Ciguatera poisoning a global issue with common management problems
海洋生物毒素
40
一、化学本质
1, 酸性成分:软海绵酸(Okadaic Acid OA)及 其天然衍生物,如鳍藻毒素 (DinophysistoxinI一Ⅲ DTXI一Ⅲ)。 2 ,中性成分:聚醚内酯,如蛤毒素 (Pectenotoxins~rFXs)。 3 ,其它成分
41
二、生物来源
主要来源于形成赤潮的毒藻,如鳍藻属的渐 尖鳍藻。
31
第三节 麻痹性贝类毒素
引起贝类中毒的因素包括:
麻痹性贝类毒素、腹泻性贝类毒素、神经 性贝类毒素、记忆丧失性贝类毒素等。
赤潮毒藻产生,能引发赤潮的海洋藻类有 260多种,其中有70多种能产生毒素。
32
一、化学本质 1,剧毒的含氮杂环化合物,分为
①氨甲酰基类:包括石房蛤毒素、膝沟藻毒 素等。 ②氨甲酰基-N-磺基类毒素:原膝沟藻毒素。 由于具有连个胍基,也常归类于胍胺类 毒素。
55
五、应用前景 CTX可作为研究兴奋细胞膜结构与功能 及局部麻醉药物作用机理的分子探针。 MTX是研究钙通道药理作用特异性的重 要工具药。 研究表明MTx 在体内及体外对某种肿瘤 细胞有明显抑制作用,毒性极为强烈。
56
第六节 短裸甲藻毒素 (Brevetoxins,PbTX,BTX)
60
第七节 芋螺毒素(conotoxin,CTx)
芋螺(Conus)属腹足纲前腮亚 纲芋螺科,是一类肉食性软 体动物,目前约500多种, 主要分布在热带海洋的浅海 水域,少数在水深几十米至 二百余米的深水区.
61
62
63
二、化学本质
1,化学结构 2,芋螺毒液功能和机理
64
芋螺毒素的分类:
②有毒腔肠动物:多孔水螅、方水母、岩沙 海葵、角孔珊瑚等,毒液存在于刺细胞内。
泻药用英语怎么说
泻药用英语怎么说推荐文章文莱用英语怎么说热度:墨西哥用英语怎么说热度:克罗地亚用英语怎么说热度:雅思英语口语考试面对毫无准备的题目怎么办热度:怎么快速学好英语口语热度:泻药是能增加肠内水分,促进蠕动,软化粪便或润滑肠道促进排便的药物。
那么你知道泻药用英语怎么说吗?下面店铺为大家带来泻药的英语说法,供大家学习。
泻药的英语说法1:Laxative泻药的英语说法2:cathartica泻药相关英语表达:盐类泻药 saline cathartic缓泻药Eccoprotics purgatives通气泻药 Carminatives止泻药 antidiarrheic泻药的英语例句:1. Magnesium were employed as cathartics as early as the 16 th century.早在16世纪镁盐被用作泻药.2. The medicine was an effective purge.这是疗效很好的泻药.3. The doctor think it is time that he physic the patient.医生认为给病人服泻药的时候到了.4. You need to use a laxative for more than 1 week.你需要使用泻药超过一周.5. Purging behaviors: vomiting, laxative use, diet pills, excessive exercise.清除行为: 呕吐, 使用泻药, 减肥药物, 过量运动.6. To be taken orally can use as cathartic, stomachic tonic.内服可用作泻药、健胃药等.7. The doctor decided that the patient must be purged.医生认为这名病人必须吃泻药.8. Taking the anti - diarrhea of our factory will achieve a marvelously quick result.用本药厂的治泻药,疗效神速.9. Antidote for overdose application: emetic, cathartic, alkalescent foods and beverages.服用过量时所需用的解毒剂: 催吐, 泻药, 弱碱性食品、饮料.10. A stool softener or laxative may be ordered.可能要医嘱开大便软化剂或泻药.11. Use a purge if you are constipated.便秘的话吃点泻药.12. Laxative: Substance that promotes defecation.轻泻药: 促进排粪的物质.13. Laxative: diarrhea, gastric acid reduction, loss of appetite.泻药: 腹泻, 胃酸减少, 食欲减退.14. For diarrhea, physicians may prescribe antidiarrheal medication, antibiotics, intravenous fluids or changes in diet.对腹泻医生可能会开止泻药、抗生素、静脉补液或调整饮食.15. Others , including laxatives, heart stimulants, anticoagulants, diuretics, and antihistamines, act on specific systems.各种特定用途药, 如轻泻药、强心剂、抗凝血药、利尿剂和抗组织胺药.。
北京市丰台区2023-2024学年高一上学期期末考试英语
丰台区2023~2024学年度第一学期期末练习高一英语笔试(共三部分100分)第一部分知识运用(共两节,30分)第一节(共10小题;每小题1.5分,共15分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
I had always wanted a dog. My parents told me when I was old enough and 1 , I could have one.One day I hopped off the bus, not knowing what awaited me inside. I walked through the door, and to my2 , a white and black puppy greeted me with many puppy kisses. A very special friendship was born that day.She was a smart dog. We 3 play for hours, spending our days learning and growing together.Eleven years we were together, best of friends. Unfortunately, arthritis (关节炎) and old age set in on her. My parents knew what had to be done, but they let me find and make the decision myself.She was 4 so much and the medicine didn’t seem to help anymore. She could 5 walk. I looked into those deep brown eyes and 6 it was time to let her go.I carried her into the vet’s (兽医诊所) and placed her on the table. She leaned her head forward and gave a lick to my hand as if to say, “I understand. Stay7 .” Her tail was wagging (摆动) in a circle as always.The vet asked before giving the final shot, “Are you sure?” With a heavy heart and tearfilled eyes, I nodded yes. The final shot was given. My eyes fixed upon her wagging tail. In a matter of seconds, it 8 . The vet listened for a heartbeat, and said, “It’s over.”I took her home and buried her in the pasture, where she loved playing and chasing rabbits. It was the 9 thing I had ever done.Recently I went back to her grave. Growing on her grave was a single wildflower. It was swaying in a circle, just like her. I know now that, that special friend will be 10 me always.1. A. confident B. brave C. creative D. responsible2. A. relief B. surprise C. annoyance D. confusion3. A. would B. should C. might D. must4. A. suffering B. expecting C. paying D. gaining5. A. even B. almost C. still D. hardly6. A. insisted B. realized C. agreed D. predicted7. A. honest B. popular C. strong D. active8. A. stopped B. expanded C. hurt D. rose9. A. greatest B. hardest C. wisest D. warmest10. A. above B. on C. with D. for第二节(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。
毒品相关的英语,英语口语考试话题积累
毒品一直是一个很有争议的话题,尤其在像美国这样部分区域毒品合法化的国家。
吸毒不仅是对吸毒者自身精神及身体上的危害,更是对社会的一种危害。
由于毒品话题常出现在英语考试中,我们在日常学习中也应当积累一些相关知识,下面就为大家分享一些有关毒品的英语表达,一起来看看吧。
一、毒品相关名词International Day Against Drug Abuse and Illicit Trafficking 国际禁毒日drug 毒品drug abuse 吸毒drug addiction 染上毒瘾prescription drugs 处方药drug addict/drug abuser/drug junkie 瘾君子You need to take some drugs. 你需要吃点药(toke drug 这里的drug指药物)You can’t do drugs. 你不能吸毒(do drugs 这里的drug表示毒品)二、毒品相关人员drug dealer/drug trafficker 毒品贩drug lord 毒枭drug smuggler走私毒品贩drug mules 毒骡(充当运输毒品工具的人)drug trafficking rings/cartels 贩毒集团narcotics control bureau 禁毒局anti-narcotics police 缉毒警drug rehabilitation center (rehab center) 戒毒所drug-related crimes 涉毒犯罪drug deal 毒品交易anti-drug campaign 扫毒行动三、毒品相关动词hit up注射毒品drug trafficking贩毒Get high/hopped up/through 兴奋状态Be addicted to drugs对吸毒成瘾injection drug use 注射毒品rehabilitation 戒毒drug manufacturing 制毒drug possession 持有毒品Spaced out/smacked/blow one’s mind/nod off 麻醉状态四、常见的毒品Cannabis 大麻heroin 海洛因morphine 吗啡opium 鸦片cocaine 可卡因pethidine/dolantin 杜冷丁MDMA 摇头丸crystal methamphetamine/ice 冰毒caffeine 咖啡因opium鸦片amphetamine 安非他明pep pill 兴奋剂marijuana大麻以上就是英语趣配音为大家分享的毒品相关英语。
海洋赤潮藻对环境的危害
海洋赤潮藻对环境的危害摘要:赤潮灾害的多发性和普遍性极大危害了海产养殖业和渔业资源,严重破坏了正常的海洋生态系统,直接威胁着人类的生存环境和健康水平。
不仅渔业资源和鱼类养殖业遭受了极大的破坏,海洋生物的种群结构乃至整个海洋生态系统也受到了影响。
在赤潮灾害中,鱼类的大量死亡带来的危害和损失占相当大的比重。
因此,本文对这些海洋赤潮藻对环境危害的研究结果进行了综述。
关键词:赤潮藻;危害;赤潮赤潮是由赤潮藻引起的海洋生态灾害,有害赤潮藻的种源、其生理生态特点及物种和遗传多样性变化,是引发有害赤潮的内因。
随着人口和经济的快速增长,人类活动的加强改变了沿海生态系统的结构和功能,增加了海水中营养盐的含量、改变了气候条件及其他环境因子,赤潮则是这种转变的结果。
有害赤潮已经成为当今全球性的海洋灾害,与沙尘暴并列为我国目前面临的、由于人类活动而造成的两大自然灾害之一,严重制约沿海经济的发展、破坏海洋生态环境、威胁人类健康。
据不完全统计,近二十年来,我国的有害赤潮事件就达300多起,仅1998年全年发生赤潮22起,直接经济损失达10亿元以上。
[1]1 赤潮藻的分类赤潮是当今全球性的海洋灾害之一,一方面表现在有害赤潮发生的范围不断扩大,另一方面,能够形成赤潮的有害藻种类数也在不断增加。
已有的资料表明,能够形成赤潮的微藻约在84—267种,其中有毒的在60—78种,约占海洋种浮游植物的1.8%一1.9%l3 。
常见的赤潮毒素有麻痹性贝毒(Paralytic Shellfish poisoning,PSP)、腹泻性贝毒(Diarrhetic Shellfish poisoning,DSP)、神经性贝毒(Neurotoxic Shellfish poisoning,NSP)、记忆丧失性贝毒(Amnesic Shellfishpoisoning,ASP)、西加鱼毒(Ciguatera Fish Poisoning,CFP)等。
论赤潮对养殖环境的影响
论赤潮对养殖环境的影响赤潮(Akashiwo,Red Tide,Red Water,Dis-colored Water)是水环境在特定的条件下,由于水中某几种浮游植物、原生动物或细菌爆发性增殖或者高度聚集引起的水体表观颜色变化的一种有害水中生物生存的生态现象。
以前人们看到赤潮是红色的,因此将赤潮取名“赤潮”或者“红潮”,但是很多时候赤潮并不都是红色。
赤潮又称作水华,国际上也称为“有害藻华”。
赤潮是一种自然现象,也是人为因素引起的。
人类早就有关于赤潮的记载,如《旧约》中就有关于赤潮的描述:“河里的水,都变作血,河也腥臭了,埃及人就不能喝这里的水了”。
在日本,早在腾原时代和镰仓时代就有赤潮方面的记载。
1803年法国人马克·莱斯卡波特记载了美洲罗亚尔湾地区的印第安人根据月黑之夜,观察海水发光现象来判别贻贝是否可以食用。
1831—1836年,达尔文在《贝格尔航海记录》中记载了在巴西和智利近海面发生的束毛藻引发的赤潮事件。
据载,中国早在2000多年前就发现赤潮现象,一些古书文献或文艺作品里已有一些有关赤潮方面的记载。
如清代的蒲松龄在《聊斋志异》中就形象地记载了与赤潮有关的发光现象。
赤潮的形成比较复杂。
分为陆原性污染,养殖业污染,辅助生长物质和适宜的微量元素存在的影响和理化硬气象条件。
陆原性污染,如工业废水和生括污水大量排人海区,为赤潮生物,助生长物质和适宜的微量元素的繁殖提供了丰富的营养盐,这是形成赤潮的基本的物质基础。
未经处理的含高氮、磷有机物的工业废水和生活废水,是造成近海富营养化的主要原因,其中磷元素的含量高低是决定是否形成赤潮和出现赤潮高峰的重要因素。
养殖业污染,是指在养殖过程中投饵和施肥使得养殖水体污染物含量远远超过水体本身的该物质正常含量,从而影响水体生态系统的结构和功能。
造成自身污染主要是海水养殖池塘和网箱集中成片。
而沿岸海域水体较浅,尤其是半封闭的港湾,水体对流和交换不良,富营养程度高的近岸海水不能向大洋扩散,养殖池排放水会随纳潮重复进入其它池塘;养殖用的饵料质量差,投人水中后易溶解、散失,投喂方法不科学;确定投饵量、投饵次数和投喂时间缺乏科学性,冰冻饵料未经冲洗直接投喂,使池塘中有大量的残饵存在,导致池塘水质的富营养化。
中国药典英文索引
中国药典英文索引The Chinese Pharmacopoeia is a comprehensive guide that serves as the authoritative reference for the identification, quality control, and standards of medicines in China. It is a critical resource for professionals in the pharmaceutical industry, ensuring that the standards for the production and use of medicinal products are met.This compendium is updated regularly to reflect thelatest advancements in pharmaceutical science and technology. It encompasses a wide array of traditional Chinese medicines, modern drugs, and their detailed chemical compositions, which are essential for the development of new pharmaceutical products.The English index of the Chinese Pharmacopoeia is particularly valuable for international researchers and practitioners who seek to understand and utilize Chinese medicinal knowledge. It bridges the gap between traditional Chinese medicine and contemporary global health practices.Moreover, the English index facilitates easier access to the pharmacopoeia's content for non-Chinese speakers, promoting the integration of Chinese medicine into international healthcare systems. It is a testament to the growing recognition and influence of Chinese medicine on a global scale.For those looking to delve deeper into the subject, the index is meticulously organized, making it a user-friendlytool for locating specific information on a variety of medicinal substances. It is a testament to the meticulous documentation of China's rich medicinal heritage.In summary, the English index of the Chinese Pharmacopoeia is an essential tool for anyone interested inthe field of medicine, whether they are students, researchers, or practitioners. It opens doors to a wealth of knowledgethat has been accumulated over thousands of years and continues to evolve.。
一种基于RFLP分析的冈比亚藻检测方法的建立
一种基于RFLP分析的冈比亚藻检测方法的建立吕意华;周进;郑伟;高岩;俞志明;郑天凌【摘要】雪卡毒素作为一种脂溶性藻毒素近年来日益引起人们的重视,冈比亚藻(Gambierdiscus spp.)是雪卡毒素的主要产生藻.不同的冈比亚藻具有不同的生长特性和产毒性能,且存在地域差异性,因而对冈比亚藻的监测存在较大挑战.建立一种快速简单地鉴定冈比亚藻及其种群结构的方法,是基础科研和社会公众关心的共性问题.为此,以加勒比海的10种冈比亚藻为受试生物,应用限制性片段长度多态性(restriction fragment length polymorphism,RFLP)分析技术,通过生物软件分析发现受试藻的限制性内切酶Aci I具有良好的特异性和灵敏性,可有效区分目前已鉴定的10种冈比亚藻.验证实验中,通过与分离自野外环境的多株冈比亚藻进行酶切电泳和DNA测序,证实了Aci I的有效性和可靠性.结果表明,该Aci I分子具有检测自然环境中冈比亚藻属性和追踪其种群结构变化的潜力,对雪卡毒素的预判与风险评估具有重要的借鉴意义.【期刊名称】《厦门大学学报(自然科学版)》【年(卷),期】2015(054)002【总页数】6页(P182-187)【关键词】雪卡毒素;冈比亚藻;限制性片段长度多态性;Aci I;D1-D2【作者】吕意华;周进;郑伟;高岩;俞志明;郑天凌【作者单位】厦门大学生命科学学院,滨海湿地生态系统教育部重点实验室,福建厦门 361102;清华大学深圳研究生院海洋科学与技术学部,广东深圳518055;厦门大学生命科学学院,滨海湿地生态系统教育部重点实验室,福建厦门 361102;中国科学院海洋研究所,海洋生态与环境科学重点实验室,山东青岛266071;中国科学院海洋研究所,海洋生态与环境科学重点实验室,山东青岛266071;厦门大学生命科学学院,滨海湿地生态系统教育部重点实验室,福建厦门 361102【正文语种】中文【中图分类】Q331冈比亚藻(Gambierdiscus spp.)是一种单细胞的小型底栖甲藻,通常附着在大型藻或硬质死亡珊瑚的表面,主要分布于35°N和35°S之间的加勒比海及热带和亚热带太平洋海域及印度洋,是雪卡毒素(ciguatera)前体——冈比亚毒素的重要产生者.早在古罗马和唐朝时期便有因误食雪卡毒素污染的鱼类而中毒的事件[1-2].随着全球气候变暖,有害赤潮藻分布范围扩大及珊瑚鱼贸易和旅游事业发展,雪卡毒素中毒(ciguatera fish poisoning,CFP)危害呈越来越严重的趋势[3-5].人们对雪卡毒素的关注,一方面是因为它威胁到水产品安全和公众健康;另一方面也源自于它的生态指示价值,Hales等[6]认为雪卡毒素可作为热带海洋生态系统评估的敏感指示物,能间接反映环境变化所导致的生态破坏情况.雪卡毒素的研究多聚焦于它的生产者——冈比亚藻.然而,以往受限于传统分类学手段分辨率差等因素,人们一直将所有的冈比亚藻都笼统地归类为毒性冈比亚藻(G.toxicus).随着分子生物学的发展, r DNA测序被广泛应用到冈比亚藻的分类鉴定中. Richlen等[7]采用r DNA测序和传统的形态学相结合的方法在太平洋和加勒比海域分离鉴定了4种冈比亚藻,进一步的研究发现冈比亚藻具有丰富的种间多样性,目前已有10种不同的冈比亚藻种被分离、鉴定和命名,另有2种潜在新种的基因型(G.ribotype 1和2)被报道[8].在已发现的主要冈比亚藻中,人们对其地理分布、产毒特性以及共存状态有了一定的认识.在区域分布上,Litaker等[5]根据目前已报道的冈比亚藻,勾勒出了所有冈比亚藻种在全球的分布图,其中G.carpenteri和G.caribaeus在太平洋和加勒比海域均有分布,而G.australes,G.pacificus,G. polynesiensis,G.toxicus和G.yasumotoi只分布于太平洋,G.belizeanus,G.carolinianus,G.ruetzleri, G.ribotype 1和G.ribotype 2则只在加勒比海域被发现[5].在毒性特征上,冈比亚藻毒性(毒素成分,毒性大小)存在明显的种间差异,如G.toxicus和G. caribaeus属低毒性种;G.austral,G.belizeanus,G. ribotype 2和G.pacificus为中等毒性种;而G. polynesiensis和G.excentricus 为高毒性种[9-10].目前发现多种产毒冈比亚藻可以在某一区域共存,使得该海域的毒素组成具有多样性和更替性.Holmes等[11]认为由于不同组合的冈比亚藻种会表现出不同的雪卡毒素,而环境参数作为不同冈比亚藻种选择性生存和繁殖重要的驱动力,对其分布具有重要的选择作用,是雪卡毒素形成的主要原因[11].如何快速有效地追踪某海域中环境选择压力下的冈比亚藻种群结构变化对于解释和预测雪卡毒素的暴发具有至关重要的作用.目前,人们对冈比亚藻种的鉴定主要依靠对核糖体大亚基(LSU)的多变区的克隆和测序来实现[12].DNA测序方法具有准确度和分辨率高的优点,但是也存在实验周期长、成本消耗大、操作相对繁琐,以及无法分析某一冈比亚藻的具体丰度等问题.因此,开发经济简单的冈比亚藻种群分析方法就成了研究者们亟需解决的问题.限制性片段长度多态性(restriction fragment length polymorphism,RFLP)分析因技术成熟、成本低等优点已被大量使用在微生物、真菌和赤潮藻等生物种群结构的研究中,特别是随着快速反应的限制性酶和荧光RFLP分析的发展,RFLP的应用越来越广泛[13-15].冈比亚藻LSU的D1-D2区域具有一定的种间差异性.本实验以RFLP技术为切入点,以冈比亚藻LSU中的多变区D1-D2为检测区域,找到了限制性内切酶Aci I.该组合酶具有区分现已发现的10种冈比亚藻种的潜能.在实际的研究工作中,我们选取了实验室现有的7种冈比亚藻,获得了这7种藻的酶切图谱.为了进一步验证该组合酶的特异性,我们对5株来自加勒比海域的野外冈比亚藻进行了酶切实验和DNA测序验证,结果显示本次实验建立的Aci I检测方法与分子测序方法有很好的重现性.1.1 藻种和培养条件本次实验中所用到的冈比亚藻或DNA样品均由Donald M Anderson教授实验室(伍兹霍尔海洋研究所,美国)惠赠,其中部分来自加勒比海域圣托马斯岛沿海.冈比亚藻培养在30 m L的K培养基中[16],培养温度23℃,盐度32,光照强度100μmol·m2/s,光照周期12 h∶12 h(光照∶黑暗).1.2 限制性内切酶的设计从NCBI数据库下载所有被收录的冈比亚藻的D1-D3序列(约920 bp),根据引物序列使用Geneious Pro 6.1.2(Biomatters,Auckland,NZ)获取目标片段D1-D2序列(约700 bp),然后分析各冈比亚藻种之间的D1-D2的进化关系,确定最大相似种(即RFLP分析的限制性藻种),最后利用DNAMAN 6.0和Restriction Enzyme Picker模拟酶切,获得最佳的限制性内切酶.1.3 DNA提取和目标基因扩增3 000 g离心收集10 m L对数期的藻细胞重悬于100μL的无菌水中,使用MoBIO PowerSoil DNA I-solation试剂盒(MoBio Laboratories,Inc.,Carlsbad, CA,USA)提取冈比亚藻总DNA,并采用1.5%(质量分数,下同)的TAE琼脂糖凝胶电泳验证.高变区D1-D2片段的扩增引物为D1R和D2C[17],PCR的反应体系(50μL)为:约5 ng的DNA模板,10×PCR缓冲液5μL(500 mmol/L KCL,100 mol/L Tris-HCl, p H 8.3),5μL d NTPs(0.8 mmol/L),4μL MgCl2(2 mmol/L),各2.5μL D1R和D2C 引物(0.5μmol/ L),以及1 U Ampli Taq DNA聚合酶(Applied Biosystems Inc.,Foster City,CA,USA),用水补充到50 μL.PCR反应在Eppendorf Mastercycler Nexus PCR仪(Eppendorf,Hamburg,Germany)中进行,反应条件为:94℃预变性5 min;然后94℃变性30 s,57℃退火1 min,72℃延伸2 min,共35个循环;最后72℃反应10 min.所有的样品均设置2个重复,反应完成后将2个重复的PCR产物混合,再采用2%的TAE凝胶电泳检测PCR结果.1.4 产物纯化及定量PCR产物采用QIAquick DNA纯化试剂盒(QIAGE,Valencia,CA,USA)进行纯化,纯化产物重溶在30μL的超纯水中.使用PicoGreen核酸定量试剂盒(Life Technologies,Eugene,Oregon,USA)和紫外分光光度计(Spectramax M3)构建标准曲线,对D1-D2纯化产物进行定量(参照试剂盒操作流程).1.5 限制性内切酶酶切反应及凝胶电泳检测用Aci I快速限制性内切酶对不同的冈比亚藻进行限制性酶切,预测的酶切位点和切片段大小如表1所示.酶切反应分两步进行,反应体系为25μL,包含2.5 μL的10×酶切缓冲液,0.5 U的Spe I,HPYCH 4IV以及2μg DNA(用水补充到终体积25μL).37℃反应10 min后,再加入0.5 U的TaqαI加热到65℃反应10 min,最后80℃保持20 min将酶失活.取10μL的反应产物使用2%的TAE凝胶电泳检测各冈比亚藻的酶切产物大小.产物在1.5%的TAE胶中电泳(75 V,90 min),成像结果在凝胶成像仪上进行分析.1.6 D1-D2的克隆与测序使用p-GEM-T质粒试剂盒(Promega,Madison, WI,USA),将新鲜的D1-D2扩增产物克隆和转化至感受态的大肠杆菌中.然后根据蓝白斑方法筛选阳性克隆,PCR验证之后,选取阳性克隆子进行正反双向测序(Eurofins MWGOperon,Ebersberg,Germany).2.1 限制性内切酶的筛查由于不同冈比亚藻种LSU的多变区D1-D2通常只有数个碱基的差异,目前已经商品化的限制性内切酶很难独自将所有的冈比亚藻区分开来,而不同的限制性内切酶具有不同的酶切识别位点.本次实验中我们尝试寻找一种特异性的内切酶,以期达到具有区分现有的冈比亚藻的能力.通过分析各种冈比亚藻之间的进化关系,获取相似性最大的冈比亚藻种,在此基础上确定所有冈比亚藻RFLP酶设计过程中的必需限制性内切酶,然后再遵循组合酶含酶种类最少、酶切产物片段最少和经济实用的原则对潜在的限制性内切酶进行了筛查,最终确定了限制性内切酶Aci I (5′-C|CGC-3′)为靶向酶(表1).2.2 D1-D2扩增及定量藻类LSU多变区D1-D2因种内的高保守性,被研究者广泛应用在藻类的基因分型和种类鉴定中.本研究中选用D1R和D2C引物对实验室拥有的7种冈比亚藻的D1-D2区域进行PCR扩增(图1).结果显示该引物具有很好的特异性,所有PCR扩增产物在700~800 bp之间形成清晰、单一的电泳条带,且与实际序列大小相当. 另外,为了保证所有酶切反应的DNA浓度一致,本研究使用PicoGreen核酸定量试剂盒来定量D1-D2扩增产物纯化后的浓度.如图2所示,当DNA质量浓度分别为0,1,10,100,1 000 ng/m L时,DNA标准曲线拥有很好的线性关系(R 2=0.999 9),但由于0,1, 10 ng/m L的数据结果非常接近,较难识别.通过该标准曲线的回归公式计算,所有冈比亚藻的D1-D2酶切反应浓度都换算成2μg对应的DNA体积,以保证酶切结果的可比较性.2.3 限制性内切酶酶切图谱如图3所示,7种所检测的冈比亚藻D1-D2区域经Aci I限制性内切酶消化之后,所得酶切图谱具有较大的差异性.参照表1及图3中电泳条带的位置不难发现,各冈比亚藻的酶切图谱片段除了部分小片段以外,所有的DNA电泳片段都与预计的酶切结果相吻合.但是,由于数据库中缺乏G.ribotype的D1-D2序列,本研究未能提供该型藻可能的限制性内切酶酶切片段大小.2.4 限制性内切酶酶切应用为了验证组合酶对自然环境中冈比亚藻的鉴定能力,我们随机选取了来自加勒比海圣托马斯岛沿海5株未知冈比亚藻种(HG,BB,KM,BP,TP)进行了酶切分析,酶切结果如图4所示.对照表1和图3不难发现,HG,KM和TP的酶切片段大小相同且与G.carpenteri的酶切图谱吻合,因此初步确定这3株藻为G.carpenteri;BB,BP 2株藻的酶切图谱相同,且与G.carolinianus完全一致,因此可初步断定这2株藻为G.carolinianus.2.5 DNA测序验证为了进一步验证酶切结果,我们对上述5株冈比亚藻LSU多变区D1-D2进行了DNA测序和Blast分析(某实验未发表数据).其中HG,KM和TP的D1-D2测序结果与G.carpenteri 1S0510-22(KJ125101.1)的相似度为99%;BB和BP 2株冈比亚藻的D1-D2的BLAST比对显示其与G.carolinianus NOAA6 6 (GU968522.1)的相似度达99%.因此,由于分子测序结果的高相似性,可以确定上述5株藻分别为G.carpenteri和G.carolinianus.分子鉴定方法与本次实验所建立的RFLP酶切检测法具有较好的匹配性,证实了RFLP方法的可靠性.RFLP是近年发展起来的一项新型分子技术,因其具有技术成熟、成本低廉等优点,在微生物、真菌和赤潮藻等生物种群结构的研究中已被广泛应用[15,17].如Chang 等[18]利用RFLP方法研究了厌氧条件下多环芳烃的降解,发现添加抑制甲烷生成的试剂后,萘和菲的降解被抑制,而且产甲烷细菌古生菌也被消除,从而证明产甲烷细菌参与多环芳烃的厌氧降解. Scholin等[19]利用RFLP对多种亚历山大藻(Alexandrium)的LSU的D1-D3区进行了多种限制性内切酶的酶切图谱分析,为包括塔玛亚历山大藻(A.tamarense),链状亚历山大藻(A.catenella),A.fundyense和A.affine等的酶切鉴定提供了酶学基础.RFLP技术操作简单,能有效摆脱对设备的高要求和对成本的高依赖,与其他方法(如变性凝胶电泳、分子测序等)相比优势明显,具有较大的生态应用价值.在产毒藻类中,例如冈比亚藻,由于不同冈比亚藻的生长和产毒特性差别巨大,且分布具有明显的地域性,如何快速获得某热带或亚热带海域的冈比亚藻群信息对预测和监控该海域的雪卡毒素具有非常重要的意义.以往针对冈比亚藻的鉴定有过RFPL 的尝试,然而,普通RFPL的检测手段一般为琼脂糖凝胶电泳,该检测手段分辨率低,依赖于人眼观察,具有明显的局限性.且部分冈比亚藻在PCR过程总会产生假基因(pseudo-gene),导致其酶切结果存在误差[20].随后发展的末端限制性片段长度多态性分析法(terminal restriction fragment length polymorphism,TRFLP)利用荧光标记引物对样品中DNA进行特异扩增,然后进行限制性内切酶酶切,用带荧光检测器的序列仪对荧光标记片断进行分离和识别,检测末端限制片段的多样性这种方法能够得到一个群落的特征指纹图谱,可大幅提高检测该酶切方法的分辨率和检测限.Joo等[15]根据12种不同藻种的核糖体小亚基多变区构建了藻的T-RFLP库,然后设计了包含2种限制性内切酶的组合酶对2个不同水库的藻类群体结构进行了比较分析,成功鉴定了包括绿藻门、隐藻门等在内的多种藻细胞.本次实验中我们聚焦于冈比亚藻,将RFLP技术用于冈比亚藻的分类鉴定中.以冈比亚藻D1-D2保守区域为切入点,筛查了10余种限制性内切酶,按照产物最少、成本最省的原则优选了Aci I内切酶.该酶获得的酶切图谱具有较好的区分度,能有效识别目前已有的主要冈比亚藻种.从验证的7种待检藻种来看,条带图谱清晰、特异,能借助肉眼进行快速识别,证明了所建方法的有效性.随后的野外样品验证中,分子测序方法与该方法有较好的吻合度和重现性,证实了Aci I内切酶的可靠性.然而,受限于冈比亚藻的材料来源,我们未能获得上述10种冈比亚藻种的酶切指纹图谱,而只对本课题组已有冈比亚藻进行了酶切分析,给后续的研究遗留了一定的空间.在未来的工作中,我们将通过各种方式(国际交往、航次考察、种源购买)力争获取更为广泛的样品来源,获取它们的酶切指纹图谱,将Aci I作用下的酶切分型进行精细验证,构建冈比亚藻的指纹图库,为冈比亚藻的准确鉴定和快速识别提供理论依据和借鉴方法. 根据已有数据库冈比亚藻的序列信息,经生物软件分析找到了限制性内切酶Aci I可分离目前已鉴定的10种冈比亚藻.通过酶切电泳实验获得了本课题组拥有的已被鉴定的7种冈比亚藻种的酶切片段和电泳图谱,然后通过对分离自加勒比海域的5株未知冈比亚藻的酶切和DNA测序分析,确定了这5株藻分别为G.carpenteri和G.carolinianus,因此我们认为Aci I能初步鉴定上述的冈比亚藻.为了进一步验证和优化该限制性内切酶的特异性和检测限,后续实验应对目前已发现的所有冈比亚藻种进行酶切和测序验证,为开发检测灵敏度更高的荧光T-RFLP提供实验基础.致谢本文部分测序工作由伍兹霍尔海洋研究所(USA)的Mindy Richlen副教授协助完成,谨致感谢.[1] Dickey R W,Plakas S M.Ciguatera:a public healthperspective[J].Toxicon,2010,56(2):123-136.[2] Russell F E,Egen N B.Ciguateric fishes,ciguatoxin (CTX)and ciguatera poisoning[J].Toxin Reviews,1991, 10:37-62.[3] Lehane L,Lewis R.Ciguatera:recent advances but the riskremains[J].International Journal of Food Microbiolohy,2000,61:91-125. [4] Poon-King C M,Chen A,Poog-King T.Ciguatera fish poisoning in industrial ship crewmembers:a retrospective study in a seaport general practice in Trinidad and Tobago[J].West Indian MedicalJournal,2004,53:220-226.[5] Litaker R W,Vandersea M W,Faust M A,et al.Global distribution of ciguatera causing dinoflagellates in the genusGambierdiscus[J].Toxicon,2010,56(5):711-730.[6] Hales S,Weinstein P,Woodward A.Ciguatera(fish poisoning),E l Niño,and Pacific Sea surface temperatures [J].Ecosystem Health,1999,5(1):20-25. [7] Richlen M L,Morton S L,Barber P H,et al.Phylogeography,morphologicalvariation and taxonomy of the toxic dinoflagellate Gambierdiscustoxicus(Dinophyceae)[J]. Harmful Algae,2008,7(5):614-629.[8] Litaker R W,Vandersea M W,Faust M A,et al.Taxonomy of Gambierdiscus including four new species,Gambierdiscuscaribaeus,Gambierdiscus carolinianus,Gambierdiscus carpenteri and Gambierdiscusruetzleri(Gonyaulacales,Dinophyceae)[J].Phycologia,2009,48(5): 344-390. [9] 徐轶肖,江涛.雪卡毒素产毒藻(冈比亚藻)研究进展[J].海洋与湖沼,2014,45(2):244-252.[10] Richlen M L,Lobel P S.Effects of depth,habitat,and water motion on the abundance and distribution of ciguatera dinoflagellates at Johnston Atoll,Pacific Ocean [J].Marine Ecology Progress Series,2011,421:51-66. [11] Holmes M J,Lewis R J,Poli M A.Strain dependent production of ciguatoxin precursors(gambiertoxins)by Gambierdiscustoxicus(Dinophyceae)in culture[J]. Toxicon,1991,29(6):761-765.[12] Xu X,Richlen M L,Morton S L,et al.Distribution,abundance and diversity of Gambierdiscus spp.from a ciguatera-endemic area in Marakei,Republic of Kiribati [J].Harmful Algae,2014,34:56-68.[13] 罗建飞,林炜铁,任杰,等.T-RFLP技术及其在硝化细菌群落分析中的应用[J].微生物学通报,2008,35(3): 456-461.[14] Dickie I A,FitzJohn R ing terminal restriction fragment length polymorphism(T-RFLP)to identify mycorrhizal fungi:a methodsreview[J].Mycorrhiza, 2007,17:259-270.[15] Joo S,Lee S R,Park A.Monitoring of phytoplankton communitystructure using terminal restriction fragment length polymorphism(T-RFLP)[J].Journal of Microbiology Methods,2010,81:61-68.[16] Keller M D,Guillard R L.Factors significant to marine dinoflagellte culture[M]∥Andorson D M,White A W, Baden D C.Toxic dinoflagellates.New Xork:Elsevier, 1985:113-116.[17] Scholin C A,Anderson D M.Identification of group and strain-specific genetic markers for globally distributed Alexandrium(Dinophyceae):II.RFLP analysis of LSU r RNA genes[J].Journal of Phycology,1994,30: 999-1011. [18] Chang W,Um X,Holoman T R P.Polycyclic aromatichydrocarbon(PAH)degradation coupled tomethanogenesis[J].Biotechnology Letter,2006,28:425-430.[19] Scholin C,Hallegraeff G,Anderson D.Molecular evolution of the Alexandrium tamarense species complex (Dinophyceae):dispersal in the North American and West Pacific regions[J].Phycologia,1995,34:472-485.[20] Tomohiro N,Shinya S,Wittaya T,et al.Genetic diversity and distribution of the ciguatera-causing dinoflagellate Gambierdiscus spp.(Dinophyceae)in coastal areas of Japan[J].PLoS ONE,2013,8(4):e60882.doi:10.1371/journal.pone.0060882.【相关文献】[1] Dickey R W,Plakas S M.Ciguatera:a public health perspective[J].Toxicon,2010,56(2):123-136.[2] Russell F E,Egen N B.Ciguateric fishes,ciguatoxin (CTX)and ciguatera poisoning[J].Toxin Reviews,1991, 10:37-62.[3] Lehane L,Lewis R.Ciguatera:recent advances but the risk remains[J].International Journal of Food Microbiolohy,2000,61:91-125.[4] Poon-King C M,Chen A,Poog-King T.Ciguatera fish poisoning in industrial ship crewmembers:a retrospective study in a seaport general practice in Trinidad and Tobago[J].West Indian Medical Journal,2004,53:220-226.[5] Litaker R W,Vandersea M W,Faust M A,et al.Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus[J].Toxicon,2010,56(5):711-730.[6] Hales S,Weinstein P,Woodward A.Ciguatera(fish poisoning),El Niño,and Pacific Sea surface temperatures [J].Ecosystem Health,1999,5(1):20-25.[7] Richlen M L,Morton S L,Barber P H,et al.Phylogeography,morphological variation and taxonomy of the toxic dinoflagellate Gambierdiscus toxicus(Dinophyceae)[J]. Harmful Algae,2008,7(5):614-629.[8] Litaker R W,Vandersea M W,Faust M A,et al.Taxonomy of Gambierdiscus including four new species,Gambierdiscus caribaeus,Gambierdiscus carolinianus,Gambierdiscus carpenteri and Gambierdiscusruetzleri(Gonyaulacales,Dinophyceae)[J].Phycologia,2009,48(5): 344-390.[9] 徐轶肖,江涛.雪卡毒素产毒藻(冈比亚藻)研究进展[J].海洋与湖沼,2014,45(2):244-252.[10] Richlen M L,Lobel P S.Effects of depth,habitat,and water motion on the abundance and distribution of ciguatera dinoflagellates at Johnston Atoll,Pacific Ocean [J].Marine Ecology Progress Series,2011,421:51-66.[11] Holmes M J,Lewis R J,Poli M A.Strain dependent production of ciguatoxin precursors(gambiertoxins)by Gambierdiscus toxicus(Dinophyceae)in culture[J]. Toxicon,1991,29(6):761-765.[12] Xu X,Richlen M L,Morton S L,et al.Distribution,abundance and diversity of Gambierdiscus spp.from a ciguatera-endemic area in Marakei,Republic of Kiribati [J].Harmful Algae,2014,34:56-68.[13] 罗建飞,林炜铁,任杰,等.T-RFLP技术及其在硝化细菌群落分析中的应用[J].微生物学通报,2008,35(3): 456-461.[14] Dickie I A,FitzJohn R ing terminal restriction fragment length polymorphism(T-RFLP)to identify mycorrhizal fungi:a methods review[J].Mycorrhiza, 2007,17:259-270. [15] Joo S,Lee S R,Park A.Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism(T-RFLP)[J].Journal of Microbiology Methods,2010,81:61-68.[16] Keller M D,Guillard R L.Factors significant to marine dinoflagellteculture[M]∥Andorson D M,White A W, Baden D C.Toxic dinoflagellates.New Xork:Elsevier, 1985:113-116.[17] Scholin C A,Anderson D M.Identification of group and strain-specific genetic markers for globally distributed Alexandrium(Dinophyceae):II.RFLP analysis of LSU r RNAgenes[J].Journal of Phycology,1994,30: 999-1011.[18] Chang W,Um X,Holoman T R P.Polycyclic aromatic hydrocarbon(PAH)degradation coupled to methanogenesis[J].Biotechnology Letter,2006,28:425-430.[19] Scholin C,Hallegraeff G,Anderson D.Molecular evolution of the Alexandrium tamarense species complex (Dinophyceae):dispersal in the North American and West Pacific regions[J].Phycologia,1995,34:472-485.[20] Tomohiro N,Shinya S,Wittaya T,et al.Genetic diversity and distribution of the ciguatera-causing dinoflagellate Gambierdiscus spp.(Dinophyceae)in coastal areas of Japan[J].PLoS ONE,2013,8(4):e60882.doi: 10.1371/journal.pone.0060882.LSU r DNA Based on RFLP Assays for Distinguishing Species of Gambierdiscus spp.LÜXi-hua1,ZHOU Jin2,ZHENG Wei1,GAO Xan3,XU Zhi-ming3,ZHENG Tian-ling1*(1.Key Laboratory of the Coastal and Wetland Ecosystems,Ministry of Education,School of Life Sciences, Xiamen University,Xiamen 361102,China;2.The Division of Ocean Science and Technology,Graduate School at Shenzhen,Tsinghua University,Shenzhen518055,China;3.Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China)Abstract:Ciguatera fish poisoning(CFP)is a serious seafood poisoning syndrome caused by the consumption of seafood contaminated with ciguatoxins.The toxic organisms most commonly associated with CFP are benthic dinoflagellates in the genus Gambierdiscus.To establish molecular monitoring for the Gambierdiscus community in tropical seas,we analyzed the restriction fragment length polymorphism(RFLP)of large subunit ribosomal(LSU)rDNA sequences of D1-D2 region from ten Gambierdiscus species and several environmental samples.Results showed that the restriction enzyme AciI was able to identify LSU rDNA heterogeneities of Gambierdiscus species,repeatedly and sensitively.Therefore,the assay in this study could be established to monitor Gambierdiscus species in the environments and trace the changes of Gambierdiscus community in the ocean.Key words:ciguatera;Gambierdiscus spp.;restriction fragment lengthpolymorphism(RFLP);Aci I;D1-D2doi:10.6043/j.issn.0438-0479.2015.02.006。
食品安全的基础知识--食品危害
大肠杆菌(Escherichia coli)
常见于人、动物肠道内; 许多类型不致病,在肠道内 有有益功能; 致病性大肠杆菌是通过环境 污染进入食品中的; 症状为:腹部痉挛、水性或 血性腹泻、发烧、恶心和呕 吐。 染病剂量:几个至上百万个
大肠杆菌(Escherichia coli)
为志贺痢疾样大肠埃希氏菌,致病症 状象痢疾,带有血便,痢疾菌试验呈阳性, 具有与痢疾杆菌同样的毒力,可侵入大肠 上皮细胞,形成局部炎症及溃疡。
肠道出血性大肠埃希氏菌(EHEC)
也称为产佛罗细胞毒素大肠埃希 氏菌(Verocytoxin producing E. Coli , VTEC)或大肠埃希氏菌 O157:H7(E. Coli O157:H7), 可引起以血便和腹痛为主要症状出血性 肠炎,有时并发溶血性尿毒症综合症的。
分布:天然存在人类肠道内
症状:腹泻、发烧、腹部痉挛和严重 脱水。
志贺氏菌 (Shigella spp.)
预防措施: ——消除人类粪便对水源的污染; ——改进加工人员个人卫生; ——禁止病人和志贺氏菌携带者进入 食品加工场所。
金黄色葡萄球菌 (Staphlococcus aureus)
金黄色葡萄球菌 (Staphlococcus aureus)
也称肉毒梭状芽孢杆菌 广泛分布于自然环境中:土壤、水、蔬菜、肉、奶 制品、海洋沉积物、鱼类肠道、蟹、贝类的鳃和内 脏等 产芽孢——强耐热性 厌氧生长 正常加热温度下存活 在真空包装、罐头食品和其他缺氧包装环境下生长
肉毒梭菌(Clostridium botulinum)
产生强烈的神经麻痹毒素——肉毒毒素 有A、B、C、D、E、F、G七种毒素类型 A、B、E、F与人类肉毒中毒有关 E型肉毒梭菌在水产品中最常见,3C仍可生长, 很少使食品产生腐败迹象 A型肉毒梭菌常见于陆上动、植物,使产品产 生腐败气味,A型菌芽孢比E型菌芽孢耐热性更 强
英文外刊,抗击疟疾的科学家们,陷入了生物伦理学的争论
英文外刊,抗击疟疾的科学家们,陷入了生物伦理学的争论Scientists at this lab in Burkina Faso have deployed gene warfare against the parasite carrying mosquitoes that spread malaria.布基纳法索一个实验室的科学家已经对传播疟疾同时携带寄生虫的蚊子进行了基因改造。
The conventional tools at our disposal today have reached a ceiling and can't become more efficient than they are right now.我们现在使用的传统工具已经达到了极限,不能比现在的效率更高。
We have no choice but to look at complementary methods.我们别无选择,只能寻找辅助性疗法。
That is why we're using genetically modified mosquitoes.这就是我们对蚊子进行转基因的原因。
Professor Diabate runs the experiment for target malaria, a research consortium backed by the Bill and Melinda Gates Foundation.迪亚巴特教授为目标疟疾组织(比尔和梅琳达.盖茨基金会支持的研究联盟)开展了这项实验。
The group developed an enzyme that sterilizes male mosquitoes.研究小组研发出一种可以使雄蚊绝育的酶,可以使雄蚊绝育。
The action of the enzyme continues after fertilization which means if the male copulates with a female, the embryo is dead and the female can no longer have offspring.这种酶在雌蚊子受精后继续发挥作用,这意味着如果雄蚊子与雌蚊子交配,胚胎就会死亡,雌蚊子就不能再生育后代。
赤潮的生态学研究进展和展望
赤潮的生态学研究进展和展望杨刚(浙江海洋学院海洋科学与技术学院,浙江舟山316004)摘要本文针对赤潮的生物学研究、赤潮发生机制,赤潮的生态学效应,赤潮的生物学监测和赤潮的防治等方面对整体的赤潮研究进行了简单的回顾和应用介绍,最后对赤潮的研究重点和未来发展方向进行了评述。
关键字赤潮发生机制生态学效应监测防治分类号赤潮(red tide)又称有害藻华(harmful algae bloom ),是由于某种(或某些)微小的浮游藻类或原生动物或细菌,在一定的条件下爆发性繁殖(增殖)或高密度聚集引起水体变色的一种有害的生态异常现象。
赤潮形成后,对海洋生态系统的破坏难以估量: ①赤潮生物的爆发性增殖会造成海水pH值升高,粘稠度增大,改变水生生态系统的群落结构; ②藻类大量死亡时分解作用消耗水中的氧气,导致水域的动物因缺氧而死亡; ③藻类过度密集会堵塞鱼贝类生物的鳃部,使其窒息而死; ④有的赤潮藻类本身含有毒素,鱼贝等生物接触后会发生中毒反应。
有的赤潮毒素容易在鱼贝体内蓄积,人们误食含有毒素的水产品后会引起肢体麻痹,甚至中毒致死。
[1]据报道记载,赤潮在古代发生的次数非常稀少。
20世纪以来,由于工农业迅速发展,沿海地区人口激增,大量的工业废水和城市生活污水未经处理直接排放到海洋中,造成内湾、河口和沿岸水域的严重有机污染和富营养化,赤潮的发生频率不断升高。
并且,赤潮影响的水域面积越来越大,引发赤潮的藻种也越来越多(Hallegraeff,1993 )。
[2]当前,每一个拥有海岸线的国家都受到赤潮的威胁。
因此,赤潮已经成为世界沿海国家所面临的主要海洋环境问题,引起了国际上的广泛关注。
许多临海国家特别是日本和美国已投入大量的人力和物力进行研究。
从发展趋势看,赤潮的发生机理、危害、预测和防治仍将是今后赤潮研究的主流。
1. 赤潮的生物学研究据报道,世界各地己引发过赤潮的生物有200种(福代康夫,1990)。
[3]赤潮生物除少数的原生动物和细菌外,大都属于浮游植物,包括蓝藻、硅藻、甲藻、金藻和隐藻等门类,其中硅藻和甲藻占多数。
西加毒素小述
13
01 西加鱼毒素简介
02 中毒机理及症状
03 分布及危害
04 毒素检测技术
第二节 中毒临床症状
雪卡毒素的致死剂量
雪卡毒素对灵长类动物的半致死量为2. 0μg/kg。死亡
率为0. 1%~4. 5%,严重中毒者身体虚弱,较难恢复
健康。不经治疗者其自然死亡率为17% ~20%,死因 多为呼吸肌麻痹所致。值得指出的是,雪卡毒素中
第一讲 小鼠生物法
方法的原理是根据小鼠腹腔注射西加毒素后建立剂量与死亡时间的关系方程式logMU=3.7log (1+T),查出鼠单位,并按小鼠体重,校正鼠单位(corrected mouseunit,CMU),计算确定 每100 g样品中西加毒素的鼠单位。
小鼠生物法的缺点是特异性差、灵敏度低、准确性和重现性差、不能断定个体 毒素成分、操作要求较高技巧、对试验动物的种系及体重要求苛刻,但该方法 具有可靠性强、能表达出样品中实际毒性、不需复杂设备等优点。
区的美属维京群岛仅次于之,年中毒率为73人/
(万· 年),印度洋地区的留尼汪岛年中毒率为 0.78人/ (万· 年)。中国雪卡毒素中毒事件发生
最多的香港地区,年中毒率为0.17人/ (万·年)。
随着海产品贸易的快速发展,雪卡毒素中毒事件已经 成为一个全球性的健康问题。
17
01 西加鱼毒素简介
02 中毒机理及症状
平等特点,一般将HPLC/MS作为其他检测方法
的重要辅助方案,提供准确的参考标准。 该法需要昂贵的设备及高素质的操作人员,样 品前处理要求较高,毒素标准品价格昂贵,不 能同时检测大量样品等,因此一般用于实验室 的分析研究,而不适用西加鱼毒素简介
02 中毒机理及症状
03 分布及危害
西加毒素的危害及其检测技术
西加毒素的危害及其检测技术孙娟【摘要】Ciguatoxins is a kind of terrible coral fish toxin produced by certain marine benthic microalgae and may accumulate in various kinds of coral fishes through the food chain. It result in poisoning in those who eat coral fish containing ciguatoxins. In recent years, as coral fishes are increasingly traded among many countries and areas , it has become a world health problem. In order to prevent food poisoning induced by ciguatoxins , its molecular structure , chemical properties, original biological resource, poisoning mechanism, clinical symptoms and the hazard to humans were summarized. Besides, the detection analytical techniques of ciguatoxins are described and compared in detail.%西加毒素是由少数几种海洋底栖微藻产生,具有极强毒性的生物毒素,它能够通过食物链传递而累计在多种珊瑚鱼体内,继而造成人类因食用鱼类而中毒.近年来,随着珊瑚鱼类在世界范围内的广泛贸易,西加毒素中毒已经成为全球性的健康问题.为给预防西加毒素引起的食物中毒提供借鉴,对西加毒素的分子结构、化学性质、生物来源、制毒机理、中毒症状和对人类的危害进行了综述.就目前主要的检测方法进行了技术特性的介绍,并对常用检测方法的优缺点进行了比较分析.【期刊名称】《生物学杂志》【年(卷),期】2011(028)004【总页数】4页(P74-77)【关键词】西加毒素;化学特性;检测技术【作者】孙娟【作者单位】广东省技术经济研究发展中心,广州,510070【正文语种】中文【中图分类】Q503西加鱼毒 (Ciguatera Fish Poisoning,CFP),又称雪卡毒素,是一类具有严重危害的微藻生物毒素。
海钓常见鱼类图解
黑立/牛屎立此主题相关图片如下:2008111522134381093.jpg习性黑立/牛屎立。
在我国的渤海、黄海、东海和南海都有分布,在四大海区中的岛屿,岩礁和港湾相对多一些。
黑鲷鱼属清洗暖温性底栖鱼类。
它喜欢栖息在岩礁或者沙泥底质的海区。
一般不作长距离洄游。
以小型鱼类,虾类,贝类和环节动物为食饵。
体重体长一般为12-30CM,最大重量4KG钓场近岸岩礁周边、港湾、码头防波堤,河流出口处,内湾沙泥地,养鱼排,养殖场等钓法手竿拖动底钓法,矶竿浮漂钓法,投竿远投底钓法饵料沙蚕,虾肉,海蛎肉,小活虾,小活螃蟹,双壳蟹肉,鲎膏,鱿鱼膏面团,鸡肠等。
钓期1-12,旺季:5-10鲻鱼又名:乌支、普通鲻、大头鲻、九棍、葵龙、田鱼、乌头、乌鲻、脂鱼、白眼、丁鱼、黑耳鲻。
此主题相关图片如下:a749-04.jpg鲈形目(Perciformes)鲻科(Mugilidae)多种有经济价值的群栖性鱼类的统称。
与名为red mullet的绯鲤科(Mullidae)山羊鱼(goat fish)无亲缘关系。
近100种,遍及所有温、热带区水域,一般生活於咸水或半咸水中,常见於沿岸浅水带,以挖取泥沙中的微小动植物和其他食物为生。
体色银白,长30~90公分(1~3呎),鳞大,体粗壮,呈雪茄烟状;尾鳍分*;背鳍二个,第一背鳍有四根硬棘。
多数鲻具强大砂囊状的胃,其肠长,能消化大量植物性食物。
普通鲻(Mugil cephalus, 即条纹鲻)因生长迅速,是见於世界各地的著名鱼类。
体延长,前部近圆筒形,后部侧扁,一般体长20~40厘米,体重500~1500克、全身被圆鳞,眼大、眼睑发达、牙细小成绒毛状,生于上下颌的边缘、背鳍两个,臀鳍有8根鳍条,尾鳍深*形。
体、背、头部呈青灰色,腹部白色、鲻鱼外型与梭鱼相似,主要区别是鲻鱼肥短,梭鱼细长;鲻鱼眼圈大而内膜与中间带黑色,梭鱼眼圈小而眼晶液体呈红色体重体长一般为20-40C M,大者可达80CM,重达5KG钓场河口附近,内湾,码头附近。
关于解决毒品问题的英语作文
Tackling the Drug Problem: A GlobalChallengeDrug abuse and trafficking have become a global menace, affecting individuals, families, communities, and nations alike. The devastating consequences of drugs range from health issues to social and economic challenges, making it imperative to address this problem comprehensively.One of the key strategies in combating drug abuse is prevention. Educating the youth about the harmful effectsof drugs and promoting healthy lifestyle choices can significantly reduce the incidence of drug abuse. Additionally, creating awareness among parents and communities to monitor and support their loved ones is crucial. By fostering a culture of prevention, we can stop drug abuse before it starts.However, prevention alone is not sufficient. We must also address the root causes of drug abuse, which often include poverty, mental health issues, and social exclusion. Providing access to treatment and rehabilitation facilities for addicts is essential in breaking the cycle of addictionand helping individuals return to society as productive members.Moreover, strengthening law enforcement and criminal justice systems to combat drug trafficking is paramount. This involves cracking down on drug cartels, disrupting supply chains, and prosecuting traffickers to the fullest extent of the law. International cooperation is alsocrucial in this regard, as drug trafficking often involves cross-border operations.In addition, alternative development programs can help reduce the demand for drugs by providing viable economic opportunities in areas where drug cultivation is prevalent. These programs aim to provide sustainable livelihoods and reduce poverty, thereby reducing the incentive for individuals to cultivate and traffic drugs.In conclusion, addressing the drug problem requires a multifaceted approach that combines prevention, treatment, law enforcement, and alternative development programs. It is only through collective effort and cooperation at all levels that we can hope to eradicate this global menace and create a healthier, safer, and more prosperous world.**解决毒品问题的全球挑战**毒品滥用和贩运已成为全球性的威胁,影响到个人、家庭、社区和国家。
什么是贝毒
什么是贝毒
贝毒就是一种贝类毒素,生活中所食用的海鲜等含有贝类毒素,一些海洋生物包括牡蛎、海藻等,但是大家对其贝毒却没有太深刻的了解,那么什么是贝毒?
贝毒是由大量甲藻类的膝沟藻属(Gonyaulax)和链藻属(Catenella)形成赤潮后的毒被贻贝摄取浓聚的结果。
贝毒简介
中文的贝毒一词翻译自英文词组shellfish
poisoning,词的来源是人类因食用有毒的贝类而产生中毒的症状。
而随着科学研究的深入,科学家发现这些贝类所含的毒素其实并非由贝类自身产生的,而是被其摄食的微藻(主要是甲藻,其次是硅藻)或菌类所产生的,在贝类的体内积聚至足够浓度后才会发生中毒事件。
另外,含有此类毒素的也并非只有贝类(还包括鱼等食物链中的消费者)。
根据中毒后所产生的症状,科学家把贝毒分为六大类,分别是:记忆缺失性贝毒(Amnesic Shellfish Poisoning,
ASP、西加鱼毒(ciguatera fish poisoning, CFP)、腹泻性贝毒(diarrhetic shellfish poisoning,
DSP)、神经性贝毒(Neurotoxic Shellfish Poisoning, NSP)、麻痹性贝毒(Paralytic Shellfish
Poisoning, PSP)、和1995年因食用紫贻贝(Mytilus edulis)而引出的氨代螺旋酸贝类毒Azaspiracid Shellfish
Poisoning(AZP)。
什么是贝毒上面都有详细的介绍,让更多人对其贝毒相关知识有详细的了解,要多关注,除此之外,还需要对其人中贝毒后如何急救等海洋灾害小知识进行了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EUROPEAN JOURNAL OF EMERGENCY MEDICINE,2001,8,295᎐300Ciguatera poisoning:a global issue with common management problemsJ.Y.S.TING1U and A.F.T.BROWN2Department of Emergency Medicine,1Princess Alexandra Hospital,Woolloongabba4102,Brisbane,and2Royal Brisbane Hospital,Herston4006,Brisbane,Queensland,AustraliaCiguatera poisoning,a toxinological syndrome comprising an enigmatic mixture of gastroin-testinal,neurocutaneous and constitutional symptoms,is a common food-borne illness relatedto contaminatedfish consumption.As many as50000cases worldwide are reported annually,and the condition is endemic in tropical and subtropical regions of the Pacific Basin,IndianOcean and Caribbean.Isolated outbreaks occur sporadically but with increasing frequency intemperate areas such as Europe and North America.Increase in travel between temperatecountries and endemic areas and importation of susceptiblefish has led to its encroachmentinto regions of the world where ciguatera has previously been rarely encountered.In thedeveloped world,ciguatera poses a public health threat due to delayed or missed diagnosis.Ciguatera is frequently encountered in Australia.Sporadic cases are often misdiagnosed or notmedically attended to,leading to persistent or recurrent debilitating symptoms lasting monthsto years.Without treatment,distinctive neurologic symptoms persist,occasionally beingmistaken for multiple sclerosis.Constitutional symptoms may be misdiagnosed as chronicfatigue syndrome.A common source outbreak is easier to recognize and therefore notify topublic health organizations.We present a case series of four adult tourists who developedciguatera poisoning after consuming contaminatedfish in Vanuatu.All responded well tointravenous mannitol.This is in contrast to afifth patient who developed symptoms suggestiveof ciguatoxicity in the same week as the index cases but actually had staphylococcal endocardi-tis with bacteraemia.In addition to a lack of response to mannitol,clinical and laboratoryindices of sepsis were present in this patient.Apart from ciguatera,acute gastroenteritisfollowed by neurological symptoms may be due to paralytic or neurotoxic shellfish poisoning,scombroid and pufferfish toxicity,botulism,enterovirus71,toxidromes and bacteraemia.Clinical aspects of ciguatera toxicity,its pathophysiology,diagnostic difficulties and epidemi-ology are discussed.ᮊ2001Lippincott Williams&Wilkins.Keywords:ciguatera poisoning;toxinological;food-borne illness;public health;common sourceoutbreakINTRODUCTIONCiguatera poisoning,afish-borne toxinological syn-drome comprising a mixture of gastrointestinal,neu-rocutaneous and constitutional symptoms,is encoun-tered frequently in the tropics and increasingly in temperate regions of the world.1᎐6The global dis-tribution and risk stratification for ciguatera poison-ing is seen in Fig.1.It is a major obstacle to the safe consumption of local and importedfish1and is a significant public health issue.7Although many cases have been recorded in Australia,8scant public health data exist regarding this condition due to under-de-tection of sporadic cases and non-mandatory notifi-cation.1Even amongst the medical community, ciguatera remains under-recognized.9This lack of U To whom correspondence should be addressed awareness leads to a delay in the diagnosis,notifica-tion and treatment of ciguatera poisoning.10Common source outbreaks are easier to recognize,with four cases of ciguatera poisoning presenting to our emer-gency department in1996.All had become sympto-matic within12hours of eating contaminated coral trout caught off Efate Island at a resort in Vanuatu.A fifth subject with staphyloccocal bacteraemia was misdiagnosed with ciguatoxicity in the same week. Although ciguatoxicity has characteristic features,be-ing alert to the possibility of other diagnoses even in the presence of a prior history of ciguatera poisoning is emphasized.CLINICAL RECORDCase1A33-year-old man presented with peripheral para-ᮊ2001Lippincott Williams&Wilkins.TING and BROWN296()(Fig.1.Global distribution of ciguatera,with areas of high-to-moderate risk heavy shading and low or uncertain risk lighter )()shading identified.Reprinted from Lehane,L.and Lewis,R.J.2000Ciguatera:recent advances but the risk remains.Int.J.Food Micro.,61,91᎐125,with permission from Elsevier Science.doxical burning cold temperature sensitivity,circum-oral and limb dysaesthesiae,myalgia,arthralgia,lethargy and pruritus.The first symptom where cuta-neous temperature perception is reversed is peculiar to ciguatera poisoning.Four days previously he had eaten freshly caught coral trout during a resort holi-day in Vanuatu.Within hours,he developed nausea,vomiting and diarrhoea followed by lower abdomi-nal,testicular and penile pain.He described excruci-ating discomfort during penile erection and after ejaculation.He was fit and well apart from severe visual impairment due to hereditary retinitis pigmen-tosa.The subject looked well and was apyrexial with nor-mal vital observations and mental d lower abdominal and genital discomfort was found on pal-pation without peritonism.Neurological examination was normal apart from a left afferent pupillary defect and bilateral retinal pigmentation of retinitis pig-mentosa.All laboratory investigations were normal.A clinical diagnosis of ciguatera poisoning was made and two Žintravenous doses of 20%mannitol 0.5g r kg 2.5.ml r kg were infused over 30minutes each,leading to the rapid resolution of symptoms.We were told that the patient’s previously well female partner,who had not recently eaten any fish,experienced nausea,circumoral dysaesthesia,arthralgia,lethargy and pru-ritus within 24hours of having unprotected vaginal intercourse with him.She made an uneventful recov-ery within a week without treatment.Cases 2,3and 4Three males aged 40,43and 48years had similar symptoms to those of the index case within 12hours of eating the same fish.In addition,one subject had intense penile pain following defecation and another penile pain including on erection.All had been previ-ously fit and were well hydrated and without abnor-mal physical or laboratory findings.Cases 2and 4responded well to two doses of 0.5g r kg of 20%mannitol after presenting 6and 8days respectively after exposure.Eight days after exposure,Case 3experienced symptomatic improvement with a single dose of mannitol although symptoms recurred a week later.No subject had symptoms at 1-month follow-up.Case 5A 63-year-old man presented independently in the same week as the previous cases,declaring that his ciguatera poisoning was back.He had eaten frozen fish bought at a supermarket in Brisbane.He then developed myalgias,abdominal pain,nausea,vomit-ing,diarrhoea,paraesthesiae,headache and fevers.He believed these symptoms to be identical to those experienced on two separate occasions,6and 20years previously,when he had been diagnosed with ciguatera poisoning.He looked unwell with a temperature of 38ЊC,had moderate dehydration with poor skin turgor,pulse 100r minute,blood pressure 100r 60mmHg supine with a small postural drop on sitting up.No clinical()()EUROPEAN JOURNAL OF EMERGENCY MEDICINE 200184CIGUATERA POISONING297features of respiratory,genitourinary,gastrointesti-nal,cardiac,joint,skin or ENT infection were present. The patient was orientated to time,place and person and demonstrated no meningism or rash.An up-going left Babinski reflex was elicited with an other-wise normal neurological examination.On presentation,his white cell count was6.83=109r l Ž9.2.0᎐7.5=10with moderate left shift and neu-trophil vacuolation.Platelet count was72=109r l Ž9.140᎐400=10with a haemoglobin of13.1g r dl Ž.13.5᎐18.0.Abnormal serum electrolytes and liver function tests included creatinine0.15mmol r l Ž.Ž.0.06᎐0.14,total bilirubin14mol r l0᎐20,alkalineŽ.phosphatase36u r l35᎐140,gamma glutamyltrans-Ž.ferase40u r l0᎐50,alanine aminotransferase147Ž.Ž. u r l0᎐35,aspartate transaminase181u r l0᎐35Ž.and creatine kinase850u r l30᎐210.Microscopy of6Žmid-stream urine revealed leukocytes10=10r l-6.6Ž6.10=10,erythrocytes40=10r l-10=10and6Ž6. epithelial cells-10=10r l-10=10.Culture was not performed due to the absence of bacteria on microscopy.The patient and his wife were convinced of the diag-nosis of ciguatera.Mannitol had been used with success6years previously,and following intra-venous rehydration with1litre of Hartmann’s solu-tion,0.5g r kg of20%mannitol was administered without symptomatic improvement.Persistent fever and headache,a rising white cell count with worsening thrombocytopenia and liver function tests alerted us to the possibility of sepsis.A chest X-ray was normal.Three sets of blood culturesŽ. were obtained.A computed tomography CT head scan showed a right parietal lobe hypodense lesion without mass effect suggestive of an intracranial col-Ž.lection.Cerebrospinalfluid CSF analysis showed 6Ž6.200=10r l leukocytes-5=10with96%neu-6Ž6. trophils,5=10r l erythrocytes-5=10,no bacte-Ž.ria on Gram stain,glucose4.7mmol r l 2.5᎐5.0andŽ.protein870mg r l150᎐600.Further testing for en-capsulated yeast-like cells,cryptococcal antigen and acid-fast bacilli was negative.There was no growth on CSF culture after14days.Intravenous ceftriaxone andflucloxacillin was com-menced.Blood cultures grew a pure growth of Staphylococcus aureus within24hours,and afinal diagnosis of staphylococcal bacterial endocarditis ofŽthe mitral valve vegetations seen on trans-.oesophageal echocardiography with septic embolic infarction of the brain was made.The patient eventu-ally made a full recovery.DISCUSSIONEven though symptoms of ciguatera poisoning were described by European explorers to the New World as early as the16th century,6the term ciguatera is credited to F.Poey,an ichthyologist who observed the similarity between symptoms of ciguatera poison-ing and an illness caused by a land mollusc or‘cigua’in1866.3Captain James Cook and his crew suffered ciguatoxicity in the New Hebrides in1776after eat-ing red bass.4Queensland,where most ciguatera cases in Australia occur,released clinical details of617cases from225 outbreaks over23years in1988.11Major outbreaks tend to be sporadic and localized,1,10occurring in travellers returning from ciguatera-endemic areas or with the consumption of contaminated imported fish.6,12,13Although more than400fish species are potential vectors,1,6fish caught along the tropical coast of Australia such as narrow-barred mackerel Ž.ŽScomberomorus commersoni,barracuda Sphyraena .Ž.jello and coral trout Plectropomus spp.are most often implicated.8Large reeffish of more than3 kilograms from‘at risk’areas are more susceptible due to the concentration of toxin up the food chain.5,6,14It is advisable to avoid eating suchfish altogether to minimize exposure to ciguatera,or for6 months after ciguatera poisoning to prevent a re-lapse.1,5,6,14Furthermore,sale and human consump-tion of the moray eel,chinaman,red bass and paddle-tailfishes,well recognized to be ciguatera prone,are discouraged in Australia.7Ciguatoxin is a lipid-soluble,heat stable polyether toxin without colour,taste or smell produced by the dinoflagellate Gambierdiscus toxicus found on macroalgae in coral reefs.It is the most important of 20toxins implicated in ciguatera poisoning.1,15G. toxicus is consumed by small herbivorousfish that are eaten by largerfish that are consumed by hu-mans.These toxins are progressively concentrated up the food chain,being harmless to thefish host them-selves.1,6,15Typical features of ciguatera poisoning include acuteŽgastroenteritis nausea,vomiting,diarrhoea and ab-.dominal pain within6᎐12hours of contaminated fish ingestion.This is followed within12᎐72hours by characteristic neurocutaneous symptoms comprising circumoral and limb paraesthesia,dysaesthesia and pathognomonic paradoxical apparent temperature sensation reversal.During this stage,musculoskeletal features such as myalgia,arthralgia,cramps and weakness as well as pruritus,sweating and dental pain may be present.1,6Although the acute illness()() EUROPEAN JOURNAL OF EMERGENCY MEDICINE200184TING and BROWN 298lasts a mean of8days,neurological symptoms can last for months and even years.5Symptom severity is dose-dependent,with the inges-tion of thefish’s head,liver or viscera causing more severe poisoning as toxins are concentrated in these tissues.Rarely,vasomotor dysregulation leading to haemodynamic instability may precede paralysis and coma.When recognized and treated early,death from circulatory or respiratory failure occurs in less than 1%of cases.1,6,15Symptoms worsen with alcohol con-sumption,and can recur with futurefish exposure, even to non-ciguatoxicfish.The latter occurs at sub-threshold toxin doses suggesting immunologically mediated sensitization to ciguatoxin following an ini-tial exposure.1,6,16Although intravenous mannitol is considered the most effective treatment for ciguatera poisoning,it has not been directly compared with other agents in controlled clinical trials.15᎐23Its therapeutic effect was discovered fortuitously in1988,when two men who became unconscious from severe ciguatera poisoning responded within minutes after mannitol was admin-istered for presumed cerebral oedema.A further22 ciguatoxic patients had rapid relief of symptoms, including one with circulatory failure.18Since then, case reports and treatment series from around the world have reported success with the use of mannitol in ciguatera poisoning,particularly when given early. Five of12ciguatoxic adults in one series improved with a1.0g r kg infusion of mannitol.17Neurological symptoms responded well to mannitol in14of16 patients in another series.20Because mannitol is inex-pensive,widely available and relatively easy to administer,it is a suitable choice for the treatment of ciguatera poisoning in isolated areas of the world where ciguatera is endemic.16An intravenous dose of1g r kg of20%mannitol Ž.5ml r kg given over30minutes is recom-mended.17,18,21᎐23This dosing regimen is more effec-tive than0.5g r kg given over a longer period,with smaller doses or slower infusion rates implicated in treatment failures.17,19Mannitol administered within 48hours completely relieved symptoms in35cigua-toxic patients.21Although mannitol is more effective when given early,15,16,18a response has been seen in patients who have been symptomatic for up to8 weeks.21Our case series reaffirms the efficacy of intravenous mannitol in the treatment of ciguatera poisoning,even as late as7days afterfish ingestion Ž.in Case4.Repeating mannitol treatment to reduce persistent or recurrent symptoms if there is an initial favourable response has some merit.8,15᎐17,19A second0.5g r kg dose of mannitol was administered to three of four subjects in our series with sustained benefit,with thethird subject unable to stay for a second treatment.He relapsed without an apparent precipitant such asalcohol use or furtherfish consumption.This obser-vation supports the use of repeated doses of mannitolto reduce the risk of ongoing ciguatoxic symptoms.15 It is unclear exactly how mannitol improves symp-toms of ciguatera poisoning,15although there areseveral postulates.Mannitol may inhibit the cigua-toxin-induced opening of neurone membrane sodiumchannels,8,15,20thereby reducing cellular excitabilityand repetitive action potential generation.1It neutral-izes ciguatoxin17and establishes osmotic grad-ients that reduce ciguatoxin-induced perineuraloedema.16,19Mannitol increases the dissociation ofciguatoxin from its cell membrane binding site24andinhibits ciguatera cytotoxicity in cell bioassays invitro.25Mannitol is safe to use in ciguatera poisoning,withfew side-effects reported.1,18Correction of dehydra-tion from vomiting and diarrhoea prior to its admin-istration will amelioratefluid losses from an osmoticdiuresis.17One patient had brief postural presyncopeafter treatment.However,the most common com-plaint was discomfort at the infusion site.Due to itshyperosmolarity,20%mannitol causes venous irrita-tion resulting in infusion site pain and throm-bophlebitis.Dilution of mannitol and intravenouslignocaine boluses does not satisfactorily relieve thispain.Extract from leaves of Argusia argent,a traditionalNew Caledonian remedy,have been shown to beeffective in vitro.26Certain local anaesthetic agentsmay have the ability to inhibit sodium channels thathave been modified by ciguatoxin.Orally adminis-tered tocainide safely alleviated ciguatoxic symptomsin three adult males in a small open-label trial.27Local anaesthetic agents prevent binding of cigua-toxin molecules to their neuronal receptors but alsonon-selectively block normal sodium channels in vitro Ž. personal communication Professor R.Lewis.Although promising,these agents have no provenefficacy in humans.16Non-proven therapies also in-clude calcium gluconate,nifedipine,amitrypty-line,6,15,28and vitamin B.8Symptomatic treatment12includes analgesics for musculoskeletal symptoms,antihistamines for pruritus3,15as well as antiemeticsand antidiarrhoeals.29Gastrointestinal charcoal de-contamination remains speculative,with its use re-commended in other non-infectivefish and shellfishpoisonings.6Our cases were unusual in that three of four subjectshad severe penile pain including on erection andejaculation.This has rarely been reported.Case1()() EUROPEAN JOURNAL OF EMERGENCY MEDICINE200184CIGUATERA POISONING299supports the premise that ciguatoxin may be trans-mitted in semen during sexual intercourse,with dys-pareunia in an unaffected woman following inter-course with her affected male partner having previ-ously been reported.30Geller31et al.encountered anunaffected man in whom penile pain occurred afterintercourse with his symptomatic female partner. Case5cautions against making the diagnosis ofciguatera poisoning based on symptoms that imitateprevious episodes,in the presence of markers forsepsis such as persistent fever,rising neutrophilleukocytosis and other suggestive clinical and labora-tory indices.The lack of a therapeutic response tomannitol should also alert the clinician to a possiblealternative diagnosis.Apart from ciguatera,acutegastroenteritis followed by neurologic symptoms maybe due to paralytic or neurotoxic shellfish poisoning,scombroid and pufferfish toxicity,botulism,enterovirus7,toxidromes and in our case bacter-aemia.6,15,32Ciguatera poisoning remains under-recognized des-pite being frequently encountered in Australia,1,8,14,17leading to treatment delay or omission.Symptomsmay then become persistent and occasionally debili-tating.16,33Delayed or incorrect diagnosis is partlyattributable to the lack of confirmatory tests forciguatera poisoning in humans.1As there is no vali-dated diagnostic test for ciguatera poisoning in hu-Ž. mans personal communication Professor R.Lewis,it remains a clinical diagnosis based on the presenceof early gastroenteritis after suspectfish ingestionfollowed by neurocutaneous and musculoskeletalsymptoms.Clusters of humans affected in commonsource outbreaks are easier to recognize.6,7,10,12The effects of intraperitoneal injection of suspectfishsamples into mice was thefirst bioassay for ciguato-xin34and remains the most widely accepted measureof ciguatoxin bioactivity.25,35The response of domes-tic cats to being fed suspectfish preceded the use ofthe mongoose for this purpose in endemic areas.15,34Animal testing takes days to complete and is notuseful in clinical management.Immunologically based detection methods avoid ani-mal welfare concerns inherent in animal testing.25Asheep anti-ciguatoxin IgG enzyme-linked immunoas-say and more recently a monoclonal antibody mem-brane immunobead assay to detect contaminatedfishmay be used to monitor thefishing industry but hasno diagnostic application in humans.1,4,6Further-more,these tests demonstrate immunological cross-reactivity with otherfish polyethers,giving rise tofalse positive results.36The use of a cell bioassay that responds rapidly to the sodium channel activating action of ciguatoxin in a dose-dependent manner has been shown to correlate well with mouse bioassays.25Liquid chromatography and mass spectrometry was used to detect Pacific ciguatoxin-1in theflesh of a large coral cod con-sumed by20patients who subsequently developed ciguatoxicity.37Despite these advances,there is currently no marine toxinological detection facility for public health surveillance in Australia.1,14An Australian National Biotoxin Strategy is under development to better coordinate public health surveillance and response toŽciguatera and other marine toxins personal commu-.nication Professor R.Lewis.The adverse impact of ciguatera poisoning extends beyond health care into thefishing industry.Fisheries are of great economic importance in the Pacific Islands.Following ciguatera outbreaks,damage occurs to thefishing industry, trade and tourism.Human health suffers due to reluctance to consumefish,a primary source of diet-ary protein in this region.It is ironic that in some Pacific locations,90%offish eaten is imported and comes out of a can.28CONCLUSIONCiguatera poisoning remains a global toxinological threat forfish eaters.1᎐6Large numbers of inhabitants are afflicted seasonally with consumption of local ciguatera pronefish in endemic areas.28Isolated and small group common source outbreaks are frequently encountered in Australia1,8,14,17but less often in Europe2and North America.4,5With imported con-taminatedfish becoming increasingly available to consumers in non-endemic areas,1ciguatera poison-ing will become a greater public health issue.7Trav-ellers to endemic areas may develop symptoms on returning to their homes.13Clinicians in non-en-demic areas will therefore encounter this condition more frequently.Without a test to detect the presence of ciguatoxin in humans,1diagnosis is made clinically by recognizing a characteristic constellation of symp-toms and signs following consumption of suspect fish.These include pathognomonic neurocutaneous symptoms following acute gastroenteritis.1,6When correctly identified,ciguatera poisoning can be effec-tively treated with intravenous mannitol.15᎐23The greater likelihood that sustained symptomatic relief will occur with early treatment emphasizes the im-portance of making the correct diagnosis early.15,16,18 There may be a therapeutic role for local anaesthet-ics16,27and traditional remedies such as leaves of Argusia argent.26Apart from ciguatera,acute gastroenteritis followed by neurologic symptoms may be due to paralytic or()() EUROPEAN JOURNAL OF EMERGENCY MEDICINE200184TING and BROWN 300neurotoxic shellfish poisoning,scombroid and pufferfish toxicity,botulism,enterovirus71,toxi-dromes and in our case bacteraemia.6,15,32Fever and other markers for sepsis,muscle weakness and fea-tures of histamine toxicity are not seen with ciguatera poisoning.As there are no confirmatory tests for ciguatera,the diagnosis is made by recognition of a characteristic mixture of gastrointestinal,neurocuta-neous and constitutional symptoms after the exclu-sion of alternative diagnoses. ACKNOWLEDGEMENTSProfessor R.Lewis,Gehrman Laboratories,University of Queensland,for his expert advice.REFERENCESŽ.1.Lehane,L.2000Ciguatera update.Med.J.Aust.,172,176᎐9.Ž.2.Moulignier,A.,Binet,D.and Frottier,J.1995Ciguaterafishpoisoning:also in Europe.J.Neurol.Neurosurg.Psych.,59,192.Ž.3.Broadbent,G.1987Ciguatera.Aust.Fam.Phys.,16,127᎐8.Ž.4.Barton,E.D.,Tanner,P.,Turchen,S.G.,et al.1995Ciguaterafish poisoning:a Southern Californian epidemic.West.J.Med., 163,31᎐5.Ž.5.Smith,W.,Lieber,B.,Perrotta,D.M.and Hokama,Y.1998Ciguaterafish poisoningᎏTexas,1997.J.Am.Med.Assoc., 280,1394᎐5.Ž.6.Mines,D.,Stahmer,S.and Shephard,S.M.1997Poisoningsfood,fish,shellfish.Emerg.Med.Clin.N.Am.,15,157᎐77.Ž.7.Ting,J.Y.S.,Brown,A.F.T.and Pearn,J.H.1998Ciguaterapoisoning:example of a public health J.Public Health,22,140᎐2.Ž.8.Gillespie,N.C.,Lewis,R.J.,Pearn,J.H.,et al.1986Ciguaterain Australia.Med.J.Aust.,145,584᎐90.Ž.9.Sutherland,S.K.1986What on earth is ciguatera?Med.J.Aust.,145,558᎐9.Ž.10.Kraa, E.,Campbell, B.,Levy,M.and Stewart,G.1994Delayed diagnoses and reporting during an outbreak of ciguatera poisoning.Med.J.Aust.,161,510.Ž. 11.Lewis,R.J.,Chaloupka,M.Y.,Gillespie,N.C.,et al.1988Ananalysis of the human response to ciguatera in Australia.Proceedings of the6th International Coral Reef Symposium,8᎐12 August,Townsville,Australia,3,67᎐72.12.Fenner,P.J.,Lewis,R.J.,Williamson,J.A.and Williams,M.L.Ž.1997A Queensland family with ciguatera after eating coral trout.Med.J.Aust.,166,473᎐5.Ž.nge,W.R.,Snyder,F.R.and Fudala,P.J.1992Travel andciguaterafish poisoning.Arch.Intern.Med.,152,2049᎐52. 14.Karalis,T.,Gupta,L.,Chu,M.,Campbell,B.A.,Capra,M.F.Ž.and Mawwood,P.A.2000Three clusters of ciguatera poison-ing:clinical manifestations and public health implications.Med.J.Aust.,172,160᎐2.Ž.15.Swift,A.E.B.and Swift,T.R.1993Ciguatera.Clin.Toxicol.,31,1᎐29.Ž.nge,W.R.1994Ciguaterafish poisoning.Am.Fam.Phys.,50,579᎐84.Ž.17.Pearn,J.H.,Lewis,R.J.,Ruff,T.,et al.1989Ciguatera andmannitol:experience with a new treatment regimen.Med.J.Aust.,151,77᎐80.18.Palafox,N.A.,Jain,L.G.,Pinano,A.Z.,Gulick,T.M.,Williams,Ž.R.K.and Schatz,I.J.1988Successful treatment of ciguatera poisoning with intravenous mannitol.J.Am.Med.Assoc.,259, 2740᎐2.Ž.19.Palafox,N.A.1992Review of the clinical use of intravenousmannitol with ciguaterafish poisoning from1988to1992.Bull.Soc.Pathol.Exot.,85,423᎐4.Ž.20.Stewart,M.P.M.1991Ciguaterafish poisoning:treatmentwith intravenous mannitol.Trop.Doctor,21,54᎐5.21.Blythe, D.G.,De Sylva, D.P.,Fleming,L.E.,Ayyar,R.A.,Ž.Baden,D.G.and Shrank,K.1992Clinical experience with IV mannitol in the treatment of ciguatera.Bull.Soc.Pathol.Exot., 85,425᎐6.Ž.22.Williams,R.K.and Palafox,N.A.1990Treatment of pedi-atricfish poisoning.Am.J.Dis.Child.,144,747᎐8.Ž.23.Williamson,J.1990Ciguatera and mannitol.Med.J.Aust.,153,306᎐7.Ž.24.Lewis,R.J.1988Mannitol reverses the action of ciguatoxinin vitro.Proceedings of The Australian Physiological and Pharma-cological Society,19,237P.Ž.25.Manger,R.L.,Leja,L.S.,Lee,S.Y.,et al.1995Detection ofsodium channel toxins:directed cytotoxicity assays of puri-fied ciguatoxins,brevetoxins,saxitoxins and seafood extracts.J.AOAC International,78,521᎐7.Ž.26.Lewis,R.J.1992Socioeconomic impacts and management ofciguatera in the Pacific.Bull.Soc.Pathol.Exot.,85,426᎐34.Ž.nge,W.R.,Kreider,S.D.,Hattwick,M.and Hobbs,J.1988Potential benefit of tocainide in the treatment of ciguatera.Am.J.Med.,84,1087᎐8.Ž.28.Lewis,R.J.and Ruff,T.A.1993Ciguatera:ecological,clinicaland socioeconomic perspectives.Crit.Rev.Environ.Sci.Tech., 23,137᎐56.Ž.29.Ho,A.M.H.,Fraser,I.M.and Todd,E.C.D.1986Ciguaterapoisoning:a report of three cases.Ann.Emerg.Med.,15, 1225᎐8.Ž.nge,W.R.,Lipkin,K.M.and Yang,G.C.1989Can ciguat-era be a sexually transmitted disease?Clin.Toxicol.,27,193᎐7.Ž.31.Geller,R.J.,Olsen,K.R.and Senecal,P.E.1991Ciguaterafishpoisoning in San Francisco,California caused by imported barracuda.West.J.Med.,155,639᎐42.Ž.32.Pearn,J.H.1994Ciguatera:dilemmas in clinical recognition,presentation and management.Mem.Qld Mus.,34,601᎐4.Ž.33.Pearn,J.H.1995Ciguateraᎏa potent cause of the ChronicFatigue Syndrome.J.Immunol.Immunopharmacol.,15,63᎐5.34.Banner, A.H.,Sasaki,S.,Helfrich,P.,Alender, C.B.andŽ.Scheuer,P.J.1961Bioassay of ciguatera toxin.Nature,189 229᎐30.Ž.35.Fleming,L.E.,Baden,D.G.,Ayyar,R.A.,et al.1992A pilotstudy of a new ELISA for ciguatoxins in humans.Bull.Soc.Pathol.Exot.,85,508᎐9.36.Hokama,Y.,Asahina, A.Y.,Hong,T.W.,Shang, E.S.andŽ.Miyahara,J.T.1990Evaluation of stick immunoassay in Caranx sp.and Seriola dumerili associated with ciguatera.J.b.Anal.,4,363.Ž.37.Lucas,R.E.,Lewis,R.J.and Taylor,J.M.1997Pacific cigua-toxin-1associated with a large common-source outbreak of ciguatera in East Arnhem Land,Australia.Nat.Toxins,5, 136᎐40.()() EUROPEAN JOURNAL OF EMERGENCY MEDICINE200184。