2020高考数学大一轮复习板块命题点专练一文

合集下载

高考数学2020届一轮复习专题速递《第一章命题及其关系、充分条件与必要条件》

高考数学2020届一轮复习专题速递《第一章命题及其关系、充分条件与必要条件》

第2节命题及其关系、充分条件与必要条件最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.知识梳理1.命题可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念q⇒[1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且B A),与A的充分不必要条件是B(B⇒A 且A B)两者的不同.3.A是B的充分不必要条件⇔綈B是綈A的充分不必要条件.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)当q是p的必要条件时,p是q的充分条件.()(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()解析(1)错误.该语句不能判断真假,故该说法是错误的.(2)错误.否命题既否定条件,又否定结论.答案(1)×(2)×(3)√(4)√2.(选修2-1P5练习引申)命题“若α=π4,则tan α=1”的逆否命题是()A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4 D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C3.(选修2-1P22B2改编)“若a,b都是偶数,则ab必是偶数”的逆否命题为解析 “a ,b 都是偶数”的否定为“a ,b 不都是偶数”,“ab 是偶数”的否定为“ab 不是偶数”,故其逆否命题为“若ab 不是偶数,则a ,b 不都是偶数”. 答案 若ab 不是偶数,则a ,b 不都是偶数4.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析 由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. 答案 A5.(2017·北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.解析 a >b >c ,取a =-2,b =-4,c =-5,则a +b =-6<c .答案 -2,-4,-5(答案不唯一)6.(2019·安徽江南十校联考)“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的________条件.解析 显然a =0时,f (x )=sin x -1x 为奇函数;当f (x )为奇函数时,f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件.考点一 命题及其关系【例1】 (1)(2019·郑州模拟)下列说法正确的是( )A.“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1”B.“若am 2<bm 2,则a <b ”的逆命题为真命题C.存在x 0∈(0,+∞),使3x 0>4 x 0成立D.“若sin α≠12,则α≠π6”是真命题 (2)(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.解析 (1)对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,A 错;对于B 项,若“am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时am 2=bm 2,所以其逆命题为假命题,B 错;对于C 项,由指数函数的图像知,任意x ∈(0,+∞),都有4x >3x ,C 错;对于D 项,原命题的逆否命题为“若α=π6,则sin α=12”是真命题,故原命题是真命题.(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).答案 (1)D (2)f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2) 规律方法 1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p ,则q ”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.【训练1】 (1)(2018·肇庆一诊)命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( )A.“若a ,b ,c 成等比数列,则b 2≠ac ”B.“若a ,b ,c 不成等比数列,则b 2≠ac ”C.“若b 2=ac ,则a ,b ,c 成等比数列”D.“若b 2≠ac ,则a ,b ,c 不成等比数列”(2)命题p :若x >0,则x >a ;命题q :若m ≤a -2,则m <sin x (x ∈R )恒成立.若p 的逆命题,q 的逆否命题都是真命题,则实数a 的取值范围是________.解析 (1)命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.(2)命题p 的逆命题是若x >a ,则x >0,故a ≥0.因为命题q 的逆否命题为真命题,所以命题q 为真命题,则a -2<-1,解得a <1.则实数a 的取值范围是[0,1). 答案 (1)D (2)[0,1)考点二 充分条件与必要条件的判定【例2】 (1)(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)设函数f (x )=⎩⎪⎨⎪⎧2mx +1,x ≥0,-x -1x ,x <0.则“m >1是f [f (-1)]>4”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析 (1)|a -3b |=|3a +b |⇔(a -3b )2=(3a +b )2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,因此|a -3b |=|3a +b |是“a ⊥b ”的充要条件.(2)当m >1时,f [f (-1)]=f ⎣⎢⎡⎦⎥⎤-(-1)-1(-1)=f (2)=22m +1>4, 当f [f (-1)]>4时,f [f (-1)]=f ⎣⎢⎡⎦⎥⎤-(-1)-1(-1)=f (2)=22m +1>4=22, ∴2m +1>2,解得m >12.故“m >1”是“f [f (-1)]>4”的充分不必要条件.答案 (1)C (2)A规律方法 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据使p ,q 成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练2】 (1)(2018·浙江卷)已知平面α,直线m ,n 满足m α,nα,则“m ∥n ”是“m ∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2019·汉中质检)已知函数f (x )=3x -3-x ,任意a ,b ∈R ,则“a >b ”是“f (a )>f (b )”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 (1)若m α,n α,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α,n α,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.(2)因为f (x )=3x -3-x ,所以f ′(x )=3x ln 3-3-x ln 3×(-1)=3x ln 3+3-x ln 3,易知f ′(x )>0,所以函数f (x )=3x -3-x 为(-∞,+∞)上的单调递增函数,从而由“a >b ”可得“f (a )>f (b )”,由“f (a )>f (b )”可得“a >b ”,即“a >b ”是“f (a )>f (b )”的充要条件.答案 (1)A (2)C考点三 充分条件、必要条件的应用典例迁移【例3】 (经典母题)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0.综上,m 的取值范围是[0,3].【迁移探究1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9,这样的m 不存在.【迁移探究2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10}.∵綈p 是綈q 的必要不充分条件,p 是q 的充分不必要条件.∴p ⇒q 且q p ,即P S .∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10,∴m ≥9,又因为S 为非空集合,所以1-m ≤1+m ,解得m ≥0,综上,实数m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练3】 (2018·浏阳三校联考)设p :实数x 满足x 2-4ax +3a 2<0,a ∈R ;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.若a <0且p 是q 的充分不必要条件,求实数a 的取值范围.解 由p 得(x -3a )(x -a )<0,当a <0时,3a <x <a .由q 得x 2-x -6≤0或x 2+2x -8>0,则-2≤x ≤3或x <-4或x >2,则x <-4或x ≥-2.设p :A =(3a ,a ),q :B =(-∞,-4)∪[-2,+∞),又p 是q 的充分不必要条件.可知A B ,∴a ≤-4或3a ≥-2,即a ≤-4或a ≥-23.又∵a <0,∴a ≤-4或-23≤a <0,即实数a 的取值范围为(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0.[思维升华]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系,并注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”、“否命题”、“逆否命题”.2.充分、必要条件与集合的关系,p ,q 成立的对象构成的集合分别为A 和B .(1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.(2)若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件.[易错防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.基础巩固题组(建议用时:30分钟)一、选择题1.(2019·河南八市联考)命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a ≤b ,则a +c ≤b +cB.若a +c ≤b +c ,则a ≤bC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c解析 将条件、结论都否定.命题的否命题是“若a ≤b ,则a +c ≤b +c ”.答案 A2.设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析 由2-x ≥0,得x ≤2,由|x -1|≤1,得0≤x ≤2.当x ≤2时不一定有0≤x ≤2,而当0≤x ≤2时一定有x ≤2,∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.答案 B3.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A.ac 2>bc 2B.a b >1C.a -c >b -cD.a 2>b 2解析 对于选项A ,a >b ,若c =0,则ac 2=bc 2,故A 错;对于选项B ,a >b ,若a >0,b <0,则a b <1,故B 错;对于选项C ,a >b ,则a -c >b -c ,故C 正确;对于选项D ,a >b ,若a ,b 均小于0,则a 2<b 2,故D 错.答案 C4.(2018·成都诊断)命题p :cos θ=22,命题q :tan θ=1,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由cos θ=22,得θ=±π4+2k π,k ∈Z ,则tan θ=±1,故p q ,p 是q 的不充分条件;由tan θ=1,得θ=π4+k π,k ∈Z ,则cos θ=±22,故q p ,p 是q 的不必要条件;所以p 是q 的既不充分也不必要条件.答案 D5.原命题:设a ,b ,c ∈R ,若“a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个解析 原命题:若c =0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a ,b ,c ∈R ,若“ac 2>bc 2,则a >b ”.由ac 2>bc 2知c 2>0,∴由不等式的基本性质得a >b ,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.答案 C6.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是 綈p ,则a 的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析 由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1. 答案 A7.(2017·北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0;反之m ·n =|m ||n |cos 〈m ,n 〉<0⇒cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.答案 A8.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题.答案 C二、填空题9.王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的________条件(填“充分”“必要”“充要”“既不充分也不必要”中的一个).解析“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要条件.答案必要10.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析①不正确.由log2a>0,得a>1,∴f(x)=log a x在其定义域内是增函数.②正确.由命题的否命题定义知,该说法正确.③不正确,原命题的逆命题为:“若x+y是偶数,则x,y都是偶数”,是假命题,如1+3=4为偶数,但1和3均为奇数.④正确.两者互为逆否命题,因此两命题等价.答案②④11.直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点的充要条件是________. 解析 直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2,解之得-1<k <3.答案 -1<k <312.(2019·陕西师大附中月考)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是________.解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎨⎧⎭⎬⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a +1)]≤0}={x |a ≤x ≤a +1},由q 是p 的必要而不充分条件可知A B ,所以a ≤12且a +1≥1,所以0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 能力提升题组(建议用时:10分钟)13.(2017·浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析 由S 4+S 6-2S 5=S 6-S 5-(S 5-S 4)=a 6-a 5=d ,所以S 4+S 6>2S 5等价d >0,所以“d >0”是“S 4+S 6>2S 5”的充要条件.答案 C14.(一题多解)(2019·江西新课程教学质量监测)已知命题p :x 2+2x -3>0;命题q :x -a x -a -1>0,且綈q 的一个必要不充分条件是綈p ,则a 的取值范围是( ) A.[-3,0]B.(-∞,-3]∪[0,+∞)C.(-3,0)D.(-∞,-3)∪(0,+∞)解析 法一 由x 2+2x -3>0,得x <-3或x >1.则綈p 对应的集合为A ={x |-3≤x ≤1}.命题q :x >a +1或x <a ,则綈q 对应的集合为B ={x |a ≤x ≤a +1}.依题意綈q 是綈p 的充分不必要条件,所以B A ,故⎩⎪⎨⎪⎧a ≥-3,a +1≤1.解得-3≤a ≤0. 法二 ∵綈q 的一个必要不充分条件是綈p ,∴綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,p 对应的集合C ={x |x 2+2x -3>0}={x |x <-3或x >1},q 对应的集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -a x -a -1>0={x |x >a +1或x <a }, 由于p 是q 的充分不必要条件知,CD ,∴⎩⎪⎨⎪⎧a ≥-3,a +1≤1,解得-3≤a ≤0. 答案 A15.若不等式m -1<x <m +1成立的充分不必要条件是13<x <12,则实数m 的取值范围是________.解析 由题意可知⎝ ⎛⎭⎪⎫13,12(m -1,m +1),借助数轴得⎩⎪⎨⎪⎧13≥m -1,12≤m +1,解得-12≤m ≤43,故实数m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案 ⎣⎢⎡⎦⎥⎤-12,43 16.“a =1”是“函数f (x )=e x a -a e x 是奇函数”的__________条件.解析 当a =1时,f (-x )=-f (x )(x ∈R ),则f (x )是奇函数,充分性成立.若f (x )为奇函数,恒有f (-x )=-f (x ),得(1-a 2)(e 2x +1)=0,则a =±1,必要性不成立.故“a =1”是“函数f (x )=e x a -a e x 是奇函数”的充分不必要条件.答案 充分不必要。

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc

第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2017江苏01)已知集合{}1,2A =,{}2,3B a a =+,若{}1AB =,则实数a 的值为 . 解析 由题意233a +…,故由{}1A B =,得1a =.故填1.2.(2017天津理1)设集合{}1,2,6A =,{}2,4B =,{}|15C x x =∈-R 剟,则()A B C =( ).A.{}2B.{}1,2,4C.{}1,2,4,6D.{}|15x x ∈-R 剟解析 因为{1,2,6},{2,4}A B ==,所以{1,2,6}{2,4}{1,2,4,6}AB ==, 从而(){1,2,4,6}[1,5]{1,2,4}A BC =-=.故选B .3.(2017北京理1)若集合{}–2<1A x x =<,{}–13B x x x =<>或,则AB =( ). A.{}–2<1x x <- B.{}–2<3x x <C.{}–1<1x x <D.{}1<3x x <解析 画出数轴图如图所示,则{}21A B x x =-<<-.故选A.31-1-2 4.(2017全国1理1)已知集合{}1A x x =<,{}31x B x =<,则( ).A. {}0A B x x =<B. A B =RC. {}1A B x x =>D. A B =∅解析{}1A x x =<,{}{}310x B x x x =<=<,所以{}0AB x x =<,{}1A B x x =<.故选A. 5.2017全国2理2)设集合{}1,2,4A =,{}240B x x x m =-+=.若1A B =,则B =( ).A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 解析 由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.6.(2017全国3理1)已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则A B 中元素的个数为( ).A .3B .2C .1D .0 解析 集合A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,如图所示,所以AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.7.(2017山东理1)设函数y =A ,函数()ln 1y x =-的定义域为B ,则A B =( ).A.()1,2B.(]1,2C.()2,1-D.[)2,1-解析 由240x -…,解得22x -剟,所以[]22A =-,.由10x ->,解得1x <,所以(),1B =-∞.从而{}{}{}=|22|1|21A B x x x x x x -<=-<剟?.故选D. 8.(2017浙江理1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =( ).A.()1,2-B.()01,C.()1,0-D.()1,2解析 P Q 是取,P Q 集合的所有元素,即12x -<<.故选A .第二节 命题及其关系、充分条件与必要条件题型4 四种命题及真假关系1.(2017山东理3)已知命题:p 0x ∀>,()ln 10x +>;命题:q 若a >b ,则22a b >,下列命题为真命题的是( ).A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝解析 由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题;令1a =,2b =-,验证可知,命题q 为假.故选B.题型5 充分条件、必要条件、充要条件的判断1.(2017天津理4)设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 ππ10sin 121262θθθπ-<⇔<<⇒<.但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A. 2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ).A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017浙江理6)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件解析 46111466151021S S a d a d a d +=+++=+,5121020S a d =+. 当0d >时,有4652S S S +>,当4652S S S +>时,有0d >.故选C .题型6 充分条件、必要条件中的含参问题——暂无第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假——暂无题型8 全(特)称命题——暂无题型9 根据命题真假求参数的范围——暂无。

2020版高考数学大一轮复习-第2讲命题及其关系、充分条件与必要条件分层演练(理)(含解析)新人教A版

2020版高考数学大一轮复习-第2讲命题及其关系、充分条件与必要条件分层演练(理)(含解析)新人教A版

第2讲命题及其关系、充分条件与必要条件1.命题“若x>1,则x>0”的逆否命题是( )A.若x≤0,则x≤1B.若x≤0,则x>1C.若x>0,则x≤1D.若x<0,则x<1解析:选A.依题意,命题“若x>1,则x>0”的逆否命题是“若x≤0,则x≤1”,故选A.2.原命题“若A∪B≠B,则A∩B≠A”与其逆命题、否命题、逆否命题中,真命题的个数是( )A.0 B.1C.2 D.4解析:选D.由题意可知,否命题为“若A∪B=B,则A∩B=A”,其为真命题;逆否命题为“若A∩B=A,则A∪B=B”,其为真命题.由等价命题的真假性相同可知,该命题的逆命题与原命题也为真命题.故选D.3.(2019·兰州市高考实战模拟)设向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.a=(x-1,x),b=(x+2,x-4),若a⊥b,则a·b=0,即(x-1)(x+2)+x(x-4)=0,解得x=2或x=-12,所以x=2⇒a⊥b,反之a⊥b⇒x=2或x=-12,所以“a⊥b”是“x=2”的必要不充分条件,故选B.4.(2018·石家庄市教学质量检测)在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R >b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,5.已知命题:“若a>2,则a2>4”,其逆命题、否命题、逆否命题这三个命题中真命题的个数是( )A.0 B.1C.2 D.3解析:选B.原命题显然是真命题,其逆命题为“若a2>4,则a>2”,显然是假命题,由互为逆否命题的等价性知,否命题是假命题,逆否命题是真命题.6.设U为全集,A,B是集合,则“存在集合C,使得A⊆C,B⊆∁U C”是“A∩B=∅”的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C.依题意,若A⊆C,则∁U C⊆∁U A,当B⊆∁U C,可得A∩B=∅;若A∩B=∅,不妨令C=A,显然满足A⊆C,B⊆∁U C,故满足条件的集合C是存在的.7.下列命题中正确的个数是( )①命题“若m>-1,则方程x2+2x-m=0有实根”的逆命题为“若方程x2+2x-m=0有实根,则m>-1”;②“x≠1”是“x2-3x+2≠0”的充分不必要条件;③一次函数f(x)=kx+b(k≠0)是奇函数的充要条件是b=0.A.0 B.3C.2 D.1解析:选C.对于①,命题“若m>-1,则方程x2+2x-m=0有实根”的逆命题为“若方程x2+2x-m=0有实根,则m>-1”,故①正确;对于②,由x2-3x+2=0,解得x=1或x =2,所以“x≠1”不是“x2-3x+2≠0”的充分不必要条件,故②错误;对于③,因为f(x)=kx+b(k≠0)是奇函数,所以f(-x)=-f(x),即k(-x)+b=-(kx+b),所以b=0,反之,如果b=0,那么f(x)=kx,所以f(-x)=-kx=-f(x),所以f(x)为奇函数,故③正确.正确命题的个数为2,故选C.8.使a>0,b>0成立的一个必要不充分条件是( )A.a+b>0 B.a-b>0C.ab>1 D.ab>1解析:选A.因为a>0,b>0⇒a+b>0,反之不成立,而由a>0,b>0不能推出a-b>0,ab>1,ab>1.9.(2019·陕西省高三教学质量检测试题(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A.由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但是a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,选A.10.(2018·高考北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选B.a ,b ,c ,d 是非零实数,若ad =bc ,则b a =d c,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =c d,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件,故选B.11.(2016·高考北京卷)设a ,b 是向量.则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D.取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |, 得|a +b|2=|a -b |2,整理得a ·b =0,所以a ⊥b ,不一定能得出|a |=|b |, 故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D. 12.(2019·河北石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m ),b =(m ,2m -1)(m ∈R )垂直的充要条件是m =1C .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D.因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错误;若a ⊥b ,则m +m (2m -1)=0,解得m =0,故B 错误;(特例法)互为逆否的两个命题是等价命题,而角的终边在第一象限,角α不一定是锐角,如α=-315°,该角的终边落在第一象限,但不是锐角,故C 错误;命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象连续不断,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.故选D.13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知,该命题的否命题为:若a +b +c ≠3,则a 2+b 2+c 2<3. 答案:若a +b +c ≠3,则a 2+b 2+c 2<314.对于原命题:“已知a 、b 、c ∈R ,若ac 2>bc 2,则a >b ”,以及它的逆命题、否命题、逆否命题,真命题的个数为________. 解析:原命题为真命题,故逆否命题为真;逆命题:若a >b ,则ac 2>bc 2为假命题,故否命题为假命题,所以真命题个数为2. 答案:215.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3(x ∈R ).设p :x ∈⎣⎢⎡⎦⎥⎤π4,π2,q :m -3<f (x )<m +3.若p是q 的充分条件,则实数m 的取值范围是________. 解析:因为p :x ∈⎣⎢⎡⎦⎥⎤π4,π2⇒2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,所以f (x )∈[1,2], 又因为p 是q 的充分条件, 所以⎩⎪⎨⎪⎧m -3<1,m +3>2,解得-1<m <4,即m 的取值范围是(-1,4). 答案:(-1,4)1.(2019·四川南山模拟)已知条件p :14<2x<16,条件q :(x +2)(x +a )<0,若p 是q 的充分而不必要条件,则a 的取值范围为( ) A .[-4,+∞) B .(-∞,-4) C .(-∞,-4]D .(4,+∞)解析:选B.由14<2x<16,得-2<x <4,即p :-2<x <4.方程(x +2)(x +a )=0的两个根分别为-a ,-2.①若-a >-2,即a <2,则条件q :(x +2)(x +a )<0等价于-2<x <-a ,由p 是q 的充分而不必要条件可得-a >4,则a <-4;②若-a =-2,即a =2,则(x +2)(x +a )<0无解,不符合题意;③若-a <-2,即a >2,则q :(x +2)(x +a )<0等价于-a <x <-2,不符合题意. 综上可得a <-4,故选B.2.若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补,记φ(a ,b )=a 2+b 2-a -b ,那么“φ(a ,b )=0”是“a 与b 互补”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件解析:选C.若φ(a ,b )=0,即a 2+b 2=a +b ,两边平方得ab =0,故具备充分性.若a ≥0,b ≥0,ab =0,则不妨设a =0,φ(a ,b )=a 2+b 2-a -b =b 2-b =0,故具备必要性.3.(2019·山西五校联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为________.解析:p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B A ,所以m ≥1或m +3≤-4,即m ≥1或m ≤-7. 答案:m ≥1或m ≤-7 4.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为________(填写所有真命题的序号).解析:①“若xy =1,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则xy =1”,显然是真命题,故①正确;②“面积相等的三角形全等”的否命题是“面积不相等的三角形不全等”,显然是真命题,故②正确;③若x 2-2x +m =0有实数解,则Δ=4-4m ≥0,解得m ≤1,所以“若m ≤1,则x 2-2x +m =0有实数解”是真命题,故其逆否命题是真命题,故③正确;④若A ∩B =B ,则B ⊆A ,故原命题错误,所以其逆否命题错误,故④错误. 答案:①②③5.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”. (1)写出命题p 的否命题;(2)判断命题p 的否命题的真假,并证明你的结论.解:(1)否命题:“若ac <0,则二次方程ax 2+bx +c =0有实根”. (2)命题p 的否命题为真命题,证明如下:因为ac <0,所以-ac >0⇒Δ=b 2-4ac >0⇒二次方程ax 2+bx +c =0有实根. 6.已知p :x 2-7x +12≤0,q :(x -a )(x -a -1)≤0.(1)是否存在实数a ,使¬p 是¬q 的充分不必要条件?若存在,求实数a 的取值范围;若不存在,请说明理由.(2)是否存在实数a ,使p 是q 的充要条件?若存在,求出a 的值;若不存在,请说明理由. 解:由题意知,p :3≤x ≤4,q :a ≤x ≤a +1.(1)因为¬p 是¬q 的充分不必要条件, 所以¬p ⇒¬q ,且¬q ⇒/¬p , 所以q ⇒p ,且p ⇒/q , 即q 是p 的充分不必要条件, 故{x |a ≤x ≤a +1}{x |3≤x ≤4},所以⎩⎪⎨⎪⎧a >3,a +1≤4或⎩⎪⎨⎪⎧a ≥3,a +1<4,无解, 所以不存在实数a ,使¬p 是¬q 的充分不必要条件.(2)若p 是q 的充要条件,则{x |a ≤x ≤a +1}={x |3≤x ≤4},所以⎩⎪⎨⎪⎧a =3,a +1=4,解得a =3.故存在实数a =3,使p 是q 的充要条件.。

2020届高考数学命题猜想及专题练习--算法、推理证明(含解析)

2020届高考数学命题猜想及专题练习--算法、推理证明(含解析)

2020届高考数学命题猜想算法、推理证明【考向解读】1.以客观题形式考查算法的基本逻辑结构,会与函数、数列、不等式、统计、概率等知识结合命题.2.以客观题形式考查复数的运算、复数的相等、共轭复数和复数及其代数运算的几何意义,与其他知识较少结合,应注意和三角函数结合的练习.3.推理与证明在选择、填空、解答题中都有体现,但很少单独命题,若单独命题,一般以客观题形式考查归纳与类比.4.通常是以数列、三角、函数、解析几何、立体几何等知识为载体,考查对推理与证明的掌握情况,把推理思路的探求、推理过程的严谨,推理方法的合理作为考查重点.【命题热点突破一】程序框图例1、(2018年北京卷)执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.【变式探究】(1)观察下列各式: C01=40; C03+C13=41; C05+C15+C25=42; C07+C17+C27+C37=43; ……照此规律,当n ∈N*时,C02n -1+C12n -1+C22n -1+…+Cn -12n -1=________.(2)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法可以求出过点A(-2,3),且法向量为n =(-1,2)的直线方程为(-1)×(x +2)+2×(y -3)=0,化简得x -2y +8=0.类比上述方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为n=(-1,2,-3)的平面的方程为________.【答案】(1)4n-1 (2)x-2y+3z-6=0【感悟提升】由特殊结论得出一般结论的推理是归纳推理,归纳出的一般性结论要包含已知的特殊结论;根据已有结论推断相似对象具有相应结论的推理就是类比推理.归纳和类比得出的结论未必正确,其正确性需要通过演绎推理进行证明.合情推理和演绎推理在解决数学问题中是相辅相成的.【变式探究】已知cos π3=12,cosπ5cos2π5=14,cosπ7cos2π7·cos3π7=18,……根据以上等式,可猜想的一般结论是________________.【答案】cosπ2n+1cos2π2n+1…cosnπ2n+1=12n(n∈N*)【解析】从已知等式的左边来看,3,5,7,…是通项为2n+1的等差数列,等式的右边是通项为12n的等比数列.由以上分析可以猜想出一般结论为cosπ2n+1cos2π2n+1…cosnπ2n+1=12n(n∈N*).4. (2018年天津卷)阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4 【答案】B1. 【2017山东,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤【答案】Bx 时判断框中的条件应为不满足,所以选B.【解析】由题意得4【考点】程序框图2.【2017课标1,文10】如图是为了求出满足的最小偶数nA.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【答案】D3.【2017课标3,文8】执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A .5B .4C .3D .2【答案】D【解析】若2N =,第一次进入循环,12≤成立,,2i =2≤成立,第二次进入循环,此时,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.7.【2017北京,文14】某学习小组由学生和 【答案】C4.(2015·新课标全国Ⅱ,8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14【答案】B5.(2015·山东,13)执行如图所示的程序框图,输出的T 的值为________.【解析】当n =1时,T =1+⎠⎜⎛01x1dx =1+21102x =1+12=32;当n =2时,T =32+⎠⎜⎛01x2dx =32+31103x =32+13=116;当n =3时,结束循环,输出T =116.【答案】116专题练习1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11【解析】选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.233.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )A.f(x) B.-f(x)C.g(x) D.-g(x)【解析】选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).8.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A.k≥16B.k<8C.k<16D.k≥89.如图所示的程序框图中,输出S=( )A.45 B.-55C.-66 D.66【解析】选B.由程序框图知,第一次运行T=(-1)2·12=1,S=0+1=1,n=1+1=2;第二次运行T =(-1)3·22=-4,S =1-4=-3,n =2+1=3;第三次运行T =(-1)4·32=9,S =-3+9=6,n =3+1=4…直到n =9+1=10时,满足条件n >9,运行终止,此时T =(-1)10·92,S =1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=1+92×9-100=-55.故选B.10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .411.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A .8 B .9 C .10 D .11【解析】选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.12.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数【解析】选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大前提错误,故选B.13.阅读如图所示的程序框图,运行相应程序,则输出的i的值为( )A.3 B.4C.5 D.614.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.23【解析】选D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.15.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )A.f(x) B.-f(x)C.g(x) D.-g(x)【解析】选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).16.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c.类比这个结论可知:四面体S­ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S­ABC的体积为V,则R等于( )A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S417.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A.k≥16 B.k<8C.k<16 D.k≥8【解析】选A.根据框图的循环结构依次可得S=0+1=1,k=2×1=2;S=1+2=3,k =2×2=4;S=3+4=7,k=2×4=8;S=7+8=15,k=2×8=16,根据题意此时跳出循环,输出S=15.所以M处的条件应为k≥16.故A正确.18.执行如图所示的程序框图,若输出结果为3,则可输入的实数x的值的个数为( )A.1 B.2C.3 D.4【解析】选C.由题意,知y =⎩⎪⎨⎪⎧x2-1,x ≤2,log2x ,x >2.当x ≤2时,由x2-1=3,得x2=4,解得x =±2.当x >2时,由log2x =3,得x =8.所以可输入的实数x 的值的个数为3.19.如图给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i >10B .i <10C .i >20D .i <2020.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .4【解析】选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,故④正确.所以正确的结论有3个,故选C.21.如图(1)是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,则在流程图中的判断框内应填写( )A.i<6? B.i<7?C.i<8? D.i<9?【解析】选C.统计身高在160~180 cm的学生人数,即求A4+A5+A6+A7的值.当4≤i≤7时,符合要求.22.对于函数f(x),若存在非零常数a,使得当x取定义域内的每一个值时,都有f(x)=f(2a -x),则称f(x)为准偶函数.下列函数中是准偶函数的是( )A.f(x)=x B.f(x)=x2C.f(x)=tan x D.f(x)=cos(x+1)23.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式应该为________.【解析】不等式的左边为连续自然数的平方的倒数和,即1+122+…+1n+12,不等式的右边为2n+1 n+1.【答案】1+122+…+1n+12<2n+1n+124.执行如图所示的流程图,则输出的k的值为________.【答案】425.阅读如图所示的程序框图,运行相应的程序,输出的结果S=________.【解析】由程序框图知,S可看成一个数列{an}的前2 015项和,其中an=1n n+1(n ∈N*,n≤2 015),∴S=11×2+12×3+…+12 015×2 016=⎝⎛⎭⎪⎪⎫1-12+⎝⎛⎭⎪⎪⎫12-13+…+⎝⎛⎭⎪⎪⎫12 015-12 016=1-12 016=2 0152 016.故输出的是2 0152 016.【答案】2 0152 01626.观察下列等式:1=1,1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,……,由以上可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1=________.【解析】∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,……,∴归纳可得1+2+…+n+…+2+1=n2.【答案】n227.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.28.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.。

【17份】2020版高考数学(文)大一轮课标通用精练

【17份】2020版高考数学(文)大一轮课标通用精练

【17份】2020版高考数学(文)大一轮课标通用精练目录2019年5月第二节命题及其关系、充分条件与必要条件A组基础题组1.命题“若函数f(x)=e x-mx在[0,+∞)上是减函数,则m>1”的否命题是( )A.若函数f(x)=e x-mx在[0,+∞)上不是减函数,则m≤1B.若函数f(x)=e x-mx在[0,+∞)上是减函数,则m≤1C.若m>1,则函数f(x)=e x-mx在[0,+∞)上是减函数D.若m≤1,则函数f(x)=e x-mx在[0,+∞)上不是减函数答案 A “若p,则q”形式的命题的否命题是对条件和结论同时否定,故选 A.2.“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是( )A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y全不为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案 C 依题意得,原命题的条件为若x2+y2=0,结论为x,y全为0.其逆否命题是若x,y不全为0,则x2+y2≠0,故选C.3.有下列几个命题:①“若a>b,则>”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是( )A.①B.①②C.②③D.①②③答案 C ①原命题的否命题为“若a≤b,则≤”,假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题,所以真命题的序号是②③. 4.“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A 因为x2-2x+1=0有两个相等实数根,为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.5.“(m-1)(a-1)>0”是“loga m>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B (m-1)(a-1)>0等价于,或,,而log a m>0等价于或,,所以具有必要性,但不具有充分性,比如m=0,a=0时,不能得出log a m>0.( )6.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 C 设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集.D={(x,y)|cos x=cos y},显然C?D,所以B?A,于是“x≠y”是“cos x≠cos y”的必要不充分条件是钝角三角形”的( )7.(2018西安八校联考)在△ABC中,“·>0”是“△ABCA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A 由·>0,得·<0,所以∠B>90°,则△ABC是钝角三角形;当△ABC为钝角三是钝角三角形”的充分不必要条件,故选A.角形时,∠B不一定是钝角.所以“·>0”是“△ABC( )8.(2018北京,6,5分)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C 本题主要考查平面向量的数量积的应用以及充分、必要条件的判断.|a-3b|=|3a+b|?|a-3b|2=|3a+b|2?a2-6a·b+9b2=9a2+6a·b+b2?2a2+3a·b-2b2=0,又∵|a|=|b|=1,∴a·b=0?a⊥b,故选C.f(x)=sin x-+a为奇函数”的( )9.“a=0”是“函数A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C f(x)的定义域为{x|x ≠0},关于原点对称,当a=0时,f(x)=sin x-,f(-x)=sin(-x)--=-sinx+=--=-f(x),故f(x)为奇函数;反之,当f(x)=sin x-+a 为奇函数时, f(-x)+f(x)=0,又f(-x)+f(x)=sin(-x)--+a+sin x-+a=2a,所以a=0,所以“a=0”是“函数f(x)=sin x-+a 为奇函数”的充要条件,故选C.10.(2019江西南昌模拟)“a2+b 2=1”是“asin θ+bcos θ≤1恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A 因为asin θ+bcos θ=sin(θ+φ)≤,所以由a 2+b 2=1可推得asinθ+bcos θ≤1恒成立.反之,取a=2,b=0,θ=30°,满足asin θ+bcos θ≤1,但不满足a 2+b 2=1,即由asin θ+bcos θ≤1推不出a 2+b 2=1,故“a2+b 2=1”是“asin θ+bcos θ≤1恒成立”的充分不必要条件.故选A.B 组提升题组1.(2019抚州七校联考)A,B,C 三个学生参加了一次考试,A,B 的得分均为70分,C 的得分为65分.已知命题p:若及格分低于70分,则A,B,C 都没有及格.则下列四个命题中为p 的逆否命题的是()A.若及格分不低于70分,则A,B,C 都及格B.若A,B,C 都不及格,则及格分不低于70分C.若A,B,C 至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分答案 C2.设集合A={x|x>-1},B={x|x≥1},则“x∈A且x?B”成立的充要条件是( ) A.-1<x≤1 B.x≤1C.x>-1D.-1<x<1答案 D3.圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是( )A.k≤-2或k≥2B.k≤-2C.k≥2D.k≤-2或k>2答案 B 若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=|-|≤1,即≥3,∴k2+1≥9,即k2≥8,∴k≥2或k≤-2,∴由选项知圆x2+y2=1与直线y=kx-3有公共点的充分不必要的条件是k≤-2,故选 B.4.“若a≤b,则ac2≤bc2”,则原命题及其逆命题、否命题和逆否命题中真命题的个数是. 答案2解+析原命题和逆否命题为真命题,逆命题和否命题为假命题.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.答案[-3,0]解+析由题意知ax2-2ax-3≤0恒成立,当a=0时,-3≤0成立;当a≠0时,有,,解得-3≤a<0,故-3≤a≤0.6.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是.答案(0,3)。

专题1.1集合(练)-2020年高考数学(文)一轮复习讲练测Word版含解析(2021年整理)

专题1.1集合(练)-2020年高考数学(文)一轮复习讲练测Word版含解析(2021年整理)

专题1.1集合(练)-2020年高考数学(文)一轮复习讲练测Word版含解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(专题1.1集合(练)-2020年高考数学(文)一轮复习讲练测Word版含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为专题1.1集合(练)-2020年高考数学(文)一轮复习讲练测Word版含解析(word版可编辑修改)的全部内容。

专题1.1 集合1.(2019年甘肃省兰州市高考数学一诊)已知集合A ={x∈N|–1<x 〈4},则集合A 中的元素个数是( )A .3B .4C .5D .6 【答案】B【解析】集合A={x∈N|-1<x <4}={0,1,2,3}.即集合A 中的元素个数是4,故选B 。

2.(辽宁省沈阳市2019届高三教学质量监测)已知集合{(,)|2,,}A x y x y x y N =+≤∈,则A 中元素的个数为( )A .1B .5C .6D .无数个 【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =,所以A 中元素的个数为6,故选C. 3.(山西省2019届高三百日冲刺考试)已知集合{}2|2,A x y x x R==-∈,{|13,}B x x x Z =-≤≤∈集合A B ⋂中元素的个数为( )A .4B .3C .2D .1 【答案】B【解析】由题意可得{|22}A x x =-≤≤,{}1,0,1,2,3B =-,则{}1,0,1A B ⋂=-,故选B 。

2020年高考数学(理)一轮复习30考点必刷题含解析

2020年高考数学(理)一轮复习30考点必刷题含解析
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】试题分析:若 ,则直线 与直线 平行,充分性成立;若直线 与直线 平行,则 或 ,必要性不成立.
8.“x为无理数”是“x2为无理数”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分又不必要条件
【答案】B
【解析】 为无理数,不能推出 为无理数,例如 ,反过来, 是无理数,那么 一定是无理数,故 为无理数是 为无理数必要不充分条件,故选B.
A.{2}B.{1,2}
C.{-2,1,2}D.{-2,-1,0}
【答案】C
【解析】∵A,B为两个非空集合,定义集合A-B={x|x∈A且x∉B},A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0}={x|-2<x<1},∴A-B={-2,1,2}.故选C.
20.对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={y|y≥0},B={x|-3≤x≤3},则A*B=________.
A. 甲是乙的充分不必要条件
B. 甲是乙的必要不充分条件
C. 甲是乙的充要条件
D. 甲既不是乙的充分条件,也不是乙的必要条件
【答案】B
【解析】“甲⇒乙”的逆否命题为“若x+y=5,则x=2且y=3”显然不正确,而“乙⇒甲”的逆否命题为“若x=2且y=3,则x+y=5”是真命题,因此甲是乙的必要不充分条件.故选 B.
A. B. C. D.
【答案】A
【解析】因为集合 , ,所以A∩B={0,1}.
故答案为:A.
6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )
A.M=NB.M⊆N

2020高考全国卷一轮复习理科数学(所有内容)

2020高考全国卷一轮复习理科数学(所有内容)

集合的并集!$# 集合的交集!## 集合的补集0*!
图形 表示
知识梳理
一集合与元素 !$集 合 中 元 素 的 三 个 特 性&! ! ! !'! ! ! !' !!!!$
意义 !""")!或")#" !""")!且")#" !""")* 且"*!"
四常见结论与等价关系 !##$!1!!!!(!$#$!1!!!!( $0*!%$!$!!!!(0* $0*!%$!!!!$
$#%#(!0佛山调研若集合!$!!##"##$!$"#+%"")
!#+)!"#则集合# 中元素的个数为
$!!%
)!*!!!!!!+!*!#! !!!!,!*!&! !!!!-*'
$&%#(!0全国卷!已知集合 !$!$"#+%""#2+#(&#
"))#+))"#则! 中元素的个数为
$!!%
等价转换常使较复杂的集合运算变的简单$
4
4
!!"
222222222222222222222 第一章!集合与常用逻辑用语
#!!! 命题及充要条件
激活思维
!" 选修! !"'练习#改编下列命题中#真命题是 $!!% )* 命题)若(0&10#则(&1* +* 命题)若"$&#则"#$3*的逆命题 ,* 命题)若"&##则"#%&"2#&(*的否命题 -* 命题)相似三角形的对应角相等*的逆否命题

2020版高考数学一轮复习板块命题点专练全集 含解析苏教版

2020版高考数学一轮复习板块命题点专练全集  含解析苏教版

板块命题点专练(一) 集合与常用逻辑用语命题点一集合及其运算1.(2017·江苏高考)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.解析:因为a2+3≥3,所以由A∩B={1},得a=1,即实数a的值为1.答案:12.(2016·江苏高考)已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.解析:在集合A中满足集合B中条件的元素有-1,2两个,故A∩B={-1,2}.答案:{-1,2}3.(2015·江苏高考)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.解析:因为A={1,2,3},B={2,4,5},所以A∪B={1,2,3,4,5},所以A∪B中元素个数为5.答案:54.(2018·浙江高考改编)已知全集U={1,2,3,4,5},A={1,3},则∁U A=________.解析:∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.答案:{2,4,5}5.(2018·北京高考改编)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=________.解析:∵A={x||x|<2}={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.答案:{0,1}6.(2018·全国卷Ⅰ改编)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=________.解析:A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.答案:{0,2}命题点二充分条件与必要条件1.(2017·浙江高考改编)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的________条件.解析:因为{a n}为等差数列,所以S4+S6=4a1+6d+6a1+15d=10a1+21d,2S5=10a1+20d,S4+S6-2S5=d,所以d>0⇔S4+S6>2S5.答案:充要2.(2018·天津高考改编)设x∈R,则“x3>8”是“|x|>2”的________条件.解析:由x 3>8⇒x >2⇒|x |>2,反之不成立, 故“x 3>8”是“|x |>2”的充分不必要条件. 答案:充分不必要3.(2018·天津高考改编)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的________条件.解析:由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪⎪⎪x -12≥12,即“x 3<1”“⎪⎪⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分不必要条件.答案:充分不必要4.(2016·上海高考)设a ∈R ,则“a >1”是“a 2>1”的____条件.解析:由a >1可得a 2>1,由a 2>1可得a >1或a <-1.所以“a >1”是“a 2>1”的充分不必要条件.答案:充分不必要5.(2016·天津高考改编)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的________条件.解析:设数列{a n }的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q2n -1=a 1q2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要不充分条件. 答案:必要不充分 命题点三 命题及其真假性1.(2012·全国卷)下面是关于复数z =2-1+i的四个命题:p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1.其中的真命题为________. 解析:因为复数z =2-1+i=-1-i ,所以|z |=2,z 2=(-1-i)2=(1+i)2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,综上可知p 2,p 4是真命题.答案:p 2,p 42.(2015·山东高考改编)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________.解析:根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.答案:若方程x 2+x -m =0没有实根,则m ≤0命题点四 全称量词和存在量词1.(2015·全国卷Ⅰ改编)设命题p :∃n ∈N ,n 2>2n,则綈p 为________. 解析:因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n”. 答案:∀n ∈N ,n 2≤2n2.(2016·浙江高考改编)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是________. 解析:由于存在性命题的否定形式是全称命题,全称命题的否定形式是存在性命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.答案:∃x ∈R ,∀n ∈N *,使得n <x 23.(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.解析:由题意,原命题等价于tan x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.答案:1板块命题点专练(二) 函数及其图象和性质命题点一 函数的概念及其表示1.(2018·江苏高考)函数f (x )=log 2x -1的定义域为________.解析:由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.答案:{x |x ≥2}2.(2016·江苏高考)函数y =3-2x -x 2的定义域是________.解析:要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].答案:[-3,1]3.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =____,b =________.解析:因为f (x )=x 3+3x 2+1,所以f (a )=a 3+3a 2+1, 所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2. 由此可得⎩⎪⎨⎪⎧2a +b =-3, ①a 2+2ab =0, ②a 3+3a 2=a 2b . ③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2. 答案:-2 14.(2018·全国卷Ⅰ改编)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x的取值范围是________.解析:法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示.结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0.答案:(-∞,0)命题点二 函数的基本性质1.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110. 由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.答案:-252.(2013·江苏高考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0; 当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 答案:(-5,0)∪(5,+∞)3.(2018·全国卷Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )= f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.解析:法一:∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.法二:由题意可设f (x )=2sin ⎝ ⎛⎭⎪⎫π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,∴f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.答案:24.(2017·全国卷Ⅱ改编)函数f (x )=ln(x 2-2x -8)的单调递增区间是________. 解析:由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).答案:(4,+∞)5.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:由已知得,f (-2)=2×(-2)3+(-2)2=-12, 又函数f (x )是奇函数,所以f (2)=-f (-2)=12. 答案:126.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x∈ [-3,0]时,f (x )=6-x,则f (919)=________.解析:因为f (x +4)=f (x -2),所以f (x +6)=f (x ), 所以f (x )的周期为6,因为919=153×6+1,所以f (919)=f (1). 又f (x )为偶函数,所以f (919)=f (1)=f (-1)=6. 答案:6命题点三 函数的图象1.(2016·全国卷Ⅱ改编)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=________.解析:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i+y i )=m .答案:m2.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析:因为f (x )=ax 3-2x 的图象过点(-1,4), 所以4=a ×(-1)3-2×(-1), 解得a =-2. 答案:-2板块命题点专练(三) 基本初等函数(Ⅰ)及函数与方程命题点一 基本初等函数(Ⅰ)1.(2017·全国卷Ⅰ改编)设x ,y ,z 为正数,且2x=3y=5z,则2x,3y,5z 的大小关系为________.解析:设2x=3y=5z=k >1, 所以x =log 2k ,y =log 3k ,z =log 5k .因为2x -3y =2log 2k -3log 3k =2log k 2-3log k 3=2log k 3-3log k 2log k 2·log k 3=log k 32-log k 23log k 2·log k 3=log k 98log k 2·log k 3>0, 所以2x >3y ;因为3y -5z =3log 3k -5log 5k =3log k 3-5log k 5=3log k 5-5log k 3log k 3·log k 5=log k 53-log k 35log k 3·log k 5=log k125243log k 3·log k 5<0, 所以3y <5z ;因为2x -5z =2log 2k -5log 5k =2log k 2-5log k 5=2log k 5-5log k 2log k 2·log k 5=log k 52-log k 25log k 2·log k 5=log k2532log k 2·log k 5<0, 所以5z >2x .所以5z >2x >3y . 答案:5z >2x >3y2.(2018·天津高考改编)已知a =log 372,b =⎝ ⎛⎭⎪⎫1413,c =log 1315,则a ,b ,c 的大小关系为________.解析:∵c =log 1315=log 35,a =log 372,又y =log 3x 在(0,+∞)上是增函数, ∴log 35>log 372>log 33=1,∴c >a >1.∵y =⎝ ⎛⎭⎪⎫14x在(-∞,+∞)上是减函数,∴⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,即b <1. ∴c >a >b . 答案:c >a >b3.(2015·江苏高考)不等式22x x-<4的解集为________. 解析:因为2x 2-x <4,所以22x x-<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. 答案:(-1,2)4.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:因为f (x )为偶函数,所以f (-x )-f (x )=0恒成立,所以-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,所以x ln a =0恒成立,所以ln a =0,即a =1.答案:15.(2018·上海高考)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝⎛⎭⎪⎫q ,-15,若2p +q=36pq ,则a =________.解析:因为函数f (x )的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15,所以f (p )+f (q )=2p2p +ap +2q 2q +aq =2p +q +aq 2p +2p +q +ap 2q2p +q +aq 2p +ap 2q +a 2pq =65-15=1,化简得2p +q =a 2pq .因为2p +q =36pq ,所以a 2=36且a >0,所以a =6.答案:66.(2016·江苏高考)已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值. (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解:(1)因为a =2,b =12,所以f (x )=2x +2-x.①方程f (x )=2,即2x +2-x=2, 亦即(2x )2-2×2x+1=0,所以(2x -1)2=0,即2x=1,解得x =0. ②由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x2+4f x 对于x ∈R 恒成立.而f x 2+4f x=f (x )+4f x≥2f x4f x=4,且f 2+4f=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2=a x+b x-2有且只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0,所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b xln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a⎝ ⎛⎭⎪⎫-ln a ln b .令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2, 从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0; 当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0.因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g ⎝ ⎛⎭⎪⎫x 02<g (0)=0.又g (log a 2)=aa log 2+ba log 2-2>aa log 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图象不间断,所以在x 02和log a 2之间存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,与“0是函数g (x )的唯一零点”矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.7.(2016·上海高考)已知a ∈R ,函数f (x )=log 2⎝ ⎛⎭⎪⎫1x+a .(1)当a =5时,解不等式f (x )>0;(2)若关于x 的方程f (x )-log 2[(a -4)x +2a -5]=0的解集中恰有一个元素,求a 的取值范围;(3)设a >0,若对任意t ∈⎣⎢⎡⎦⎥⎤12,1,函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.解:(1)由log 2⎝ ⎛⎭⎪⎫1x+5>0,得1x+5>1,解得x ∈⎝⎛⎭⎪⎫-∞,-14∪(0,+∞).(2)由原方程可得1x+a =(a -4)x +2a -5,即(a -4)x 2+(a -5)x -1=0.①当a =4时,x =-1,经检验,满足题意. ②当a =3时,x 1=x 2=-1,经检验,满足题意. ③当a ≠3且a ≠4时,x 1=1a -4,x 2=-1,x 1≠x 2. 若x 1是原方程的解,则1x 1+a >0,即a >2;若x 2是原方程的解,则1x 2+a >0,即a >1. 由题意知x 1,x 2只有一个为方程的解,所以⎩⎪⎨⎪⎧a >2,a ≤1或⎩⎪⎨⎪⎧a ≤2,a >1,于是满足题意的a ∈(1,2].综上,a 的取值范围为(1,2]∪{3,4}. (3)易知f (x )在(0,+∞)上单调递减,所以函数f (x )在区间[t ,t +1]上的最大值与最小值分别为f (t ),f (t +1).f (t )-f (t +1)=log 2⎝ ⎛⎭⎪⎫1t +a -log 2⎝ ⎛⎭⎪⎫1t +1+a ≤1,即at 2+(a +1)t -1≥0对任意t ∈⎣⎢⎡⎦⎥⎤12,1恒成立.因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,当t =12时,y 有最小值34a -12.由34a -12≥0,得a ≥23.故a 的取值范围为⎣⎢⎡⎭⎪⎫23,+∞.命题点二 函数与方程1.(2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质, 因此10n m =q p,则10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x =0的解的个数为8.答案:82.(2015·江苏高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解析:①当0<x ≤1时,方程为-ln x =1,解得x =1e.②当1<x <2时,f (x )+g (x )=ln x +2-x 2单调递减,值域为(ln 2-2,1),方程f (x )+g (x )=1无解,方程f (x )+g (x )=-1恰有一解.③当x ≥2时,f (x )+g (x )=ln x +x 2-6单调递增,值域为[ln 2-2,+∞),方程f (x )+g (x )=1恰有一解,方程f (x )+g (x )=-1恰有一解.综上所述,原方程有4个实根. 答案:43.(2018·全国卷Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是________.解析:令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a=-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意.当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意.综上,a 的取值范围是[-1,+∞).答案:[-1,+∞)4.(2018·天津高考)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.解析:法一:作出函数f (x )的大致图象如图所示.l 1是过原点且与抛物线y =-x 2+2ax -2a 相切的直线,l 2是过原点且与抛物线y =x 2+2ax +a 相切的直线.由图可知,当直线y =ax 在l1,l 2之间(不含直线l 1,l 2)变动时,符合题意.由⎩⎪⎨⎪⎧y =ax ,y =-x 2+2ax -2a ,消去y ,整理得x 2-ax +2a =0.由Δ=a 2-8a =0,得a =8(a =0舍去). 由⎩⎪⎨⎪⎧y =ax ,y =x 2+2ax +a ,消去y ,整理得x 2+ax +a =0.由Δ=a 2-4a =0,得a =4(a =0舍去). 综上可得a 的取值范围是(4,8).法二:当x ≤0时,由x 2+2ax +a =ax ,得a =-x 2-ax ;当x >0时,由-x 2+2ax -2a =ax ,得2a =-x 2+ax .令g (x )=⎩⎪⎨⎪⎧-x 2-ax ,x ≤0,-x 2+ax ,x >0.作出直线y =a ,y =2a ,函数g (x )的图象如图所示,g (x )的最大值为-a 24+a 22=a 24,由图象可知,若f (x )=ax 恰有2个互异的实数解,则a <a 24<2a ,解得4<a <8. 答案:(4,8)命题点三 函数模型及其应用1.(2018·浙江高考)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则⎩⎪⎨⎪⎧x +y +z =100,5x +3y +13z =100,当z =81时,x =__________,y =__________.解析:由题意,得⎩⎪⎨⎪⎧x +y +81=100,5x +3y +13×81=100,即⎩⎪⎨⎪⎧x +y =19,5x +3y =73,解得⎩⎪⎨⎪⎧x =8,y =11.答案:8 112.(2015·江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图所示,M ,N 为C 的两个端点,测得点M到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值.(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域. ②当t 为何值时,公路l 的长度最短?求出最短长度. 解:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b ,得⎩⎪⎨⎪⎧a 25+b =40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2.设在点P 处的切线l 交x ,y 轴分别于A ,B 两点,y ′=-2 000x3, 则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32 t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3. 故当t =102时,公路l 的长度最短, 最短长度为153千米.3.(2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6(千米)时,可击中目标.板块命题点专练(四) 导数及其应用命题点一 导数的运算及几何意义1.(2014·江苏高考)在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:y =ax 2+b x 的导数为y ′=2ax -b x2, 直线7x +2y +3=0的斜率为-72.由题意得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.答案:-32.(2018·天津高考)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析:∵f (x )=e xln x ,∴f ′(x )=e xln x +exx,∴f ′(1)=e.答案:e3.(2018·全国卷Ⅲ)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________.解析:∵y ′=(ax +a +1)e x,∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. 答案:-34.(2017·天津高考)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y-a =(a -1)(x -1),令x =0,得y =1.答案:15.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以当x >0时,f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -1命题点二 导数的应用1.(2018·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:法一:f ′(x )=6x 2-2ax =2x (3x -a )(x >0). ①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增, 又f (0)=1,∴f (x )在(0,+∞)上无零点. ②当a >0时,由f ′(x )>0,得x >a3;由f ′(x )<0,得0<x <a3,∴f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增. 又f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,∴a =3. 此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 法二:令f (x )=2x 3-ax 2+1=0, 得a =2x 3+1x 2=2x +1x2.令g (x )=2x +1x 2,则g ′(x )=2-2x3.由g ′(x )<0,得0<x <1;由g ′(x )>0,得x >1, ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∵f (x )在(0,+∞)内有且只有一个零点, ∴a =g (1)=3,此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减.又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 答案:-32.(2017·江苏高考)已知函数f (x )=x 3-2x +e x-1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x-1e x ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0,所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12. 答案:⎣⎢⎡⎦⎥⎤-1,123.(2017·全国卷Ⅱ改编)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.解析:因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)ex -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1. 答案:-14.(2018·全国卷Ⅰ)已知函数f (x )=a e x-ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a e x-1x.由题设知,f ′(2)=0,所以a =12e2.从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x .可知f ′(x )在(0,+∞)上单调递增,又f ′(2)=0, 所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)证明:当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x.可知g ′(x )在(0,+∞)上单调递增,且g ′(1)=0, 所以当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.5.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.解:(1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23.当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的极值点是x 1,x 2. 从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].6.(2014·江苏高考)已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x+m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较ea -1与ae -1的大小,并证明你的结论.解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -x+e -(-x )=e -x +e x=f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立. 令t =e x(x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2 t -1t -1+1=3, 所以-1t -1+1t -1+1≥-13, 当且仅当t =2,即x =ln 2时等号成立. 因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. (3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a . 由于存在x 0∈[1,+∞),使e 0x +e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0, 故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0, 故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0. 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)·ln a ,从而e a -1<a e -1; ②当a =e 时,ea -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0, 即a -1>(e -1)ln a ,故ea -1>ae -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,ea -1>ae -1.7.(2017·北京高考)已知函数f (x )=e xcos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解:(1)因为f (x )=e xcos x -x ,所以f ′(x )=e x(cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x(cos x -sin x -sin x -cos x )=-2e xsin x .当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝⎛⎦⎥⎤0,π2有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝ ⎛⎭⎪⎫π2=-π2. 8.(2018·江苏高考)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.解:(1)如图,设PO 的延长线交MN 于点H ,则PH ⊥MN ,所以OH =10.过点O 作OE ⊥BC 于点E , 则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10) =800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40-40sin θ)=1 600(cos θ-sin θcos θ).过点N 作GN ⊥MN ,分别交圆弧和OE 的延长线于点G 和K ,则GK =KN =10. 连结OG ,令∠GOK =θ0,则sin θ0=14,θ0∈⎝ ⎛⎭⎪⎫0,π6.当θ∈⎣⎢⎡⎭⎪⎫θ0,π2时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是⎣⎢⎡⎭⎪⎫14,1. 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1 600(cos θ-sin θcos θ)平方米,sin θ的取值范围是⎣⎢⎡⎭⎪⎫14,1. (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k (k >0),乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1 600(cos θ-sin θcos θ) =8 000k (sin θ cos θ +cos θ),θ∈⎣⎢⎡⎭⎪⎫θ0,π2. 设f (θ)=sin θcos θ+cos θ,θ∈⎣⎢⎡⎭⎪⎫θ0,π2, 则f ′(θ)=cos 2θ-sin 2θ-sin θ=-(2sin 2θ+sin θ-1) =-(2sin θ-1)(sin θ+1). 令f ′(θ)=0,得θ=π6,当θ∈⎝⎛⎭⎪⎫θ0,π6时,f ′(θ)>0,所以f (θ)为增函数; 当θ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(θ)<0,所以f (θ)为减函数. 所以当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.板块命题点专练(五) 三角函数的诱导公式及图象与性质命题点一 同角三角函数的基本关系及诱导公式1.(2017·北京高考)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________.解析:法一:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时sin β=13;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y 轴的对称点(22,1)在角β的终边上,此时sin β=13.综上可得sin β=13.法二:令角α与角β均在区间(0,π)内,故角α与角β互补,得sin β=sin α=13. 法三:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z).答案:132.(2016·全国卷Ⅲ改编)若tan α=34,则cos 2α+2sin 2α=________.解析:因为tan α=34,则cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝ ⎛⎭⎪⎫342+1=6425. 答案:64253.(2014·江苏高考)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值. 解:(1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45 =-4+3310.4.(2018·浙江高考)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.命题点二 三角函数的图象与性质1.(2018·江苏高考)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________.解析:由题意得f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+φ=±1,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z.∵φ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴φ=-π6.答案:-π62.(2016·江苏高考)定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.解析:法一:函数y =sin 2x 的最小正周期为2π2=π,y =cos x 的最小正周期为2π,在同一坐标系内画出两个函数在[0,3π]上的图象,如图所示.通过观察图象可知,在区间[0,3π]上两个函数图象的交点个数是7. 法二:联立两曲线方程,得⎩⎪⎨⎪⎧y =sin 2x ,y =cos x ,两曲线交点个数即为方程组解的个数,也就是方程sin 2x =cos x 解的个数.方程可化为2sin x cos x =cos x ,即cos x (2sin x -1)=0,所以cos x =0或sin x =12.①当cos x =0时,x =k π+π2,k ∈Z ,因为x ∈[0,3π],所以x =π2,3π2,5π2,共3个;②当sin x =12时,因为x ∈[0,3π],所以x =π6,5π6,13π6,17π6,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点. 答案:73.(2016·全国卷Ⅱ改编)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为____________.解析:将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝⎛⎭⎪⎫2x +π6的图象.由2x +π6=k π+π2(k ∈Z),得x =k π2+π6(k ∈Z),即平移后图象的对称轴为x =k π2+π6(k ∈Z). 答案:x =k π2+π6(k ∈Z) 4.(2016·全国卷Ⅱ改编)函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数解析式为________.解析:由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-π6(k ∈Z),又|φ|<π2,所以φ=-π6,故y =2sin ⎝⎛⎭⎪⎫2x -π6.答案:y =2sin ⎝⎛⎭⎪⎫2x -π65.(2018·北京高考)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:∵f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,∴当x =π4时,f (x )取得最大值,即f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫π4ω-π6=1,∴π4ω-π6=2k π,k ∈Z , ∴ω=8k +23,k ∈Z.∵ω>0,∴当k =0时,ω取得最小值23.答案:236.(2017·北京高考)已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π3-2sin x cos x .。

高考数学大一轮复习板块命题点专练一文

高考数学大一轮复习板块命题点专练一文

板块命题点专练(一)1.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ) A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x <5}=R,故选B.2.(2016·全国丙卷)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}解析:选C ∵集合A={0,2,4,6,8,10},B={4,8},∴∁A B={0,2,6,10}.3.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.4.(2015·全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2解析:选D 集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.5.(2012·全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6C.8 D.10解析:选D 列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A |x-2|<1⇔1<x<3.由于{x|1<x<2}是{x|1<x<3}的真子集,所以“1<x<2”是“|x-2|<1”的充分而不必要条件.2.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.3.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C 当f′(x0)=0时,x=x0不一定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.的四个命题:1.(2012·全国卷)下面是关于复数z=-1+ip1:|z|=2, p2:z2=2i,p3:z的共轭复数为1+i, p4:z的虚部为-1.其中的真命题为( )A.p2,p3B.p1,p2C.p2,p4D.p3,p4解析:选C ∵复数z=2-1+i=-1-i,∴|z|=2,z2=(-1-i)2=(1+i)2=2i,z的共轭复数为-1+i,z的虚部为-1,综上可知p2,p4是真命题.2.(2015·山东高考)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)解析:选A如图,若a=A1A―→,b=AB―→,c=B1B―→,则a·c≠0,命题p为假命题;显然命题q为真命题,所以p∨q为真命题.2.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q解析:选A 綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.即为(綈p)∨(綈q).A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.2.(2016·浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.3.(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,t a n x ≤m ”是真命题,则实数m 的最小值为________.解析:由题意,原命题等价于t a n x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =t a n x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =t a n x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.答案:1。

2020年浙江高考数学一轮复习:板块命题点专练(一)集合与常用逻辑用语

2020年浙江高考数学一轮复习:板块命题点专练(一)集合与常用逻辑用语

板块命题点专练(一) 集合与常用逻辑用语命题点一集合及其运算1. (2018 浙江高考)已知全集U = {1,2,3,4,5} , A = {1,3},则?u A=( )A.? B.{1,3}C. {2,4,5}D. {1,2,3,4,5}解析:选 C ••• U= {1,2,3,4,5} , A= {1,3},-?u A= {2,4,5}.2.(2018 天津高考)设全集为R,集合A= {x|0v x v 2},B = {x|x> 1},则A n (?R B)=( )A. {x|0v x< 1}B. {x|0v x v 1}C. {x|1< x v 2}D. {x|0v x v 2}解析:选B •••全集为R, B= {x|x> 1},/• ?R B= {x|x v 1}.•••集合A= {x|0v x v 2},••• A n (?R B)= {x|0v x v 1}.3.(2017 浙江高考)已知集合P= {x|—1v x v 1}, Q= {x|0v x v 2},那么P U Q=( ) A.(-1,2) B.(0,1)C.(—1,0) D.(1,2)解析:选A 根据集合的并集的定义,得P U Q= (—1,2).4. (2018 全国卷川)已知集合A= {x|x—1 > 0}, B= {0,1,2},贝U An B=( ) A.{0} B.{1}C.{1,2} D.{0,1,2}解析:选 C •/ A= {x|x—1> 0} = {x|x> 1}, B= {0,1,2} ,• A n B = {1,2}.5. (2018全国卷n )已知集合A= {(x, y)|x2+ y2< 3, x€ Z, y€ Z},则A中元素的个数为()A.9 B.8C.5 D.4解析:选A 将满足x2+ y2< 3的整数x, y全部列举出来,即(一1,—1), (—1,0),(—1,1), (0,—1), (0,0), (0,1), (1,—1), (1,0), (1,1),共有9 个.故选A.6. ___ (2017江苏高考)已知集合A = {1,2}, B= {a, a2+ 3}.若A n B= {1},则实数a的值为__________解析:因为a2+ 3>3,所以由A n B = {1}得a= 1,即实数a的值为1.答案:1命题点二充要条件1. (2016浙江高考)已知函数f(x)= x 2+ bx ,则“ b v 0”是"f(f(x))的最小值与f(x)的最 小值相等”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2+ bf(x) = f x + b 2 — b ,当 f(x)=— b 时,f(f(x))minb 22最小值—b ,即b 2— 2b >0,解得b w 0或b >2,故4 小值相等”的充分不必要条件•选A.2. (2017浙江高考)已知等差数列{a n }的公差为 + S 6> 2S 5” 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选 C 因为{a n }为等差数列,所以S 4+ S 6= 4a i + 6d + 6^+ 15d = 10a i + 21d,2S 5=10讪 + 20d , S 4+ S 6— 2S 5= d ,所以 d >0? S 4+ S 6>2S 5.3. (2015浙江高考 股a , b 是实数,贝厂’a + b >0”是“ ab >0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选 D 特值法:当 a = 10 , b =— 1 时,a + b >0 , ab v 0,故 a + b >0? / ab >0; 当 a =— 2 , b =— 1 时,ab > 0,但 a + b v 0 , 所以 ab > 0? / a + b > 0.故“a + b > 0”是“ab > 0”的既不充分也不必要条件.1 1 Q4. (2018天津高考股x € R 则“ x — - v 2”是“ x V 1 ”的()•-f(x) = x 2+ bx = x + b 2-b ,当 x =-b 时,f(x)min =- ,又 f(f(x)) = (f(x))2 2 2—,当一——时,f(f(x))可以取到4 2 4解析:选A “b v 0”是“f(f(x))的最小值与f(x)的最d ,前n 项和为S n ,则“ d> 0”是“ S 4A .充分而不必要条件C.充要条件B.必要而不充分条件D.既不充分也不必要条件1 1解析:选A 由x — v 2,得O v x v 1, 则 0 v x 3v 1, 即 “ x — 2 v 扌” ? “ x 3v 1”;Q11由 x 3v 1,得 x v 1,当 x < 0 时,x — 1>-, 即“ x 3v 1 ” ?/ “ x — 1v 」”•2 2 所以“ x — 1v 1 是“ x 3v 1”的充分而不必要条件•2 25. (2017 天津高考)设 茨 R,则“ 0— 1nv 12” 是“ sin 0v *” 的()A •充分而不必要条件B .必要而不充分条件D .既不充分也不必要条件 解析:选A 法一:由0—;n v ~n ,得o v ev n ,故 sin 0v 舟.由 sin 0v 2,得—〒+ 2k nv 0v 2k n, k € Z ,推不出 “ 0—说 v 说”. 故“ 0—说v話”是“sin* 2”的充分而不必要条件.0- 1n v n ? O v 0<n ? sin 0v 2 而当 sin 0v 舟时,取 0= —n,冗 > 12.故“ 0—盂 <止”是“ sin 0v 1”的充分而不必要条件.12 12 26. (2018北京高考)设a , b 均为单位向量,则“ |a — 3b|= |3a + b|”是“ a 丄b ”的( )C .充分必要条件D .既不充分也不必要条件 解析:选 C 由 |a — 3b|= |3a + b|,得(a — 3b )2 = (3a + b )2, 即 a 2+ 9b 2— 6a b = 9a 2 + b 2+ 6a b. 又a , b 均为单位向量,所以 a 2= b 2= 1,所以a b = 0,能推出a 丄b.由 a 丄 b ,得 |a — 3b|= 10, |3a + b| = 10, 能推出 |a — 3b|= |3a + b|,所以“ |a — 3b|= |3a + b|”是“ a 丄b ”的充分必要条件. 命题点三四种命题及其关系1. (2015山东高考)设m € R,命题“若 m > 0,则方程x 2 + x — m = 0有实根”的逆否命 题是()A .若方程x 2+ x — m = 0有实根,则 m > 0n n—6 —12C •充要条件A .充分而不必要条件B .必要而不充分条件n4B. 若方程x2+ x —m= 0有实根,则m w 0C. 若方程x2+ x—m= 0没有实根,则m>0D .若方程x2+ x—m= 0没有实根,则m w 0解析:选D 根据逆否命题的定义,命题“若m>0,则方程x2+ x—m= 0有实根”的逆否命题是“若方程x2+ x —m = 0没有实根,则m w 0”.1 12. (2018北京高考)能说明“若a> b,则-v b”为假命题的一组a, b的值依次为解析:只要保证a为正b为负即可满足要求.1 1当a>0> b时,丄>0>丄.a b答案:1,—1(答案不唯一)3. __________________________________ (2017北京高考)能够说明“设a, b, c是任意实数.若a> b> c,则a + b> c”是假命题的一组整数a, b, c的值依次为.解析:因为“设a, b, c是任意实数.若a>b>c,则a + b> c”是假命题,则它的否定“设存在实数a, b, c.若a>b>c,贝U a+ b w c”是真命题.由于a> b> c,所以a+ b> 2c,又a+ b w c,所以c v 0.因此a, b, c依次可取整数—1,—2,—3,满足a+ b w c.答案:一1,—2, —3(答案不唯一)。

2020版高考数学总复习专题一高频客观命题点1.8排列、组合、二项式定理精选刷题练理

2020版高考数学总复习专题一高频客观命题点1.8排列、组合、二项式定理精选刷题练理

1.8 排列、组合、二项式定理命题角度1计数原理、排列与组合问题高考真题体验·对方向1.(2017全国Ⅱ·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案 D解析先把4项工作分成3份有种情况,再把3名志愿者排列有种情况,故不同的安排方式共有=36种,故选D.2.(2016全国Ⅱ·5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B解析由题意知,小明从街道的E处出发到F处的最短路径有6条,再从F处到G处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B.3.(2016全国Ⅲ·12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案 C解析由题意知a1=0,a8=1,则满足题意的a1,a2,…,a8的可能取值如下:综上可知,不同的“规范01数列”共有14个.4.(2018全国Ⅰ·15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案16解析方法一:①当3人中恰有1位女生时,有=12种选法.②当3人中有2位女生时,有=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有种选法,当3人全是男生时有种选法,所以至少有1位女生入选时有=16种选法.5.(2017天津·14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 080解析①没有一个数字是偶数的四位数有=120个;②有且只有一个数字是偶数的四位数有=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.6.(2017浙江·16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案660解析由题意可得,总的选择方法为种方法,其中不满足题意的选法有种方法,则满足题意的选法有:=660种.新题演练提能·刷高分1.(2018陕西咸阳二模)有5名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学不能相邻,则不同的站法有()A.8种B.16种C.32种D.48种答案 B解析首先将甲排在中间,乙、丙两位同学不能相邻,则两人必须站在甲的两侧,选出一人排在左侧,有种方法,另外一人排在右侧,有种方法,余下两人排在余下的两个空,有种方法,综上可得,不同的站法有=16种.2.(2018宁夏银川一模)上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.种B.×54种C.种D.×54种答案 D解析因为有且只有两个年级选择甲博物馆,所以参观甲博物馆的年级有种情况,其余年级均有5种选择,所以共有54种情况,根据乘法原理可得×54种情况,故选D.3.(2018广东珠海3月质检)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种答案 C解析第一步:先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步:从5个球里选出两个球放在刚才的盒子里,有种选法;第三步:把剩下的3个球全排列,有种排法,由乘法分步原理得不同方法共有4=240种,故选C.4.(2018福建福州3月质检)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有() A.90种 B.180种C.270种D.360种答案 B解析第一步,为甲地选一名志愿者,有=6种选法;第二步,为乙地选一名志愿者,有=5种选法;第三步,为剩下两个展区各安排两个人,有=6种选法.故不同的安排方案共有6×5×6=180种.故选B.5.(2018安徽省江淮十校4月联考)用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有()A.14 400种B.28 800种C.38 880种D.43 200种答案 C解析从P点出发的4条侧棱一定要用4种不同的颜色,有=360种不同的方案,接下来底面的染色根据是否使用剩下的2种颜色分类计数:(1)不使用新的颜色,有2种颜色分类方案;(2)使用1种新的颜色,分为2类:第一类,染一条边,有2×4×4=32种方案;第二类,染两条对边,有2×2×4=16种方案.(3)使用2种新的颜色,分为4类:第一类,染两条邻边,有4×2×3=24种方案;第二类,染两条对边,有2×2×4=16种方案;第三类,染三条边,有4×2×2=16种方案;第四类,染四条边,有2种方案.因此不同的染色方案总数为360×[2+(32+16)+(24+16+16+2)]=38 880,故选C.6.(2018重庆二诊)根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为(用数字作答).答案36解析由题意可知,可分为两类:第一类:甲乙在一个地区时,剩余的三类分为两组,再三组派遣到三个地区,共有=18种不同的派遣方式;第二类:甲乙和剩余的三人中的一个人同在一个地区,另外两人分别在两个地区,共有=18种不同的派遣方式;由分类计数原理可得,不同的派遣方式共有18+18=36种.命题角度2求展开式中的指定项或其系数高考真题体验·对方向1.(2018全国Ⅲ·5)的展开式中x4的系数为()A.10B.20C.40D.80答案 C解析由展开式知T r+1=(x2)5-r(2x-1)r=2r x10-3r.当r=2时,x4的系数为22=40.2.(2017全国Ⅰ·6)1+(1+x)6展开式中x2的系数为()A.15B.20C.30D.35答案 C解析方法一:(1+x)6=1·(1+x)6+·(1+x)6,(1+x)6的展开式中的x2的系数为=15,·(1+x)6的展开式中的x2的系数为=15,所以x2的系数为15+15=30.方法二:(1+x)6的二项展开式通项为T r+1=x r,(1+x)6的展开式中含x2的项的来源有两部分,一部分是1×x2=15x2,另一部分是x4=15x2,故(1+x)6的展开式中含x2的项为15x2+15x2=30x2,其系数是30.3.(2017全国Ⅲ·4)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.80答案 C解析(2x-y)5的展开式的通项公式T r+1=(2x)5-r(-y)r.当r=3时,x(2x-y)5的展开式中x3y3的系数为×22×(-1)3=-40;当r=2时,y(2x-y)5的展开式中x3y3的系数为×23×(-1)2=80.故展开式中x3y3的系数为80-40=40.4.(2015全国Ⅰ·10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60答案 C解析由于(x2+x+y)5=[(x2+x)+y]5,其展开式的通项为T r+1=(x2+x)5-r y r(r=0,1,2,…,5),因此只有当r=2,即T3=(x2+x)3y2中才能含有x5y2项.设(x2+x)3的展开式的通项为S i+1=(x2)3-i·x i=x6-i(i=0,1,2,3),令6-i=5,得i=1,则(x2+x)3的展开式中x5项的系数是=3,故(x2+x+y)5的展开式中,x5y2的系数是·3=10×3=30.5.(2017山东·11)已知(1+3x)n的展开式中含有x2项的系数是54,则n=.答案 4解析二项展开式的通项T r+1=(3x)r=3r··x r,令r=2,得32·=54,解得n=4.6.(2016全国Ⅰ·14)(2x+)5的展开式中,x3的系数是.(用数字填写答案)答案10解析二项式的通项公式T r+1=(2x)5-r25-r,令5-=3,解得r=4,故x3的系数为×25-4=10.新题演练提能·刷高分1.(2018东北三省三校一模)(x2+2)-15展开式中的常数项是()A.12B.-12C.8D.-8答案 B解析由-15展开式的第r+1项T r+1=5-r(-1)r=(-1)r x r-5,得(x2+2)-15展开式的通项为x2·(-1)r x r-5=(-1)r x r-3或2(-1)r x r-5,则当r-3=0或r-5=0,即r=3或r=5时,为展开式的常数项,即(-1)3+2(-1)5=-12.故选B.2.(2018河北唐山二模)x2+6展开式的常数项为.(用数字作答)答案15解析由题得x2+6展开式的通项为T r+1=(x2)6-r r=x12-3r(r=0,1,2,3,4,5,6),令12-3r=0,得r=4.所以x2+6展开式的常数项为=15.3.(2018江西省质量监测)在2x+6的展开式中x-3的系数为.答案160解析展开式的通项为T r+1=(2x)6-r··26-r·x6-3r,令6-3r=-3⇒r=3,所以系数为·23=160.4.(2018陕西咸阳二模)(x+y)(x-y)8的展开式中x2y7的系数为(用数字作答).答案20解析(x-y)8展开式的通项公式为T r+1=x8-r(-y)r=(-1)r x8-r y r,令r=7,则展开项为(-1)7x8-7y7=-8xy7,令r=6,则展开项为(-1)6x8-6y6=28x2y6,据此可得展开式中x2y7的系数为-8+28=20.5.(2018河北保定一模)(1+ax)(1+x)5的展开式中x2的系数是5,则a=.答案-1解析(1+ax)(1+x)5的展开式中x2的系数是1×+a×=10+5a,所以10+5a=5,故a=-1.命题角度3二项式系数与项的系数问题高考真题体验·对方向1.(2015湖北·3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29答案 D解析由条件知,∴n=10.∴(1+x)10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.2.(2015全国Ⅱ·15)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.答案 3解析一∵(1+x)4=x4+x3+x2+x+x0=x4+4x3+6x2+4x+1,∴(a+x)(1+x)4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3.解析二设(a+x)(1+x)4=b0+b1x+b2x2+b3x3+b4x4+b5x5.令x=1,得16(a+1)=b0+b1+b2+b3+b4+b5, ①令x=-1,得0=b0-b1+b2-b3+b4-b5, ②由①-②,得16(a+1)=2(b1+b3+b5).即8(a+1)=32,解得a=3.新题演练提能·刷高分1.(2018山东烟台一模)已知x3+n的展开式的各项系数和为243,则展开式中x7的系数为()A.5B.40C.20D.10答案 B解析由题意,二项式x3+n的展开式中各项的系数和为243,令x=1,则3n=243,解得n=5,所以二项式x3+5的展开式为T r+1=(x3)5-r r=2r x15-4r,令r=2,则T3=22x15-4×2=40x7,即x7的系数为40,故选B.2.(2018江西重点中学盟校第一次联考)若多项式(2x+3y)n展开式仅在第5项的二项式系数最大,则多项式x2+-4n-4展开式中x2的系数为()A.-304B.304C.-208D.208答案 A解析多项式(2x+3y)n展开式仅在第5项的二项式系数最大,故n=8,多项式x2+-44展开式中x2的系数为·(-4)3+·(-4)=-256-48=-304.选A.3.(2018安徽宣城二调)记(2-x)7=a0+a1(1+x)2+…+a7(1+x)7,则a0+a1+a2+…+a6的值为()A.1B.2C.129D.2 188答案 C解析(2-x)7=a0+a1(1+x)2+…+a7(1+x)7中,令x=0,得27=a0+a1+…+a7=128.∵(2-x)7展开式中含x7项的系数为20(-1)7=-1,∴a7=-1,∴a0+a1+…+a6=128-a7=129.4.(2018河北衡水中学模拟)在二项式ax+8的展开式中,所有项的系数之和记为S,第r项的系数记为P r,若=38,则的值为()A.2B.-4C.2或-2D.2或-4答案 D解析在ax+8中,令x=1,所以S=(a+b)8,又其通项公式为T r+1=(ax)8-r r,即T r+1=a8-r·b r,所以P9=a8-8b8=b8,因此依题有=1+8=38,∴1+=±3,∴=2或-4.故选D.5.(2018河北唐山一模)(2x-1)6的展开式中,二项式系数最大的项的系数是.(用数字作答)答案-160解析(2x-1)6的展开式中,二项式系数最大的项是第四项,系数为(2)3(-1)3=-160.6.(2018山东济南一模)x-2x-5的展开式中各项系数的和为2,则该展开式中含x4项的系数为.答案-48解析令x=1,可得x-2x-5的展开式中各项系数的和为1-a=2,得a=-1,x+2x-5展开式x4的系数,即是2x-5展开式中的x3与x5系数的和,2x-5展开式通项为T r+1=(-1)r25-r·x5-2r,令5-2r=3,得r=1,令5-2r=5,得r=0,将r=1与r=0,分别代入通项,可得x3与x5的系数分别为-80与32,∴原展开式x4的系数为-80+32=-48.。

2020年浙江高考数学一轮复习:板块命题点专练(九)数列与数学归纳法

2020年浙江高考数学一轮复习:板块命题点专练(九)数列与数学归纳法

命题点一数列的概念及表示1. (2018全国卷I )记S n 为数列{a n }的前n 项和.若S n = 2a n + 1,贝V S 6 = 解析:•/ S n = 2a n + 1,二当 n > 2 时,S n- 1= 2a n-1+ 1, …a n = S n—Sn -1 = 2a n—2an -1 ,即 a n = 2a n -1.当 n = 1 时,由 a 1= S 1 = 2a 1 + 1,得 a 1 = - 1. 二数列{a n }是首项a 1为一1,公比q 为2的等比数列,... S n = aH^ =- 11-2n= 1 - 2n ,n1 -q 1-2••• S 6= 1 -26=- 63. 答案:—63板块命题点专练(九)数列与数学归纳法2. (2014全国卷n )数列{a n}满足an+1=匸]a8= 2,则a11解析:将a8=2代入a n+1=匸石,1 1 1可求得a7= 1;再将a7= 代入a n+1= C 可求得1 a6=- 1;再将a6=- 1 代入a n+1 = 1-a n,可求得a5= 2;由此可以推出数列{a n}是一个周期数列,且周期为3,所以a1 = a7= 2.命题点二等差数列与等比数列1.(2018全国卷I )记S n为等差数列{a n}的前n项和,若3S3= S2+ S4,a1= 2,则a5=()A. - 12B.—10C. 10D. 12 解析:选B 设等差数列{a n}的公差为d,由3S3= S2 + S4,得3(3a1 + 3d) = 2a1+ d+ 4a1 + 6d,即卩3a1+ 2d= 0.将內=2 代入上式,解得d=- 3,故a5=內 + (5- 1)d= 2+ 4 X (- 3) =-10.2. (2017全国卷n )我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381 B. 3盏D. 9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7 7 =381,公比q= 2,依题意,得S7=旦^1—= 381,解得a1= 3.1 —23.(2017全国卷川)等差数列{a n }的首项为1,公差不为0.若a 2, a s , 成等比数列,则{a n }前6项的和为()A . - 24B .— 3C . 3D . 8解析:选A 设等差数列{a n }的公差为d , 因为a 2, a 3, a 6成等比数列,所以a 2a 6= a ;,即 (a i + d )( a i + 5d )=⑻ + 2d )2. 又 a 1= 1,所以 d 2+ 2d = 0. 又 d ^0,贝U d =— 2,6 X 5所以{a n }前 6 项的和 S 6= 6 X 1+ —— X (— 2) =— 24. 4. (2018北京高考)设{a n }是等差数列,且a 1= 3, a ? +禹=36,则{a *}的通项公式为解析:法一:设数列{a n }的公差为d.v a 2 + a 5= 36,二(站+ d ) +仙+ 4d )= 2站+ 5d = 36.T a 1 = 3,「. d = 6,「. a n = 6n — 3. 6,「. a n = 6n—3.答案:a n = 6n — 35. (2016浙江高考)设数列{a n }的前n 项和为S n .若S 2= 4,an +1 = 2S n +1,n € N ,贝V 印= _________ , S 5 = _________ .解析:• a *+ 1 = 2S n + 1,…S n +1 — S n = 2S n + 1 ,•I Sn + 1 = 3S n + 1,— S n +1 + ?= 3 S n + ?,1f 1l S2+2•••数列iS n +1是公比为3的等比数列,••• ------ 2= 3.L 乙 S +1S 1+2又 S 2= 4, • S 1= 1 ,• a 1= 1,• S 5 +1= S 1+2 X 34 = 3X 34= 243,• S 5= 121. 答案:11216. (2018全国卷n )记S n 为等差数列{a n }的前n 项和,已知a 1=— 7, S a =— 15.设数列{a n }的公差为 d ,a 2 + *5^ a 1 + a §^ 36, a 1 3, - - a §^ 33,…d^a 6 — a 15(1)求{a n}的通项公式;⑵求S n,并求S n的最小值. 解:(1)设{a n}的公差为d,由题意得3a i + 3d =— 15. 又 a i =— 7,所以 d = 2.所以{a n }的通项公式为a n = 2n — 9.⑵由(1)得 S n ="蔦 * = n 2— 8n = (n — 4)2 — 16, 所以当n = 4时,S n 取得最小值,最小值为—16. 7. (2018全国卷川)等比数列{a n }中,a 1= 1, a 5= 4a 3. (1)求{a n }的通项公式;⑵记S n 为{a n }的前n 项和.若S m = 63,求m. 解:(1)设{a n }的公比为q ,由题设得a n = q n 1.由已知得q 4= 4q 2,解得q = 0(舍去)或q =— 2或q = 2. 故 a n = (— 2)n T 或 a n = 2n —1.由S m = 63,得(—2)m =— 188,此方程没有正整数解. 1 — 2 若 a n = 2旷S 贝y S n == 2n — 1.1 —2 由 S m = 63,得 2m = 64,解得 m = 6. 综上,m = 6.8. (2018浙江高考)已知等比数列{a n }的公比q > 1,且a a + a 4 + a 5= 28, a 4+ 2是a 3, a 5 的等差中项•数列{b n }满足b 1= 1,数列{(b n +1— b n )a n }的前n 项和为2n 2+ n.(1) 求q 的值;(2) 求数列{b n }的通项公式.解:(1)由a 4 + 2是a 3,a 5的等差中项, 得 a 3+ a 5= 2a 4 + 4,所以 a 3+ a 4+ a 5= 3a 4 + 4= 28, 解得a 4= 8.由 a 3+ a 5= 20,得 8[q + q = 20, 1解得q = 2或q =孑. 因为q > 1,所以q = 2.⑵设C n = (b n +1 — b n )a n ,数列{C n }的前n 项和为S n .fS 1, n = 1,由 c n =解得 c n = 4n — 1.i S n — S n- 1,2,由(1)可得 a n = 2n —1,(2)若 a n = (—2)n j 贝y S n =1- - 2n 3所以 b n +1— b n = (4n - 1) x 1 nT , 故 b n — b n-1= (4n — 5)x 2 n -2, n > 2,b n — b1 =(bn—bn -1)+ (b n -1 — bn - 2)+ …+ (b 3 — b2)+ (b 2 — b1) = (4n — 5) X $ J 2 + (4n — 9)X 1 n —'+••• + 7X 1+ 3.设 T n = 3 + 7X 2+ 11X 2 2+・.・ +(4n — 5)X 2 n -2, n >2,则2T n = 3X 2 + 7X J+…+ (4n — 9) X 2 n -2+(4n — 5) X 1 n —1,两式相减,得 *T n = 3+ 4X 2+ 4X £ :+•••+ 4X £ 广2—(4n — 5)X ^广1, 所以 T n = 14 — (4n + 3)X 2 n -2, n > 2.又 b 1= 1,所以 b n = 15— (4n + 3) X 2 n -2.命题点三数列的综合应用 1.(2018 浙江高考)已知 a 1,a 2,a ?,成等比数列,且d + a ?+ a 3+ a 4= ln(d + a ? + a ?), 若 a 1 > 1,则()A .a 1v a 3,a 2<a 4B . a 1 >比,a 2<a 4C . a 1 < a3 , a2 > a 4 D . a 1 > a3 ,a2 > a 4解析:选B 法一:构造不等式ln x w x — 1(x > 0), 则 a 1 + a 2+ a 3+ a 4= ln(a 1 + a :+ a 3)w a 1 + a :+ a 3— 1, 所以 a 4= a 1 q 3 w — 1.由 a 1 > 1,得 q < 0.若 q w — 1,贝U ln(a 1 + a 2 + a 3) = a 1 + a 2+ a 3+ a 4= a#1 + q) (1 + q 2)w o. 又 a1+ a2+a3= a 1(1 + q + q )> a 1 >1,所以 ln(a 1+ a 2 + a 3) > 0,矛盾. 因此一1< q < 0.所以 a 1— a 3= a 1(1 — q 2) > 0, a 2 — a 4= a 1q(1 — q 2)< 0, 所以 a 1> a 3, a 2< a 4.法—: 因为 e X 》x + 1, a 1 + a 2+ a 3 + a 4= ln(a 1 + a ?+ a 3),所以 ea 1+ a ?+ a 3+ a 4= a 1 +a ?+ a 3》a 1 + a 2 + a 3 + a 4 + 1,贝U a 4w — 1,又a 1 > 1,所以等比数列的公比 q < 0若q w — 1,贝U a 1 + a 2+ a 3+ a 4= a 1 (1 + q)(1 + q 2)w 0,而 a 1+ a 2+ a 3>a 1> 1,所以 ln(a 1 + a 2+ a 3)> 0,与 ln(a 1 + a ?+ a ?) = a 1 + a ?+ a 3 + a 4w 0矛盾,所以一1 < qv 0,所以 a 1 — a 3= a 1(1 — q 2) >0, a 2— a 4 = a 1q(1 — q )<0,所以a1 > a3, a?< a4.* n *2. (2018 江苏高考)已知集合A = {x|x = 2n—1, n€ N}, B= {x|x= 2 , n€ N}.将A U B的所有元素从小到大依次排列构成一个数列 {a n }.记S n 为数列{a n }的前n 项和,则使得 S n> 12a n +1成立的n 的最小值为_________ . 解析:所有的正奇数和 2n (n € N *)按照从小到大的顺序排列构成 {a n },在数列{a n }中,25 前面有16个正奇数,即 a 21= 25, a 38= 26.当 n = 1时,S 1= 1 V 12a 2= 24,不符合题意;当 n =2时,S 2= 3V 12a 3= 36,不符合题意;当 n = 3时,S 3= 6 V 12a 4= 48,不符合题意;当 n 5 ;当 n = 26 时,S 26= + 空占2■ 2 1 — 2 =4时,S 4= 10v 12a 5= 60,不符合题意; 5 =441 + 62= 503V 12a 27= 516,不符合题意;当 n = 27 时,S 27= 2" 1+ 43 + 2乂 1 — 2= 2 1 — 2 484+ 62= 546> 12a 28= 540,符合题意•故使得 S “> 12a “+1成立的n 的最小值为27. 答案:27 3. (2018天津高考)设{a n }是等比数列,公比大于 0,其前n 项和为S n (n € N *), {b n }是等差数列.已知 a 1= 1, a 3= a 2+ 2, a 4= b 3 + “,a 5= b 4 + 2b 6. ⑴求{a n }和{b n }的通项公式; ⑵设数列{S n }的前n 项和为T n (n € N ), ①求T n ; n ②证明'k = 1 2n + 2 Tk + 如2bk = — - 2(n € N *) k + 1 k + 2 n + 2 解:(1)设等比数列{a n }的公比为q. 由 a 1= 1, a 3= a 2+ 2,可得 q 2— q — 2= 0. 由q >0,可得q = 2,故a n = 2旷〔 设等差数列{b n }的公差为d. 由 a 4= b 3 + b 5,可得 b i + 3d = 4.① 由 a 5= b 4+ 2^,可得 3切+ 13d = 16.② 联立①②解得 b 1 = 1, d = 1,故b n = n. 所以数列{a n }的通项公式为a n = 2n —1, 数列{b n }的通项公式为 b n = n.1 — 2n n⑵①由⑴,有S n =三=2—1,nn2( 1 一 2n \所以 T n= '(2k —1)=、2k — n =— nk = 1k = 11— 2=2n +1 - n - 2.②证明:因为■+(T k + b k +2 R = (2 — k — 2 + k + 2” (k + 1[k + 2 = (k + 1 ]k + 2)k +1 k + 2 k + 1k 2 2 2 k + 1 k + 2 k + 2 k + 1’所以 f 書=字% + 7-1 +• k =勺(k + 1 (k + 2) V32) \4 3 )4. (2018江苏高考 股{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比 为q 的等比数列.(1)设 a 1 = 0, b 1= 1, q = 2,若 |a n — b n |w b 1 对 n = 1,2,3,4 均成立,求 d 的取值范围; ⑵若 a 1 =切> 0, m € N , q € (1,羽],证明:存在 d € R ,使得 |a n — b n |w b 对 n = 2,3,…, m + 1均成立,并求d 的取值范围(用b 1, m , q 表示).解:(1)由条件知 a n = (n — 1)d , b n = 2n —1.因为 |a n — b n |w b 1 对 n = 1,2,3,4 均成立, 即|(n — 1)d — 2n —1|< 1 对 n = 1,2,3,4 均成立,所以 1 w 1,1< d < 3,3W 2d < 5,7W 3d < 9, 解得3^ d w 2.所以d 的取值范围为 J , 5 . ⑵由条件知 a n = b1+ (n— 1)d,bn = b 1q n 1.若存在 d ,使得 |a n — b n |w b 1(n = 2,3,…,m + 1)成立, 即|m + (n — 1)d — b 1q n —1|w b 1(n = 2,3,…,m + 1),n — 1 2n-1即当 n = 2,3,…,m + 1 时,d 满足--* w d w -—b 1.n — 1n — 1因为 q € (1,肪],则 1 v q n —1w q m w 2,n -1 2n — 1从而 q -b i W 0, ■q b i >0,对 n = 2,3,…,m + 1 均成立.n — 1 n — 1 因此,取d = 0时,|a n — b n |w b 1对n = 2,3,…,m + 1均成立.q n —1—2] r q n -1]下面讨论数列* ——的最大值和数列:一1啲最小值(n = 2,3,…,m + 1).①当2w n W m 时,nn — 1n nn — 1丄q — 2 q — 2 nq — q — nq + 2 n n — 1 n n —1r n J — 1 I n , o=nfq—q - q +2n n — 1 .当 1 v q w 21 时,有 q n w q m w 2,从而 n(q n — q n —1)— q n + 2 > 0.tn*"•- +n + 1厂 n + 2 2.n + 1 j+ 2 2 2因此,当2w n w m + 1时,数列 “ 1-调递增,卫 n —q n —1—2n — 1m — 2 【勺最大值为②设 f(x)= 2X (1 — x),当 x >0 时,f ' (x) = (In 2 — 1 — xln 2)2X V 0, 所以f(x)单调递减,从而f(x) V f(0) = 1. nq当2 w n w m 时,召=血—1q n — 11,因此,当2< n w m +1时,数列r n — 1 °_g__n — 1单调递减,n — 1故数列 n —I 的最小值为mq_ m因此d 的取值范围为也 m mI — 2) b 1q一 ,m命题点四数学归纳法1. (2017浙江高考)已知数列 证明:当n € N *时,{X n }满足:X 1= 1, X n = x n +1+ ln(1 + x n + “(n € N ).(1)0 V X n + 1 V x ; X n X n +1;(2)2x n +1—X k > 0,誇f所以函数f(x)在[0, + g )上单调递增,所以 f(x)> f(0) = 0,因此 X 2+ 1 一 2X n + 1+(X n + 1+ 2)ln(1 + X n +1)= f(x n + l )> 0,X n X n +1 *故 2X n +1- X n W 2—(n € N ). (3)因为 X n = X n +1 + ln(1 + X n + 1)W X n +1 + X n + 1 = 2X n +1 ,1所以Xn >歹--1.X n X n 111. 由 丁 >2X n +1-X n 得石 一2》2 1 故X n W 尹.综上,W X n W 2n -2(n € N ).* _2. (2018江苏高考 股n € N ,对1,2,…,n 的一个排列 応…i n ,如果当s v t 时,有i s > i t ,则称(i s , i t )是排列i 1i 2…i n 的一个逆序,排列hi 2…i n 的所有逆序的总个数称为其逆序数. 例 如:对1,2,3的一个排列231,只有两个逆序(2,1), (3,1),则排列231的逆序数为2.记f n (k) 为1,2,…,n 的所有排列中逆序数为 k 的全部排列的个数.(1) 求 f 3(2), f 4(2)的值;(2) 求f n (2)(n > 5)的表达式(用n 表示).解:(1)记T abc)为排列abc 的逆序数,对1,2,3的所有排列,有T 123) = 0, T 132) = 1, T (213)= 1, T 231) = 2, T 312) = 2, T 321) = 3,所以 f a (0) = 1, f a (1)= f 3(2) = 2.对1,2,3,4的排列,利用已有的 1,2,3的排列,将数字4添加进去,4在新排列中的位置 只能是最后三个位置.因此 f 4(2) = f 3(2) + f 3(1) + f 3(0) = 5.⑵对一般的n(n >4)的情形,逆序数为 0的排列只有一个:12…n ,所以f n (0) = 1.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列, 所以 f n (1) = n - 1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n + 1添加进原排列,n + 1 在新排列中的位置只能是最后三个位置. X n X n + 1 0,?n -22 , 所以X n -毎2因此f n+1(2) = f n(2) + f n(1) + f n(0) = f n(2) + n.当n > 5 时,f n(2)=[f n(2) - f n-1(2)] + [f n-i(2) - 22⑵]+ …+ 压⑵-彳4(2)] + 屮4(2) = (n-1) + (n — 2) + …+ 4+ f 4(2)=1 ” 1⑶2n — 1W X n w 2n — 2证明:(1)用数学归纳法证明:当 n = 1 时,x 1= 1 > 0.假设 n = k(k > 1, k € N )时,那么 n = k + 1 时,若 X k +1< 0,则 0 V X k = X k +1+ ln(1 + X k + 1)w 0,矛盾,故 x k +1> 0. 因此 x n > 0( n € N *). 所以 X n = X n + 1+ ln(1+ X n + "> X n + 1.因此 0 V X n + 1V X n (n € N ).(2)由 X n = x n + 1 + ln(1 + x n +1)得,X n X n + 1 — 4x n +1 + 2x n = x n +1 — 2x n + 1 + (x n +1 + 2) ln(1 + x n + 1). 记函数 f(x)= x 2— 2x + (x + 2)ln(1 + x)(x > 0),2 ,2x + xf ' (x)= — + ln(1 + x)>0(x >0),x + 1 因此,当 n > 5 时, f n (2)= n 2-n -2n 2_ n — 2。

2020版高考数学新增分大一轮江苏专用讲义+习题:第一章 集合与常用逻辑用语 1.4含解析

2020版高考数学新增分大一轮江苏专用讲义+习题:第一章 集合与常用逻辑用语 1.4含解析

§1.4 简单的逻辑联结词、全称量词与存在量词考情考向分析 逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为填空题,低档难度.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x∈M,綈p(x)存在性命题存在M中的一个x,使p(x)成立∃x∈M,p(x)∀x∈M,綈p(x)概念方法微思考含有逻辑联结词的命题的真假有什么规律?提示 p ∨q :一真即真;p ∧q :一假即假;p ,綈p :真假相反.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.( √ )(2)命题p 和綈p 不可能都是真命题.( √ )(3)“全等三角形的面积相等”是存在性命题.( × )(4)命题綈(p ∧q )是假命题,则命题p ,q 都是真命题.( √ )题组二 教材改编2.[P13习题T3]已知p :2是偶数,q :2是质数,则命题綈p ,綈q ,p ∨q ,p ∧q 中真命题的个数为________.答案 2解析 p 和q 显然都是真命题,所以綈p ,綈q 都是假命题,p ∨q ,p ∧q 都是真命题.3.[P16例1]命题“∃x ∈N ,x 2≤0”的否定是____________.答案 ∀x ∈N ,x 2>04.[P23测试T6]命题“对于函数f (x )=x 2+(a ∈R ),存在a ∈R ,使得f (x )是偶函数”为________ax 命题.(填“真”或“假”)答案 真解析 当a=0时,f(x)=x2(x≠0)为偶函数.题组三 易错自纠5.命题“綈p为真”是命题“p∧q为假”的________条件.答案 充分不必要解析 由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假.故“綈p为真”是“p∧q为假”的充分不必要条件.6.下列命题中的假命题是________.(填序号)①∃x∈R,lg x=1;②∃x∈R,sin x=0;③∀x∈R,x3>0;④∀x∈R,2x>0.答案 ③解析 当x=10时,lg 10=1,则①为真命题;当x=0时,sin 0=0,则②为真命题;当x<0时,x3<0,则③为假命题;由指数函数的性质知,∀x∈R,2x>0,则④为真命题.7.已知命题p:∀x∈R,x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.答案 (-∞,-2]解析 由已知条件,知p和q均为真命题,由命题p为真,得a≤0,由命题q为真,得Δ=4a2-4(2-a)≥0,即a≤-2或a≥1,所以a≤-2.题型一 含有逻辑联结词的命题的真假判断1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中的真命题是________.(填序号)①p ∨q ;②p ∧q ;③(綈p )∧(綈q );④p ∨(綈q ).答案 ①解析 如图所示,若a =,b =,c =,则a ·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨qA 1A → AB → B 1B →为真命题.2.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =的值域13x +1为(0,1),则下列命题中是真命题的为________.(填序号)①p ∧q ;②p ∨q ;③p ∧(綈q );④綈q .答案 ②解析 函数y =log 2(x 2-2x )的单调增区间是(2,+∞),所以命题p 为假命题.由3x >0,得0<<1,13x +1所以函数y =的值域为(0,1),故命题q 为真命题.13x +1所以p ∧q 为假命题,p ∨q 为真命题,p ∧(綈q )为假命题,綈q 为假命题.3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)答案 ②解析 命题p是假命题,这是因为α与γ也可能相交;命题q也是假命题,这两条直线也可能异面,相交.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p ,q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.题型二 含有一个量词的命题命题点1 全称命题、存在性命题的真假例1 下列四个命题:①∃x ∈(0,+∞),x <x;(12)(13)②∃x ∈(0,1),;1123log log x x >③∀x ∈(0,+∞),x>;(12)12log x ④∀x ∈,x <.(0,13)(12)13log x 其中真命题序号为________.答案 ②④解析 对于①,当x ∈(0,+∞)时,总有x >x成立,故①是假命题;(12)(13)对于②,当x =时,有成立,故②是真命题;121112331111log log log 232==>对于③,当0<x <时,>1>x ,故③是假命题;1212log x (12)(0,13)(12)1log x对于④,∀x∈,x<1<,故④是真命题.3命题点2 含一个量词的命题的否定例2 (1)命题:“∃x∈R,sin x+cos x>2”的否定是________________.答案 ∀x∈R,sin x+cos x≤2(2)已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是__________.答案 ∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0思维升华(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判定存在性命题是真命题,只要在限定集合内找到一个x0,使p(x0)成立.(2)对全称命题、存在性命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.跟踪训练1 (1)设命题p:∀x∈(0,+∞),3x>2x;命题q:∃x∈(-∞,0),3x>2x,则下列命题为真命题的是________.(填序号)①p∧q;②p∧(綈q);③(綈p)∧q;④(綈p)∧(綈q).答案 ②解析 ∀x∈(0,+∞),3x>2x,所以命题p为真命题;∀x∈(-∞,0),3x<2x,所以命题q为假命题,因此p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题,p∧(綈q)为真命题,故填②.(13)(2)命题“∀x∈R,x>0”的否定是______________.(13)答案 ∃x∈R,x≤0解析 全称命题的否定是存在性命题,“>”的否定是“≤”.(3)已知命题“∃x ∈R ,e x +a <0”为假命题,则a 的取值范围是________.答案 [0,+∞)解析 因为命题“∃x ∈R ,e x +a <0”为假命题,所以e x +a ≥0恒成立,所以a ≥(-e x )max 的最大值.∵-e x <0,∴a ≥0.题型三 命题中参数的取值范围例3 (1)已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为____________.答案 [e,4]解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x ,得a ≥e ;由∃x ∈R ,使x 2+4x +a =0,得Δ=16-4a ≥0,则a ≤4,因此e ≤a ≤4.则实数a 的取值范围为[e,4].(2)已知f (x )=ln(x 2+1),g (x )=x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实(12)数m 的取值范围是________________.答案 [14,+∞)解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=-m ,由f (x )min ≥g (x )min ,14得0≥-m ,所以m ≥.1414引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________.答案 [12,+∞)解析 当x ∈[1,2]时,g (x )max =g (1)=-m ,12由f (x )min ≥g (x )max ,得0≥-m ,∴m ≥.1212思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练2 (1)(2018·苏北三市期末)由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 由题意得命题“∀x ∈R ,x 2+2x +m >0”是真命题,所以Δ=4-4m <0,即m >1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.(2)已知c >0,且c ≠1,设命题p :函数y =c x 为减函数.命题q :当x ∈时,函数f (x )=x +[12,2]>恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围为________.1x 1c答案 ∪(1,+∞)(0,12]解析 由命题p 为真知,0<c <1,当x ∈时,2≤x +≤,[12,2]1x 52要使x +>恒成立,需<2,即c >,1x 1c 1c 12即由命题q 为真,知c >.12若“p ∨q ”为真命题,“p ∧q ”为假命题,则p ,q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤;12当p 假q 真时,c 的取值范围是c >1.综上可知,c 的取值范围是∪(1,+∞).(0,12]常用逻辑用语有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.一、命题的真假判断例1 (1)下列命题的否定为假命题的是________.(填序号)①∀x ∈R ,-x 2+x -1<0;②∀x∈R,|x|>x;③∀x,y∈Z,2x-5y≠12;④∀x∈R,sin2x+sin x+1=0.答案 ①解析 命题的否定为假命题亦即原命题为真命题,只有①为真命题.(2)已知命题p :∀x ∈R ,log 2(x 2+4)≥2,命题q :y =是定义域上的减函数,则下列命题中12x 为真命题的是________.(填序号)①p ∨(綈q );②p ∧q ;③(綈p )∨q ;④(綈p )∧(綈q ).答案 ①解析 命题p :函数y =log 2x 在(0,+∞)上是增函数,x 2+4≥4,所以log 2(x 2+4)≥log 24=2,即命题p 是真命题,因此綈p 为假命题;命题q :y =在定义域上是增函数,故命题q 是12x 假命题,綈q 是真命题.因此①是真命题,②③④均为假命题.二、充要条件的判断例2 (1)“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的________条件.答案 充分不必要解析 由题意,函数f (x )=a ·x +cos x 在R 上单调递增,则f ′(x )≥0恒成立,即f ′(x )=a -sin x ≥0,即a ≥sin x ,因为-1≤sin x ≤1,即a ≥1,所以“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的充分不必要条件.(2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -y +3=03的距离为1,则p 是q 的________条件.答案 充要解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -y +3=0的距离d ==2.3|1-3×0+3|2当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C上有2个点到直线的距离为1.综上,当r∈(0,3)时,圆C上至多有2个点到直线的距离为1.又由圆C上至多有2个点到直线的距离为1,可得0<r<3,故p是q 的充要条件.三、求参数的取值范围例3 (1)若命题“∃x∈R,x2+(a-1)x+1<0”是真命题,则实数a的取值范围是________.答案 (-∞,-1)∪(3,+∞)解析 因为命题“∃x∈R,x2+(a-1)x+1<0”等价于“x2+(a-1)x+1=0有两个不等的实根”,所以Δ=(a-1)2-4>0,即a2-2a-3>0,解得a<-1或a>3.(2)已知命题p:∃x∈R,(m+1)·(x2+1)≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q 为假命题,则实数m的取值范围为____________.答案 (-∞,-2]∪(-1,+∞)解析 由命题p:∃x∈R,(m+1)(x2+1)≤0,可得m≤-1,由命题q:∀x∈R,x2+mx+1>0恒成立,可得-2<m<2,因为p∧q为假命题,所以p,q中至少有一个为假命题,当p真q假时,m≤-2;当p假q真时,-1<m<2;当p假q假时,m≥2,所以m≤-2或m>-1.1.设命题p :函数y =sin 2x 的最小正周期为;命题q :函数y =cos x 的图象关于直线x =π2π2对称,则下列判断正确的是________.(填序号)①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 函数y =sin 2x 的最小正周期为=π,故命题p 为假命题;x =不是y =cos x 的对称轴,2π2π2故命题q 为假命题,故p ∧q 为假.2.命题“∃x ∈R ,x 2-2x +1≤0”的否定形式为________.答案 ∀x ∈R ,x 2-2x +1>0解析 ∵命题是存在性命题,∴根据存在性命题的否定是全称命题,命题“∃x ∈R ,x 2-2x +1≤0”的否定形式为:∀x ∈R ,x 2-2x +1>0.3.命题p 的否定是“对所有正数x ,>x +1”,则命题p 可写为__________.x 答案 ∃x ∈(0,+∞),≤x +1x 解析 因为p 是綈p 的否定,所以只需将全称量词变为存在量词,再对结论否定即可.4.以下四个命题中既是存在性命题又是真命题的是________.(填序号)①锐角三角形有一个内角是钝角;②至少有一个实数x ,使x 2≤0;③两个无理数的和必是无理数;④存在一个负数x ,>2.1x答案 ②解析 ①中锐角三角形的内角都是锐角,所以①是假命题;②中当x =0时,x 2=0,满足x 2≤0,所以②既是存在性命题又是真命题;③是全称命题,又是假命题;④中对于任意一个负数x ,都有<0,不满足>2,所以④是假命题.1x 1x5.设命题p :∃x ∈(0,+∞),x +>3,命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的1x是________.(填序号)①p ∧(綈q );②(綈p )∧q ;③p ∧q ;④(綈p )∨q .答案 ①解析 命题p :∃x ∈(0,+∞),x +>3,当x =3时,x +=>3,命题p 为真;命题q :∀x ∈(2,+1x 1x 103∞),x 2>2x ,当x =4时,42=24,命题q 为假.所以p ∧(綈q )为真.6.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =p +q 是a m +a n =a p +a q 的充分不必要条件(m ,n ,p ,q ∈N *).则下列为真命题的是______.(填序号)①(綈p )∧(綈q );②(綈p )∨(綈q );③p ∨(綈q );④p ∧q .答案 ②解析 当a =1.1,x =2时,a x =1.12=1.21,log a x =log 1.12>log 1.11.21=2,此时,a x <log a x ,故p 为假命题.命题q ,由等差数列的性质可知,当m +n =p +q 时,a m +a n =a p +a q 成立,当公差d =0时,由a m +a n =a p +a q 不能推出m +n =p +q 成立,故q 是真命题.故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨(綈q )为真命题.7.若命题“对∀x ∈R ,kx 2-kx -1<0”是真命题,则k 的取值范围是________________.答案 (-4,0]解析 “对∀x ∈R ,kx 2-kx -1<0”是真命题,当k =0时,则有-1<0;当k ≠0时,则有k <0且Δ=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0,综上所述,实数k 的取值范围是(-4,0].8.已知命题“∃x ∈R ,使2x 2+(a -1)x +≤0”是假命题,则实数a 的取值范围是________.12答案 (-1,3)解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +>0,由题意知,其为真命题,即Δ=(a -1)2-124×2×<0,则-2<a -1<2,即-1<a <3.129.若∃x ∈,使得2x 2-λx +1<0成立是假命题,则实数λ的取值范围是________.[12,2]答案 (-∞,2]2解析 因为∃x ∈,使得2x 2-λx +1<0成立是假命题,所以∀x ∈,2x 2-λx +1≥0恒[12,2][12,2]成立是真命题,即∀x ∈,λ≤2x +恒成立是真命题,令f (x )=2x +,则当x ∈时,f (x )∈[12,2]1x 1x [12,2],当且仅当x =时,f (x )min =2,所以λ≤2.[22,92]222210.已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.答案 [2,+∞)解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,解得m ≤-2或m ≥2.因此由p ,q 均为假命题得Error!即m ≥2.11.已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.12.已知命题p 1:∀x ∈(0,+∞),3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=,则在命题q 1:p 1∨p 2;q 2:32p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是________.答案 q 1,q 4解析 因为y =x 在R 上是增函数,即y =x >1在(0,+∞)上恒成立,所以命题p 1是真命(32)(32)题;sin θ+cos θ=sin ≤,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,2(θ+π4)2q 4:p 1∧(綈p 2)是真命题.13.已知命题p :∃x ∈R ,使tan x =1;命题q :x 2-3x +2<0的解集是{x |1<x <2}.现有以下结论:①命题“p 且q ”是真命题;②命题“p 且綈q ”是假命题;③命题“綈p 或q ”是真命题;④命题“綈p 或綈q ”是假命题.其中正确结论的序号为____________.答案 ①②③④解析 ∵命题p ,q 均为真命题,∴“p 且q ”是真命题,“p 且綈q ”是假命题,“綈p 或q ”是真命题,“綈p 或綈q ”是假命题,故①②③④都正确.14.已知命题p :∃x ∈R ,e x -mx =0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是________.答案 [0,2]解析 若p ∨(綈q )为假命题,则p 假q 真.由e x -mx =0,可得m =,x ≠0,e x x 设f (x )=,x ≠0,则f ′(x )==,e x x x e x -e x x 2(x -1)e xx 2当x >1时,f ′(x )>0,函数f (x )=在(1,+∞)上是单调递增函数;当0<x <1或x <0时,f ′(x )<0,e x x函数f (x )=在(0,1)和(-∞,0)上是单调递减函数,所以当x =1时,函数取得极小值f (1)=e ,e x x所以函数f (x )=的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e.e x x当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.15.已知函数f (x )=x +,g (x )=2x +a ,若∀x 1∈,∀x 2∈[2,3],f (x 1)≥g (x 2)恒成立,则实4x [12,1]数a 的取值范围是______________.答案 (-∞,-3]解析 由题意知f (x )min ≥g (x )max (x ∈[2,3]),因为f (x )在上为减函数,g (x )在[2,3](x ∈[12,1])[12,1]上为增函数,所以f (x )min =f (1)=5,g (x )max =g (3)=8+a ,所以5≥8+a ,即a ≤-3.16.已知p :∀x ∈,2x >m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点.若“p ∨q ”[14,12]为真命题,“p ∧q ”为假命题,则实数m 的取值范围是____________.答案 [817,1)解析 ∀x ∈,2x >m (x 2+1),[14,12]即m <=在上恒成立,2x x 2+12x +1x[14,12]当x =时,max =,14(x +1x)174∴min =,∴由p 真得m <.(2xx 2+1)817817设t =2x ,则t ∈(0,+∞),则函数f (x )化为g (t )=t 2+2t +m -1,由题意知g (t )在(0,+∞)上存在零点,令g (t )=0,得m =-(t +1)2+2,又t >0,所以由q 真得m <1.又“p ∨q ”为真,“p ∧q ”为假,∴p ,q 一真一假,则Error!或Error!解得≤m <1.817故所求实数m 的取值范围是.[817,1)。

(通用版)2020版高考数学复习专题一高频客观命题点1.8排列、组合、二项式定理练习(理)

(通用版)2020版高考数学复习专题一高频客观命题点1.8排列、组合、二项式定理练习(理)

1.8 排列、组合、二项式定理命题角度1计数原理、排列与组合问题高考真题体验·对方向1.(2017全国Ⅱ·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种4项工作分成3份有C 42C 21C 11A 22种情况,再把3名志愿者排列有A 33种情况,故不同的安排方式共有C 42C 21C 11A 22·A 33=36种,故选D .2.(2016全国Ⅱ·5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9,小明从街道的E 处出发到F 处的最短路径有6条,再从F 处到G 处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B .3.(2016全国Ⅲ·12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个 B.16个 C.14个 D.12个a1=0,a8=1,则满足题意的a1,a2,…,a8的可能取值如下:综上可知,不同的“规范01数列”共有14个.4.(2017浙江·16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答),总的选择方法为C84C41C31种方法,其中不满足题意的选法有C64C41C31种方法,则满足题意的选法有:C84C41C31−C64C41C31=660种.5.(2018全国Ⅰ·15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案):①当3人中恰有1位女生时,有C21C42=12种选法.②当3人中有2位女生时,有C22C41=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有C63种选法,当3人全是男生时有C43种选法,所以至少有1位女生入选时有C63−C43=16种选法.6.(2017天津·14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)没有一个数字是偶数的四位数有A54=120个;②有且只有一个数字是偶数的四位数有C41C53A44=960个.所以至多有一个数字是偶数的四位数有120+960=1080个.典题演练提能·刷高分1.有5名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学不能相邻,则不同的站法有()A.8种B.16种C.32种D.48种,乙、丙两位同学不能相邻,则两人必须站在甲的两侧,选出一人排在左侧,有C21A21种方法,另外一人排在右侧,有A21种方法,余下两人排在余下的两个空,有A22种方法,综上可得,不同的站法有C21A21A21A22=16种.2.上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()656C.C62×A54种D.C62×54种,所以参观甲博物馆的年级有C62种情况,其余年级均有5种选择,所以共有54种情况,根据乘法原理可得C62×54种情况,故选D.3.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种:先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步:从5个球里选出两个球放在刚才的盒子里,有C52种选法;第三步:把剩下的3个球全排列,有A33种排法,由乘法分步原理得不同方法共有4C52A33=240种,故选C.4.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有()A.90种B.180种C.270种D.360种,为甲地选一名志愿者,有C61=6种选法;第二步,为乙地选一名志愿者,有C51=5种选法;第三步,为剩下两个展区各安排两个人,有C42C22=6种选法.故不同的安排方案共有6×5×6=180种.故选B.5.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有()C.38 880种D.43 200种P点出发的4条侧棱一定要用4种不同的颜色,有A64=360种不同的方案, 接下来底面的染色根据是否使用剩下的2种颜色分类计数:(1)不使用新的颜色,有2种颜色分类方案;(2)使用1种新的颜色,分为2类:第一类,染一条边,有2×4×4=32种方案;第二类,染两条对边,有2×2×4=16种方案.(3)使用2种新的颜色,分为4类:第一类,染两条邻边,有4×2×3=24种方案;第二类,染两条对边,有2×2×4=16种方案;第三类,染三条边,有4×2×2=16种方案;第四类,染四条边,有2种方案.因此不同的染色方案总数为360×[2+(32+16)+(24+16+16+2)]=38880,故选C.6.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为(用数字作答).,可分为两类:第一类:甲乙在一个地区时,剩余的三类分为两组,再三组派遣到三个地区,共有C32A33=18种不同的派遣方式;第二类:甲乙和剩余的三人中的一个人同在一个地区,另外两人分别在两个地区,共有C31A33=18种不同的派遣方式;由分类计数原理可得,不同的派遣方式共有18+18=36种.命题角度2求展开式中的指定项或其系数高考真题体验·对方向)5的展开式中x4的系数为()1.(2018全国Ⅲ·5)(x2+2xA.10B.20C.40D.80T r+1=C5x(x2)5-r(2x-1)r=C5x2r x10-3r.当r=2时,x4的系数为C5222=40.2.(2019全国Ⅲ·4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24+2x2)(1+x)4的展开式中x3的系数为C43+2C41=4+8=12.故选A.3.(2017全国Ⅲ·4)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.80x-y)5的展开式的通项公式T r+1=C5x(2x)5-r(-y)r.当r=3时,x(2x-y)5的展开式中x3y3的系数为C53×22×(-1)3=-40;当r=2时,y(2x-y)5的展开式中x3y3的系数为C52×23×(-1)2=80.故展开式中x3y3的系数为80-40=40.4.(2015全国Ⅰ·10)(x2+x+y)5的展开式中,x5y2的系数为()(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5x (x 2+x )5-r y r(r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3x (x 2)3-i·x i =C 3x x6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30.5.(2019浙江·13)在二项式(√2+x )9的展开式中,常数项是 ,系数为有理数的项的个数是 .√2 5√2+x )9的通项为T r+1=C 9x (√2)9-r x r(r=0,1,2,…,9),可得常数项为T 1=C 90(√2)9=16√2.因为系数为有理数,所以r=1,3,5,7,9,即T 2,T 4,T 6,T 8,T 10的系数为有理数,共5个.6.(2019天津·10)2x-18x 38的展开式中的常数项为 .解析 T r+1=C 8x (2x )8-r1-8x 3r=C 8x ·28-r ·-18r ·x 8-4r.需8-4r=0,r=2.常数项为C 8226-182=C 8226126=C 82=28.典题演练提能·刷高分1.(x 2+2)1x-15展开式中的常数项是( )解析由1x -15展开式的第r+1项T r+1=C5x1x5-r(-1)r=(-1)r C5x x r-5,得(x2+2)1x-15展开式的通项为x2·(-1)r C5x x r-5=(-1)r C5x x r-3或2(-1)r C5x x r-5,则当r-3=0或r-5=0,即r=3或r=5时,为展开式的常数项,即(-1)3C53+2(-1)5C55=-12.故选B.2.x2+1x6展开式的常数项为.(用数字作答)解析由题得x2+1x 6展开式的通项为Tr+1=C6x(x2)6-r1xr=C6x x12-3r(r=0,1,2,3,4,5,6),令12-3r=0,得r=4.所以x2+1x 6展开式的常数项为C64=15.3.在2x+1x26的展开式中x-3的系数为.T r+1=C6x(2x)6-r·1x2x=C6x·26-r·x6-3r,令6-3r=-3⇒r=3,所以系数为C63·23=160.4.(x+y)(x-y)8的展开式中x2y7的系数为(用数字作答).x-y)8展开式的通项公式为T r+1=C8x x8-r(-y)r=(-1)r C8x x8-r y r,令r=7,则展开项为(-1)7C87x8-7y7=-8xy7,令r=6,则展开项为(-1)6C86x8-6y6=28x2y6,据此可得展开式中x2y7的系数为-8+28=20.5.(1+ax)(1+x)5的展开式中x2的系数是5,则a=.1+ax )(1+x )5的展开式中x 2的系数是1×C 52+a ×C 51=10+5a ,所以10+5a=5,故a=-1.命题角度3二项式系数与项的系数问题高考真题体验·对方向1.(2015湖北·3)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.212B.211C.210D.29x 3=C x 7,∴n=10.∴(1+x )10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.2.(2015全国Ⅱ·15)(a+x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a= .(1+x )4=x 4+C 43x 3+C 42x 2+C 41x+C 40x 0=x 4+4x 3+6x 2+4x+1,∴(a+x )(1+x )4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3.(a+x )(1+x )4=b 0+b 1x+b 2x 2+b 3x 3+b 4x 4+b 5x 5.令x=1,得16(a+1)=b 0+b 1+b 2+b 3+b 4+b 5, ① 令x=-1,得0=b 0-b 1+b 2-b 3+b 4-b 5, ②由①-②,得16(a+1)=2(b 1+b 3+b 5). 即8(a+1)=32,解得a=3. 典题演练提能·刷高分1.已知x 3+2x n的展开式的各项系数和为243,则展开式中x 7的系数为( )A.5B.40C.20D.10解析 由题意,二项式x 3+2x n的展开式中各项的系数和为243,令x=1,则3n =243,解得n=5,所以二项式x 3+2x 5的展开式为T r+1=C 5x (x 3)5-r2xr=2r C 5x x 15-4r ,令r=2,则T 3=22C 52x15-4×2=40x 7,即x 7的系数为40,故选B .2.若多项式(2x+3y )n 展开式仅在第5项的二项式系数最大,则多项式x 2+1x 2-4n-4展开式中x 2的系数为 ( )A.-304B.304C.-208D.208解析 多项式(2x+3y )n 展开式仅在第5项的二项式系数最大,故n=8,多项式x 2+1x 2-44展开式中x 2的系数为C 41·(-4)3+C 42·C 21·(-4)=-256-48=-304.选A .3.记(2-x )7=a 0+a 1(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( ) A.1 B.2 C.129 D.2 188-x )7=a 0+a 1(1+x )2+…+a 7(1+x )7中,令x=0,得27=a 0+a 1+…+a 7=128.∵(2-x )7展开式中含x 7项的系数为C 7720(-1)7=-1,∴a 7=-1,∴a 0+a 1+…+a 6=128-a 7=129.4.在二项式ax+√x 8的展开式中,所有项的系数之和记为S ,第r 项的系数记为P r ,若x x 9=38,则xx 的值为 ( )11 A.2B.-4C.2或-2D.2或-4解析 在ax+√x 8中,令x=1,所以S=(a+b )8, 又其通项公式为T r+1=C 8x (ax )8-r √x r ,即T r+1=C 8x a 8-r ·b r x8-32x ,所以P 9=C 88a 8-8b 8=b 8,因此依题有(x +x )8x 8=1+x x 8=38, ∴1+x x =±3,∴x x =2或-4.故选D .5.(2x-1)6的展开式中,二项式系数最大的项的系数是 .(用数字作答)160x-1)6的展开式中,二项式系数最大的项是第四项,系数为C 63(2)3(-1)3=-160. 6.x-x x 2x-1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为 . 48解析 令x=1,可得x-x x2x-1x 5的展开式中各项系数的和为1-a=2,得a=-1,x+1x 2x-1x 5展开式x 4的系数,即是2x-1x5展开式中的x 3与x 5系数的和,2x-1x 5展开式通项为T r+1=C 5x (-1)r 25-r ·x 5-2r ,令5-2r=3,得r=1,令5-2r=5,得r=0,将r=1与r=0,分别代入通项,可得x 3与x 5的系数分别为-80与32,∴原展开式x 4的系数为-80+32=-48.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块命题点专练(一)
1.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )
A.A∩B=∅B.A∪B=R
C.B⊆A D.A⊆B
解析:选B 集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,故选B.
2.(2016·全国丙卷)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )
A.{4,8} B.{0,2,6}
C.{0,2,6,10} D.{0,2,4,6,8,10}
解析:选C ∵集合A={0,2,4,6,8,10},B={4,8},
∴∁A B={0,2,6,10}.
3.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )
A.[2,3] B.(-∞,2]∪[3,+∞)
C.[3,+∞) D.(0,2]∪[3,+∞)
解析:选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.
4.(2015·全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )
A.5 B.4
C.3 D.2
解析:选D 集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.
5.(2012·全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )
A.3 B.6
C.8 D.10
解析:选D 列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
解析:选A |x-2|<1⇔1<x<3.
由于{x|1<x<2}是{x|1<x<3}的真子集,
所以“1<x<2”是“|x-2|<1”的充分而不必要条件.
2.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.
3.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( ) A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
解析:选C 当f′(x0)=0时,x=x0不一定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x =0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.
由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.
1.(2012·全国卷)下面是关于复数z=
-1+i
的四个命题:
p1:|z|=2, p2:z2=2i,
p3:z的共轭复数为1+i, p4:z的虚部为-1.
其中的真命题为( )
A.p2,p3B.p1,p2
C.p2,p4D.p3,p4
解析:选C ∵复数z=2
-1+i
=-1-i,∴|z|=2,z2=(-1-i)2=(1+i)2=2i,z的共轭复数为-1+i,z的虚部为-1,综上可知p2,p4是真命题.
2.(2015·山东高考)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
解析:选D 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.
命题点四含有逻辑联结词的命题
命题指数:☆☆☆难度:中、低题型:选择题
q:若a ∥b,b∥c,则a∥c.则下列命题中真命题是( )
A.p∨q B.p∧q
C.(綈p)∧(綈q) D.p∨(綈q)
解析:选A
如图,若a=A1A―→,b=AB―→,c=B1B―→,则a·c≠0,命题p为假命题;显然命题q为真命题,所以p ∨q为真命题.
2.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
解析:选A 綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.即为(綈p)∨(綈q).
命题点五全称量词和存在量词
命题指数:☆☆☆难度:低题型:选择题、填空题
n
A.∀n∈N,n2>2n B.∃n∈N,n2≤2n
C.∀n∈N,n2≤2n D.∃n∈N,n2=2n
解析:选C 因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”.
2.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )
A.∀x∈R,∃n∈N*,使得n<x2
B.∀x∈R,∀n∈N*,使得n<x2
C.∃x∈R,∃n∈N*,使得n<x2
D.∃x∈R,∀n∈N*,使得n<x2
解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *
,使得n ≥x 2
”的否定形式为“∃x ∈R ,∀n ∈N *
,使得n <x 2
”.
3.(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,t a n x ≤m ”是真命题,则实数m 的最小值为________.
解析:由题意,原命题等价于t a n x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =t a n x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或
等于m ,又y =t a n x 在⎣
⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.
答案:1。

相关文档
最新文档