2017届高考数学专题7解析几何第27练直线与圆文

合集下载

2017浙江高考---历年直线与圆高考及模拟真题

2017浙江高考---历年直线与圆高考及模拟真题

1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x -y +5=0或2x -y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x +y +5=0或2x +y -5=02.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( )A .2 6B .8C .4 6D .103.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-344.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .2105.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=06.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-87.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.4π5B.3π4C .(6-25)π D.5π48.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是________.9.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C 截x轴所得弦的长为23,则圆C的标准方程为________.10.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.11.在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为________.12.直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于________.13.直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.14.已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=________.1.已知直线l 1:ax +(a +2)y +1=0,l 2:x +ay +2=0.若l 1⊥l 2,则实数a 的值是( )A .0B .2或-1C .0或-3D .-32.已知倾斜角为α的直线l 与直线x -2y +2=0平行,则tan 2α的值为( )A.45B.43C.34D.233.已知圆C :(x +1)2+y 2=r 2与抛物线D :y 2=16x 的准线交于A ,B 两点,且|AB |=8,则圆C 的面积为( )A .5πB .9πC .16πD .25π4.圆心在原点且与直线y =2-x 相切的圆的方程为________.5.已知直线3x -y +2=0及直线3x -y -10=0截圆C 所得的弦长均为8,则圆C 的面积是________.6.设直线ax +2y +6=0与圆x 2+y 2-2x +4y =0相交于点P ,Q 两点,O 为坐标原点,且OP ⊥OQ ,则实数a 的值为________.7.已知直线l :3x +y -6=0和圆心为C 的圆x 2+y 2-2y -4=0相交于A ,B 两点,则线段AB 的长度等于________.8.已知圆C :(x -4)2+(y -3)2=1和两点A (-m ,0),B (m ,0)(m >0),若圆C 上至少存在一点P ,使得∠APB =90°,则m 的取值范围是________.9.由直线y =x +1上的点向圆(x -3)2+(y +2)2=1引切线,则切线长的最小值为________.10.已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x -1被该圆所截得的弦长为22,则过圆心且与直线l 垂直的直线方程为________.11.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为________.12.已知定点A (-2,0),F (1,0),定直线l :x =4,动点P 与点F 的距离是它到直线l 的距离的12.设点P 的轨迹为C ,过点F 的直线交C 于D 、E 两点,直线AD 、AE 与直线l 分别相交于M 、N 两点.(1)求C 的方程;(2)以MN 为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.直线与圆【两年高考真题演练】1.D [设所求切线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求切线的直线方程为2x +y +5=0或2x +y -5=0,故选D.]2.C [由已知,得AB→=(3,-1),BC →=(-3,-9),则AB →·BC →=3³(-3)+(-1)³(-9)=0,所以AB→⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.]3.D [圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径r =1.(-2,-3)关于y 轴的对称点为(2,-3).如图所示,反射光线一定过点(2,-3)且斜率k 存在,∴反射光线所在直线方程为y +3=k (x -2),即kx -y -2k -3=0. ∵反射光线与已知圆相切,∴|-3k -2-2k -3|k 2+(-1)2=1,整理得12k 2+25k +12=0,解得k =-34或k =-43.]4.C [圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径为r =2,因此2+a ³1-1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(-4-2)2+(-1-1)2-4=6,选C.]5.D [直线过圆心(0,3),与直线x +y +1=0垂直,故其斜率k =1.所以直线的方程为y -3=1³(x -0),即x -y +3=0.故选D.]6.B [圆的方程可化为(x +1)2+(y -1)2=2-a ,因此圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,又弦长为4,因此由勾股定理可得(2)2+⎝ ⎛⎭⎪⎫422=(2-a )2,解得a =-4.故选B.]7.A8.5 [由题意可知点A 为(0,0),点B 为(1,3).又∵直线x +my =0的斜率k 1=-1m ,直线mx -y -m +3=0的斜率k 2=m ,∴k 1k 2=-1.∴两条动直线互相垂直.又由圆的性质可知,动点P (x ,y )的轨迹是圆,∴圆的直径为|AB |=12+32=10.∴|P A |·|PB |≤|P A |2+|PB |22=|AB |22=5.当且仅当|P A |=|PB |=5时,等号成立.∴|P A |·|PB |的最大值是5.]9.(x -2)2+(y -1)2=4 [∵圆心在直线x -2y =0上,∴可设圆心为(2a ,a ).∵圆C 与y 轴正半轴相切,∴a >0,半径r =2a .又∵圆C 截x 轴的弦长为23,∴a 2+(3)2=(2a )2,解得a =1(a =-1舍去).∴圆C 的圆心为(2,1),半径r =2.∴圆的方程为(x -2)2+(y -1)2=4.]10.x 2+(y -1)2=1 [因为(1,0)关于y =x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y -1)2=1.]11.2555 [圆(x -2)2+(y +1)2=4的圆心为C (2,-1),半径r =2,圆心C 到直线x +2y -3=0的距离为d =|2+2³(-1)-3|12+22=35,所求弦长l =2r 2-d 2=24-95=2555.]12.43[如图所示,设l 1与圆O :x 2+y 2=2相切于点B ,l 2与圆O :x 2+y 2=2相切于点C ,则OB =2,OA =10,AB =2 2.∴tan α=OB AB =222=12.∴tan ∠BAC =tan 2α=2tan α1-tan 2α=2³121-14=43.]13.2 [由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=cos 45°=22,所以a 2=b 2=1,故a 2+b 2=2.]14.4±15 [由△ABC 为等边三角形可得,C 到AB 的距离为3,即(1,a )到直线ax +y -2=0的距离d =|a +a -2|1+a 2=3,即a 2-8a +1=0,可求得a =4±15.]【一年模拟试题精练】1.C [因为l 1⊥l 2,所以a +a (a +2)=0,则a =0或a =-3,故选C.]2.B [直线的斜率为12,即直线l 的斜率为k =tan α=12,所以tan 2α=2tan α1-tan 2α=2³121-⎝ ⎛⎭⎪⎫122=134=43,选B.] 3.D [抛物线的准线方程为x =-4,而圆心坐标为(-1,0),所以圆心到直线的距离为3,所以圆的半径为5,故圆面积为25π.]4.x 2+y 2=2 [由题意知利用点到直线的距离公式得到圆的半径r =2,所以所求圆的方程为x 2+y 2=2.]5.25π [∵直线3x -y +2=0与直线3x -y -10=0平行,且截圆C 所得的弦长均为8,∴圆心到两直线的距离相等,两平行直线的距离d =|-10-2|(3)2+1=122=6,即圆心到直线3x -y +2=0的距离为d =3,则圆的半径R =42+32=5,故圆C 的面积是25π.]6.-2 [因为圆x 2+y 2-2x +4y =0,所以圆经过原点,圆的圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2即(1,-2),因为直线ax +2y +6=0与圆x 2+y 2-2x +4y =0相交于点P ,Q ,O 为坐标原点,且OP ⊥OQ ,所以圆的圆心在直线ax +2y +6=0上,所以a -4+6=0,所以a =-2.]7.4305 [圆心C 的坐标为(0,1),半径为5,所以圆心到直线l :3x +y -6=0的距离d =210,利用勾股定理得到|AB |=4305.] 8.[4,6] [根据题意可以得到以AB 为直径的圆与圆C 至少有一个公共点,即|m -1|≤|OC |≤m +1,而|OC |=5,所有4≤m ≤6.]9.17 [根据题意画出图形,当AC 垂直与直线y =x +1时,|AC |最短,此时|BC |=|AC |2-|AB |2最小,由圆的方程得:圆心A (3,-2),半径|AB |=1,圆心A 到直线y =x +1的距离|AC |=62=32,则切线长的最小值|BC |=|AC |2-|AB |2=17.]10.x +y +1=0 [设圆心坐标为(a ,0),则由直线l :x -y -1=0被圆C 所截得的弦长为22,得⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1,∵圆心在x 轴的负半轴上,∴a =-1,故圆心坐标为(-1,0),∵直线l 的斜率为1,∴过圆心且与直线l 垂直的直线的方程为y -0=-(x +1),即x +y +1=0,故答案为:x +y +1=0.]11.(2+2)π2[每次转动一个边长时,圆心角转过60°,正方形有4边,所以需要转动12次,回到起点,在这11次中,半径为1的6次,半径为2的3次,半径为0的2次,点A 走过的路径的长度=112³2π³1³6+112³2π³2³3=(2+2)π2.] 12.解 (1)F (1,0),设P (x ,y )为C 上任意一点,依题意有(x -1)2+y 2|x -4|=12,∴x 24+y 23=1. (2)易知直线DE 斜率不为0,设直线DE 方程为x =ty +1,由⎩⎨⎧x =ty +1x 24+y 23=1,得(3t 2+4)y 2+6ty -9=0,设D (x 1,y 1),E (x 2,y 2),则y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4, 由A (-2,0),知AD 方程为y -0=y 1-0x 1+2(x +2),点M 坐标为⎝ ⎛⎭⎪⎫4,6y 1x 1+2, 同理,点N 坐标为⎝ ⎛⎭⎪⎫4,6y 2x 2+2,由对称性,若定点存在,则定点在x 轴上,设G (n ,0)在以MN 为直径的圆上,则GM →²GN →=⎝ ⎛⎭⎪⎫4-n ,6y 1x 1+2²⎝ ⎛⎭⎪⎫4-n ,6y 2x 2+2 =(4-n )2+36y 1y 2(x 1+2)(x 2+2)=0, ∴(4-n )2+36y 1y 2(ty 1+3)(ty 2+3) =(4-n )2+36y 1y 2t 2y 1y 2+3t (y 1+y 2)+9=0, 即(4-n )2+36³(-9)-9t 2+3t (-6t )+9(3t 2+4)=0,(4-n )2-9=0,n =1或n =7,∴以MN 为直径的圆恒过x 轴上两定点(1,0)和(7,0).。

2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)

2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)

95 4 3
x
3

31(2016 年新课标 1 理)设圆 x2 y2 2x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l
交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.(I)证明 EA EB 为定值,并写出点 E 的轨迹
方程。
【详细解答】(I)圆心为 A(1, 0) ,圆的半径为 AD 4 , AD AC ,
22.(2015 北京文)圆心为 1,1 且过原点的圆的方程是( D )
A. x 12 y 12 1
B. x 12 y 12 1
C. x 12 y 12 2
D. x 12 y 12 2
23.(2015 年广东理)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是( D )
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h

2017 年 月 日 : — :
数学 次课
历年高考试题集锦——直线和圆
1.(2012 辽宁文)将圆 x2+y2 -2x-4y+1=0 平分的直线是( C )
(A)x)x-y+1=0 (D)x-y+3=0
4 的距离为
5 ,则圆 C 的方程为____ (x 2)2 y2 9. ______
5
19、(2016 年全国 I 卷)设直线 y=x+2a 与圆 C:x2+y2-2ay-2=0 相交于 A,B 两点,若
,则圆 C
的面积为 4π . 20、(2016 年全国 III 卷)已知直线 l : x 3y 6 0 与圆 x2 y2 12 交于 A, B 两点,过 A, B 分别作 l

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。

高考数学专题7解析几何之直线与圆

高考数学专题7解析几何之直线与圆

壹高考数学专题七解析几何之直线与圆的方程一、直线 ●1.直线的方程(1)直线l 的倾斜角α的取值范围是0απ≤<;平面内的任意一条直线都有唯一确定的倾斜角。

(2)直线l 的斜率tan (0,k ααπ=≤<且2πα≠)。

变化情况如下:斜率的计算公式:若斜率为k 的直线过点111(,)P x y 与222(,)P x y ,则211221()k x x x x =≠-。

(3)直线方程的五种形式贰●2.两条直线位置关系(1)设两条直线111:l y k x b =+和222:l y k x b =+,则有下列结论:1212//l l k k ⇔=且12b b ≠; 12121l l k k ⊥⇔⋅=-。

(2)设两条直线111111:0(,l A x B y C A B ++=不全为0)和2222:0l A x B y C ++=22(,A B ,不全为0),则有下列结论:12//l l ⇔12210A B A B -=且12210BC B C -≠或12210A B A B -=且12210AC A C -≠; 12l l ⊥⇔12120A A B B +=。

(3)求两条直线交点的坐标:解两条直线方程所组成的二元一次方程组而得解。

(4)与直线0Ax By C ++=平行的直线一般可设为0Ax By m ++=;与直线0Ax By C ++=垂直的直线一般可设为0Bx Ay n -+=。

(5)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系:111222222()0(0)A x B y C A x B y C A x B y C λ+++++=++=其中不包括直线●3.中点公式:平面内两点111(,)P x y 、222(,)P x y ,则12,P P 两点的中点(,)P x y 为1212,22y y x x x y ++==。

●4.两点间的距离公式:平面内两点111(,)P x y ,222(,)P x y ,则12,PP两点间的距离为:12PP 。

09直线与圆(高考押题)-2017年高考数学(文)考纲解读与热点难点突破含解析

09直线与圆(高考押题)-2017年高考数学(文)考纲解读与热点难点突破含解析

1.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.4错误!C.6 D.2错误!【答案】C【解析】圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,所以a=-1,从而A(-4,-1),|AB|=错误!=错误!=6。

2.已知圆x2+y2+mx-错误!=0与抛物线y=错误!x2的准线相切,则m=( )A.±2错误!B.±错误!C.错误!D。

错误!【答案】B【解析】抛物线的准线为y=-1,将圆化为标准方程得错误!2+y2=错误!,圆心到准线的距离为1=错误!⇒m=±3。

3.若动点A,B分别在直线l1:x+y-7=0和l2:x +y-5=0上运动,则AB的中点M到原点的距离最小值为( )A。

错误! B.2错误!C.3 2 D.4错误!【答案】C4.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.-错误!或-错误!B.-错误!或-错误!C.-错误!或-错误!D.-错误!或-错误!【答案】D5.两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则错误!+错误!的最小值为()A.1 B.3C。

错误! D.错误!【答案】A【解析】x2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则a2+2b2=1+2=3,即a2+4b2=9,所以错误!+错误!=错误!错误!=错误!错误!≥错误!错误!=1,当且仅当错误!=错误!即a=±错误!b时取等号,故选A.6.已知圆的方程为(x-1)2+(y-1)2=9,点P (2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是( )A.3错误!B.4错误!C.57 D.6错误!【答案】D【解析】依题意,圆的最长弦为直径,最短弦为过点P垂直于直径的弦,所以|AC|=2×3=6。

高三数学第二轮专题复习必备精品系列教案习题(7)--_直线与圆的方程 注:【高三数学第二轮专题复习必备精

高三数学第二轮专题复习必备精品系列教案习题(7)--_直线与圆的方程    注:【高三数学第二轮专题复习必备精

高三数学第二轮专题复习系列(7)直线与圆的方程注:【高三数学第二轮专题复习必备精品系列教案习题共10讲全部免费欢迎下载】一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

2017年高考数学理试题分类汇编:直线与圆

2017年高考数学理试题分类汇编:直线与圆

14.(2017年新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-【解析】如图所示,不等式组表示的可行域为ABC ∆易求得1111(1,1),(,),(,)3333A B C ---直线32z x y =-在x 轴上的截距越小,z 就越小 所以,当直线直线32z x y =-过点A 时,z 取得最小值 所以z 取得最小值为3(1)215⨯--⨯=-(2017年新课标Ⅰ文) 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为 (D)A .0B .1C .2D .37. ( 2017年新课标Ⅱ文)设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是 ( A)A. -15B.-9C. 1 D 913.(2017年新课标Ⅲ卷理)若x ,y 满足约束条件y 0200x x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z 34x y =-的最小值为__________.【答案】1-【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得,目标函数在点()1,1A 处取得最小值341z x y =-=- .5. ( 2017年新课标Ⅱ卷理)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A4.(2017年浙江卷)若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.(2017年江苏卷) 13.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .(2017年北京卷理) (4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.(2017年江苏卷) [选修4-1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)PAC CAB ∠=∠; (2)2AC AP AB =⋅.【选修4-1:几何证明选讲】(本小题满分10分)【解析】(1)因为PC 是圆O 的切线,所以PCA CBA =∠∠,又AP ⊥PC ,所以90PAC PCA +=︒∠∠,因为B 为半圆O 的直径,所以90CAB CBA +=︒∠∠,所以PAC CAB ∠=∠. (2)由(1)可得PAC CAB △∽△,所以PA AC CA AB=,所以2·AC AP AB =. 5.( 2017年全国Ⅲ卷文)设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是()A. []3,0-B.[]3,2-C.[]0,2 D []0,3 【答案】选B【解析】由题意,画出可行域,端点坐标 ()0,0O ,()0,3A ,()2,0B . 在端点,A B 处分别取的最小值与最大值. 所以最大值为2,最小值为3-. 故选B20( 2017年全国Ⅲ卷文)在直角坐标系xOy 中,曲线22-+=mx x y 与x 轴交于B A ,两点,点C 的坐标为(0,1)。

方法篇练习:专题7 解析几何 第28练 含解析

方法篇练习:专题7 解析几何 第28练 含解析

第28练椭圆问题中最值得关注的基本题型[题型分析·高考展望]椭圆问题在高考中占有比较重要的地位,并且占的分值也较多.分析历年的高考试题,在选择题、填空题、解答题中都有涉及到椭圆的题,所以我们对椭圆知识必须系统的掌握.对各种题型,基本的解题方法也要有一定的了解.体验高考1.(2015·广东)已知椭圆x225+错误!=1(m〉0)的左焦点为F1(-4,0),则m等于()A.2 B.3 C.4 D.9答案B解析由题意知25-m2=16,解得m2=9,又m>0,所以m=3。

2.(2015·福建)已知椭圆E:错误!+错误!=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于错误!,则椭圆E的离心率的取值范围是()A。

错误! B.错误!C.错误!D。

错误!答案A解析设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形.∵|AF|+|BF|=4,∴|AF |+|AF 0|=4,∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =c a =错误!= 错误!= 错误!∈错误!,故选A.3.(2016·课标全国丙)已知O 为坐标原点,F 是椭圆C :错误!+错误!=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为椭圆C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则椭圆C 的离心率为( ) A 。

错误! B 。

错误! C.错误! D 。

错误!答案 A解析 设M (-c ,m ),则E 错误!,OE 的中点为D ,则D 错误!,又B ,D ,M 三点共线,所以错误!=错误!,a =3c ,e =错误!。

4.(2015·浙江)已知椭圆错误!+y 2=1上两个不同的点A ,B 关于直线y =mx +错误!对称.(1)求实数m 的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解(1)由题意知m≠0,可设直线AB的方程为y=-错误!x+b。

-2017年高考文科数学真题汇编:直线和圆老师版(可编辑修改word版)

-2017年高考文科数学真题汇编:直线和圆老师版(可编辑修改word版)

学科教师辅导教案学员姓名 年 级 高三 辅导科目数 学授课老师课时数 2h第次课授课日期及时段2017 年月日:—:历年高考试题集锦——直线和圆1.(2012 辽宁文)将圆 x 2+y 2 -2x-4y+1=0 平分的直线是( C ) (A )x+y-1=0(B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=02.(2012 浙江文)设 a ∈R ,则“a =1”是“直线 l 1:ax+2y=0 与直线 l 2 :x+(a+1)y+4=0 平行的( A ) A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件3.(2014 湖南文)若圆C : x 2 + y 2 = 1 与圆C : x 2 + y 2 - 6x - 8 y + m = 0 外切,则 m = ( C )12A .21B .19C .9D . -114.(2012 ft 东文)圆(x + 2)2 + y 2 = 4 与圆(x - 2)2 + ( y -1)2 = 9 的位置关系为( B ) (A)内切(B)相交(C)外切(D)相离5.(2013 江西文)若圆 C 经过坐标原点和点(4,0),且与直线 y=1 相切,则圆 C 的方程是 。

【答案】(x - 2)2 + ( y + 3)2 =25246.(2012 安徽文)若直线 x - y +1 = 0 与圆(x - a )2 + y 2 = 2 有公共点,则实数 a 取值范围是(C )( A ) [-3, -1] (B ) [-1, 3] (C ) [-3,1] (D ) (-∞, -3] [1, +∞)7.(2013 安徽文)直线 x + 2 y - 5 + 5 = 0 被圆 x 2 + y 2 - 2x - 4 y = 0 截得的弦长为(C )(A )1 (B )2(C )4(D ) 4 68.(2014 安徽文)过点 P (- 3,-1)的直线 l 与圆 x 2 + y 2 = 1有公共点,则直线 l 的倾斜角的取值范围是( D )A (. 0, ]B (. 0, ] C.[0, ] D.[0, ] 6 3 6 39.(2012 福建文)直线 x + 3y - 2 = 0 与圆 x 2 + y 2 = 4 相交于 A , B 两点,则弦 AB 的长度等于( B )A . 2 5B . 2 3C . 3D .133 3 3 2 22 4 5 5广东文) 10(2012在平面直角坐标系 xOy 中,直线3x + 4 y - 5 = 0 与圆 x 2 + y 2 = 4 相交于 A , B 两点, 则弦 AB 的长等于(B )(A ) ) 3 (B )2 (C )(D )1已知点 M (a ,b )在圆O : x 2 + y 2 = 1 外, 则直线 ax + by = 1 与圆 O 的位置关系是( B )(A) 相切(B) 相交(C) 相离(D) 不确定已知圆 x 2 + y 2 + 2x - 2 y + a = 0 截直线 x + y + 2 = 0 所得弦的长度为4,则实数 a 的值为(B )A. - 2 B. - 4 C. - 6 D. - 813.(2013 天津文)已知过点 P (2,2)的直线与圆(x -1)2+y 2=5 相切,且与直线 ax -y +1=0 垂直,则 a 等于(1C ) A .-21B.1C .2 D.2【简解】圆心为 O (1,0),由于 P (2,2)在圆(x -1)2+y 2=5 上,∴P 为切点,OP 与 P 点处的切线垂直. 2-0∴K OP = =2,又点 P 处的切线与直线 ax -y +1=0 垂直.∴a =K OP =2,选 C.2-114.(2014 ft 东文)圆心在直线 x - 2 y = 0 上的圆C 与 y 轴的正半轴相切,圆C 截 x 轴所得弦的长为2 ,则圆C 的标准方程为 (x - 2)2 + ( y -1)2 = 4 。

(新高考)高考数学冲刺专项课件:专题七 解析几何 第一讲 直线与圆

(新高考)高考数学冲刺专项课件:专题七 解析几何  第一讲 直线与圆
养成良好的答题习惯,是决定高考数学成败的决定性因素之一。做题前, 要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌 跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要 善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检 查,查漏补缺,纠正错误。总之,在最后的复习阶段,学生们不要加大练习量。 在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去面 对考试。数学最后的复习要树立信心,考试的时候遇到难题要想“别人也难”, 遇到容易的则要想“细心审题”。越到最后,考生越要回归基础,单词最好再 梳理一遍,这样有利于提高阅读理解的效率。另附高考复习方法和考前30天冲 刺复习方法。
3 4 a 8 3 4 ,得 5 a 7 .故 D 正确.
2 33
『规律总结』
求圆的方程有两类方法: (1) 几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系, 进而求得圆的半径和圆心,得出圆的方程; (2) 代数法,求圆的方程必须具备三个独立条件, 利用“待定系数法”求出圆心和半径.
(2)三种距离公式 ①两点间的距离:若 A(x1,y1),B(x2,y2), 则|AB|= x2-x1 2+ y2-y1 2. ②点到直线的距离:点 P(x0,y0)到 直线 Ax+By+C=0 的距离 d=|Ax0+By0+C|.
A2+B2 ③两平行线的距离: 若直线 l1,l2 的方程分别为 l1:Ax+By+C1=0,l2:Ax+By+C2=0, 则两平行线的距离 d= |C2-C1| .
[跟踪训练]
2.已知过抛物线 C : y2 4x 的焦点 F 的直线 l
与抛物线交于 A x1, y1 , B x2 , y2 两点,若 x1 x2 x1x2 y1 y2 0 ,

2017届高考数学(文科)- 直线与圆、圆锥曲线的概念、方程与性质-专题练习-答案

2017届高考数学(文科)- 直线与圆、圆锥曲线的概念、方程与性质-专题练习-答案

)()5,10直线与圆、圆锥曲线的概念、方程与性质解析一、选择题1.解析:由两直线平行得=≠,解得a=1.故选A.2.解析:直线过圆心(1,-2),得a=4.(1,-1)到圆心距离为1,圆半径为,所求弦长为4.选D.3.解析:y2=4x的焦点坐标为(1,0),故选D.4.解析:因为M(0,3)关于直线x+y=0的对称点为P(-3,0),又N(3,8),所以|AC|+|BC|≥|PN|-1-2=-3=7.选A.5.解析:设双曲线的焦距为2c,由已知得=b,又c2=4+b2,解得c=4,则焦距为8.选D.6.解析:双曲线中,顶点与较近焦点距离为c-a=1,焦点到渐近线的距离是,即b=,所以c2-a2=3,两式联立得,a=1,c=2,所以方程为x2-=1.选A.7.解析:依题意知C2的焦点即C1的右顶点,故C2的准线为x=-a,将其代入C1的渐近线方程y=±x,即知该等边三角形的边长为2b,高为a,故a=b,又c2=a2+b2,所以离心率e===.选D.8.解析:由双曲线的定义知,|BF1|-|BF2|=2A.又因|AB|=|BF2|,所以|AF1|=2a,又由定义可得,|AF2|=4A.在三角形AF1F2中,又因|F1F2|=2c,∠F1AF2=120°,所以由余弦定理得,(2c)2=(2a)2+(4a)2-2·2a·4a·cos 120°,解得c2=7a2,所以e==.选B.9.解析:因为准线方程为x=-1,双曲线的渐近线方程为y=±x,所以|y0|=<2,所以e=<,又e>1,所以1<e<.选B.10.解析:过B作BE⊥l于E.设l与x轴的交点为D,则=.因为=5,所以===,所以||=4,又||=||+3=7,所以||=5||=35.选B.11.解析:设M(x,y),因为|MA|2+|MO|2=10,所以有x2+(y-2)2+x2+y2=10,即x2+(y-1)2=4,由于点M还在直线l上,所以直线与圆相交或相切,即≤2解得-2-1≤a≤2-1.选D.二、填空题12.解析:由题意知,1<<2⇒-10<m<-5或5<m<10.13.解析:设抛物线的方程为y2=2px(p>0),抛物线的准线方程为x=-,由抛物线的定义可得,2+=,解得p=1.即抛物线的方程为y2=2x.14.解析:双曲线-=1的渐近线方程为y=±x,故y=x经过点(1,2),可得b=2a,故双曲线的离心率e====.。

高考数学 专题9 平面解析几何 67 直线与圆、圆与圆的

高考数学 专题9 平面解析几何 67 直线与圆、圆与圆的

【步步高】(江苏专用)2017版高考数学 专题9 平面解析几何 67 直线与圆、圆与圆的位置关系 理切,圆心在直线x +y =0上,则圆C 的方程为________________.2.(2015·西安西北工业大学附中第一次适应性训练)直线(a +1)x +(a -1)y +2a =0(a ∈R )与圆x 2+y 2-2x +2y -7=0的位置关系是________.3.(2015·潍坊模拟)圆C :(x -1)2+y 2=25,过点P (2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是________.4.(2015·南昌一模)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是________.5.已知P ={(x ,y )|x +y =2},Q ={(x ,y )|x 2+y 2=2},那么P ∩Q =________.6.(2015·广东中山一中等七校第二次联考)M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,则直线x ·x 0+y ·y 0=a 2与该圆的位置关系为________.7.(2015·天水秦安第二中学第四次检测)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R ,且ab ≠0,则1a 2+1b2的最小值为________. 8.圆C 1:x 2+y 2=16与C 2:(x -4)2+(y +3)2=r 2(r >0)在交点处的切线互相垂直,则r =________.9.(2015·大庆二模)能够把圆O :x 2+y 2=9的周长和面积同时分为相等的两部分的函数f (x )称为圆O 的“亲和函数”,下列函数不是圆O 的“亲和函数”的是________.①f (x )=4x 3+x 2;②f (x )=ln 5-x 5+x ;③f (x )=e x +e -x2;④f (x )=tan x 5. 10.已知圆C 的方程为x 2+y 2-2y -3=0,过点P (-1,2)的直线l 与圆C 交于A ,B 两点,若使AB 最小,则直线l 的方程是________________.11.圆x 2+y 2+2x +4y -3=0上到直线l :x +y +1=0的距离为2的点有________个.12.(2015·济南模拟)已知P 是直线3x +4y -10=0上的动点,PA ,PB 是圆x 2+y 2-2x +4y +4=0的两条切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.13.(2015·甘肃天水一中一模)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C的半径为1,圆心在l上,若圆C上存在点M,使MA=2MO,则圆心C的横坐标a的取值范围为________.14.已知P(2,0)为圆C:x2+y2-2x+2my+m2-7=0(m>0)内一点,过点P的直线AB交圆C 于A,B两点,若△ABC面积的最大值为4,则正实数m的取值范围为________.答案解析1.(x -1)2+(y +1)2=2解析 设圆心坐标为(a ,-a ),由r =|a +a |2=|a +a -4|2得a =1,∴r = 2.该圆的标准方程为(x -1)2+(y +1)2=2.2.相交解析 圆x 2+y 2-2x +2y -7=0,即(x -1)2+(y +1)2=9,表示以O (1,-1)为圆心、3为半径的圆.圆心到直线的距离d =|a +1-a -1+2a |a +12+a -12=|2a +2|2a 2+2. 9-d 2=9-4a 2+8a +42a 2+2=7a 2-4a +7a 2+1,而方程7a 2-4a +7=0的判别式Δ=16-196=-180<0,故有9>d 2,即d <3,故直线和圆相交.3.1023解析 因为圆的方程为(x -1)2+y 2=25,所以圆心坐标为C (1,0),半径r =5,因为点P (2,-1)是该圆内一点,所以经过点P 的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.因为|PC |=2,所以与PC 垂直的弦长为225-2=223.因此所求四边形的面积S =12×10×223=1023.4.相交解析 圆O 1的圆心坐标为(1,0),半径r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2. 故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2, 故两圆相交.5.{(1,1)}解析 解方程组⎩⎪⎨⎪⎧ x 2+y 2=2,x +y =2,得x =y =1.6.相离解析 ∵点M 在圆内,∴x 20+y 20<a 2(a >0).圆心到直线的距离d =a 2x 20+y 20>a , 即d >r ,故直线与圆相离.7.9解析 ∵圆C 1:(x +2a )2+y 2=4和圆C 2:x 2+(y -b )2=1只有一条公切线,∴两圆内切,|C 1C 2|=2-1=1,即4a 2+b 2=1.1a 2+1b 2=(4a 2+b 2)(1a 2+1b 2)=5+b 2a 2+4a 2b 2≥9,当且仅当b 2=2a 2,即a 2=16,b 2=13时取等号.8.3解析 设其中一个交点为P (x 0,y 0),则⎩⎪⎨⎪⎧ x 20+y 20=16,x 0-42+y 0+33=r 2可得r 2=41-8x 0+6y 0,∵两切线互相垂直,∴过交点的两半径也互相垂直,即y 0x 0·y 0+3x 0-4=-1,∴3y 0-4x 0=-16,∴r 2=41-8x 0+6y 0=41+2(3y 0-4x 0)=41-32=9,∴r =3.9.③解析 若函数f (x )是圆O 的“亲和函数”,则函数的图象经过圆心且关于圆心对称.圆O :x 2+y 2=9的圆心为坐标原点,①中f (x )=4x 3+x 2,②中f (x )=ln 5-x5+x ,④中f (x )=tan x5的图象均过圆心O (0,0),在③中,f (x )=e x +e -x 2的图象不过圆心,不满足要求. 10.x -y +3=0解析 易知点P 在圆的内部,根据圆的性质,若使AB 最小,则AB ⊥CP ,因为圆心C (0,1),所以k CP =2-1-1-0=-1,k l =1, 因此直线l 的方程为y -2=x +1,即x -y +3=0.11.3解析 圆的方程化为标准方程为:(x +1)2+(y +2)2=8.圆心为(-1,-2),圆的半径为22,圆心到直线l 的距离为|-1-2+1|12+12=22= 2.因此和l 平行的圆的直径的两端点及与l 平行的圆的切线的切点到l 的距离都为 2.12.2 2解析 圆的标准方程为:(x -1)2+(y +2)2=1,其圆心C (1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB 的面积等于2S △PAC ,而S △PAC =12PA ·AC =12PA =12PC 2-1, 又 PC min =|3-8-10|5=3, 所以(S △PAC )min =129-1=2, 故四边形PACB 面积的最小值为2 2.13.[0,125]解析 设点M (x ,y ),由MA =2MO , 知x 2+y -32=2x 2+y 2.化简,得x 2+(y +1)2=4,∴点M 的轨迹为以D (0,-1)为圆心,2为半径的圆, 可记为圆D .又∵点M 在圆C 上,∴圆C 与圆D 的关系为相交或相切, ∴1≤CD ≤3.∵圆C 的圆心在直线y =2x -4上,∴设C (a,2a -4), ∴CD =a 2+2a -32,∴1≤a 2+2a -32≤3,解得0≤a ≤125.14.[3,7)解析 圆的标准方程为(x -1)2+(y +m )2=8, 则圆心坐标为(1,-m ),半径r =22,S △ABC =12r 2sin∠ACB =4sin∠ACB ,当∠ACB =90°时,△ABC 的面积取得最大值4, 此时△ABC 为等腰直角三角形,AB =2r =4,则点C 到直线AB 的距离等于2,故2≤PC <22,即2≤1+m 2<22,所以4≤1+m 2<8,即3≤m 2<7,因为m >0,所以3≤m <7.。

专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)

专题七 解析几何  第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)

专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。

江苏省苏州市2017届高三数学 直线与圆 含答案 精品

江苏省苏州市2017届高三数学 直线与圆 含答案 精品

姓名____________学号___________一、填空题1.若直线y =kx +1与直线2x +y -4=0垂直,则k =________.2.若点(1,2)在圆0152:222=-++++k y kx y x C 外,则实数k 的取值范围是_ ____.3.点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则MN 的最小值是____ _.4.在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为 .5.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为 .6.过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 .7.若直线1:l y x a =+和直线2:l y x b =+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22a b += .8.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线012=---m y mx (∈m R)相切的所有圆中,半径最大的圆的标准方程为 .二、解答题:9.已知圆22:30C x y Dx Ey ++++=关于直线10x y +-=对称,且圆心C 在第二象限.(1) 求圆C 的方程;(2)不过原点的直线l 在x 轴、y 轴上的截距相等,且与圆C 相切,求直线l 的方程; (3)若P (x ,y )是圆C 任意一点,分别求x +y ,22y x +,y -2x -1的范围.10.已知⊙22:1O x y +=和点(4,2)M . (1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.直线与圆1.122.)338,2()3,338(⋃-- 3.454.55525.解析:因为两条直线x -y =0与x -y -4=0平行,故它们之间的距离为圆的直径,即2r =42,所以r= 2.设圆心坐标为(,)P a a -,则满足点P 到两条切线的距离都等于半径.==1a =. 故圆心为(1,-1).所以圆的标准方程为22(1)(1)2x y -++=. 6.340x y ±+=7. 解析8.解析:r =222(1)21211m r m m m+==+≤++,所以所求的圆标准方程为:22(1)2x y -+=.也可由直线过定点(2,-1),故r 的最大值为2。

河北省献县第一中学2017届高考数学练习直线和圆(理科专用)含答案

河北省献县第一中学2017届高考数学练习直线和圆(理科专用)含答案

2017年河北省献县第一中学高考数学复习直线和圆(理科专用)函数是把代数问题转化为图像问题,然后看图说话,实现了图像与代数的一一对应的关系。

同样解析几何是把图形问题代数化,从而代数和图形之间也形成了一一对应的关系。

一、解析:坐标系→点的坐标←方程几何:图形→点→性质解析几何的本质:用代数方法解决几何问题,其核心思想是数形结合,即代数(方程) 几何(图形性质)。

二、解决解析几何问题的流程:(1)作图;形状、位置、大小(2)找几何关系:1.平行:平行→角相等;三角形两角相等→相似→对应边成比例;2.垂直:垂直→直角三角形→(勾股定理、三角函数、圆);3.定义:看见焦点想定义;4。

对称:圆、椭圆、双曲线、抛物线;应用:用局部代替整体;(3)把几何关系转化为代数关系;(4)解方程或不等式(方程的解是不等式的临界点)、计算.三、解析几何问题的题目解读:(1)点在曲线上:满足定义或方程;点在曲线外:不满足方程→不等关系;两曲线交点:满足两曲线方程,即方程组的解;(2)离心率:找a,b,c的关系式或找特征直角三角形;(3)看见字母想分类:如曲线系;动点、动直线问题:从头到尾找临界点,化归为求值问题;(4)求值、关系即方程,方程即找等量关系。

找等量关系的方法:1.等量=等量;2。

整体=局部+局部;3。

间接关系A→B→C;方程的三种表现形式:1.()0f x=;2。

(),0f x m=;3。

(),0f m n=, (),0g x m=,(),0h x n=)(5)求范围问题想函数或不等式;四、解析几何问题的解题步骤:步骤(1)画图(2)几何关系(3)代数关系(4)运算备注形状位置大小直线倾斜程度点00(,)P x y与定点的倾斜程度不变(1)tank a=2121y yx x-=-(2)直线方程的形式与应用条件M(x,y)OyxPP l∈y ykx x-=-00()y y k x x-=-圆圆心C(a,b)半径r到圆心的距离等于半径圆的性质:(1)对称(2)垂典型例题分析: 一、选择1.(2014年新课标2卷文科)(12)设点0(x ,1)M (水平位置不定,竖直位置为1),若在圆(对称、垂直)22:xy =1O +(位置确定(0,0),大小确定1r =)上存在点N (定义、方程),使得°45OMN ∠=,则0x 的取值范围(函数或不等式)是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦(D)2222⎡⎤-⎢⎥⎣⎦, 读题读对应,一句一对应: 1。

江苏省2017届高三数学一轮复习专题突破训练:直线与圆 含答案

江苏省2017届高三数学一轮复习专题突破训练:直线与圆 含答案

江苏省2017年高考一轮复习突破训练直线与圆一、填空题1、(2015年江苏高考)在平面直角坐标系xoy 中,以点(1,0)为圆心且与直线210mx y m ---=()m R ∈相切的所有圆中,半径最大的圆的标准方程为_________________。

2、(2014年江苏高考)在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为 ▲ .3、(南京市2016届高三三模)在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为错误!.4、(南通、扬州、泰州三市2016届高三二模)在平面直角坐标系xOy 中,过点()2,0P -的直线与圆221xy +=相切于点T,与圆()(223x a y -+=相交于点,R S ,且PT RS =,则正数a 的值为 ▲ .5、(南通市2016届高三一模)在平面直角坐标系xOy 中,点)0,4(),0,1(B A 。

若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 6、(苏锡常镇四市2016届高三一模)在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :x 2+y 2—6x+5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为 7、(苏锡常镇四市市2016届高三二模)若直线340x y m +-=与圆222440x y x y ++-+=始终有公共点,则实数m 的取值范围是 ▲ .8、(镇江市2016届高三一模)函数f (x )=错误!若关于x 的方程f (x )=kx -k 至少有两个不相等的实数根,则实数k 的取值范围为________.9、(常州市2016届高三上期末)在平面直角坐标系xoy 中,已知圆O:222211,:(4)4xy O x y +=-+=,动点P 在直线0x b -=上,过P 分别作圆O ,O 1的切线,切点分别为AB ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是10、(南京、盐城市2016届高三上期末)过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 ▲11、(苏州市2016届高三上期末)若直线1:l y x a =+和直线2:ly x b=+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22ab += ▲12、(泰州市2016届高三第一次模拟)已知直线(0)y kx k =>与圆22:(2)1C x y -+=相交于,A B 两点,若AB =,则k = ▲13、(扬州市2016届高三上期末)已知圆O :422=+y x,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 ▲ 。

直线与圆(命题猜想)-2017年高考数学(文)命题猜想与仿真押题含解析

直线与圆(命题猜想)-2017年高考数学(文)命题猜想与仿真押题含解析

【考向解读】考查重点是直线间的平行和垂直的条件、与距离有关的问题。

直线与圆的位置关系特别是弦长问题,此类问题难度属于中低档,一般以选择题、填空题的形式出现.【命题热点突破一】直线的方程及应用1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1。

若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.3.两个距离公式(1)两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=错误!.(2)点(x0,y0)到直线l:Ax+By+C=0的距离公式d =错误!。

例1、【2016高考新课标3理数】已知直线:++=与圆2212mx y m330+=交于,A B两点,过,A B分别做的x y垂线与x轴交于,C D两点,若23AB=CD=__________________.||【答案】4【变式探究】(1)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是() A.1或3B.1或5C.3或5D.1或2(2)已知两点A(3,2)和B(-1,4)到直线mx+y +3=0的距离相等,则m的值为()A.0或-错误!B。

错误!或-6C.-12或错误!D.0或错误!【答案】(1)C (2)B【特别提醒】(1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.【变式探究】已知A (3,1),B (-1,2)两点,若∠ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( )A .y =2x +4B .y =错误!x -3C .x -2y -1=0D .3x +y +1=0【答案】 C【解析】 由题意可知,直线AC 和直线BC 关于直线y =x +1对称.设点B (-1,2)关于直线y =x +1的对称点为B ′(x 0,y 0),则有错误!⇒错误!即B ′(1,0).因为B ′(1,0)在直线AC 上,所以直线AC 的斜率为k =1-03-1=错误!, 所以直线AC 的方程为y -1=12(x -3), 即x -2y -1=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27练 直线与圆[题型分析·高考展望] 直线与圆是解析几何的基础,在高考中,除对本部分知识单独考查外,更多是在与圆锥曲线结合的综合题中对相关知识进行考查.单独考查时,一般为选择题、填空题,难度不大,属低中档题.直线的方程,圆的方程的求法及位置关系的判断与应用是本部分的重点.体验高考1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0, 依题意有|0+0+c |22+12=5, 解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0, 故选A.2.(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( ) A .2 6 B .8 C .4 6 D .10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC →=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.3.(2016·课标全国甲)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( ) A .-43 B .-34C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a2=1,解之得a =-43. 4.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为________. 答案255解析 d =|1+1|22+12=255.5.(2016·课标全国丙)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x , 令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0(2)直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0答案 (1)D (2)C解析 (1)由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)由已知,设直线l 的方程为y -2=k (x -2),即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+-2=10,解得k =3,所以直线l 的方程为3x -y -4=0,故选C. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2, 故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2, 则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0. 题型二 圆的方程例2 (1)(2015·湖北)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1 解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径), 则r 2=⎝⎛⎭⎪⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0, 2+1).又点C (1, 2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切. ①求圆C 的方程;②求以圆C 内一点B ⎝ ⎛⎭⎪⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧-a2+-1-b2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎨⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2),则k CB =-52--2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2.故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0. 点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt△PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, ∴圆心C (2,1)在直线x +ay -1=0上, ∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2, ∴|AB |2=40-4=36.∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 (1)圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. (2)假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0, 故所求的直线m 存在, 方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点. 当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45 B.25 C.255 D.105答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22=255, 所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3 2 B .2 2 C .3 3 D .4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=-2+-2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2, ∴两圆相交,故选B.5.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33|AB →|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22) 答案 C解析 当|OA →+OB →|=33|AB →|时,O ,A ,B 三点为等腰三角形的三个顶点,其中|OA |=|OB |,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时,|OA →+OB →|>33|AB →|,又直线与圆x 2+y 2=4存在两交点,故k <22,综上,k 的取值范围是[2,22),故选C.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233,其到原点的距离为12+⎝ ⎛⎭⎪⎫2332=213.故选B.7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径, ∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341--=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理, 得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________.答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆,设过点(-2,0)的直线的斜率为k ,则直线方程为y =k (x +2),则点到直线距离等于圆的半径1,有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点, 那么当满足题意的时候,可知斜率的取值范围是(-24,24), 故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1.由|2k -3+1|k 2+1<1, 得4-73<k <4+73. (2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0, ∴x 1+x 2=+k 1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k +k 1+k 2+8=12, ∴4k +k 1+k 2=4,解得k =1. 12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程. 解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1, ∴m =-43或0, ∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝ ⎛⎭⎪⎫2232=13. 在Rt△MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |,∴|MQ |=3. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。

相关文档
最新文档