概率为P(A)=。

抽样分布习题及答案

抽样分布习题及答案

第4章抽样分布自测题选择题1•抽样分布是指()A. 一个样本各观测值的分布B.总体中各观测值的分布C.样本统计量的分布D.样本数量的分布2•根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为()2C. 2D. 一A. B. Xn3•根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为()22A. B. X C. D.——n24. 从均值为,方差为的任意一个总体中抽取大小为n的样本,则()A. 当n充分大时,样本均值X的分布近似服从正态分布B. 只有当n<30时,样本均值X的分布近似服从正态分布C. 样本均值X的分布与n无关D. 无论n多大,样本均值X的分布都是非正态分布5. 假设总体服从均匀分布,从该总体中抽取容量为36的样本,则样本均值的抽样分布()A. 服从非正态分布B.近似正态分布C.服从均匀分布D.服从2分布6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样本均值的标准差()A.保持不变B.增加C.减小D.无法确定7. 某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是()A. 正态分布,均值为250元,标准差为40元B. 正态分布,均值为2500元,标准差为40元C. 右偏,均值为2500元,标准差为400元D. 正态分布,均值为2500元,标准差为400元8. 在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取81名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是()A. 正态分布,均值为12分钟,标准差为0.33分钟B. 正态分布,均值为12分钟,标准差为3分钟C. 左偏分布,均值为12分钟,标准差为3分钟D.左偏分布,均值为12分钟,标准差为0.33分钟9. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检测,则样本均值()A. 抽样分布的标准差为4小时B. 抽样分布近似等同于总体分布C. 抽样分布的中位数为64小时D. 抽样分布近似服从正态分布,均值为60小时10•假设总体比例为0.64,从该总体中抽取容量为100的样本,则样本比例的标准差为()A. 0.01 B. 0.048 C. 0.06 D.0.55抽样分布自测答案。

抽样分布习题(1)

抽样分布习题(1)

抽样分布习题1.抽样分布是指( C )A 一个样本各观测值的分布B 总体中各观测值的分布C 样本统计量的分布D 样本数量的分布2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( A )。

A μB xC 2σD n 2σ3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( D )。

A μB xC 2σ D n 2σ4.从一个均值μ=10,标准差σ=0.6的总体中随机选取容量为n=36的样本。

假定该总体并不是很偏的,则样本均值x 小于9.9的近似概率为( A )。

A 0.1587B 0.1268C 0.2735 D0.63245.假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( B )A 服从非正态分布B 近似正态分布C 服从均匀分布 D服从2 分布6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( C )A 保持不变B 增加C 减小D无法确定7. 总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分布为( B )。

A 50,8B 50,1C 50,4D 8,88.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( B )。

A 正态分布,均值为250元,标准差为40元B 正态分布,均值为2500元,标准差为40元C 右偏分布,均值为2500元,标准差为400元D 正态分布,均值为2500元,标准差为400元9. 某班学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布是( A )A 正态分布,均值为22,标准差为0.445B 分布形状未知,均值为22,标准差为4.45C 正态分布,均值为22,标准差为4.45D 分布形状未知,均值为22,标准差为0.44510.在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟,如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从( A )A 正态分布,均值为12分钟,标准差为0.3分钟B 正态分布,均值为12分钟,标准差为3分钟C 左偏分布,均值为12分钟,标准差为3分钟D 左偏分布,均值为12分钟,标准差为0.3分钟11. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检查,则样本均值( D )A 抽样分布的标准差为4小时B 抽样分布近似等于总体分布C 抽样分布的中位数为60小时D 抽样分布近似等同于正态分布,均值为60小时12.假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

抽样分布习题 答案

抽样分布习题 答案

抽样分布习题答案抽样分布习题答案随着统计学的发展,抽样分布成为了统计推断的重要基础。

在统计学中,我们经常需要从总体中抽取一部分样本,然后通过对样本的分析来推断总体的特征。

而抽样分布则是描述样本统计量的分布情况的概率分布。

在这篇文章中,我们将回答一些关于抽样分布的习题,帮助读者更好地理解和应用这一概念。

1. 假设某个总体的均值为μ,标准差为σ,从该总体中抽取样本容量为n的简单随机样本。

则样本均值的抽样分布的均值为多少?标准差为多少?答案:样本均值的抽样分布的均值为总体均值μ,标准差为总体标准差σ除以样本容量n的平方根,即σ/√n。

这意味着随着样本容量的增加,样本均值的抽样分布的标准差将减小,从而更加接近总体均值。

2. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本均值。

当n足够大时,样本均值的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本均值的抽样分布将近似服从正态分布。

这是由于中心极限定理的适用,即当样本容量足够大时,样本均值的抽样分布将趋于正态分布,无论总体的分布形态如何。

3. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本标准差。

当n足够大时,样本标准差的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本标准差的抽样分布将近似服从正态分布。

这是由于当样本容量足够大时,样本标准差的抽样分布可以通过中心极限定理近似为正态分布。

4. 假设某个总体的比例为p,从该总体中抽取样本容量为n的简单随机样本,计算样本比例。

样本比例的抽样分布的均值和标准差分别为多少?答案:样本比例的抽样分布的均值为总体比例p,标准差为√(p(1-p)/n)。

这意味着当样本容量足够大时,样本比例的抽样分布将近似服从正态分布,均值为总体比例p,标准差为√(p(1-p)/n)。

通过以上习题的解答,我们可以看到抽样分布在统计推断中的重要性。

抽样分析练习题答案

抽样分析练习题答案

抽样分析练习题答案一、题目描述:一家研究机构对某品牌的手机进行了调查,收集了100位用户的数据。

要求解决以下问题:1. 求该品牌手机的平均满意度;2. 求该品牌手机的样本方差;3. 假设该品牌手机的平均满意度为60,计算并解释样本的标准差;4. 构建该品牌手机平均满意度的95%置信区间;5. 假设该品牌手机的满意度分布近似正态分布,画出其满意度的概率分布曲线。

二、解答部分:1. 平均满意度的计算公式为:平均满意度 = (满意度1 + 满意度2 + ... + 满意度n) / n根据题目中给出的数据,我们可以将满意度依次累加,并除以数据的个数100,即可得出品牌手机的平均满意度。

2. 样本方差的计算公式为:样本方差 = ((满意度1 - 平均满意度)^2 + (满意度2 - 平均满意度)^2 + ... + (满意度n - 平均满意度)^2) / (n - 1)同样地,依次计算每个数据与平均满意度的差值的平方,并累加。

最后除以数据个数减1,即可得出品牌手机的样本方差。

3. 样本的标准差与平均满意度的偏差度量的经验公式为:标准差 = sqrt((满意度1 - 平均满意度)^2 + (满意度2 - 平均满意度)^2 + ... + (满意度n - 平均满意度)^2) / n在本题中,假设品牌手机的平均满意度为60,我们可以计算出样本的标准差。

标准差越大,说明数据的离散程度越大,平均满意度与实际满意度的偏差越大。

4. 构建平均满意度的95%置信区间的计算公式为:置信区间 = 平均满意度 ± (t * 标准误差)其中,t为自由度为n-1的t分布上的临界值,标准误差为样本标准差除以sqrt(n)。

通过计算得到的平均满意度与计算得到的标准误差,可以得出95%置信区间的下限和上限,表示了平均满意度的不确定性范围。

5. 概率分布曲线可以通过正态分布的概率密度函数进行绘制,公式为:f(x) = (1 / (sqrt(2π) * σ)) * e^(-((x - μ)^2) / (2 * σ^2))其中,f(x)表示满意度x对应的概率密度,σ表示标准差,μ表示平均值。

统计学抽样与抽样分布练习题.

统计学抽样与抽样分布练习题.

第6章抽样与抽样分布练习题6.1 从均值为200、标准差为50的总体中,抽取的简单随机样本,用样本均值估计总体均值。

(1)的数学期望是多少?(2)的标准差是多少?(3)的抽样分布是什么?(4)样本方差的抽样分布是什么?6.2 假定总体共有1000个单位,均值,标准差。

从中抽取一个样本量为30的简单随机样本用于获得总体信息。

(1)的数学期望是多少?(2)的标准差是多少?6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。

样本均值的抽样标准差等于多少?6.4 设总体均值,标准差。

从该总体中抽取一个样本量为25的随机样本,其均值为;同样,抽取一个样本量为100的随机样本,样本均值为。

(1)描述的抽样分布。

(2)描述的抽样分布。

6.5 从的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差:(1)重复抽样。

(2)不重复抽样,总体单位数分别为50000、5000、500。

6.6 从的总体中,抽取一个样本量为100的简单随机样本。

(1)的数学期望是多少?(2)的标准差是多少?(3)的分布是什么?6.7 假定总体比例为,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1)分别计算样本比例的标准差。

(2)当样本量增大时,样本比例的标准差有何变化?6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。

从中随机抽取40个顾客,每个顾客消费金额大于87元的概率是多少?6.9 在校大学生每月的平均支出是448元,标准差是21元。

随机抽取49名学生,样本均值在441~446之间的概率是多少?6.10 设为总体的一个样本,则;样本,求的概率分布6.12设为总体的一个样本,且服从分布,这里,,则 .。

第4章 抽样分布与参数估计课后习题解答

第4章 抽样分布与参数估计课后习题解答

C.在做成数估计时,用成数方差最大值 0.25 来代替
二、计算题
1.某市居民家庭人均年收入是服从 μ=4000 元, σ=1200 元的正态分布, 求该市居民家庭人均年收入: (1)在 5000~7000 元之间的概率; (2)超过 8000 元的概率。 (1) μ = 4000 , σ = 1200 解:
。 (2)在其他条件不变的情况下,如果允许误差缩小为原来的 1/2,则样本容量( A ) A.扩大为原来的 4 倍 C.缩小为原来的 1/2 B.扩大为原来的 2 倍 D.缩小为原来的 1/4
(3)类型抽样影响抽样平均误差的方差是( B ) 。 A.组间方差 B.组内方差 C.总方差 D.允许误差
( B ) 。 (4) 当样本单位数充分大时, 样本估计量充分地靠近总体指标的可能性趋于 1, 称为抽样估计的 A.无偏性 2.多项选择题 。 (1)影响抽样平均误差的因素有( ABCD ) A.总体标志变异程度 D.抽样的组织形式 B.样本容量 C.抽样方式 B.一致性 C.有效性 D.充分性
σ2(X )⎛
n
n⎞ ⎜1 − ⎟ = ⎝ N⎠
( 28.284 )
2
2
2⎞ ⎛ 接近平均工资的标 ⎜1 − ⎟ = 17.88837 , ⎝ 10 ⎠
莫名
编辑
作为样本。
解: (1) X =
∑X
i
i
n
=
105 = 3.5 , S = 30
∑( X − X )
I
2
n
= 1.1963 , δ x =
= 2。
p (1 − p ) = 0.015 。 n
2
= Z 0.02275 = 2 , P ± Zα 2δ ( p ) = 95% ± 2 × 0.015 ×100% = 95% ± 3% 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 抽样分布自测题
选择题
1.抽样分布是指( )
A. 一个样本各观测值的分布
B. 总体中各观测值的分布
C. 样本统计量的分布
D. 样本数量的分布
2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( )
A. μ
B. x
C. 2σ
D. n 2
σ
3. 根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( )
A. μ
B. x
C. 2σ
D.
n 2σ 4. 从均值为μ,方差为2σ的任意一个总体中抽取大小为n 的样本,则( )
A. 当n 充分大时,样本均值x 的分布近似服从正态分布
B. 只有当n<30时,样本均值x 的分布近似服从正态分布
C. 样本均值x 的分布与n 无关
D. 无论n 多大,样本均值x 的分布都是非正态分布
5. 假设总体服从均匀分布,从该总体中抽取容量为36的样本,则样本均值的抽样分布( )
A. 服从非正态分布
B. 近似正态分布
C. 服从均匀分布
D. 服从2
χ分布
6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样本均值的标准差( )
A. 保持不变
B. 增加
C.减小
D.无法确定
7. 某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( )
A. 正态分布,均值为250元,标准差为40元
B. 正态分布,均值为2500元,标准差为40元
C.右偏,均值为2500元,标准差为400元
D. 正态分布,均值为2500元,标准差为400元
8. 在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取81名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是( )
A. 正态分布,均值为12分钟,标准差为0.33分钟
B. 正态分布,均值为12分钟,标准差为3分钟
C. 左偏分布,均值为12分钟,标准差为3分钟
D. 左偏分布,均值为12分钟,标准差为0.33分钟
9. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检测,则样本均值()
A. 抽样分布的标准差为4小时
B. 抽样分布近似等同于总体分布
C. 抽样分布的中位数为64小时
D. 抽样分布近似服从正态分布,均值为60小时
10. 假设总体比例为0.64,从该总体中抽取容量为100的样本,则样本比例的标准差为()
A. 0.01
B. 0.048
C. 0.06
D.0.55
抽样分布自测答案。

相关文档
最新文档