Simulation of a radial flow rapid pressure swing adsorption process

合集下载

EXPERIMENTAL RESULTS ON THE FEASIBILITY OF AN AEROSPIKE FOR HYPERSONIC MISSILES Nomenclatur

EXPERIMENTAL RESULTS ON THE FEASIBILITY OF AN AEROSPIKE FOR HYPERSONIC MISSILES Nomenclatur

AIAA 95-0737Experimental Results on the Feasibility of an Aerospike for Hypersonic Missiles Lawrence D. HuebnerNASA Langley Research CenterHampton, VAAnthony M. MitchellEllis J. BoudreauxUSAF Wright LaboratoryEglin Air Force Base, FL33rd Aerospace SciencesMeeting and ExhibitJanuary 9-13, 1995 / Reno, NVNomenclature freestream Mach number p static pressure (psia)freestream pressure (psia)freestream Reynolds numbersarc length along model surface measured radially from the dome/axisymmetric cen-terline intersection (in)X body streamwise distance along body (see Fig. 4) (in)αangle of attack (deg)∆t time interval as measured from beginning of model injection (sec)∆T temperature rise (see Eq. 1) (F)φRAYdata-ray angle (see Fig. 3) (deg)M ∞p ∞Re ∞°EXPERIMENTAL RESULTS ON THE FEASIBILITY OF AN AEROSPIKEFOR HYPERSONIC MISSILESLawrence D. Huebner*NASA Langley Research CenterAnthony M. Mitchell ¦ and Ellis J. Boudreaux**Wright Laboratory/Eglin Air Force BaseAbstractA series of wind tunnel tests have been performed on an aerospike-protected missile dome at a Mach number of 6 to obtain quantitative surface pressure and temperature-rise data, as well as qualitative flow visualization data. These data were used to determine aerospike con-cept feasibility and will also provide a database to be used for calibration of computational fluid dynamics codes. Data were obtained on the hemispherical missile dome with and with-out an aerospike that protrudes ahead of the dome along the axisymmetric center line. Data were obtained on two models (one pressure, one temperature) in the NASA Langley 20-Inch Mach 6 Tunnel at a freestream Reynolds number of 8.0x106/ft and angles of attack from 0 to 40 degrees. Surface pressure and temperature-rise results indicate that the aerospike is effec-tive for very low angles of attack (<5 degrees) at Mach 6. Above 5 degrees, impingement of the aerospike bow shock and the flow separation shock from the recirculation region created by the aerospike causes pressure and temperature increases on the windward side of the dome which exceed values observed in the same region with the aerospike removed. Flow characterization obtained via oil-flow and schlieren photographs provides some insight into the quantitative surface data results, including vortical flow and shock-wave impingement.IntroductionThe aerospike concept is proposed as a promising dome assembly design for high-speed tactical guided missiles. The concept was first conceived in the 1950s as a means of reducing the heat transfer rates and aero-dynamic drag on axisymmetric blunt bodies 1-4. In fact,the spiked-nose concept was successfully incorporated into the design of the C-4 and D-5 trident missiles and reduced the drag of these vehicles by up to 50% at Mach numbers as high as 85. At Mach numbers from 3 to 8,the surface pressures and aerothermodynamic heating rates collectively may be severe enough to cause failure of the hemispherical dome material. Conceptually, the aerospike creates a conical region of recirculatory flow in front of the hemisphere dome that shields and protects it from the oncoming freestream flow. Furthermore, an addition to the end of the aerospike, known as an aero-disk, can be used to allow a fixed length aerospike to be effective over a wide range of Mach numbers by fixing the separation of the boundary layer near the front of the aerospike which creates the recirculation region regard-less of Mach number. The aerospike/aerodisk configura-tion, along with the induced flowfield, is shown schematically in figure 1. The configuration consists of a hemispherical dome mounted to a cylindrical body.Attached to the dome along the axisymmetric centerline is the aerospike/aerodisk assembly. At low hypersonic* Aerospace Engineer, Hypersonic Airbreathing PropulsionBranch, Gas Dynamics Division, MS 168, Hampton,V A 23681-0001, AIAA Senior Member.¦ Research Engineer, USAF Wright Laboratory,Armament Directorate, Eglin AFB, FL 32542-5434,AIAA Member.** Senior Research Engineer, USAF Wright Laboratory,Armament Directorate, Eglin AFB, FL 32542-5434.speeds and α = 0, a detached bow shock stands out in front of the aerodisk and remains away from the dome.As the flow behind the bow shock expands around the aerodisk, a weak compression is formed at its base. The wake flow caused by the aerodisk and the nearly stag-nant flow near the dome creates the conically-shaped recirculation region shown. The region is separated from the inviscid flow within the bow shock by a flow separation shock. This shock isolates the recirculation region which effectively reduces the pressure and heat-ing distributions on the hemispherical dome and also allows them to be more uniform 6. Furthermore, this configuration has a body with a larger diameter than the dome, creating the potential for additional flow recircu-lation in the region near the front face of the body (referred to as the collar) and the side of the dome.For non-zero angles of attack, the flowfield is fur-ther altered by a lee-side vortex structure that is influ-enced by the presence of the aerospike. The separated,vortical flow region in front of the dome is unsteady,which may cause structural fatigue at the aerospike attachment region 4. Furthermore, the variation in model wall temperature during a tunnel run will affect the state of the aerospike boundary layer and subsequent separa-tion shock at the foremost edge of the recirculation region. All of these phenomena may influence the dome surface aerothermal characteristics.The objectives of the current study are twofold.First, concept feasibility will be addressed by measuring and analyzing surface pressures and temperatures on the dome and on the forward part of the cylindrical body.These data, along with qualitative flow characterization data (oil-flow and schlieren photographs), will confirm or deny the aforementioned benefits of the concept and allow for better understanding of aerospike flowfield physics. The second objective of the study will be to create a database applicable for calibrating computa-tional fluid dynamic codes that will be used to predict these types of hypersonic flows. This paper will concen-trate on the presentation and discussion of the data°M =6∞Bow ShockPost Disk CompressionAerodiskAerospikeFlow Separation ShockRecirculation RegionsDomeBodyCollar Fig. 1. Schematic of aerospike-induced flowfield.obtained in the NASA Langley 20-Inch Mach 6 Tunnel.A description of the test facility, test article, instrumenta-tion, and qualitative data obtained will be presented, fol-lowed by a discussion of the results.Test FacilityThe tests were performed in the NASA Langley Research Center 20-Inch Mach 6 Tunnel. This wind tun-nel is a hypersonic blowdown facility that exhausts the air test medium either to the atmosphere (with the aid of an annular air ejector) or to vacuum spheres. The oper-ating conditions for the tunnel are stagnation pressures of 30 to 525 psia, stagnation temperatures of 810 to 1018R, and freestream Reynolds numbers of 0.5 to 9.0x 106/ft. The wind tunnel has a two dimensional, fixed-geometry, contoured nozzle that is 7.45 ft long to pro-vide the nearly constant nominal Mach 6 flow. The test section is 20.5 by 20 inches and is fitted with two quartz windows for schlieren observation that are 17 inches in diameter. Typical run times are 5-10 minutes when the air exhausts to the vacuum spheres, depending on freestream Reynolds number. To avoid tunnel startup/shutdown transients, the model is injected into the test section, after proper wind tunnel test conditions are achieved. The model is injected by a manually-operated,remotely-controlled injection system. Injection time of the model is approximately one second. A detailed description of this tunnel is presented in reference 7.For this study, the test conditions were a stagnation pressure of 475 psia and a stagnation temperature of 875R, yielding a freestream Mach number of 6.06 and a freestream Reynolds number of 8.0x106/ft.Test ArticleThe aerospike model surface geometry is shown in figure 2. The material used for the model was 17-4 PH,H900 stainless steel. It consists of a 4-inch long, 4-inch diameter cylindrical body and a 3-inch diameter hemi-spherical dome. The dome is offset from the body with a 0.25-inch long, 3-inch diameter cylindrical extension.The model design allows for the testing of the model with or without an aerospike, which is threaded at the base and screws into the dome. The aerospike as used in this series of tests consisted of a 12-inch long aerospike/aerodisk assembly, hereafter referred to as simply ‘the aerospike.’°°°Fig. 2. Aerospike surface geometry dimensions (in inches).3.000 DIA.12.0004.0001.7504.000 DIA.0.2500.3751.156InstrumentationThe critical data from these tests were the surface pressure and temperature measurements over a range of pitch and roll angles. Two separate models were fabri-cated to obtain these data; the pressure model contained 51 0.041 ID pressure orifices, and the temperature model contained 30 3-lead coaxial thermocouples. (A third uninstrumented model was also used for surface oil-flow visualization.) The orifices and thermocouples were placed along three rays that (at 0-degree roll) corre-sponded to the upper and lower vertical centerline rays and the ray halfway between them on the model left side (see Fig. 3). Fig. 3 also shows that, by setting the modelat one of six specific roll angles, data acquisition cover-age was obtained along rays every 30 over the entire dome. The pressure model had 17 orifices (8 on the dome and 9 on the body) along each ray, while the tem-perature model had 10 thermocouples (9 on the dome and one on the body) along each ray. Nominal locations of this instrumentation are presented in Fig. 4, with the pressure instrumentation layout shown only on the upper half and the thermocouple layout shown only on the lower half of the figure for clarity.The pressure orifices made up the terminal end of approximately two feet of stainless steel tubing that were connected to about six feet of temperature resistant plas-tic tubing. These were directly connected to one of two2402101803003300φRAYoooooo150o120o90o270o60o30o=180=0φRAY oo=90oφRAY φRAY Body DomeInstrumentation CoverageInstrumentation RaysFig. 3. Aerospike instrumentation orientation, looking aft.°Fig. 4. Aerospike instrumentation locations (linear dimensions ininches).1120304560708085901120304560708090A B C D E F G H IAA B C D E F G H I0.594 0.781 1.031 1.344 1.719 2.124 2.436 2.686 2.873X bodyGauge Pressure ThermocoupleX bodyoooo o oo o oo o ooo o oo 15-psid electronically-scanned pressure (ESP) trans-ducer modules. For each data point, the pressure was acquired 10 times per second for two seconds, and an average steady-state pressure was calculated. Prior to each run the two ESP modules were calibrated, and a number of preset wind-off, pumpdown points were recorded to compare the pressures measured by the ESP modules to the tunnel wall static pressure, as measured by a 15-psia Druck transducer. Differences were noted and used in the final reduction of the pressure data. Pres-sure settling times were determined by running the aero-spike configuration and taking data every five seconds for twenty seconds. The flow was assumed settled when the pressures varied by less than 0.03 psia, which is the specified accuracy of the 15-psid ESP modules. Using this criterion, the settling time was determined to be 10seconds. Therefore, pressure data were recorded 10 sec-onds after the model was injected or subjected to an angle-of-attack change.The thermocouples used in this investigation were 0.063-inch diameter Medtherm chromel/constantan coaxial surface thermocouples with a second in-depth constantan wire to provide a backwall temperature read-ing 0.25 inches below the surface. (The purpose of the backwall temperatures were to provide boundary condi-tion data for heat-transfer calculations.) A schematic of the thermocouple assembly is shown in figure 5. Inorder to insure the accuracy of the electric signal from the thermocouple, each coaxial gauge was insulated from the stainless steel model with a 4-5 mil thick coat-ing of aluminum oxide. Measurements were taken prior to testing to confirm the electrical resistance of each thermocouple to greater than 20M Ω. Continuous data were obtained during temperature measurements. The data acquisition was initiated just prior to model injec-tion into the Mach 6 flow and ended following model retraction, resulting in between 20-25 seconds of data were taken at a frame rate of 50 frames per second.Although this is more data than required for determining surface heat-transfer values, there was interest in the maximum temperature achieved in this amount of time.Fig. 5. Schematic of three-lead thermocouple assembly.ConstantanInsulationChromel EpoxyTeflon-insulated chromel wire (common lead)Teflon-insulated constantan wires:(backface lead)(surface lead)Model Surface Aluminum Oxide InsulationOne goal of this study was to use the temperature data obtained to determine heat transfer for each gauge. However, the data-reduction program first chosen for this purpose was not robust enough to calculate the two-dimensional or three-dimensional conductive heat trans-fer, as well as radiative effects. Instead, surface temper-ature-rise data will be presented, showing a datum for each surface thermocouple for a given run. Even though heat-transfer values have not been calculated, tempera-ture-rise data are still relevant for aerospike concept fea-sibility assessment for hypersonic missiles because the temperature-rise data provide a straightforward under-standing of the local aeroheating that develops. The temperature-rise data for each thermocouple were com-puted as:∆T = T∆t = 3 sec - T∆t = 0 sec,(1) where∆t is the change in time from the beginning of model injection. Since model injection time was less than one second, the thermocouple data to be presented were exposed to the Mach 6 freestream flow for over two seconds to allow for the aerothermodynamic influence without significant model heat soaking.Qualitative Data ObtainedTwo qualitative types of data were also obtained on the aerospike configuration. First, schlieren photographs and videos were taken of the flow over the model with the aerospike both on and off. These provided visualiza-tion of the flowfield density gradients generated with and without the spike. The video allowed study of the unsteady phenomena in the flowfield. Second, surface oil-flow photographs were taken post-run using the geo-metrically-identical, uninstrumented aerospike model with the aerospike both on and off. These oil-flow data were obtained using a pigmented oil-droplet technique. In this procedure, a light coat of flat black paint is sprayed on the model, which is then coated with a layer of clear oil. Next, small droplets of white-pigmented oil are speckled onto the model. The model is injected into the test section for a period of three to seven seconds to allow the flow patterns to develop. The post-run patterns are then photographed. These qualitative data will be used where appropriate to supplement pressure and tem-perature results as well as the help in the assessment of the nature of the fluid physics in the flowfield.ResultsPressure, temperature-rise, and flowfield data from the dome will be presented at specific angles of attack, comparing spike-on data with spike-off data to facilitate the objective of determining aerospike concept feasibil-ity. The angles of attack chosen for discussion in this paper are 0, 5, 10, 20, and 40. Data were also °°°°°recorded at 7.5, 12, 15, 25, 30, and 35. Symme-try checks at ray locations mirroring the vertical center-plane were made for the spike-on and spike-off configurations with these data, which indicated that there is good symmetry and data repeatability for these config-urations at all angles of attack. Therefore, data will be presented only forφRAY angles from 0 to 180. Schlieren and oil-flow photographs will also be pre-sented to augment the surface data results. Furthermore, analysis of the data indicated that there was no signifi-cant difference seen in pressure or temperature-rise data on the body with or without the aerospike. So, only data on the hemispherical dome surface will be presented in this paper.Feasibility Assessment atα = 0Figure 6 compares spike-on vs. spike-off data at α=0. Parts ‘a’ and ‘b’ of this and subsequent figures have seven plots to show the rays of data every 30 degrees fromφRAY=0 to 180. Part ‘a’ presents sur-face pressure data, while part ‘b’ presents temperature-rise data. The pressure data are normalized by freestream pressure to reduce any pressure variations caused by small changes in the tunnel conditions during the run. These data are plotted versus arc length, s, which is zero at the foremost part of the dome and is measured along the surface of the dome. For reference, the dome/body intersection corner is located at s=2.61 inches. The squares denote the spike-on data and the cir-cles denote the spike-off data.Atα=0, a significant reduction in dome pressures and a lower temperature rise are seen for all rays with the aerospike on, confirming the advantages of the aerospike at this condition. Note also the good axisymmetry of the data atα=0 by comparing data from each ray with the others.The schlieren photograph of the spike-off model shows the detached Mach 6 bow shock standing in front of the dome. A small separation region near the dome shows the foremost extent of boundary-layer separation due to the collar of the body. In this region, the pressures stabilize and the temperature rise increases only slightly along the rest of the dome. With the spike on, the bow shock from the aerospike is far from the dome, and the dome is completely enveloped within the large recircula-tion region. The schlieren video at this condition showed that the boundary of this region is slightly unsteady. Comparisons of oil-flow photographs of the dome for the two configurations shows the spike-off stagnation region at the tip of the dome and the accumu-lation of oil denoting the forward extent of the dome/col-lar separation region, as well as the spike-on low shear area near the base of the aerospike and the movement of the surface flow toward the base of the aerospike. A°°°°°°°°°°°°°°concentric vortical flow pattern is seen near the dome/collar interface with the spike on, causing the slight increase in temperature rise there due to the boundary-layer separation. (The two spots on these and all other oil-flow photographs are lighting reflections recorded on the film and are not part of the oil-flow patterns.)These data confirm that the aerospike is truly pro-viding an advantage in terms of pressure and thermal loading reductions on the dome at α=0.Feasibility Assessment at α = 5At α=5 (Fig. 7), the aerospike still maintains bene-ficial pressure and temperature-rise distributions on the leeward side of the configuration and near the dome tip on the windward side. However, the spike-on pressures increase to and eventually slightly exceed the spike-off pressures away from the dome tip for φRAY =120 to 180. Furthermore, spike-on temperature-rise values are at some places over twice that observed with no spike.The cause for the loss in aerospike effectiveness can be seen by studying the qualitative data. The schlieren and oil-flow photographs show a flowfield structure sim-ilar to the α=0 case for the spike off, while evidence of separation-shock impingement on the dome is seen for the spike-on model. This results in a complex, unsteady,local flowfield near the lower centerline. Note also, in the spike-on oil-flow photograph, that a large low-shear region exists on the leeward side of the dome and results in the low pressure and temperature-rise values there.Thus, the beneficial effects provided by the aero-spike are constrained to much lower angles of attack than expected due to the detrimental effects of separa-tion-shock impingement on the windward surface observed at α=5. It was expected that these beneficial results would exist until bow-shock impingement on the dome occurred.Feasibility Assessment at α = 10At α=10 (Fig. 8), the beneficial pressures and tem-perature rises are limited to φRAY < 60. In fact, on the rest of the dome, the spike-on configuration pressures and temperature rises actually exceed those of the spike-off configuration, aside from the region very near the dome/aerospike intersection. Note that some data exceed the maximum range on the plots. For some of the orifices at certain angles of attack, the pressure read-ing exceeded the maximum pressure of 15-psi that were able to be measured by the ESP modules. Although the magnitude of pressure increase for the spike-on configu-ration is not significantly greater than that for spike-off,temperature-rise values for spike-on are over 4 times higher than spike-off values just below the base of the aerospike, at φRAY =180.°°°°°°°°°°°The leeward effects of the aerospike include an unsteady separation shock, a low-shear region that occu-pies less of the dome and more of the forward-facing collar of the body than at α=5, as well as evidence of vortex formation beginning on the dome. The spike-on schlieren photograph shows the separation shock below the aerospike that once again impinges on the dome.The location of impingement away from the vertical cen-terline is seen clearly on the spike-on, oil-flow photo-graph. This confirms that the cause of the pressure and temperature-rise increases at α=10 is also due to sepa-ration-shock impingement, but at stronger levels than at α=5.Feasibility Assessment at α = 20At α=20 (Fig. 9), beneficial pressure and tempera-ture-rise data are only observed for φRAY < 30. At this condition, the extent of the leeward separation shock is nearly perpendicular to the body axis and is quite unsta-ble since it is in the wake of the aerodisk. The leeward side of the spike-off configuration contains a vortical pattern on the dome and body collar, as seen in the oil-flow photograph. Propagation of this pattern into the flowfield is seen in the schlieren photograph.On the windward side, a new flowfield pattern has developed in that the shock from the aerodisk now inter-acts with the post-disk compression shock and propa-gates along the length of the aerospike shaft. A small shock region still develops near the base of the aero-spike, and the shock/shock interaction and impingement on the dome causes excessive pressure and heating loads there. In fact, the local flow conditions are so strong near the base that, after only 5 sec in the flow during oil-flow runs, they caused the oil coating the dome to dissi-pate completely from that region, as seen in the dull region below the aerospike attachment point on the spike-on, oil-flow photograph. Clearly, bow shock impingement on the dome is as severe aerothermody-namically as separation-shock impingement.Feasibility Assessment at α = 40At α=40 (Fig. 10), the region of influence of the aerospike is reduced to only small regions near the base of the aerospike and the leeward centerline. In fact,pressure and temperature-rise data for the spike-on case collapse to the spike-off data away from the dome/aero-spike intersection, even on the leeward side. Confirma-tion of this is observed in the qualitative paring schlieren photographs, the strong shock and wake from the aerodisk propagate beyond the dome without impingement. Furthermore, the flow near the dome shows very similar features, especially on the windward side. A weak recirculation region is evident on the leeward side, but a shock from the dome is also formed. These similarities can also be seen in the oil-°°°°°°°°flow photographs, including the stagnation regions on the windward centerline, vortical flow near the dome/body intersection, and the low-shear, vortical region on the leeward side.ConclusionsA set of wind tunnel tests were performed to deter-mine the feasibility of using an aerospike to reduce the pressure and thermal loading on the hemispherical dome of future hypersonic missiles. Pressure and temperature data were obtained at Mach 6 and compared for configu-rations with and without an aerospike. Flow visualiza-tion data were used to augment the pressure and temperature-rise data and provide an understanding of the flowfield characteristics. The data are available for use in computational fluid dynamics code calibration for these types of flows.Results from the surface pressure and temperature-rise data at this Mach number indicate that a limit exists to the configuration attitude that provides a completely beneficial flowfield in the presence of an aerospike.From this study at Mach 6, limiting angles of attack to below 5 should provide pressure and thermal loadings that are at or below the levels seen for hemispherical domes with no spike. The limiting factor in the angle-of-attack capabilities of this concept is the impingement of the separation shock on the dome created by the aero-spike. Aerospike shock impingement on the dome is particularly strong (in terms of pressure and tempera-ture) at high angles of attack.A secondary conclusion discovered from these data involves the influence of the collar on the dome pres-sures and temperatures near the body. This collar creates small flow recirculation regions that cause pressures to level off and temperature rises to increase slightly along the dome surface.°References1. Stalder, Jackson R.; and Nielsen, Helmer V .: “HeatTransfer from a Hemisphere-Cylinder Equipped with Flow-Separation Spikes,” NACA TN 3287.September 1954.2. Bogdonoff, Seymour M.; and V as, Irwin E.: “Prelim-inary Investigations of Spiked Bodies at Hypersonic Speeds,”Journal of the Aero/Space Sciences , V ol-ume 26, Number 2, February 1959, pp. 65-74.3. Crawford, Davis H.: “Investigation of the Flow Overa Spiked-Nose Hemisphere-Cylinder at a Mach Number of 6.8,” NASA TN D-118, December 1959.4. Reding, J. P.; Guenther, R. A.; and Richter, B. J.:Unsteady Aerodynamic Considerations in the Design of a Drag-Reduction Spike.Journal of Spacecraft and Rockets , V olume 14, Number 1, Jan-uary 1977, pp. 54-60.5. Reding, J. P.; and Jecmen, D. M.: An AdvancedAerospike to Minimize Nose Drag. Lockheed Hori-zons, V olume 15, 1984, pp. 46-54.6. Winderman, J. B.; Drake, P.A.; et al.: “IR/RF DomeTechnology Report, General Dynamics V olume I,Concept Definition and Preliminary Design,” WL/MN-TR-91-46, V olume I, November 1992.7. Keyes, J. W.: Force Testing Manual for the Langley20-Inch Mach 6 Tunnel. NASA TM-74026, 1977.Figure 6a. Comparison of spike-off vs. spike-on surface pressuredistributions,α = 0o .Figure 6b. Comparison of spike-off vs. spike-on surfacetemperature-rise distributions, α = 0o .Figure 6c. Comparison of spike-off vs. spike-on schlieren flowfield photographs,α = 0o .KEY1 - collar-inducedseparation region 2 - aerospike-inducedseparation regionKEYA - floodlight reflectionsB - stagnation regionC - dome/collar interfaceD - forward extent of dome/collar separation region E - low-shear regionφRAYFrontSideSpike Off Spike Ons0.00.51.01.52.02.5s (in)φRAY = 150°0.00.51.01.52.02.5s (in)φRAY = 120°01020304050φRAY = 90°p /p ∞φRAY = 60°φRAY = 30°01020304050φRAY = 0°p /p ∞0.00.51.01.52.02.51020304050φRAY = 180°p /p ∞s (in)φRAYFront SideSpike Off Spike Ons0.0 1.02.03.00306090120150180φRAY = 0°∆T (F °)0.0 1.0 2.0 3.00306090120150180φRAY = 30°0.0 1.0 2.0 3.00306090120150180φRAY = 60°0.0 1.02.03.00306090120150180∆T (F °)φRAY = 90°0.01.02.03.00306090120150180φRAY = 120°s (in)0.01.02.03.00306090120150180s (in)φRAY = 150°0.01.02.03.00306090120150180∆T (F °)φRAY = 180°s (in)。

N_甲基二乙醇胺_MDEA_脱碳流程模拟研究

N_甲基二乙醇胺_MDEA_脱碳流程模拟研究

N -甲基二乙醇胺(MD EA )脱碳流程模拟研究陈 健Ξ 密建国(清华大学化工系,北京100084) 唐宏青(中石化兰州设计院)N -甲基二乙醇胺(简称MDEA )脱碳是合成氨流程中较新的脱碳方法,该流程的模拟优化对节能降耗具有重要意义。

该文采用严格的混合溶剂电解质理论建立的气体吸收溶解度和吸收热的热力学计算模型,应用逐级计算和级效率的方法,建立了MDEA 脱碳体系的流程模拟软件,可以计算吸收塔、闪蒸塔、解吸塔和再生塔,计算结果和乌石化二化肥装置的数据符合,并研究了各种影响因素对气体净化度的影响。

关键词:流程模拟 气体吸收 MDEA 二氧化碳 MDEA 脱碳流程模拟的关键问题是气体吸收平衡的计算。

该体系既是电解质溶液,又是混合溶剂体系,既有化学吸收溶解,又有物理吸收溶解,CO 2体积含量(下同)从10-5量级到17%,变化很大[1]。

文中采用严格的混合溶剂电解质理论建立的气体吸收溶解度和吸收热的热力学计算模型,气体吸收溶解度和吸收热的计算表明,和实验数据符合很好。

本文直接使用该热力学计算模型,针对实际MDEA 脱碳的流程,进行模拟计算。

1 脱碳流程模拟概述111 流程概述MDEA 脱碳系统[1](见图1)由吸收塔、闪蒸塔、解吸塔和再生塔组成。

原料气进入吸收塔底,先和半贫液接触进行吸收,然后和贫液接触进行进一步吸收,得到的净化气中CO 2含量应小于800×10-6。

吸收后的富液经换热后,进入闪蒸塔,闪蒸后去解吸塔,闪蒸气用一部分半贫液和一部分解吸塔顶冷凝液洗涤回收CO 2和MDEA 。

来自闪蒸塔的富液在解吸塔中进行解吸,解吸得到的半贫液除一小部分经加热后进入再生塔进行进一步解吸外,大部分经冷却后作为半贫液循环,解吸气经冷却后回收冷凝水,顶部得到CO 2产品气。

再生塔底有一个再沸器,在再生塔塔底得到的贫液,经冷却后作为贫液循环,进入吸收塔。

模拟软件分三部分:①吸收部分;②闪蒸部分;③解吸和再生部分。

Realflow2012中英文对照表2012

Realflow2012中英文对照表2012

Realflow2012菜单中英文对照表这是主界面(为了截图我把窗口缩小了,不过大概的布局还是能看清的)最上面一排是标题栏,期待补完……从左往右依次是新建、打开、保存,这个跟大部分软件一样。

从左往右依次是选择、移动、旋转、缩放,最后一个是控制被选择物体的轴在世界轴向与自身轴向间切换。

场景缩放与节点目录。

(rf4菜单)从左往右依次为:第一个图标:添加一个新的发射器到场景中。

第二个图标:添加一个场或者消亡区域或者其他东西到场景中。

第三个图标:添加一个新的(多边形)物体到场景中。

第四个图标:添加一个约束到场景中。

第五个图标:添加一个新的网格到场景中。

第六个图标:添加一个新的摄像机到场景中。

第七个图标:添加一个RealWave(真实波浪?)到场景中。

四视图与曲线编辑器窗口Nodes(上左):节点Exclusive Links(上中):独有连接、单独连接Global Links(上右):总体连接、全局连接Node Params(下左):节点参数Messages(下右):信息时间控制区期待补完……动画控制区期待补完……发射器(emitter)篇Circle:圆形发射器Square:矩形发射器Sphere:球形发射器Linear:线形发射器Triangle:三角形发射器Spline:曲线发射器Cylinder:圆柱形发射器Bitmap:位图发射器Object emitter:物体发射器Fill Object:填充物体RW_Splash:RW飞溅RW_Particles:RW粒子Fibers:纤维发射器Binary Loader:NBinary Loader:节点参数菜单:公共参数:Node:节点Simulation:模拟Position:方位 Inactive:无效、不活动Rotation:旋转 Active:有效、活动Scale:缩放 Cache:缓存Pivot:枢轴、中心点Parent to:连接到父物体Color:颜色Xform particles:变换粒子 Yes/No:是/否(下文同)Initial state:初始状态Use initial state:使用初始状态Make initial state:生成初始状态Particles:粒子Type:类型 Gas:气体Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Temperature:温度Ext temperature:表面温度Heat capacity:热能Heat conductivity:热传导Compute vorticity:计算涡流Max particles:最大粒子数量Particles:粒子Type:类型 Liquid:液体Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Surface tension:表面张力Interpolation:插补 None:无Compute vorticity:计算涡流 Local:局部Max particles:最大粒子数量 Global:总体、全局Particles:粒子Type:类型 Dumb:哑、无声Resolution:分辨率Density:密度Max particles:最大粒子数量Particles:粒子Type:类型 Elastics:弹性体、橡皮带Resolution:分辨率Density:密度Spring:弹力Damping:阻尼Elastic limit:Break limit:Max particles:最大粒子数量Particles:粒子Type:类型 Custom:自定义Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Temperature:温度Max particles:最大粒子数量Edit:编辑Statistics:统计Existent particles:存在粒子数量Emitted particles:发射粒子数量Particle mass:粒子质量V min:V最小值V max:V最大值Display:显示Visible:可见性Point size:粒子点大小Show arrows:显示箭头Arrow length:箭头长度Property:属性Automatic range:自动距离Min range:最小距离 Velocity:速度Min range color:最小距离颜色 Velocity X:速度的X方向Max range:最大距离 Velocity Y:速度的Y方向Max range color:最大距离颜色 Velocity Z:速度的Z方向Pressure:压力Density:密度Vorticity:涡流Temperature:温度Constant:固定独立参数:Circle:圆形发射器Volume:体积Speed:速度V random:V随机H random:H随机Ring ratio:环形比例Side emission:边线发射Square:矩形发射器Volume:体积Speed:速度V random:V随机H random:H随机Side emission:边线发射Sphere:圆形发射器Speed:速度Randomness:随机Fill sphere:填充球体发射器Linear:线形发射器Height:高度Length:长度Speed:速度V random:V随机H random:H随机Triangle:三角形发射器Volume:体积Speed:速度V random:V随机H random:H随机Side emission:边线发射Bitmap:位图发射器Emission mask:发射面具File list:文件目录 Single:单帧Number of files:文件数目 Sequence-end:序列末端Affect:影响 Sequence-keep:保持序列Val min:最小值 Sequence-loop:循环序列Val max:最大值Volume:体积Speed:速度V random:V随机 None:无H random:H随机 Viscosity:可见Spline:曲线发射器Affect:影响Creation:创建Speed:速度 Force:力Randomness:随机 Velocity:速度Kill leaving:消除残留Edit:编辑Insert CP:插入CPDelete CP:删除CP@ CP index:CP索引 Axis:轴@ CP axial:CP轴向 Tube:圆管@ CP radial:CP放射 Edge:边@ CP vortex:CP涡流@ CP radius:CP半径@ CP rotation:CP旋转@ CP link:CP连接Cylinder:圆柱形发射器Speed:速度V random:V随机H random:H随机Object emitter:物体发射器Object:物体Parent velocity per:每父物体速度Distance threshold:距离起点Jittering:抖动Speed:速度Randomness:随机Smooth normals:平滑法线Use texture:使用纹理Select Faces:选择面Select Vertex:选择点Clear selection:清除选择Fill Object:填充物体Object:物体Fill Volume:填充体积Fill X radio:填充X半径Fill Y radio:填充Y半径Fill Z radio:填充Z半径Remove # layers:移除层Jittering:抖动@ seed:种子值Particle layer:粒子层RW_Splash:RW飞溅Object:物体Waterline mult:吃水线倍率@ H strength:H强度@ V strength:V强度@ Side emission:边线发射@ Normal speed:法线速度Underwater mult:水下倍率@ Depth threshold:深度起点Speed mult:速度倍率Parent Obj Speed:父物体速度Speed threshold:速度起点Speed variation:速度变化Drying speed:干燥速度RW_Particles:RW粒子Speed:速度Speed variation:速度变化Height for emission:发射高度Speed for emission:发射速度Fibers:纤维发射器Object:物体Length:长度Length variation:长度变化Threshold:起点Stiffness:硬度Fiber damping:纤维阻尼Interpolate:窜改Select Vertex:选择点Clear selection:清除选择Create:创建Mesh tube:网格圆管@ Mesh width:网格宽度@ Mesh width end:网格末端宽度@ Mesh section:网格切片Binary Loader:二进制装入程序BIN sequence:本系列Mode:形式方法Reverse:反向的Number of files:文件数Frame Offset:帧偏移Release particles:释放粒子Load particles:负荷粒子Reset xform:变换重置Subdivisions:分支机构@ Output sequence:输出序列NBinary Loader:****装载机BIN sequences:本序列Load Bin Seq:负载箱序列Remove Bin Seq:删除本条Mode:模式Reverse:反向的Number of files:文件数Frame offset:帧偏移Reset xform:变换重置力场与消亡区域(daemon)篇k Volume:体积消亡k Age:年龄消亡k Speed:速度消亡k Isolated:隔离消亡k Collision:碰撞消亡k Sphere:球形消亡Gravity:重力场Attractor:吸引器DSpline:曲线力场Wind:风力场Vortex:漩涡场Layered Vortex:分层漩涡Limbo:不稳定状态Tractor:牵引器Coriolis:向心力场Ellipsoid force:椭球力场Drag force:拖动力场Surface tension:表面张力Noise field:噪波场Heater:加热器Texture Gizmo:Magic:魔术Object field:物体场Color plane:色彩平面Scripted:脚本节点参数菜单:公共参数:(请参考发射器篇公共参数节点一栏,一模一样,在此省略)独立参数:k Volume:体积消亡Fit to object:适配到物体Fit to scene:适配到场景Inverse:翻转k Age:年龄消亡Iife:生命值Variation:变化Split:分裂@ # child:子物体数量k speed:速度消亡Min speed:最小速度Max speed:最大速度Limit & keep:限制与保持Split:分裂@ # child:子物体数量Bounded:边界Boundary:边界范围k Isolated:隔离消亡Isolated time:隔离时间k Collision:碰撞消亡All objects:所有物体Select objects:选择物体Split:分裂@ # child:子物体数量k Sphere:球形消亡Fit to object:适配到物体Fit to scene:适配到场景Radius:半径Inverse:翻转Gravity:重力场Affect:影响Strength:强度 Force:力Bounded:边界 Velocity:速度Underwater:水下No:无Box:立方体Plane:平面Push:扩展Attractor:吸引器Affect:影响Internal force:内力 Force:力Internal radius:内半径 Velocity:速度External force:外力External radius:外半径Attenuated:衰减Attractor type:吸引类型Planet radius:圆球半径 Spherical:球形Axial strength:轴向强度 Axial:轴向Bounded:边界 Planetary:不定向Dspline:曲线力场Affect:影响Vortex strength:涡流强度Axial strength:轴向强度 force:力Radial strength:辐射强度 velocity:速度Bounded:边界Edit:编辑Insert CP:插入CPDelete CP:删除CP@ CP index:CP索引@ CP axial:CP轴向@ CP radial:CP放射@ CP vortex:CP涡流@ CP radius:CP半径@ CP link:CP连接Wind:风力场Affect:影响Strength:强度Noise strength:噪波强度Noise scale:噪波缩放 Force:力Bounded:边界 Velocity:速度@ radius 1:半径1@ radius 2:半径2@ height:高度Vortex:漩涡场Affect:影响Rot strength:旋转强度 Force:力Central strength:中心强度 Velocity:速度Attenuation:衰减Bounded:边界Boundary:边界范围Vortex type:涡流类型Radius:半径 Linear:线性Bound Sup: Square:平方Bound Inf: Cubic:立方Classic:经典Complex:复合Layered Vortex:分层漩涡Affect:影响Num layers:分层数量Offset:偏移 Force:力Current Layer:当前层 Velocity:速度@ Vortex type:涡流类型@ Strength:强度@ Radius:半径@ Width:宽度 Classic:经典@ Bounded:边界 Complex:复合@ Boundary:边界范围Limbo:不稳定状态Affect:影响Width:宽度Strength 1:强度1 Force:力Attenuate 1:衰减1 Velocity:速度Strength 2:强度2Attenuate 2:衰减2Tractor:牵引器Affect:影响F1 Force:力F2 Velocity:速度F3F4Coriolis:向心力场Affect:影响 Force:力Strength:强度 Velocity:速度Ellipsoid force:椭球力场Min velocity:最小速度Min gain:最小增量Max velocity:最大速度Max gain:最大增量Clamp:钳紧Drag force:拖动力场Drag strength:拖动强度Shield effect:盾效果 No:无@ shield inverse:盾翻转 Square:正方形Force limit:力量限制 Sphere:圆形Bounded type:边界类型Attenuation:衰减 No:无Affect vertex:影响点 linear:线性Square:平方Cubic:立方Surface tension:表面张力Strength:强度balanced:平衡Noise field:噪波场Affect:影响Strength:强度 Force:力Scale Factor:缩放系数 Velocity:速度Bounded:边界Radius:半径多边形物体(object)篇Null:点Sphere:球体Hemisphere:半球体Cube:立方体Cylinder:圆柱体Vase:花瓶、杯子、碗Cone:圆锥体Plane:平面Torus:圆环体Rocket:火箭Capsule:胶囊Import:导入节点参数菜单:公共参数:Node:节点Simulation:模拟 Inactive:无效、不活动Dynamics:动力学 Active:有效、活动Position:方位 Cache:缓存Rotation:旋转Scale:缩放Pivot:枢轴、中心点Parent to:连接到父物体Color:颜色 No:无SD<->Curve:SD文件与曲线互转 Rigid body:刚体Initial state:初始状态Soft body:柔体Use initial state:使用初始状态Make initial state:生成初始状态Texture:纹理Load Texture:读取纹理WetDry texture:@ resolution:分辨率@ filter loops #:过滤循环@ filter strength:过滤强度@ pixel strength:像素浓度@ ageing:时效Display:显示Visible:可见性Show normals:显示法线Show particles:显示粒子Normal size:法线大小 Face:面Normal type:法线类型 Vertex:点Reverse normals:翻转法线 VtxFace:Show texture:显示纹理独立参数:无约束(constraint)篇Ball_socket:球形槽Hinge:铰链Slider:滑动Fixed:固定Rope:捆绑Path_follow:跟随路径Car_wheel:滚动Limb:网格(mesh)篇节点参数菜单:Mesh:网格Build:创建 Metaballs:变形球Type:类型 Mpolygons:Clone obj:复制物体 Clone obj:复制物体Polygon size:多边形大小@ Num Faces:面数LOD resolution:细节级别分辨率@ Camera:摄像机 No:无@ Min distance:最小距离 Camera:摄像机@ Min Polygon size:最小多边形大小@ Max distance:最大距离@ Max Polygon size:最大多边形大小Texture:纹理UVW Mapping:UVW贴图Load texture:读取纹理Tiling:贴砖Appy map now:现在应用贴图Speed info:速度信息 None:无Filters:过滤 UV particle:UV粒子Filter method:过滤方法 UV sprite:UV精灵Relaxation:松弛 Speed:速度Tension:张力、拉紧 Pressure:压力Steps:步数 Temperature:温度Clipping:限制、剪裁Clipping box:限制立方体Clipping objects:限制物体InOut clipping:内外限制Camera clipping:摄像机限制Camera:摄像机 Inside:内部Realwave clipping:Realwave限制 Outside:外部Optimize:优化Optimize:优化Camera:摄像机Merge Iterations:融合迭代次数@ Ite threshold:迭代阈值 No:无Face subdivision:表面细分 Curvature:曲率@ Sub threshold:细分阈值 Camera:摄像机Display:显示Color:颜色Transparency:透明度Back face culling:背面消隐与网格关联的粒子发射器(比如:)节点参数菜单:Field:区域Blend factor:融合系数Radius:半径Subtractive field:负(相反)区域Noise:噪波Fractal noise:分型噪波@ Amplitude:振幅@ Frequency:频率@ Octaves:倍频程Deformation:变形Speed stretching:拉伸速度Min str scale:最小拉伸缩放Max str scale:最大拉伸缩放Speed flattening:压扁速度Min flat scale:最小压扁速度Max flat scale:最大压扁速度Min speed:最小速度Max speed:最大速度摄像机(camera)篇Realwave篇节点参数菜单:显示网格流体菜单范围,领域发射体泡沫飞溅湿泡沫泼溅湿的下雨的泡沫船的吃水线雾水汽每段的飞溅每段的泡沫每段的雾菜单栏第二排(rf2012)1.transformations:变换2.position :位置3.scale :刻度尺度4.shear:剪切5.rotation :旋转6. 最近的侧面7.最近的侧面(拓展)8. 粒子工具9. 粒子的选择10. 测量工具11 创建数组12 破裂13. 回复时间模拟14 设置选定可见15 设置选定的隐藏16. 设置选定的包围盒17. 设置选定的线框18. 设置选定的闪光阴影19. 设置选定的平滑阴影20. 设置选定的活动21. 设置选定的缓存22. 设置选定的无效23.设置选定的出口数据24. 禁用数据输出选择25. 改变分辨率26.计算vorticiy27.正常年龄28. 建立网格右下角控制栏1.建立网格2. 硬化方法3. 可视化细节层次4. 发送给招聘经理5. 去上关键帧6. 去下个关键帧7. 设置一个关键帧中的当前位置图层1.可见物视程2. 模仿模拟3. 层4. 可见的已有的5. 显示模式6.增加新的层与选定的节点7.流体动力学对象的动态显示网格菜单粒子网格粒子网格(标准)网格网格显示的菜单单一的多样的。

RealFlow翻译教程08——海洋波浪

RealFlow翻译教程08——海洋波浪

波波是出生在海里的,他不是鱼,也不是海藻,更不是贝壳。

她是个小波浪,她是小女生哦。

她的样子不固定,一会温柔平静的像小绵羊,一会疯狂怒吼的像大老虎。

虽然她会变成不同的样子,可她还是叫波波。

我们知道波波虽然没有脚,但她可厉害了,能到很远很远的地方,甚至还能从南极到北极呢。

波波其实不喜欢自己凶的像大老虎,这样看起来一点不淑女,是没人喜欢的。

波波很喜欢天上的云弟弟,因为云弟弟经常在天上变成各种好玩的样子,有一回云弟弟,还把自己变成狼外婆,然后把帽子当鞋子穿,走路一扭一扭的,可好玩了。

波波总会被云弟弟滑稽的样子逗的咯咯笑。

不过波波还是最喜欢云弟弟变成小雨点下来看她,一滴一滴落在波波的身上,然后波波就会变出一圈圈好看的波纹。

小雨点落在波波身上时,是会奏出好听的曲子的,波波还能根据曲子的节奏听出云弟弟今天有没有不高兴,有时候还会听出明天云弟弟要讲什么故事呢。

这个小秘密波波一直没告诉过云弟弟。

波波有个愿望,就是能飞到天上去亲亲云弟弟。

但一直没能实现。

(有人能帮助我们可爱的波波吗?看了下面教程说不定你能哦)波峰浪花这种典型的浪花形成需要适当天气和环境条件。

汹涌的或细碎的波浪,在暴风雨时很常见,海岸附近也有。

汹涌或细碎可看成是波浪的缩放,造成的差异。

本质上是一样的。

特别是RealFlow 4用户会在这一课获益,因为默认模拟波浪。

用RealFlow5或RealFlow2012有点不同,这些高版本支持被称为“Tessendorff波”的统计频谱波浪(statistical spectrum wave)的模拟。

这高度逼真的模型提供了一个函数来创建和调整波浪,与或多或少尖锐的波峰。

这些频率波(spectrum wave)会使结果更逼真,想快速完成波浪制作用这方法不错另一种方法是在自由Python脚本帮助下从其它资源导入置换贴图,但这个方法有两个很不好的缺点:1.你需要用外部资源来创建波浪的外形(capable)2.在大部分情况下RealFlow插入波浪,会再一次导致成波浪尖端是圆形示例视频是尖锐的波浪和其它形态的组合。

电力系统专业词汇(英文翻译)

电力系统专业词汇(英文翻译)

组装图 保证值 不对称负载 不同步的、异步的 状态,位置 奥氏体不锈钢 自动电压调节器 辅助的,厂用的 辅助系统 可用性 自动电压调节器 轴向冷却 轴流风扇
B 条、棒 电池 热套装 轴承摩擦 轴承油出口 轴承座 轴承外壳 绝缘基本冲击耐压水平 击穿二极管 螺栓 孔 钎焊、铜焊 断路器 刷子、碳刷 碳刷装置 刷架 刷握 建起 嵌入式热电偶 载荷

限流电阻 电流互感器 曲线 圆柱式转子
D 阻尼笼 阻尼线圈 数据表 直流灭磁开关 驱动端 死区 最后期限 去毛刺 解偶 灭磁 灭磁电阻 缺陷 定义 变形 保护等级 延时 传递 设计 设计联络会 探测 装置 度盘式温度计 直径 差压 数字 数控程序 尺寸 尺寸图 排放
discharge resistor dismantle display dissipate distribute disturb documentation double electric sensor dovetail wedge draw dual channel dual channel system dynamic behavior dynamic response dynamical balancing
busbar bushing
calculated temperature rise capacitance capacity cast resin type transformer ceiling current ceiling factor ceiling voltage centrifugal force changeover channel chromium chronological sequence circulation class "F" clean cleaning brush clock frequency clockwise closed-loop regulation CMT (Commissioning Maintenance Tool) coil cold air duct color display command commissioning communication compare compensate component compressed air system

地质专业英文翻译精选4

地质专业英文翻译精选4

quadrant 象限quadrate 方骨quadrate bone 方骨quadratic 二次的quadrijugous 四对的quadrupeds 四肢动物quagmire 沼泽qualitative analysis 定性分析qualitative spectral analysis 定性光谱分析quality class 地位级quality of ground water 地下水水质quantitative spectral analysis 定量光谱分析quantometer 光量计quarry 采石场quarrying 露天开采quartation 四分法quartering 四分法quarternary 第四纪quartz 石英quartz andesite 石英安山岩quartz basalt 石英玄武岩quartz crystal 水晶quartz diorite 石英闪长岩quartz diorite line 石英闪长岩线quartz dolerite 石英粗玄岩quartz glass 石英玻璃quartz keratophyre 石英角斑岩quartz porphyry 石英斑岩quartz sand 石英砂quartz schist 石英片岩quartz spectrograph 石英摄谱仪quartz trachyte 石英粗面岩quartz wedge 石英楔quartzine 正玉髓quartzite 石英岩quartzy 石英质的quasi equilibrium 准平衡quasi viscous flow 半粘性流quaternary 第四期quaternary diagram 四元系状态图quaternary geology 第四纪地质学quaternary ice age 第四纪冰期quaternary period 第四纪quaternary research 第四纪学quaternary screw axis 四元螺旋轴quaternary studies 第四纪学quaternary system 第四系quaternary volcanic rocks 第四纪火山岩quenching method 淬火法quenselite 基性锰铅矿quenstedtite 紫铁矾quick clay 过敏性粘土quick lime 生石灰quicksand 脸quiet reach 静河段quinaldinic acid 喹啉酸quinalizarin 醌茜素quinoline carboxylic acid 喹啉酸quisqueite 硫沥青r factor r 因子r tectonite r 构造岩rabbitite 针钙镁铀矿racewinite 变色柱石rachis 叶轴racial character 人种的特征racial characteristics 人种的特征rad 拉德radar 雷达radar observation 雷达观测radar sonde 无线电测风仪radiaion excitation 辐射激发radial 放射状的radial bundle 辐射维管束radial dikes 放射状岩脉群radial fault 放射状断层radial flow 径向流radial rift 放射断裂radial symmetry 径向对称radial vascular bundle 辐射维管束radiant energy 辐射能radiation balance 辐射平衡radiation balance of earth 地球辐射平衡radiation chemical process 辐射化学过程radiation chemical reaction 辐射化学反应radiation chemistry 放射线化学radiation counter 辐射计数管radiation damage 放射线破坏radiation decomposition 辐射分解radiation density 辐射密度radiation detector 辐射探测器radiation dose 辐射剂量radiation effect 辐射作用radiation intensity 辐射强度radiation inversion 辐射逆温radiation length 辐射长度radiation shielding 辐射防护radiative collision 非弹性碰撞radio luminescence 射线发光radio wave method 无线电波法radioactivation analysis 放射化分析radioactive anomaly 放射性异常radioactive balance 放射平衡radioactive chain 放射性衰变链radioactive cobalt 放射性钴radioactive constant 放射常数radioactive contamination 放射性沾染radioactive decay 放射性衰变radioactive decontamination 消除放射性radioactive deposit 放射性沉淀物radioactive element 放射元素radioactive equilibrium 放射平衡radioactive etalon 放射能标准源radioactive fallout 放射性沉降radioactive family 放射系radioactive fission product 放射性裂变产物radioactive half life 放射性物质的半衰期radioactive iron 放射性铁radioactive isotope 放射性同位素radioactive logging 放射能测井radioactive material 放射性物质radioactive mineral 放射矿物radioactive mineral spring 放射性矿泉radioactive prospecting 放射性勘探radioactive radiation 放射性辐射线radioactive rare metal 放射性稀有金属radioactive sample 放射性样品radioactive series 放射系radioactive source 放射源radioactive substance 放射性物质radioactive tracer 放射性示踪radioactive tracer logging 放射性示踪测井radioactive tracer method 放射性示踪剂法radioactive transformation 放射性转化radioactive unit 放射性单位radioactivity 放射性radioactivity logging 放射能测井radioactivity survey 放射性勘探radiobaryte 镭重晶石radiobiologic action 放射性生物作用radiobiology 放射生物学radiocarbon 射碳radiocarbon age 放射性碳年令radiocarbon dating 放射性碳测定年代radiochemical analysis 放射化学分析radiochemistry 放射化学radiochronology 放射年代学radiocobalt 放射性钴radiocolloid 放射性胶质radioelement 放射元素radiogeochemistry 放射地球化学radiogoniometer 无线电测角器radiographic contrast 射线照像对照radiography 射线照相术radiohydrogeology 放射水文地质学radioisotope 放射性同位素radioisotope indicator 放射性指示剂radiolaria 放射虫radiolarian ooze 放射虫软泥radiolarian rock 放射虫岩radiolarian slate 放射虫片岩radiolarite 放射虫岩radiolite 钠沸石radiolitic 放射状的radiology 放射学radiolysis 放射性分解radiometer 放射量计radiometric analysis 放射测量分析radiometric sampling 放射取样法radiometry 辐射测量术radionuclide 放射性核素radiophyllite 水硅灰石radiosonde observation 无线电探空radiotracer 放射性指示剂radiotracer method 放射性示踪剂法radium 镭radium age 镭龄radium emanation 镭射气radium series 镭系radium source 镭源radium spring 镭泉radium standard 镭标准源radius of action 作用半径radius of influence 影响半径radius ratio 半径比radon 氡radon survey 氡气测量rafaelite 斜羟氯铅矿raglanite 奥霞正长岩raimondite 片铁矾rain print 雨痕rain rill 雨沟rain wash 雨剧raindrop impressions 雨痕rainfall depth 雨量rainwater 雨水raise 隆起rake classifier 耙式分级机ralstonite 氟钠镁铝石ramdohrite 辉锑银铅矿rammelsbergite 斜方砷镍矿ramming 捣固ramsayite 褐硅钠钛矿ramsdellite 斜方锰矿rancieite 钙硬锰矿rand 边缘randanite 硅藻土randite 黄菱铀矿random 随机的random distribution 偶然分布random error 随机误差random event 随机事件random sample 随机样品random sampling 随机采样range 射程;山脉;作用距离range finder 测距仪ranging pole 标尺测杆rank 等级ransomite 铜铁矾rapakiwi granite 环斑花岗岩raphe 缝rapid 急流急滩rapid flow 快速迳流rare earth elements 稀土元素rare elements 稀有元素rare gas 稀有气体rare gas elements 惰性气体元素rare metal 稀有金属rarefaction 稀疏作用raspite 斜钨铅矿ratchel 卵石rate 比率rate of crystalline growth 晶体生长速度rate of decay 风化程度rate of drying 干燥速度rate of infiltration 渗透速度rate of penetration 机械钻速rate of production 生产率rate of recovery 回采率rate of runoff 迳潦rate of sedimentation 沉淀速度rate of subsidence 沉陷速度ratemeter 计数率计rathite 斜方砷铅矿rating curve 量特性曲线ratio of ionic radii 离子半径比rational formula 示构式ratofkite 土状萤石rattle stone 钤石rauracian 罗拉克阶rauvite 水钙钒铀矿ravine 沟壑raw coal 原煤raw humus 粗腐殖质raw material 原料raw ore 未选的矿石raw soil 生土raw water 未加工水rayfungi 放线菌类rayleigh distribution 瑞利分布reaction current 逆流reaction principle 反应原理reaction product 反应产物reaction rate 反应速度reaction rim 反应边reaction series 反应系列reactivation 再活化readjustment 校正reagent 试剂real crystal 真实晶体real image 实象realgar 鸡冠石reamer 扩孔器reamer bit 扩孔钻头reaming 扩眼reaming bit 扩眼钻头rearrangement 重新配置recapitulation 再现receiving surface 接收面recent crust horizontal movement 现代地壳水平运动recent exogenetic movement 现代外生运动recent geological period 现代地质时期recent vertical crust movement 现代地壳垂直运动recess 褶皱带内凹部;凹穴recession constant 衰退常数recession curve 递减曲线recessional moraine 后退冰碛recharge 补给recharge line 补给线recharge pit 补给坑recharge water 补给水recharge well 补给井recipient 容器reciprocal lattice 倒易格子reciprocating pump 往复泵recoil electron 反冲电子recombination 再化合reconnaissance 踏勘reconstruction 复原recorder 记录器recorder strip 记录带recording chart 记录纸recording device 记录装置recording drum 记录圆筒recording gage 自动记录测定计recording oscillograph 记录示波器recording paper 记录纸recording tape 记录带recoverable oil reserves 可采石油储量recovery 回收;采取recovery factor 岩心采取率recovery hook 打捞钩recovery ratio 回采率recovery time 恢复时间recrement 矸石recrystallization 重结晶作用recrystallization texture 再结晶织构rectangular wave 矩形波rectilinear scanning 直线扫描rectorite 累托石recumbent anticline 伏背斜recumbent fold 伏卧褶皱recurrence 循环red algae 红藻类red brass 红色黄铜red brown mediterranean soil 地中海褐色土red clay 红土red copper ore 赤铜矿red earth 红壤red iron ore 赤铁矿red iron stone 赤铁矿red mud 红泥red phosphorus 红磷red soil 红壤reddingite 磷锰矿redeposition 再沉积redge 暗礁redingtonite 水铬镁矾redissolving 再溶解redox equilibrium 氧化还原平衡redox potential 氧化还原势redox process 氧化还原过程redox system 氧化还原系reduced cell 简化格子reduced pressure 折算压力reducer 还原剂reducing capacity 还原能力reducing joint 异径连接reduction 减少reduction division 减数分裂reduction of gravity 重力归算reduzate 还原沉积物reef 礁reef bin 矿仓reef building corals 造礁珊瑚reef cap 礁帽reemission 重发射reference data 参考资料reference ellipsoid 参考椭球体reference point 基准点reference pressure 基准压力reference spheroid 参考椭球体reference table 换算表reference temperature 基准温度refined oil 精制油refinement 精制refining 精制reflectance 反射比reflected light 反射光reflected wave 反射波reflecting galvanometer 反射电疗reflecting microscope 反射显微镜reflection 反射reflection anisotrophism 反射蛤异性reflection coefficient 反射系数reflection electron microscope 反射电子显微镜reflection factor 反射系数reflection method 反射法reflection of light 光反射reflection pleochroism 反射多色性reflection seismograph 反射地震仪reflection survey 反射波法勘查reflective power 反射能力reflectivity 反射比reflectometer 反射计reflector 反射镜refracted wave 折射波refracting medium 折射介质refraction 折射refraction correlation method 折射波对比法refraction method 折射法refraction of cleavage 劈理折射refraction survey 折射波法勘探refractive index 折射率refractivity 折射性refractometer 折光计refractoriness 耐火度refractory 耐火材料refractory brick 耐火砖refractory clay 耐火粘土refractory material 耐火材料refractory sand 耐火砂refrigeration 冷却refuse 废料refusion 再溶regelation 重凝regenerated deposit 再生矿床regenerated glacier 再生冰川regeneration 再生regeneration theory 再生学说regenerative amplification 再生放大regime of river 河灵况region 地域regional 地方的regional geochemistry 区域地球化学regional geological reconnaissance 区域地质甸regional geology 区域地质学regional geomorphology 区域地貌学regional gravity anomaly 区域重力异常regional isostatic anomaly 区域均衡异常regional metamorphism 区域变质regional remote sensing 区域遥感regional unconformity 区域不整合registration 记录registration paper 记录纸regma 破裂regolith 表皮土regression 海退regression analysis 回归分析regression line 海退线regressive metamorphism 退化变质regressive sequence 海退层序regular hexahedron 正六面体regular polygon 正多边形regular polyhedron 正多面体regular reflection 规则反射regular system 等轴晶系regulation reservoir 蝶蓄水池regur 黑棉土reinerite 砷锌矿reinite 方钨铁矿rejects 尾矿rejuvenated geosyncline 新生式地槽rejuvenated landform 地形侵蚀回春rejuvenated relief 地形侵蚀回春rejuvenated river 回春河rejuvenated water 再生水rejuvenation 回春作用relationship 关系relative age 相对时代relative aperture 相对孔径relative biological effectiveness 相对生物效率relative height 相对高度relative humidity of atomsphere 大气相对湿度relative isotopic abundance 同位素相对丰度relative permeability 相对渗透性relative relief 地势起伏量relative valency effect 相对原子价效果relative viscosity 相对粘度relaxation 松弛relaxation effect 张弛效应relaxation time 松弛时间relay 继电器relay interrupter 继电平断续器release 释放release joint 解压节理release magnet 释放电磁铁relic 残余relic area 残遗分布区relic mineral 残余矿物relic soil 残遗土壤relic species 残遗种relic structure 残余构造relict 残余物relief 地势relief energy 地势起伏量relief intensity 地势起伏强度relief inversion 地形转换relief map 起伏量图relief ratio 硫高宽比relief volume 起伏量reluctance 磁阻remanence 剩余磁性remanent magnetization 剩磁remining 再次开采remnant arc 古岛弧remobilization 再活化remolding 破碎remote control 遥控remote hybrid 远缘杂种remote sensing 遥感remote sensing application 遥感应用remote sensing technology 遥感技术removal 消去renardite 多水磷铅铀矿rendzina 黑色石灰土renewed fault 复活断层reniform 肾状的reniform structure 肾状构造rensselaerite 假晶滑石rent 裂口repair part 备件repeller 反射极reperforator 复凿孔机replacement 交代replenishment 补充replica 复制replica method 复型法reprecipitation 二次沉下representative species 典型种reproducer 复制穿孔机reproducibility 再现性reptiles 爬虫类rescue borehole 救护钻孔research 甸resedimentation 再沉积resequent river 再顺河reserves 矿石埋臧量reservoir 贮水池reservoir evaporation 储水蒸发reservoir lake 储水湖reservoir rock 储油岩石reservoir structure 储热构造reshuffle 重新配置residual affinity 残留亲和力residual anomaly 剩余异常residual bouguer anomaly 布格剩余异常residual clay 残余粘土residual deposit 残留矿床residual drawdown 残余水位下降residual electric charge 剩余电荷residual geosyncline 残余地槽residual gravity 剩余重力residual gravity anomaly 剩余重力异常residual heat 残热residual magma 残余岩浆residual magnetism 剩余磁性residual mass 剩余质量residual mobility period 余动期residual mountain 残余山residual sediment 残余沉积物residual soil 残余土壤residual stability period 余定期residual standard deviation 剩余标准差residual stress in rocks 岩石残余应力residual valence 剩余价residuary water 废水residuum 残留物resilience 弹性resin 尸resinite 尸体resinitic liptobiolite 尸残殖煤resinous lustre 尸光泽resistance thermometer 电阻温度计resistant rock 稳固岩石resistate 残留产物resistivity 电阻率resistivity logging 电阻率测井resistivity survey 电阻率甸resolution 分解能力resolver 解算器分解器resolving power 分解能力resonance absorption of neutron 中子共振吸收resonance energy level 共振能级resonance of chemical bonds 化学键间的共振resources 资源resources remote sensing 资源遥感response time 响应时间restite 残余体restoration 复原restriction arc 限制弧resultant 合量resurgent water 复活水retained water 薄膜水retardation 减速;行路差retarded creep 延迟蠕变retarded potential 推迟电势retarding electrode 制动电极retarding field 减速场retarding torque 制动转矩retention of water 水分保持retgersite 镍矾reticle 十字线reticular cell 网状细胞reticular structure 网状构造reticulate venation 网状脉reticulated mottle 网状斑点reticulated veine 网状脉reticulation 网状reticulum cell 网状细胞retinite 尸石retort 蒸馏器retort carbon 甑碳retreat 后退retreatment cell 再选浮选机retroaction 反作用retrogradation 海蚀后退retrograde metamorphism 退化变质retrogressive accumulation 向源堆积retrogressive metamorphism 退化变质retrogressive succession 逆行演替return flow 回流revdinskite 镍铁绿泥石reverberation 混响reverberatory furnace 反射炉reversal 倒转reversal of geomagnetic field 地磁场倒转reversal of magnetization 磁化逆转reversal of the earth's field 地磁极逆转reverse circulation 反循环reverse circulation flushing 反循环冲洗reverse fault 逆断层reverse feedback 负回授reverse grading 逆粒级reverse mutation 回复突变reverse position 倒转层位reverse rotary boring 反向旋转钻井reverse thermoremanent magnetization 反向热剩余磁化reverse zoning 逆带现象reversed fault 逆冲断层reversed fold 倒转褶皱reversed river 反向河reversibility 可逆性reversible cell 可逆电池reversible chemical reaction 可逆化学反应reversible colloid 可逆胶体reversible magnetization 可逆磁化reversible motor 可逆电动机reversible pendulum 可倒摆reversing thermometer 回动温度计reversion 返祖revived fault 复活断层revived structure 再生结构revolution 变革revoredite 硫砷铅石reyerite 铝白钙沸石rezbanyite 铜辉铅铋矿rhabdolith 棒状晶体rhabdophanite 磷铈钇矿rhaegmageny 断裂运动rhaetian 瑞提阶rhaetic stage 瑞提阶rhagite 砷酸铋矿rhegmagenesis 断裂运动rheidity 流变rhenium 铼rhenium osmium dating 铼锇法测年rheological behavior 龄性行为rheology 龄学rheomorphism 龄rhizoid 假根rhizome 根茎rhizopodium 根足rhizosphere 根圈rhodesite 纤硅碱钙石rhodite 铑金矿rhodium 铑rhodizite 硼锂铍矿rhodochrome 暗绿石rhodochrosite 菱锰岩rhodonite 蔷薇辉石rhoenite 褐斜闪石rhombenporphyry 菱长斑岩rhombic 斜方的rhombic dipyramidal class 斜方双锥体类rhombic dodecahedron 斜方十二面体rhombic hemimorphic hemihedral class 菱形异极半面象晶族rhombic prism 斜方柱rhombic pyramid 斜方锥rhombic system 斜方晶系rhombic tetrahedral class 斜方四面体类rhombohedral class 菱面体类rhombohedral hemimorphic hemihedral class 菱形极半面象晶族rhombohedral system 菱形晶系rhombohedral tetrahedry 斜方正多面像rhombohedral tetratohedral class 菱形四分面体类rhombohedron 菱形六面体rhyodacite 疗英安岩rhyolite 疗岩rhythm 韵律ria 溺河rias coast 里亚斯式海岸ribonucleic acid 核糖核酸rich ore 富矿richetite 板铅铀矿richmondite 四水磷铝石richterite 锰闪石rickardite 铜碲矿riddle 粗筛ridge 海岭riebeckite 钠闪石riedenite 方黑云霓辉岩riemannite 水铝英石rift 裂谷rift belt 裂谷带rift valley 中央裂谷rift zone 裂谷带rig 钻探设备right angle 直角right bank 右岸right handed crystal 右晶rigid body 刚体rigid dynamics 刚体动力学rigidity 刚性rill 小溪rill erosion 细沟侵蚀rill marks 鳞rille 月面谷rim 岬rime 雾淞rind 外皮ring compound 环状化合物ring counter 环形计数器ring dike 环状岩墙ring fault 环状断层ring like ore body 环状矿体ring ore 环状矿石ring silicate 环状硅酸盐ring structure 环状构造rinkite 层硅铈钛矿rinkolite 绿层硅铈钛矿rinneite 钾铁盐ripidolite 铁绿泥石ripple 脉动ripple current 波纹电流ripple marks 波痕ripple noises 电源交岭声ripples 皱纹rise 海隆rish 急冲rising velocity 上升速度risorite 钛褐钇铌矿riss glacial stage 里斯冰期rivage 河岸river 河river bank 河岸river basin 硫river bed 河床river bed placer 河床砂矿river bend 河曲river bottom 河底river capture 河霖夺river erosion 河林蚀river gravel 河砾石river mouth 河口river profile 河凛剖面river profile of equilibrium 河两衡剖面river swamp 河沼泽river system 河系river terrace 河成阶地river width 河幅riverside 河岸riverside soil 泛滥地土壤rivotite 里播岩rivulet 小河rizzonite 玻基辉橄岩road 巷道roadway support 巷道支架roast ore 焙烧矿石rock 岩石rock breaking 岩石破坏rock breaking tool 碎石工具rock burst 岩石突出rock cementation 岩石胶结作用rock creep 岩石蠕动rock crusher 碎石机rock crystal 水晶rock desert 石质沙漠rock drillability 岩石的可钻性rock dust 岩石尘土rock facies 岩相rock fields 岩海rock formation 岩系rock forming element 造岩元素rock forming minerals 造岩矿物rock gas 天然气rock grouting 岩石胶结作用rock hardness 岩硬rock hardness ratio 岩石硬度比rock magnetism 岩石磁性rock mass 岩石层;岩块rock meal 岩粉rock mechanics 岩石力学rock movement 岩层移动rock pillar 岩柱rock pressure 岩石压力rock salt 岩盐rock strata 岩层rock stream 石流rock system 岩石系统rock terrace 岩石阶地rock texture 岩石结构rock toughness 岩石的粘性rock vegetation 石生植被rock wall 石墙rock weathering 岩石风化rock's abrasivity 岩石的研磨性rockallite 钠辉细岗岩rockbasin 岩盆rocket sounding 火箭探空rockfacies 岩相rockfall 岩崩rockfill 填石rockslide 岩滑rocky 多岩石的rocky coast 岩石海岸rod 钻杆rod boring 钻杆钻进rod holder 钻杆夹钎器rod mill 棒磨机rodding structure 杆状构造rodingite 异剥钙榴辉长岩rodless drilling 无钻杆钻进roeblingite 铅蓝方石roemerite 粒铁矾roentgen 伦琴roentgen equivalent 伦琴当量roentgen equivalent man 雷姆roentgen rays x 射线roepperite 锌锰橄集rogersite 六水铁矾roll crusher 辊式破碎机roller bit 牙轮钻头rolling 滚romanechite 钡硬锰矿romanzovite 钙铝榴石romeite 锑钙石ron magnesium metasomatism 铁镁交代作用roof 顶板roof bolting 顶板锚栓支架roof of coal seam 煤层顶板roof rock 顶盖岩roof timbering 顶板支架roofing slate 盖板岩room 室rooseveltite 砷铋矿root nodule 根瘤root zone 根带rootless fumarole 无根喷气孔rope boring 绳私打钻rope socket 绳帽ropy lava 波纹熔岩rosasite 斜方绿铜锌矿roscoelite 钒云母rose diagram 玫瑰图rose quartz 蔷薇石英rosenbuschite 橙针钠钙石rosieresite 磷铝铅铜矿ross 岬rossite 水钒钙石rotary bit 旋转式钻头rotary boring 回转钻探rotary drill 旋转钻机rotary drilling machine 旋转钻机rotary filter 旋转滤器rotary percussive drilling 回转冲魂进rotary polarization of petroleum 石油旋光性rotary system of drilling 回转钻井方法rotary table 转盘rotating crystal method 旋转晶体法rotating meter 旋转临计rotating table 转盘rotation tectonite r 构造岩rotation twin 旋转双晶rotational deformation 旋转变形rotational fault 旋转断层rotational grain 旋转晶粒rotational speed 转速rotatory fault 旋转断层rotten spot 锅穴rougemontite 橄钛辉长岩rougher flotation 粗选roughing 粗选roughness 粗糙度roughness coefficient 粗糙度系数round trip 回次round worms 线形动物类roundness 圆度roundstone 圆石route 航线routivarite 褶英二长岩rouvillite 淡霞斜岩row 煤层roweit 基性硼锰钙石rowlandite 硅氟铁钇矿royalty 矿藏开采权rubbish 碎屑;废石rubbish dump 碎石堆rubble 碎石rubellite 红电气石rubicelle 橙尖晶石rubidium 铷rubidium strontium dating 铷锶测年rubidium strontium method 铷锶测年法rubrozem 腐殖质红色土ruby 红宝石rudaceous 砾状的rudimentary organ 退化瀑rudimentogeosyncline 雏地槽rudyte 砾质岩rugged 凹凸不平的ruin 毁灭rules of nomenclature 命名法规rumpfite 淡斜绿泥石run 走向run of bank gravel 采石坑砾石run of mine coal 原煤run of mine ore 原矿run off 瘤running sand 松砂running water level 廉位runoff coefficient 经恋数rupelian 鲁培勒阶rupture 破裂rupture stress 破裂应力ruptured zone 碎裂带russellite 钨铋矿rust coloured forest soil 潜育灰化土ruthenium 钌rutherfordine 纤碳铀矿rutile 金红石。

低温推进剂加注流程动态特性仿真

低温推进剂加注流程动态特性仿真

2019年第2期总第228期低温工程CRYOGENICSNo.22019Sum No.228低温推进剂加注流程动态特性仿真唐强黄玲艳陈世超(北京航天发射技术研究所北京100076)摘要:在建立低温真空管路、低温真空阀门、低温真空容器、低温过滤器等单机低温设备仿真模型的基础上,按照实际管路系统布局建立了某低温火箭液氧加注系统三维仿真模型。

依据实际低温加注工序和参数,完成了加注全流程动态特性分析和仿真,对加注过程中温度、压力、流量、液位等参数进行了仿真预示。

通过与试验数据对比,证明了系统全流程动态特性仿真的可行性和有效性。

研究成果可用于低温加注系统方案优化设计、工艺流程设计、故障预案演示等,同时可作为开展低温系统加注过程自动化测试、加注和健康管理的基础。

关键词:低温推进剂加注动态特性仿真中图分类号:TB611文献标识码:A文章编号:1000-6516(2019)02-0035-06 Simulation on dynamic characteristics of cryogenic propellant filling processTang Qiang Huang Lingyan Chen Shichao(Beijing Institute of Space Launch Technology,Beijing100076,China)Abstract:On the basis of the simulation models of cryogenic equipment such as cryogenic vacuum pipeline,cryogenic vacuum valve,cryogenic vacuum vessel and cryogenic filter,a three-di­mensional simulation model of liquid oxygen filling system of a cryogenic rocket was establishedaccording to the layout of the actual pipeline system.According to the actual cryogenic injectionprocedure and parameters,the dynamic characteristic analysis and simulation of the whole fillingprocess were completed,and the parameters such as temperature,pressure,flow rate and liquidlevel during the filling process were simulated and predicted.By comparing with the experimentaldata,the feasibility and effectiveness of the whole process dynamic simulation were proved.Theresults of study can be used in the optimization design of cryogenic filling system,process flow de­sign,failure plan demonstration and so on.At the same time,it can be used as an foundation forautomatic test,filling and health management of cryogenic filling system.Key words:cryogenic;propellant;filling;dynamic characteristics;simulation,"亠个工序。

安德森仪器公司IZMAG型电磁流量计安装和启动指南说明书

安德森仪器公司IZMAG型电磁流量计安装和启动指南说明书

Anderson Instrument Co., Inc.156Auriesville Rd. ~ Fultonville, NY 12072Phone: 518-922-5315 ~ Fax: 518-922-8997This product carries a one (1) year warranty against manufacturers defects.A complete warranty statement is available by contacting Anderson, or on our website.Installation and Startup GuideModel IZMAG Integral Electromagnetic FlowmeterVersion 1.7Document 1175READ THIS FIRSTSPECIFICATIONSPRODUCT DESCRIPTIONThe Anderson IZMAG Flowmeter is a precision instrument that is integrated directly in to a process line,and provides real-time information about the process.The principle of operation is based on the measurement of a voltage which is the result of a conductive fluid passing through an electromagnetic field.The resulting information that the IZMAG generates can be used to provide an instantaneous indication of the flow rate of a liquid or collected over time to indicate a total of what has passed through the pipe.Using the above operating principles,the IZMAG can accurately provide outputs for control or indication of the flow process.Performance Accuracy:± .20% * of rateSize Operational Flow Range gal/min ltr/min 100.14 - 140.53 - 53150.3 - 30 1.13 - 113250.8 - 80 3.0 - 30032 1.3 - 130 5.0 - 50050 3 - 30011.7 - 116665 5.2 - 52520 - 2000808 - 80030 - 300010012 - 120046 - 4667*± 1 mm/secOperating / Environmental Temperature Limits:Ambient Temperature Pressure Rating:Product Requirements:Approvals:32-212°F (0-100°C) Process 32-265°F (0-165°C)for 30 min. CIPDC -12 – 130°F(-25-55°C)AC -12 – 120°F(-25-45°C)1.4-145 psi abs..1 – 11 bar abs.5 µS min. conductivityCE(excluding ethernet), 3-AMaterials / Construction Product Contact Surfaces:PFA 316L SS, EPDM Housing:304 SS Enclosure Rating:IP 67Process Connection Type:Tri-clamp®, Cherry I-lineElectrical / Power / Signal Power Requirement:9-32 VDC 7W/V.A.100-240 VAC 50-60hz -15% / + 10% 7W/V.A.Signal Output:(2)digital pulse output 24VDC @20 mA(1)digital status output 24VDC @20 mA(1)4-20mA passive/activeOptional 2nd 4-20mA w/Hart (passive)Control Input:(1)9-32 VDC R<3.2kohmsConnections:(3)M16 ports with cord grips and ½"conduit adapters Display:Graphic LCD46 X23mm illuminated Communications:Hart, CS3 BUSOptional - HART & EthernetUNPACKINGProduct Check:Upon receipt, carefully inspect the product for damage to connectors and sensor face. Damage claims should be made directly with carrier.Major items are:· IZMAG configuration record sheet · meter body · cord grips · manual3x PIPE DIAMETER MINIMUM5x PIPE DIAMETER MINIMUM Install meter body in-line with arrow decal matching direction of flow.Install in process line with orientation to ensure flow tube remains full.Avoid installing the meter body where vacuum conditions exist due to potential resultant inaccuracies.Avoid installing the meter body next to equipment emitting strong electromagnetic fields that coulddistort the magnetic field generated by the flowmeter and cause measuring errors.Before welding on a pipline with a flowmeter installed,unplug the flowtube cable from the meterWarning:IZMAG INSTALLATIONPipeline must be properly grounded, or earth ground can be landed to the flow tube lug.INTERNAL TERMINATIONSCount Inhibit InputActive/PassiveAnalog(default active)Output 4-20mAMax Load 500 ohm for all elements on Control LoopCS3-BUS connectorPulse Output 2voltage requirements+---++Output ratingsPassive opto coupler 32 VDC/20 mA (pulse sequence 1000 Hz max)Pulse Output 1Digital OUT Digital InputExternally powered 32VDC R<3.2 kohm 1000 Hz maxPulse OutputsDC powered9-32 VDC 7WAC powered100-240 VAC 50/60HZ Electrical fuse @T1.5AElectrical fuse @T500mANOTE:This equipment must be connected to a wiring system in accordance with ANSI/NFPA 70,NEC with CSA,C22.1,CEC,Part 1DISPLAY ORIENTATIONIncluded with each IZMAG is a 3mm hex key wrench meant to simplify the rotation of the flow meter’s display.To change the orientation of the display for Turn off power to the meter before attempting.vertical piping installations, remove the two silver socket head screws that are located on either side of the display, rotate 90 degrees and replace the screws in the holes above and below the display.Tighten with modest torque.CALIBRATIONHydraulic Zero AdjustmentWith the initial start-up of the flow meter it is recommended to carry out a zero adjustment (“ZERO adjust”)for the flow meter to be optimized in its new environment. However for most applications a zero adjustment is not required.ATTENTION!It is important to confirm the following conditions before performing a zero procedure:-The device has to reach its working temperature, i.e. it should have been switched on at least 5 minutes.-The transmitter has to be completely filled with the typical liquid free of air.-No flow is allowed to occur during the entire “ZERO adjust”measurement.Output SimulationThe “ZERO adjust”measurement is activated if the key is depressed for a period of 1.5seconds.To perform the “ZERO adjust”it will be necessary to enter Enable code the key and then enter the next "2"followed and enteringinitiate “ZERO adjust”.The top line of the display shows the current ZERO value.The course of the bargraph shows the progress of the measurement.The measurement is finished when the bargraph is completely filled.The new ZERO value is displayedbelow the bargraph andthen installed.To begin we start at the “total display”and using the key we will activate it 6 times to reach the “Special Functions”display.Then use theKey once to move to the “zero adjust”screen.Beginning at the total screen, activate the key seven times so that the “Service Level”screen is displayed. Next activate the key 3 times to display the simulation current output screen.Through the use of the key the output can be set to three different settings. First 20mA will be output, activating the key again will set 12mA and one more activation will output 4mA.Leaving this screen will terminate the output simulation.Analog Output SimulationPulse Output SimulationFollowing the above instructions to the current output screen, the pulse output simulation is displayed by activating the key once.Activating the key will begin the simulation. In the case of the pulse output a progress bar will display the duration of the test when complete (1 min.)A fixed amount of pulses will have been output by the meter.As with the current display this will be terminated if the screen is changed.Simulation of the flow rateThis function allows for continuous simulation of both the pulse and primary analog ing this simulation can be helpful in “dry testing”a system prior to actual use.To begin theactivate the key to start, the flow will read 0 gal/min. With each activation of the key the flow rate will increase by 10% of Qmax.The function will be terminated by keying one additional time past the max rate.You may be prompted to first input an unlock code.Following the above instructions to the pulse output output screen, the flow rate simulation is displayed by activating the key once.To use the similation function of the IZMAG it will be necessary to enter Enable code “333”.After selecting the type of simulation the screen will prompt entry of the Enable code.。

219377005_不同淹水时长对旱作水稻土壤物理特性的影响

219377005_不同淹水时长对旱作水稻土壤物理特性的影响

第45卷第6期2022年11月河北农业大学学报JOURNAL OF HEBEI AGRICULTURAL UNIVERSITY Vol.45 No.6Nov. 2022文章编号:1000-1573(2022)06-0032-07DOI :10.13320/ki.jauh.2022.0091收稿日期:2022-11-24基金项目:国家重点研发计划项目(2018YFD 0300504-4);河北省省属高等学校基本科研业务费研究项目(KY 2021069).第一作者:王希凤(1996—),女,内蒙古鄂尔多斯人,硕士研究生,主要从事土壤物理、土壤结构和水热耦合研究.E -mail:WXF 201909@通信作者: 张 猛(1989—),男,河北衡水人,博士,主要从事土壤物理、土壤结构和水热耦合研究.E -mail:pocang 529@本刊网址:不同淹水时长对旱作水稻土壤物理特性的影响王希凤1,赵春雷2,张 猛1(1.河北农业大学 资源与环境科学学院,河北 保定 071000;2.中国科学院 地理科学与资源研究所/生态网络观测与模拟院重点实验室,北京 100101)摘要:为探究淹水时长对土壤物理特性的影响,采用室内土柱模拟的方法,基于热脉冲技术与热导率模型,明确土壤淹水及脱湿过程中土壤热特性和容重动态变化特征。

在此基础上,利用压力板法、沙箱法和微型圆盘入渗仪测定不同淹水时长土壤的水分特征曲线和入渗速率变化,分析土壤结构和孔隙分布对土壤容重和热特性的影响。

结果表明:随着淹水时长的增加,土壤物理性质的变化可分为两个阶段:淹水1~7 d ,土壤容重、热导率和热容量均表现为阶段性增加的趋势;淹水7 d 后,土壤容重和热特性基本达到稳定状态。

在淹水过程中,土壤孔隙分布也发生明显变化,土壤入渗速率随着淹水时长的增加呈先升高后降低的过程。

淹水过程会导致土壤结构变化、土壤孔隙分布和连通性改变,最终土壤持水性减弱、导水率降低。

22.煤层气井水气产量和煤层压降计算的理论探讨 - 吴仕贵

22.煤层气井水气产量和煤层压降计算的理论探讨 - 吴仕贵

煤层气井水气产量和煤层压降计算的理论探讨吴仕贵1 胡爱梅1 李晓明11中联煤层气国家工程研究中心100095,中国摘要: 随着近年来我国煤层气开发的快速发展,煤层气排采技术也越来越显示出它是重要性。

煤层气排采的基本理论是由美国建立起来的“解吸—扩散—渗流,排水—降压—采气”理论,但该理论还是一个定性的指导理论。

煤层气排采过程目前还没有简单成熟的理论分析公式。

本文通过应用多孔介质弹性不稳定渗流理论推导出煤层气井在压裂和不压裂两种情况况下的水产量计算公式,根据物质平衡原理和朗谬尔(Langmuir)等温吸附和解吸公式推导出压裂和不压裂两种情况下直井的气产量计算公式,同时给出了煤层中不同位置不同时刻的压降计算公式,为理论分析煤层气井的生产动态作出了初步尝试。

关键词:煤层气;不稳定渗流;径向流;线性流;水产量计算;气产量计算;压降计算The Theoretical Calculation Study of Flow Rate and Pressure Drop inCoalbed for a CBM WellWU Shigui1 HU Aimei1 LI Xiaoming1(1. China United Coalbed Methane National Engineering Research Center, China )Abstract: The coalbed methane(CBM) production technology has become increasingly important in China with the CBM rapid development in recent years. The basic theory of CBM production was established by the United States, that is “Desorption-Diffusion-Flowing, Dewaterring- Pressure Lowering-Production”, but the theory is still a qualitative guidance. Good practical analysis correlations are not more in CBM production. In this paper the calculation correlations of water rate, gas rate and coalbed pressure in a fractured CBM vertical well are given by application of elastic porous media flow theroy, it makes a preliminary attempt of CBM producing theoretical analysis.Key words: CBM; unsteady flow; radial flow; linear flow; water rate calculation; gas rate calculation; pressure drop calculation1 前言煤层气开发近几年在我国取得了较快发展,中石油、中石化、中联煤等国有大型能源企业、地方煤炭企业及许多其它国内外公司都投巨资参与煤层气勘探开发工作。

SIMULTANEOUS MEASURING PROBE FOR FLOW VELOCITY AND

SIMULTANEOUS MEASURING PROBE FOR FLOW VELOCITY AND

专利名称:SIMULTANEOUS MEASURING PROBE FOR FLOW VELOCITY AND FLOW DIRECTION OFUNDERGROUND WATER AND HEATPHYSICAL VALUE OF STRATUM UTILIZINGHEAT TRANSFER CHARACTERISTIC发明人:KIMURA SHIGEO,KIYOHASHI HIROSHI申请号:JP15971788申请日:19880628公开号:JPH0210114A公开日:19900112专利内容由知识产权出版社提供摘要:PURPOSE:To simultaneously measure a flow velocity and a flow direction of underground water and effective thermal conductivity of a stratum constituting object by installing belt-like heating elements at an interval in the longitudinal direction of a probe main body, and measuring a temperature distribution running along the outside periphery of this heating element by a temperature sensor. CONSTITUTION:A probe consists of a slender and columnar probe main body, a belt-like heating element for satisfying an equal heat flow velocity condition which has been installed in singular or plural parts at an interval in the longitudinal direction of this probe main body, and plural temperature sensors for measuring a temperature distribution running along the outside periphery of this heating element. The heating element consists of a metallic thin film of stainless steel, etc., and placed on a heat insulating material. The temperature distribution running along the outside periphery is measured by a temperature sensor such as a thermocouple, etc., which has been installed in three parts of more on thereverse side of the metallic thin film.申请人:AGENCY OF IND SCIENCE & TECHNOL 更多信息请下载全文后查看。

高超声速再入试验的辐射光谱定量测量

高超声速再入试验的辐射光谱定量测量

高超声速再入试验的辐射光谱定量测量余晓娅, 刘立拓, 李瑞, 王同权引用本文:余晓娅, 刘立拓, 李瑞, 王同权. 高超声速再入试验的辐射光谱定量测量[J]. 中国光学, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087YU Xiao-ya, LIU Li-tuo, LI Rui, WANG Tong-quan. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087在线阅读 View online: https:///10.3788/CO.20201301.0087您可能感兴趣的其他文章Articles you may be interested in飞艇红外探测系统探测高超声速目标性能研究Detectability of airship infrared detection system to hypersonic vehicle中国光学. 2016, 9(5): 596 https:///10.3788/CO.20160905.05964m 直径均匀扩展定标光源4 m extended uniform source for radiometric calibration中国光学. 2015(5): 823 https:///10.3788/CO.20150805.0823基于光电探测的多光谱测温装置Multi-spectral temperature measuring system based on photoelectric detection中国光学. 2019, 12(2): 289 https:///10.3788/CO.20191202.0289人工触发闪电通道的辐射特性分析Analysis of radiation evolution characteristics of the artificial triggered lightning channel中国光学. 2019, 12(3): 670 https:///10.3788/CO.20191203.0670Na5[B2P3O13]晶体的紫外-远红外光谱分析Analysis of ultraviolet-far-infrared spectra of Na5 [ B2P3O13 ] crystal中国光学. 2019, 12(5): 1118 https:///10.3788/CO.20191205.1118第13卷㊀第1期2020年2月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀中国光学㊀㊀㊀㊀㊀㊀㊀ChineseOptics㊀㊀㊀㊀Vol.13㊀No.1㊀Feb.2020㊀㊀收稿日期:2019 ̄09 ̄09ꎻ修订日期:2019 ̄11 ̄08㊀㊀基金项目:国家自然科学基金青年项目(No.61404171)SupportedbyNationalNaturalScienceFoundationofChinaYouthProject(No.61404171)文章编号㊀2095 ̄1531(2020)01 ̄0087 ̄08高超声速再入试验的辐射光谱定量测量余晓娅1†ꎬ刘立拓2∗†ꎬ李㊀瑞1ꎬ王同权1(1.试验物理与计算数学重点实验室ꎬ北京100094ꎻ2.中国科学院微电子研究所ꎬ北京100024)†共同贡献作者摘要:利用膨胀管对宽度为45mm和90mm的半圆柱模型进行了地球再入高超声速流动试验ꎬ再入速度为8km/sꎮ试验利用配有ICCD相机的光谱仪ꎬ测量了具有空间分辨的激波后辐射光谱ꎬ光谱范围为250~550nmꎬ得到了沿流体方向的激波辐射轮廓线ꎮ分析发现在该光谱范围内辐射主要为CN(B ̄X)带系分子光谱ꎮ利用卤钨灯对该波段光谱进行定标ꎬ得到了激波层辐射的绝对辐射亮度ꎮ通过采用两种模型辐射亮度对模型宽度归一化后发现ꎬ绕流场高温气体辐射存在较强的自吸收现象ꎬ同时观测到了绕流场激波的三维效应ꎮ通过实验发现ꎬCN(B ̄X)Δv=0带系的3 ̄3振动带系385.2nm波长位置和0 ̄0带系388.4nm波长位置辐亮度之比随着流场靠近模型边缘而逐渐下降ꎬ这表明激波层内辐射的动态非平衡特征ꎮ关㊀键㊀词:膨胀管ꎻ高超声速流动ꎻ辐射定量测量中图分类号:V211.74㊀㊀文献标识码:A㊀㊀doi:10.3788/CO.20201301.0087MeasurementsofabsoluteradiativeemissionsforsupersonicreentryYUXiao ̄ya1†ꎬLIULi ̄tuo2∗†ꎬLIRui1ꎬWANGTong ̄quan1(1.KeyLaboratoryofExperimentalPhysicsandComputationalMathematicsꎬBeijing100094ꎬChinaꎻ2.InstituteofMicroelectronicsꎬChineseAcademyofSciencesꎬBeijing100024ꎬChina)†Theseauthorscontributeequally∗CorrespondingauthorꎬE ̄mail:liulituo@ime.ac.cnAbstract:Anexpansiontubefacilitywasoperatedusingtwohalf ̄cylindermodelswithwidthof45mmand90mmrespectivelyforproducinghigh ̄enthalpyflowsatthenominalvelocityof8km/srelevanttoEarthreentry.Spatiallyresolvedemissionspectroscopyinthewavelengthrangefrom250nmto550nmbehindashockwavewasrecordedbyaspectrometerwithICCDcamera.Shockwavestagnationstreamlinewasobservedalongtheflowdirection.ItisfoundthatthespectrumaredominatedbytheCN(B ̄X)violetband.Ahalogentungstenlampwasusedtorealizecalibrationandtheabsoluteradiationluminanceoftheshocklayerwasobtained.Bycomparingthemodelwidthsnormalizedbytwokindsofmodelradiancesꎬitcanbefoundthatthereisastrongself ̄absorptionofhightemperaturegasradiationaroundtheflowfluid.Inadditionꎬthree ̄dimensionaleffectwasobserved.Itcanbefoundthattheratiobetweenspectralradianceat385.2nmintheCN(B ̄X)violet3 ̄3bandandspectralradianceat388.4nmintheCN(B ̄X)violet0 ̄0bandisdecreasingalongthedistanceto ̄wardthemodeledge.Theresultsilluminatedthatdynamicalnon ̄equilibriumfeaturesexistsintheshocklayeralongthedistanceofthemodeledge.Keywords:expansiontubeꎻhypersonicflowꎻabsoluteradiationmeasurement1㊀引㊀言㊀㊀高超声速飞行体再入大气层时ꎬ其周围空气将被强激波压缩㊁加热㊁解离ꎬ形成高温高压的绕流场ꎬ被加热的空气通过辐射和对流将热量传递给再入体ꎮ随着再入速度的增大ꎬ辐射传热将变为主要的传热方式[1 ̄4]ꎮ而高超声速再入体的热防护系统(ThermalProtectionSystemꎬTPS)必须能够承受由周围空气强辐射而产生的极高温度[5 ̄7]ꎮ因此ꎬ研究飞行目标再入时的辐射特性对再入体的热防护设计至关重要ꎮ高超声速绕流场辐射特性的实验测量与模拟计算之间仍然存在差距[8 ̄10]ꎬ需要通过更多的实验研究高超声速绕流场的辐射机理ꎬ深入了解高温气体的非平衡辐射过程及自身吸收效应的影响ꎬ对模拟计算模型进行修正和检验ꎮNASA自上世纪60㊁70年代开始ꎬ从利用激波管进行高超声速流场辐射的定量测量到后来利用电弧风洞㊁等离子体等设备进行高超声速发射光谱测量实验ꎬ做了大量的研究工作[11 ̄15]ꎮ随着光谱测量技术的不断进步ꎬ研究人员开始通过辐射场的光谱定量测量结果研究非平衡辐射特性ꎬ通过振动㊁转动光谱计算振转温度ꎮ1996年ꎬLaurentLabracherie等利用活塞驱动激波风洞模拟了Titan大气再入环境ꎬ分析了非平衡辐射特性ꎬ得到了转动㊁振动温度[16]ꎮ近些年来ꎬ以澳大利亚昆士兰大学为代表的研究团队利用膨胀管获得高达8~12km/s的来流速度ꎬ同时在测量波长范围从紫外波段到可见光波段内ꎬ获得了沿激波流线方向绕流场辐射的空间分布[17 ̄20]ꎮ而在国内对高超声速辐射测量方面的研究起步较晚ꎮ余西龙等利用氢氧爆轰驱动激波风洞测量了二维钝体驻点的紫外发射光谱ꎬ气流速度为5km/sꎬ在200~280nm波长范围内观测到了NO分子γ系㊁OHA ̄X跃迁㊁N2+B ̄X跃迁谱线[21]ꎮ杨虹等研究了飞艇对临近空间高超声速目标的红外探测性能ꎬ其在短波段1~2.5μm可探测性最强[22]ꎮ孟凡胜等研究了高速再入体的热辐射计算模型ꎬ根据45km高度以下实测红外辐射对实验室缩比模型进行了修正[23]ꎮ林鑫等利用激波管对高超声速激波波后非平衡辐射进行了测量ꎬ激波速度为6km/sꎬ拟合得到了CN自由基的振动温度和转动温度[24]ꎮ到目前为止ꎬ国内对高超声速再入辐射测量方面的研究较少ꎬ尤其对于利用膨胀管模拟8km/s及以上再入速度辐射特性的研究还未见报道ꎮ本文利用JF16爆轰驱动膨胀管ꎬ对地球再入高超声速流场辐射进行定量测量ꎬ激波速度为8km/sꎬ总焓为36MJ/kgꎮ文中首先介绍了膨胀管的工作原理和光谱定标过程ꎬ获得了光谱绝对辐射亮度ꎬ实验中采用两种不同宽度的模型对高超声速绕流场沿激波流线方向的非平衡辐射特性进行了分析ꎬ研究了自吸收效应对高温气体绕流场辐射的影响ꎮ图1㊀JF ̄16原理示意图Fig.1㊀PrinciplediagramforJF ̄162㊀JF ̄16膨胀管工作原理㊀㊀JF ̄16是由中国科学院力学研究所高温气体动力学国家重点实验室于2008年建造而成的爆轰驱动膨胀管ꎬ目前已能成功获得10km/s的模拟气流速度ꎬ稳定时间达100μsꎬ可以模拟多种大气再入高超声速实验ꎬ其波系结构如图1所示ꎮ88㊀㊀㊀㊀中国光学㊀㊀㊀㊀㊀㊀第13卷㊀由图1可见ꎬJF ̄16由爆轰段㊁激波管段㊁加速段组成ꎮ当爆轰波冲破膜片I时ꎬ将驱动激波管段的实验气体压缩ꎬ这时主激波形成并传播到②区ꎬ②区的实验气体冲破膜片II后到达加速段并被继续加速ꎬ第二激波(ssw)开始建立ꎮ经过非定常膨胀后ꎬ②区的气体被加速到达⑤区ꎬ形成高焓高速的气流ꎬ最终通过喷管膨胀喷出ꎬ得到实验所需的高超声速流ꎮ表1给出了本实验膨胀管的初始运行参数ꎮ其中ꎬ实验模拟的激波速度为8km/sꎬ总焓值达36MJ/kgꎬ这两值均为计算值ꎮ表1㊀初始参数和测量条件Tab.1㊀InitialparametersandtestconditionsParametersValuesGasDrivergaspressure/MPa1.0H2ꎬO2Testgas/Pa3000AirAccelerationgas/Pa20AirVelocity/km s-18-Totalenthalpy/MJ kg-136-3㊀光谱测量及定标系统㊀㊀实验利用AndorSR500光栅光谱仪进行光谱采集ꎬ光谱仪装配有ICCDꎬ像素数为512pixelˑ2048pixelꎬ光栅刻线设置为150lp/mmꎬ狭缝宽度为100μmꎬ测量波段范围为250~550nmꎮ光谱测量及定标系统如图2所示ꎬ图中上面为测量系统ꎬ下面为定标系统ꎮ在实验测量中ꎬ两电离探针用于检测激波速度ꎬ探针2能够同时触发光谱仪ꎬ光谱仪中的ICCD收到触发信号后延时50μs曝光ꎬ曝光时间为1μsꎬ以确保光谱仪在膨胀管的实验时间内采集数据ꎮ在测量系统内ꎬ绕流场辐射光穿过石英窗口后ꎬ经过反射镜(Mirror2)㊁凹面镜(Concavemirror2)㊁转像镜(Beamrotator)成像在狭缝位置ꎮ转像镜将所成像旋转90ʎꎬ使光谱仪能够采集到沿流场轴线方向的光谱ꎮCon ̄cavemirror2的焦距为250mmꎬ放大率为0.75ꎮ凹面镜成像可以消除色差ꎬ但当凹面镜与光源角度较大时会带来球差ꎬ鉴于此ꎬ在实验中将凹面镜与测量辐射源之间的角度设置为15ʎꎮ在定标图2㊀JF ̄16实验测量系统示意图Fig.2㊀SchematicdiagramofmeasurementsysteminJF ̄1698第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀余晓娅ꎬ等:高超声速再入试验的辐射光谱定量测量系统内ꎬ将卤钨灯沿膨胀管轴线方向成像ꎬ光谱经过测量系统汇聚于光谱仪狭缝处ꎮConcavemirror1的焦距为250mmꎬ考虑到卤钨灯灯丝的尺寸及光谱仪拍摄的有效区域范围ꎬ成像放大率定为1.5ꎬ卤钨灯定标波长为250~2400nmꎮ实验所拍摄的绕流场空间范围由卤钨灯的像来确定ꎮ图中两侧的窗口都为JGS1紫外增透型石英窗口ꎮ本实验选取的两个模型是宽度L分别为90mm㊁45mmꎬ半径为18mm的半圆柱面ꎬ如图3所示ꎮ其中ꎬ模型1宽90mmꎬ模型2宽45mmꎮ辐射测量区域近似为长方体ꎬ根据放大率及狭缝宽度可算得其截面积S为0.13mmˑ10mmꎮ图3㊀测量模型Fig.3㊀Testmodel本光学系统中的元器件有石英窗口㊁反射镜㊁光栅㊁ICCD等ꎬ这些元器件对不同波长的光谱具有不同的响应和效率ꎮ为了消除这种影响ꎬ在得到实测光谱的绝对强度后ꎬ需要用已知辐射强度的连续光源对光学系统进行定标ꎬ本实验用卤钨灯对光学系统进行定标ꎮ单像素输出灰度值DNλp与单像素接收到的辐射通量Φλp之间满足公式(1)ꎬDNλp=Aλ Φλp Tꎬ(1)其中T为设定的积分时间ꎬAλ为所要标定的光谱响应系数ꎮΦλp可由公式(2)得到ꎬΦλp=Eλ S cos(θ)/Nꎬ(2)其中Eλ为标准灯光谱辐照度ꎬ是已知量ꎬθ为Concavemirror1的偏转角度ꎬ为15ʎꎬS为标准光束投射到Mirror1的有效面积ꎬN为选取的同一波长列的像素数ꎮ为了提高定标结果的可靠性ꎬ对每列靠近中心的N个像素的输出灰度值进行平均ꎬ作为该列的输出响应ꎬ即DNλpꎮ平均辐射通量Φλp可根据光学系统及公式(2)来确定ꎮ定标结果如图4所示ꎬ从图中可以看出ꎬ1mJ辐射能可以产生1014量级的灰度值输出ꎮ图4㊀光谱响应标定结果Fig.4㊀Calibratedspectralresponse4㊀结果与分析㊀㊀模型1情况下采集到的原始光谱数据如图5(a)(彩图见期刊电子版)所示ꎮ从图中可以看到ꎬ当高超声速自由流靠近模型边缘时ꎬ自由流速度逐渐减慢直至到达驻点ꎮ在这个过程中自由流的动能逐渐转化为气体内能ꎬ从而形成高温高压激波层ꎬ并产生强烈的辐射ꎮ由原始光谱数据和定标结果可以得到激波后气体辐射的绝对光谱辐亮度分布ꎬ如图5(b)(彩图见期刊电子版)所示ꎬ纵坐标为来流与模型边缘之间的距离ꎬ0mm位置为模型边缘ꎬ单像素代表的空间分辨率为23μmꎮ对比图5(a)㊁5(b)可以看出ꎬ定标后靠近长波方向的辐射强度减弱ꎬ分析认为这是光谱响应曲线在对应波段光谱响应值较大的原因ꎮ利用同样方法得到模型2的绝对光谱辐亮度分布ꎬ如图5(c)所示ꎬ由图5(c)可知ꎬ在辐射特征最强的位置模型2的辐射亮度较大ꎮ分别选取距离两模型边缘2mm处的光谱数据进行分析ꎮ如图6(a)㊁6(b)所示ꎬ在测量波段范围内ꎬ主要为CN自由基CN(B ̄X)及较弱的N2+㊁NH自由基辐射光谱ꎮ分析认为氮气分子光谱偏弱的原因ꎬ很可能是激波层内极高的温度导09㊀㊀㊀㊀中国光学㊀㊀㊀㊀㊀㊀第13卷㊀致大部分N2分子解离ꎬ解离的N原子与CO2解离的C原子结合生成CN自由基ꎬCN自由基具有很强的辐射能力[25]ꎮ实验中还观测到了NH自由基㊁Ca+的辐射光谱ꎬ这两种谱线是干扰谱线ꎬH原子是驱动段引进的污染ꎬCa为膨胀管内杂质ꎮ图5㊀实验光谱数据Fig.5㊀Spectraldataoftwomodels为了更清楚地比较模型宽度对激波辐射的影响ꎬ将辐亮度对模型宽度进行归一化处理ꎮ图7为模型1和模型2在距离模型边缘2mm处的光谱辐亮度的比值ꎬ波长为385~388nmꎮ从图中可以看出在该波段内ꎬ模型1对宽度归一化后的辐射亮度小于模型2ꎮ理论上ꎬ不考虑自吸收效应的情况下ꎬ模型辐亮度是对整个测量路线的积分ꎬ即辐射亮度与模型宽度成正比ꎬ分别对模型宽度进行归一化后的比值应该接近1ꎮ而在385~388nm波段内ꎬ归一化后的比值介于0.5到0.7之间ꎬ小于1ꎮ说明测量得到的模型辐亮度增加的比例小于宽度增加的比例ꎬ证明了激波层内气体存在自吸收效应ꎬ高温气体沿着观测路线(模型宽度方向)穿越激波层时ꎬ自身会吸收一部分辐射跃迁到高能级ꎬ导致辐射减弱ꎮ图6㊀距离模型边缘2mm处光谱辐亮度Fig.6㊀Spectralradianceattheverticaldistanceof2mmfromtheedgeinmodel1andmodel2通过分析沿气流方向光谱绝对辐亮度分布ꎬ可以了解激波层内高温气体组分的辐射特性ꎬ并能得到激波层非平衡辐射特征随激波流线方向的19第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀余晓娅ꎬ等:高超声速再入试验的辐射光谱定量测量变化ꎮ本实验分别选取388.4nm和385.2nm两个波长进行分析ꎬ它们分别位于CN(B ̄X)的0 ̄0和3 ̄3振动带系ꎬ图8所示为模型1光谱辐亮度沿激波流线方向的分布情况ꎮ当高超声速气流流到距离模型边缘5mm处时ꎬ辐射突然增大ꎬ之后在距离模型0~3mm范围内ꎬ辐射变化相对平缓ꎬ直至到模型壁面骤然下降ꎮ从图中可以看出ꎬ-2mm到0mm模型实体区域内ꎬ存在比部分自由流区域更高的辐射亮度ꎬ这是由于沿着模型宽度方向靠近模型端面位置存在着激波辐射ꎬ即激波层的三维效应ꎮ为了估算激波三维效应的强弱ꎬ将-2mm到0mm的辐亮度值进行积分ꎬ再与整个激波层的总辐亮度进行比较ꎬ得到模型1在388.4nm和385.2nm处因三维效应产生的辐亮度分别占总辐亮度的6%和7%ꎮ图7㊀模型1和模型2在距离模型边缘2mm处光谱辐亮度比值Fig.7㊀Spectralradianceratiobetweenmodel1andmodel2attheverticaldistanceof2mmfromtheedge图8㊀模型1在388.4nm和385.2nm处激波沿流场方向分布Fig.8㊀Theshocklayerradiancedistributionsalongflowfieldatthewavelengthof388.4nmand385.2nmformodel1㊀图9㊀385.2nm和388.4nm处光谱辐亮度比值沿模型边缘变化情况Fig.9㊀Spectralradianceratiobetween385.2nmand388.4nmvariesalongdistancefrommodeledge㊀㊀图9(a)㊁9(b)分别为模型1和模型2在385.2nm和388.4nm波长位置辐亮度比值沿流29㊀㊀㊀㊀中国光学㊀㊀㊀㊀㊀㊀第13卷㊀场方向的变化情况ꎮ沿流场方向两模型比值的拟合曲线均有下降趋势ꎮ这意味着在来流靠近模型边缘的过程中ꎬ流场一直处于动态的非平衡状态ꎮ而388.4nm波长位置只与CN自由基的转动温度有关ꎬ此比值的减小也说明了振动温度与转动温度的差距逐渐拉大ꎬ非平衡特征也越来越明显ꎮ对于具有较窄宽度的模型2ꎬ由于受自吸收效应影响较小ꎬ非平衡辐射特征更加明显ꎮ5㊀结㊀论㊀㊀本文利用JF ̄16膨胀管得到了地球再入激波速度为8km/s的高超声速绕流场辐射光谱相对强度ꎬ在波长范围250~550nm内进行实验发现辐射主要来自CN(B ̄X)带系分子光谱ꎮ利用卤钨灯对光谱数据进行定标ꎬ得到了激波后高温气体绝对辐射亮度及随流场方向的分布情况ꎮ在高超声速绕流场中ꎬ激波后高温气体辐射存在自吸收现象ꎮ模型的宽度越大ꎬ测量时在观测视线方向自吸收效应越明显ꎮ同时观测到了绕流场激波的三维效应ꎬ估算其三维效应在388.4nm和385.2nm波长处分别占总激波层辐射在相应波段的6%和7%ꎮ通过对比分析CN(B ̄X)Δv=0的0 ̄0及3 ̄3带隙光谱发现了激波层内流动的动态非平衡特征ꎬ越靠近模型边缘振动温度与转动温度的差距越大ꎬ非平衡特征也越明显ꎮ尤其对于宽度较窄的模型ꎬ由于受自吸收效应的影响较小ꎬ非平衡辐射特征更加明显ꎮ研究地球再入的高超声速辐射特性测量对再入体的热防护设计及提高再入体的生存能力有很大意义ꎬ此外ꎬ对高超声速目标辐射特性测量的研究可以支撑研究控制高超声速目标的辐射特性ꎬ为高超声速目标的红外隐身提供支持ꎮ下一步计划研究不同的高超声速激波速度下ꎬ自吸收效应对高温气体绕流场辐射的影响ꎮ参考文献:[1]㊀LIEBHARTHꎬHERDRICHGꎬFASOULASS.Advancesforradiationmodelingforearthre ̄entryinPARADE:applica ̄tiontotheSTARDUSTatmosphericentryꎬAIAA ̄2012 ̄3196[R].NeworleansꎬLouisiana:AIAAꎬ2012.[2]㊀GRINSTEADJHꎬJENNISKENSPꎬCASSELLAMꎬetal..AirborneobservationofthehayabusasamplereturncapsulereentryꎬAIAA ̄2011 ̄3329[R].HonoluluꎬHawaii:AIAAꎬ2011.[3]㊀HERMANNTꎬLÖHLESꎬZANDERFꎬetal...Characterizationofareentryplasmawind ̄tunnelflowwithvacuum ̄ultra ̄violettonear ̄infraredspectroscopy[J].JournalofThermophysicsandHeatTransferꎬ2016ꎬ30(3):673 ̄688.[4]㊀PORATHꎬMORGANRGꎬMCINTYRETJ.StudyofradiativeheattransferinTitanatmosphericentry[C].Proceedingsof28thInternationalCongressoftheAeronauticalSciencesꎬLauncestonꎬ2012.[5]㊀JOHNSTONCOꎬGNOFFOPAꎬMAZAHERIA.Influenceofcoupledradiationandablationontheaerothermodynamicenvironmentofplanetaryentryvehicles[J].RTOLectureSeriesꎬVonKarmanInst.forFluidDynamicsꎬRhode ̄St ̄GenèseꎬBelgiumꎬ2013ꎬ218:1 ̄36.[6]㊀BRANDISAMꎬJOHNSTONCO.Characterizationofstagnation ̄pointheatfluxforearthentryAIAA ̄2014 ̄2374[R].Atlanta:AIAAꎬ2014.[7]㊀GUPTARN.Aerothermodynamicanalysisofstardustsamplereturncapsulewithcoupledradiationandablation[J].JournalofSpacecraftandRocketsꎬ2000ꎬ37(4):507 ̄514.[8]㊀GNOFFOPAꎬJOHNSTONCOꎬKLEBBB.ChallengestocomputationalaerothermodynamicsimulationandvalidationforplanetaryentryvehicleanalysisꎬNASARTO ̄EN ̄AVT ̄186[R].Washington:NASAꎬ2010.[9]㊀JACOBSPꎬMORGANRꎬBRANDISAꎬetal..Designꎬoperationandtestinginexpansiontubefacilitiesforsuper ̄orbitalre ̄entry[C].STO ̄AVT ̄VKILectureSeriesRadiationandGas ̄SurfaceInteractionPhenomenainHighSpeedRe ̄Entry(2013 ̄AVT ̄218).2013:5 ̄1 ̄5 ̄65.[10]㊀JACOBSCMꎬMCLNTYRETJꎬMORGANRGꎬetal..Radiativeheattransfermeasurementsinlow ̄densitytitanat ̄mospheres[J].JournalofThermophysicsandHeatTransferꎬ2015ꎬ29(4):835 ̄844.[11]㊀HOLLISBRꎬSTRIEPESAꎬWRIGHTMJꎬetal..Predictionoftheaerothermodynamicenvironmentofthehuygens39第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀余晓娅ꎬ等:高超声速再入试验的辐射光谱定量测量probe.AIAA ̄2005 ̄4816[R].Toronto:AIAAꎬ2005.[12]㊀PARKC.NonequilibriumAirRadiation(NEQAIR)Program:User'sManualꎬNASA ̄TM ̄86707[R].Washington:NASAꎬ1985.[13]㊀THOMASGMꎬMENARDWA.Experimentalmeasurementsofnonequilibriumandequilibriumradiationfromplanetaryatmospheres[J].AIAAJournalꎬ1966ꎬ4(2):227 ̄237.[14]㊀GÖKÇENT.N2 ̄CH4 ̄ArchemicalkineticmodelforsimulationsofatmosphericentrytoTitanꎬAIAA ̄2004 ̄2469[R].Portland:AIAAꎬ2004.[15]㊀BOSEDꎬWRIGHTMJꎬBOGDANOFFDWꎬetal..ModelingandexperimentalassessmentofCNradiationbehindastrongshockwave[J].JournalofThermophysicsandHeatTransferꎬ2006ꎬ20(2):220 ̄230.[16]㊀LABRACHERIELꎬBILLIOTTEMꎬHOUASL.Shock ̄tubeanalysisofargoninfluenceinTitanradiativeenvironment[J].JournalofThermophysicsandHeatTransferꎬ1996ꎬ10(1):162 ̄168.[17]㊀LEWISSWꎬMORGANRGꎬMCINTYRETJꎬetal..Expansiontunnelexperimentsofearthreentryflowwithsurfaceablation[J].JournalofSpacecraftandRocketsꎬ2016ꎬ53(5):887 ̄899.[18]㊀SHEIKHUAꎬMORGANRGꎬMCINTYRETJ.VacuumultravioletspectralmeasurementsforsuperorbitalearthentryinX2expansiontube[J].AIAAJournalꎬ2015ꎬ53(12):3589 ̄3602.[19]㊀SHEIKHUAꎬJACOBSCꎬLAUXCOꎬetal..Measurementsofradiatingflowfieldsinthevacuumultraviolet[C].Proceedingsofthe29thInternationalSymposiumonShockWavesꎬSpringerꎬ2013:653 ̄658.[20]㊀BRANDISAMꎬMORGANRGꎬMCINTYRETJꎬetal..NonequilibriumradiationintensitymeasurementsinsimulatedTitanatmospheres[J].JournalofThermophysicsandHeatTransferꎬ2010ꎬ24(2):291 ̄300.[21]㊀杨乾锁ꎬ余西龙ꎬ姜乃波ꎬ等.激波波后氮分子发射光谱的测量[J].流体力学实验与测量ꎬ2000ꎬ14(3):57 ̄60+65.YANGQSꎬYUXLꎬJIANGNBꎬetal..Spectralmeasurementofnitrogenemissionbehindnormalshockwave[J].ExperimentsandMeasurementsinFluidMechanicsꎬ2000ꎬ14(3):57 ̄60+65.(inChinese)[22]㊀杨虹ꎬ张雅声ꎬ丁文哲.飞艇红外探测系统探测高超声速目标性能研究[J].中国光学ꎬ2016ꎬ9(5):596 ̄605.YANGHꎬZHANGYSHꎬDINGWZH.Detectabilityofairshipinfrareddetectionsystemtohypersonicvehicle[J].ChineseOpticsꎬ2016ꎬ9(5):596 ̄605.(inChinese)[23]㊀孟凡胜ꎬ熊仁生ꎬ刘朝晖.高速再入体热辐射模型的分析与修正[J].光学精密工程ꎬ2006ꎬ14(8):574 ̄578.MENGFSHꎬXIONGRSHꎬLIUCHH.Analysisofhypersonicreentryradiationmodel[J].Opt.PrecisionEng.ꎬ2006ꎬ14(8):574 ̄578.(inChinese)[24]㊀LINXꎬYUXLꎬLIFꎬetal..Measurementsofnon ̄equilibriumandequilibriumtemperaturebehindastrongshockwaveinsimulatedmartianatmosphere[J].ActaMechanicaSinicaꎬ2012ꎬ28(5):1293 ̄1302.[25]㊀BRANDISAMꎬGOLLANRJꎬSCOTTMPꎬetal..ExpansiontubeoperatingꎬconditionsforstudyingnonequilibriumradiationrelevanttoTitanaerocaptureꎬAIAA ̄2006 ̄4517[R].Sacramemto:AIAAꎬ2006.作者简介:余晓娅(1985 )ꎬ女ꎬ河南柘城人ꎬ博士ꎬ助理研究员ꎬ主要从事目标光学特性测量方面的研究ꎮEmail:may19850225@sina.com刘立拓(1982 )ꎬ男ꎬ河北保定人ꎬ博士ꎬ主要从事光学检测方面的研究工作ꎮEmail:liulituo@ime.ac.cn49㊀㊀㊀㊀中国光学㊀㊀㊀㊀㊀㊀第13卷㊀。

气化驱动的液滴在湿润性表面上的仿真研究

气化驱动的液滴在湿润性表面上的仿真研究

第38卷第5期计算机仿真2021年5月文章编号:1006 - 9348(2021 )05 - 0239 - 07气化驱动的液滴在湿润性表面上的仿真研究薛超1’2,卢艳1’2(1.武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉430081;2.武汉科技大学机械传动与制造工程湖北省重点实验室,湖北武汉430081)摘要:为了研究液滴在高温锯齿形表面时各参数对液滴摩擦学性能的影响,运用了计算流体力学研究了表面润湿性对蒸发驱动的Leidenforst液滴自推进运动的影响。

结果表明,三线接触角对液滴的悬浮和运动特性有很大的影响。

表面微结构参数H/W有助于控制液滴表面的润湿性,从而提高液滴的运动速度。

数值模拟结果表明,高宽比H/W =7/12时的超疏水表面具有快速运动特性。

研究了温度和液滴直径等各种参数的影响,对液滴的蒸发驱动机理有了深入的认识。

关键词:液滴;微织构;自行走;湿润性中图分类号:T P391.9文献标识码:BSimulation Study of Drag Reduction of Vaporization - DrivingDroplet on the Wettability SurfaceXUE Chao'*2,LU Yan1*2(1. Key L a b o r a t o r y o f M e t a l l u r g i c a l Equipment and C o n t r o l Technology,Wuhan U n i v e r s i t y o f S c i e n c e an d Technology;Wuhan Hubei430081 ,China;2. Key L a b o r a t o r y o f M e c h a n i c a l T r a n s m i s s i o n and M a n u f a c t u r i n g E n g i n e e r i n g,Wuhan U n i v e r s i t y o f S c i e n c e a n d Technology;Wuhan Hubei430081 ,China)A B S T R A C T:I n o r d e r t o s t u d y t h e i n f l u e n c e o f v a r i o u s p a r a m e t e r s on t h e t r i b o l o g i c a l p r o p e r t i e s o f d r o p l e t s a t h i g ht e m p e r a t u r e z i g z a g s u r f a c e,t h e e f f e c t s o f s u r f a c e w e t t a b i l i t y o n t h e s e l f- p r o p u l s i o n m o t i o n o f e v a p o r a t i o n - d r i v e n L e i d e n f o r s t d r o p l e t s w e r e s t u d i e d b y e x e r t i n g c o m p u t a t i o n a l f l u i d dynamics.D r o p l e t s l e v i t a t e and m o t i o n c h a r a c t e r i s­t i c s seem t o be s e v e r e l y a f f e c t e d b y t h e t r i p l e- l i n e c o n t a c t a n g l e a t l e i d e n f r o s t t e m p e r a t u r e s.The s t u d y r e p o r t s t h a t t h e m i c r o- s t r u c t u r e p a r a m e t e r a s p e c t r a t i o H/W h e l p s t o c o n t r o l t h e s u r f a c e w e t t a b i l i t y which may c o n t r i b u t e i n­c r e a s e t h ed r o p le t moving v e l o c i t y a t l e i d e nf r o s t t e m p e r a t u r e.As ex pe ct ed,t h e s i m u l a t i o n s r e v e a l e t h a t t h e d r ag r e­d u c t i o n fe a t u r e i s i m p r o v e d t h r o u g h t h e h y d r o p h o b i c s u rf a c e w i t h a s p e c t r a t i o H/W = 7/12 a t l e i d e n f r o s t t e m p e r a­t u r e s.F u r t he rm or e,t h e e f f e c t s o f v a r i o u s p a r a m e t e r s i n c l u d i n g t e m p e r a t u r e and r a d i u s o f d r o p l e t w e r e a l s o s t u d i e d.The r e s e a r c h o f f e r s deep i n s i g h t i n t o t h e d r a g r e d u c t i o n mechanism b y v a p o r i z a t i o n- d r i v i n g f o r c e.K E Y W O R D S:D r o p l e t;M i c r o- t e x t u r e d;S e l f- p r o p e l l e d;W e t t a b i l i t y;Dr ag r e d u c t i o ni引言微流体系统通过提高液滴的移动性在化学、生物学、工 程和医学领域引起了广泛的关注m。

基于等离子体镜的太赫兹单脉冲选择方法

基于等离子体镜的太赫兹单脉冲选择方法

第18卷 第6期 太赫兹科学与电子信息学报Vo1.18,No.6 2020年12月 Journal of Terahertz Science and Electronic Information Technology Dec.,2020文章编号:2095-4980(2020)06-0957-05基于等离子体镜的太赫兹单脉冲选择方法赵苏宇,吴岱*(中国工程物理研究院应用电子学研究所,四川绵阳 621999)摘 要:研究了一种用于中国工程物理研究院太赫兹自由电子激光装置(CTFEL)输出的太赫兹的单脉冲选择方法,以满足一些对太赫兹脉冲的时间分辨率和峰值强度提出较高要求同时要保证较低平均功率的实验的需要。

利用自诱导等离子体开关技术,太赫兹能够被短脉冲激光打靶产生的等离子体镜反射,从而使等离子体镜可以作为门控开关,选出单个太赫兹微脉冲。

通过理论分析计算出等离子体临界密度和激光功率密度阈值,采用辐射流体模拟软件对激光打靶过程进行数值模拟。

模拟结果表明,激光激发出的等离子体密度远大于临界密度。

由此证明了实验的可行性,进而给出实验所需装置的参数指标以及实验光路设计。

关键词:太赫兹;自由电子激光;等离子体镜;太赫兹开关;单脉冲选择中图分类号:TN248.6文献标志码:A doi:10.11805/TKYDA2019359Theoretical analysis and experimental design of terahertz single-pulse pickingbased on plasma mirrorZHAO Suyu,WU Dai*(Institute of Applied Electronics,China Academy of Engineering Physics,Mianyang Sichuan 621999,China)Abstract:China Academy of Engineering Physics Terahertz Free Electron Laser(CTFEL) needs a terahertz switch for picking of single-pulse, which can facilitate the experiments that require high peakpower but low average power. With the self-induced plasma switching technology, single pulses can bereflected by a plasma mirror on a slab that is generated by short pulse laser. The critical density of theplasma and the threshold of the laser power density are calculated and the numerical simulation of thelaser targeting process is carried out by using the radiation fluid simulation software. The simulationresults show that the plasma density generated by the laser is much larger than the critical density, whichproves the feasibility of the experiment. In addition, the parameters of the experimental equipment and theexperimental optical path design are given.Keywords:terahertz;Free Electron Laser(FEL);plasma mirror;terahertz switch;single-pulse picking自由电子激光器(FEL)可产生波长从远紫外到微波范围内的强相干光源,其中太赫兹(THz)范围的FEL在分子光谱学领域吸引了众多科研人员,这是由于许多分子的振动和转动能级处于太赫兹频段[1]。

云中湍流特征及其在云降水中的作用研究进展

云中湍流特征及其在云降水中的作用研究进展

第5期现在上升气流区顶部附近,为0.1m2·s-3,特征尺度为500~1000m,云中湍流耗散率的平均值约为最大值的50%。

黄兴友等(2020)利用地基毫米波雷达对2016年8月8日四川稻城的一次层状云过程云内湍流进行了反演并分析其特性,发现云内湍流耗散率在云底、云顶较大,云内较小,量级在10-8~10-2m2·s-3。

通过飞机、雷达及高山站原位观测发现了云中湍流具有不均匀性和非平稳性,明确了云中湍流强度在水平及垂直方向上的分布特征,得出了不同类型云中的湍流耗散率的大小。

获得湍流的上述特征对正确理解云中湍流非常重要。

因云中湍流的复杂性及观测设备的局限性,湍流对云及降水的影响还需要结合理论计算、数值模拟等手段进行研究分析。

2湍流在云降水中的作用研究湍流对云和降水的影响因其复杂性一直是云物理学中较难解决的科学难题之一(Grabowski and Wang,2009)。

湍流可提高液滴几何碰撞速率和碰撞效率,与仅考虑重力碰并时的碰撞率相比,可使液滴之间的碰撞率增加好几倍,进而促进降水快速形成及地面降水量的增加。

另外,大气中气象条件(包括云微物理量本身)的起伏会加快云滴的重力碰并生长速度,对降水过程起着十分重要的作用。

2.1云中湍流特性及其对随机凝结增长的影响20世纪60年代,国内外研究者开始通过理论计算的方式研究气流起伏对云滴随机凝结增长的影响。

顾震潮(1962)总结国内外云滴谱的理论研究后指出在云滴谱的研究中应该考虑气象条件起伏对云滴形成过程的作用。

顾震潮和詹麗珊(1962)计算了云中小水滴浓度有起伏时的云雾滴生长特征,发现在起伏条件下,由凝结增长形成的比较窄的云滴谱,也可以比较快的长出大云滴,这是均匀重力碰并做不到的。

周秀骥(1963)发展了云滴生长的随机理论和暖云降水的微物理机制,发现对于半径1~20μm的云滴生长和形成来说起伏凝结与湍流电碰并共同起着重要作用,在一定的湍流强度下,完全可以在10~30min内形成半径为20μm左右、浓度为每立方厘米10个的大云滴。

扫描式总压耙在高超声速推进风洞流场测量中的应用

扫描式总压耙在高超声速推进风洞流场测量中的应用

第19卷第2期实验流体力学Vol.19,No.2 2005年06月Journal of Experiments in Fluid Mechanics Jun.,= ================================================================2005文章编号:1672-9897(2005)02-0071-04扫描式总压耙在高超声速推进风洞流场测量中的应用常远,顾洪斌,陈立红,张新宇(中国科学院力学研究所,高温气体动力学开放实验室,北京100080)摘要:在风洞实验中,为了保证实验结果的可靠性,首先需要了解流场的品质。

笔者自行设计研制了用于高超声速推进风洞流场测量的带有水冷装置的可移动式扫描总压耙。

对于出口截面为300mm×187mm的风洞喷管,通过计算机程序控制,可在3s时间内实现全截面间歇式或连续式扫描,最大移动速度可达250mm/s,而且定位准确。

通过扫描结果,分析了流场压力均匀性、稳定性以及实验结果的可重复性,同时还给出了风洞喷管出口截面的总压与马赫数等值线图。

从而为超燃冲压模型发动机实验提供参考数据。

关键词:扫描式总压耙;超声速喷管流场;总压分布;马赫数分布中图分类号:V43文献标识码:AApplication of scan pitot-pressure rake in hypersonic propulsionwind tunnel flow field measurementCHANG Yuan,GU Hong-bin,CHEN Li-hong,ZHANG Xin-yu (Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Bei-jing100080,China)Abstract:During wind tunnel experiment,flowfield characteristics is always necessary in order to ensure the exactly results.A kind of scan pitot-pressure rake with water cooler was designed in IMCAS for the hyper-sonic propulsion wind tunnel flow measurement.Being controlled by computer,the rake can intermittently orcontinuously scan the whole nozzle flowfield(300mm×187mm)in only3s,with the maximal velocity of250mm/s.This report presents the test data,analyses some main characteristics of flowfield,and also presentsthe pressure isoline distribution and Mach number isoline distribution in the nozzle exit cross section,which isthe useful reference for farther model scramjet testing.Key words:scan pitot-pressure rake;hypersonic nozzle flow;pressure distribution;Mach number distri-bution0引言高超声速推进风洞是用于高超声速飞行器动力系统模拟实验的设备。

高超声速钝头体流动的驻点线理论模型及应用

高超声速钝头体流动的驻点线理论模型及应用
f O2 M 2O M k b
k
(5)
图 1 钝头体流动示意图
其中 M 代表 O2 , O 和 N 2 , 相应的正反应速率为
k f ,1 , k f ,2 和 k f ,3 。根据 Park
[14]
的化学反应数据
2.1基本方程及边界条件
k f ,1 = k f ,3 , k f ,2 / k f ,1 ≈ 3, 其值由 Arrhenius 公式
高超声速钝头体流动的驻点线理论模型及应用
陈松,孙泉华
中国科学院力学研究所高温气体动力学国家重点实验室,北京 100190
摘要 针对大气层内高超声速飞行时的化学非平衡现象,建立了钝头体流动的驻点线理论计算模型。 模型在对轴向速度作线性假设后,通过迭代的方法求解了化学反应和流动的耦合方程,但不涉及边 界层内复合反应占主导的流动。计算得到的激波脱体距离、驻点线流动参数及离解度与文中 CFD 结 果很好地相符。应用该驻点线模型,通过假设氮气为惰性气体,着重研究了高超声速飞行过程中氧 气离解的化学非平衡现象。理论计算表明,氧气的离解度随飞行高度的增加呈先增后减的非单调变 化规律,其原因是由于化学平衡移动与非平衡效应的相互竞争作用。这一结论得到了 CFD 模拟结果 的验证,同时也解释了文献中当飞行高度较高时真实气体效应减弱的现象。进一步计算了轴对称钝 头体绕流流场中的氧气最大离解度及边界层外缘温度随飞行速度和高度变化的等值线图谱,发现氧 气的离解区间显著偏离文献中平衡气体模型给定的范围,而向速度增大的方向弯曲,显示了非平衡 效应对氧气离解的影响。 关键词 高超声速流动,化学非平衡,氧气离解度,钝头体绕流
此时非平衡松弛过程变得重要在很大程度上影响到飞行器的气动性能使得热化学非平衡效应成为飞行器设计的一个重要因素对于高超声速飞行可能遇到的气体热化学变化gupta以半径为0305m形总结了飞行流场驻点区的热化学现象给出了氧气和氮气的各种过程包括振动能激发离解电离在飞行速度和高度范围的发生区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r 2 − R02 Define a new dimensionl ess position η = 2 2 R − R0 R 2 ⇒ r 2 = R02{η[( ) 2 − 1] + 1} = R0 (aη + 1) R0 R0 , R : inner and outer radius (refered to Fig. 2), a = ( R / R0 ) 2 − 1, range of η is[0 : 1].
Utilize Blake − Kozeny equation ∂P ................................(5) 150(1 − ε ) µ ∂r d p : particle size of adsorbent , µ : viscosity. u=−
2 2 d2 pε
direction for the radial flow RPSA are shown in Fig. 2. MATHEMATICAL MODELING To simplify the calculation, the following assumptions were used to model RPSA processes: local equilibrium between the adsorbent and the adsorbate, ideal gas, extended Langmuir isotherm describing adsorption behavior, neglecting the concentration gradient and pressure-drop in the axial direction, the relation between velocity and pressure-drop described by Blake-Kozeny equation, isothermal, and radically dispersed plug flow describing the flow type. Based on these assumptions, the governing equations are:
Simulation of a radial flow rapid pressure swing adsorption process
Wen-Chun Huang (¶À¤å«T )
Department of Chemical Engineering, Kao Yuan Institute of Technology, Lu-Chu, Taiwan, R.O.C
Define t µ = 150(1 − ε ) 2 µL2 eff ε d P
2 2 p 0
, td =
L2 eff Dr
3) − ( 4) become ∂φ ∂ 1 ∂ ∂φ + ( N A + NB ) = [( aη + 1)φ ]...(6) ∂t ∂t t µ ∂η ∂η φ ∂y ∂N ∂N + (1 − y ) A − y B = ∂t ∂t ∂t 1 ∂φ ∂y 1 ∂ ∂( yφ ) ( aη + 1)φ + [( aη + 1) ].(7) tµ ∂η ∂η t d ∂η ∂η
For local equilibriu m model ∂N A ∂N * ∂N * A ∂N B B = ; = ........................(9) ∂t ∂t ∂t ∂t
Boundary conditions for pressure are tµ q ∂φ =− (η = 0©Î 1)..............(10) ∂η (aη + 1)Vbed εφ Boundary conditions for mole fraction are at inlet end t d ( y feed − y in ) q ∂y =− (η = 0©Î 1)...........(11) ∂η ( aη + 1)Vbedε at outlet end ∂y = 0. ∂η
Total mass balance ∂C 1 − ε ∂ 1 ∂ + ( nA + n B ) = − (Cur)...........(1) ∂t ε ∂t r ∂r Mass balance for component A ∂CA 1 − ε ∂n A 1 ∂ + =− (C Aur ) + ∂t ε ∂t r ∂r ∂C A 1 ∂ ( Dr r ).............(2) r ∂r ∂r where C : total molar concentration in the gas, C A : molar concentration for component A, n A , n B : amounts of adsorption on adsorbent , u : velocity, Dr : radial dispersion coefficien t, r : distance, t : time, ε : void fraction of adsorber. Apply the ideal gas law, C = P / RT ∂P 1 − ε ∂ 1 ∂ + RT (n A + nB ) = − ( Pur)....(3) ∂t ε ∂t r ∂r
and Cheng-tung Chou (©P¥¿°ó )
Department of Chemical Engineering, National Central University, Chung-Li, Taiwan, R.O.C
Abstract- Compared to axial flow pressure swing adsorption (PSA) processes, radial flow PSA processes can have the larger cross section for the same volume of adsorbers. Radial flow PSA processes, thus, may have the advantage of low pressure-drop for the same volume flow rate and small particle size of adsorbent can be use for the same pressure-drop. A simulation program has been developed to simulate the dynamic of the adsorbers for the radial flow and the axial flow rapid PSA processes. The simulation results of an axial rapid PSA were compared with the experimental data in the literary. The effects of particle size of adsorbent, feed pressure, production rate, and feed direction on purity and recovery were explored also. Keywords : radial flow, rapid pressure swing adsorption, simulation, air separation INTRODUCTION Pressure swing adsorption (PSA) processes may be divided into multi-bed and single-bed processes according to the number of adsorbers. Single-bed PSA usually has the shorter cycle time compared to multi-bed PSA and is called rapid pressure swing adsorption (RPSA) generally. The larger pressure-drop is another character of RPSA processes. Rota and Wankat (1991) proposed the radial flow PSA first. The radial flow RPSA could provide the larger flowing cross section for the same volume of adsorbers compared to axial flow RPSA and has, thus, the less pressure-drop for the same volume flow rate because of the slower velocity. That is, the smaller particles of adsorbent and the shorter cycle time can be applied to obtain the higher productivity, or the quantity of adsorbent and the volume of adsorbers can be reduced for the same productivity. In addition, the scale- up of a radial RPSA is easier because this kind of processes can remove the restriction of height. “As competitive pressures are driving companies to operate their PSA units with high superficial velocities and short mass-transfer zones, radial bed designs are becoming more and more popular.” (LaCava et al., 1998) The radial flow RPSA is a potential process, although, the studies about this kind of processes are few. Rota and Wanket (1991) proposed the idea of radial flow and Chiang and Hong (1995) do the experimental study of a radial RPSA process. A RPSA for separating air by 5A zeolite was studied. The mathematical modeling suited for both of the simulations of radial flow RPSA processes and axial flow RPSA processes was developed. The simulation results for the axial flow RPSA was compared to the experimental results of Pritchard and Simpson (1986). The RPSA studied is a three-step process, as shown in Fig. 1. The diagram of an adsorber and the flow
相关文档
最新文档