2017年深圳市中考数学试题及答案

合集下载

广东省深圳市2017年中考数学试题(含答案)

广东省深圳市2017年中考数学试题(含答案)


16.如图,在 RtABC 中, ABC 90o , AB 3 , BC 4 , RtMPN , MPN 90o ,点 P 在 AC
上, PM 交 AB 于点 E , PN 交 BC 于点 F ,当 PE 2PF 时, AP

三、解答题
17.计算 | 2 2 | 2 cos 45o (1) 2 8 .
B.切线垂直于经过切点的半径
C. (3, 2) 关于 y 轴的对称点为 (3, 2)
D. 70o
D.抛物线 y x2 4x 2017 对称轴为直线 x 2
10.某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车 50%的人只花 1 元钱,
a 应该要取什么数( )
(1)求抛物线的解析式(用一般式表示).
(2)点 D 为
y 轴右
,若存在请直接给出点
D
坐标;若
不存在请说明理由.
(3)将直线 BC 绕点 B 顺时针旋转 45o ,与抛物线交于另一点 E ,求 BE 的长.
18.先化简,再求值:
(
2x x2
x
x
) 2
x x2
4
,其中
x
1 .
19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学
生(其它),根据调查结果绘制了不完整的统计图.
类型
频数
A
30
B
18
C
m
D
n
(1)学生共__________人, x __________, y __________;
x
2
1
的解集为(

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案深圳市2017年初中毕业生学业考试数学试卷第一部分选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的)1.-2的绝对值是()A.-2 B.2 C.-12D.122.图中立体图形的主视图是()立体图形 A B C D 3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为()A.8.2×105B.82×105C.8.2×106D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A B C D 5.下列选项中,哪个不可以得到l1∥l2?()A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( ) A .1x >- B .3x < C .1x <-或3x > D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .B .30C .D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AOD OECFS S =V 四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题第12题第16题第二部分非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34-=.a a14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配率,结合律,交换律,已知i2=-1,那么()()+-=.11i i16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB与点E,PN交BC于点F,当PE=2PF 时,AP = .三、解答题(567889952''''''''++++++=)17.计算:()22224518cos ---+-+o18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率A30 x B18 0.15 Cm 0.40 Dn y(1)学生共人,x=,y =;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y=kx+b与反比例函数my=(x>0)x交于A(2,4)、B(a,1),与x轴、y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数m=(x>0)的表达式;yx(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是¼CBD上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求s i n∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE HF•的值.F23.如图,抛物线22y ax bx=++经过A(-1,0),B(4,0),交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABDS S ∆=V ,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.深圳市2017年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3;18.原式=()()()()()()2222222x x x x x x x x x ++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米, 列方程:x (28-x )=180, 解方程得110x =,218x =, 答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米, 列方程得:x (28-x )=200, 化简得:2282000xx -+=, 224284200160b ac ∆=-=-⨯=-<,方程无解,所以不能围成面积为200平方厘米的矩形.21.(1)将A (2,4)代入m y x=中,得m =8, ∴反比例函数的解析式为8y x =, ∴将B (a ,1)代入8y x=中得a =8, ∴B (8,1),将A (2,4)与B (8,1)代入y =kx +b 中,得8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩, ∴152y x =-+; (2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5),如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与x 轴交于点F ,∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得, AD =225AE DE +=,BC =225CF BF +=, ∴AD =BC .22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r ,由勾股定理得:(r -2)2+42=r 2,解得:r =5;(2)∵弦CD 与直径AB 垂直,∴»»»12AD AC CD ==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC ,在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°,∴∠MAB =∠E ,∵¼¼BM BM =,∴∠MNB =∠MAB =∠E , ∵∠EHM =∠NHF ,∴△EHM ∽△NHF ,∴HE HM HN HF =,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H ,∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16, 即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴213222y x x =-++; (2)依题意知:AB =5,OC =2,∴1125522ABC SAB OC ∆=⨯=⨯⨯=, ∵23ABC ABD SS ∆=V ,∴315522ABD S =⨯=V , 设D (m ,213222m m -++)(m >0), ∵11522ABD D S AB y ==V ,∴211315522222m m ⨯⨯-++=,解得:m =1或m =2或m =-2(舍去)或m =5, ∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H ,∵∠CBF =45°,∠BCF =90°,∴CF =CB ,∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COB HFC OCBFC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ),∴HF =OC =2,HC =BO =4,∴F (2,6),∴易求得直线BE :y =-3x +12, 联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3),∴BE .。

【中考真题速递】2017年广东省深圳市中考数学试卷(详细答案解析)

【中考真题速递】2017年广东省深圳市中考数学试卷(详细答案解析)

2017 年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()△AODA.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()A.20B.30 C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•O P,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF 时,AP=3.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=,频率之和为1,属于中考常考题型.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,=AB•OC=×5×2=5,∴S△ABC=S△ABD,∵S△ABC∴S=×5=,△ABD设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.。

2017年广东省深圳市中考数学试卷含答案.docx

2017年广东省深圳市中考数学试卷含答案.docx

2017 年广东省深圳市中考数学试卷一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 37.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330 D.(1+10%)x=330 8.如图,已知线段 AB,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=210.某共享单车前 a 公里1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 4012.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.阅读理解:引入新数i,新数i 满足分配律,结合律,交换律,已知i2=﹣1,那么( 1+i)?(1﹣i) =.16.如图,在 Rt△ABC中,∠ ABC=90°,AB=3,BC=4, Rt△MPN,∠ MPN=90°,点 P 在 AC上, PM 交 AB 于点 E,PN 交 BC于点 F,当 PE=2PF时, AP=.三、解答题17.计算: |﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:(+)÷,其中x=﹣1.19.深圳市某学校抽样调查, A 类学生骑共享单车, B 类学生坐公交车、私家车等, C 类学生步行, D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y( 1)学生共人, x=, y=;( 2)补全条形统计图;( 3)若该校共有 2000 人,骑共享单车的有人.20.一个矩形周长为56 厘米.(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方米的矩形吗?请说明理由.2017 年中考数学真题试题21.如图,一次函数y=kx+b 与反比例函数y= (x>0)交于 A(2,4), B( a,1),与 x 轴, y 轴分别交于点 C,D.(1)直接写出一次函数 y=kx+b 的表达式和反比例函数 y= (x>0)的表达式;(2)求证: AD=BC.22.如图,线段 AB 是⊙ O 的直径,弦 CD⊥AB 于点 H,点 M 是上任意一点,AH=2,CH=4.(1)求⊙ O 的半径 r 的长度;(2)求 sin∠CMD;(3)直线 BM 交直线 CD于点 E,直线 MH 交⊙ O 于点 N,连接 BN 交 CE于点 F,求 HE?HF的值.2017 年中考数学真题试题23.如图,抛物线 y=ax2+bx+2 经过点 A(﹣ 1,0),B( 4,0),交 y 轴于点 C;( 1)求抛物线的解析式(用一般式表示);( 2)点 D 为y 轴右侧抛物线上一点,是否存在点 D 使S△ABC= S△ABD?若存在请直接给出点 D 坐标;若不存在请说明理由;( 3)将直线 BC绕点 B 顺时针旋转 45°,与抛物线交于另一点E,求 BE的长.2017 年中考数学真题试题2017 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.【考点】 15:绝对值.【分析】根据绝对值的定义,可直接得出﹣ 2 的绝对值.【解答】解: | ﹣2| =2.故选 B.2.图中立体图形的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选 A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×107【考点】 1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将 8200000 用科学记数法表示为: 8.2×106.故选: C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】 R5:中心对称图形; P3:轴对称图形.【分析】根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选 D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°【考点】 J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解: A、∵∠ 1=∠2,∴ l1∥l2,故本选项错误;B、∵∠ 2=∠ 3,∴ l1∥l2,故本选项错误;C、∠ 3=∠5 不能判定 l1∥l2,故本选项正确;D、∵∠ 3+∠ 4=180°,∴ l1∥l2,故本选项错误.故选 C.6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 3【考点】 CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 3﹣ 2x<5,得: x>﹣ 1,解不等式 x﹣ 2< 1,得: x<3,∴不等式组的解集为﹣ 1<x<3,故选: D.7.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330D.(1+10%)x=330【考点】 89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x 双,等量关系是:上个月卖出的双数×(1+10%) =现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x 双,根据题意得(1+10%) x=330.故选 D.8.如图,已知线段AB,分别以 A、B 为圆心,大于AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()2017 年中考数学真题试题A.40°B.50°C.60°D.70°【考点】 N2:作图—基本作图; KG:线段垂直平分线的性质.【分析】根据作法可知直线 l 是线段 AB 的垂直平分线,故可得出 AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l 是线段 AB 的垂直平分线,∴AC=BC,∴∠ CAB=∠CBA=25°,∴∠ BCM=∠CAB+∠ CBA=25°+25°=50°.故选 B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=2【考点】 O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解: A、五边形外角和为360°是真命题,故 A 不符合题意;B、切线垂直于经过切点的半径是真命题,故 B 不符合题意;C、(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)是假命题,故C 符合题意;D、抛物线 y=x2﹣4x+2017 对称轴为直线 x=2 是真命题,故 D 不符合题意;故选: C.10.某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车 50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】 WA:统计量的选择.【分析】由于要使使用该共享单车 50%的人只花 1 元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选 B.11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 40【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据 CD=20米,DE=10m得出∠ DCE=30°,故可得出∠ DCB=90°,再由∠BDF=30°可知∠ DBE=60°,由 DF∥AE 可得出∠ BGF=∠BCA=60°,故∠GBF=30°,所以∠ DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵ CD=20m,DE=10m,∴ sin∠DCE= = ,∴∠ DCE=30°.∵∠ ACB=60°,DF∥ AE,∴∠ BGF=60°∴∠ ABC=30°,∠ DCB=90°.∵∠ BDF=30°,∴∠ DBF=60°,∴∠ DBC=30°,∴ BC===20 m,∴ AB=BC?sin60°=20 ×=30m.故选 B.12.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当 BP=1时, tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4【考点】 S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质; T7:解直角三角形.【分析】由四边形 ABCD是正方形,得到AD=BC,∠ DAB=∠ ABC=90°,根据全等三角形的性质得到∠ P=∠ Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由 OD≠OE,得到 OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到 S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD四边形OECF;故③正确;根据相似三角形的性质得到BE= ,求得 QE=,=SQO= , OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形 ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵ BP=CQ,∴AP=BQ,在△ DAP与△ ABQ中,,∴△ DAP≌△ ABQ,∴∠ P=∠ Q,∵∠ Q+∠ QAB=90°,∴∠ P+∠ QAB=90°,∴∠ AOP=90°,∴AQ⊥ DP;故①正确;∵∠ DOA=∠AOP=90,∠ADO+∠ P=∠ADO+∠DAO=90°,∴∠ DAO=∠P,∴△ DAO∽△ APO,∴,∴AO2=OD?OP,∵ AE>AB,∴AE>AD,∴OD≠ OE,∴OA2≠OE?OP;故②错误;在△ CQF与△ BPE中,∴△ CQF≌△ BPE,∴CF=BE,∴DF=CE,在△ ADF与△ DCE中,,∴△ ADF≌△ DCE,∴S△ADF﹣ S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1, AB=3,∴ AP=4,∵△ AOP∽△ DAP,∴,∴BE= ,∴ QE= ,∵△ QOE∽△ PAD,∴,∴QO= ,OE= ,∴AO=5﹣QO= ,∴tan∠ OAE= = ,故④正确,故选 C.二、填空题313.因式分解: a ﹣4a= a(a+2)(a﹣2).【分析】首先提取公因式 a,进而利用平方差公式分解因式得出即可.32【解答】解: a ﹣ 4a=a(a ﹣ 4)=a(a+2)(a﹣2).故答案为: a( a+2)( a﹣ 2).14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑 1 白的概率是.【考点】 X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸。

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的) 1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为( )A .8。

2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B CD5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°, 延长AC 至M,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差 11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203B .30C .303D .4012.如图,正方形ABCD 的边长是3,BP =CQ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE,下列结论:①AQ ⊥DP;②OA 2=OE ·OP ;③AODOECF S S =四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= . 16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E ,PN 交BC 于点F,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=) 17()22224518cos ---+-+18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率 A 30 x B 18 0.15 C m 0.40 Dny(1)学生共 人,x = ,y = ; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有 人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y =kx +b 与反比例函数my x=(x >0)交于A (2,4)、B (a ,1),与x 轴、y 轴分别交于点C 、D .(1)直接写出一次函数y =kx +b 的表达式和反比例函数my x=(x >0)的表达式; (2)求证:AD =BC .22.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =2,CH =4. (1)求⊙O 的半径r 的长度; (2)求s i n ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N,连接BN 交CE 于点F ,求HE HF •的值.23.如图,抛物线22y ax bx =++经过A (-1,0),B (4,0),交y 轴于点C . (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABDS S ∆=,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.F深圳市2017年中考试数学试卷参考答案1—5.BACDC 6—10.DDBCB 11—12.BC 13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0。

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

深圳市2017 年初中毕业生学业考试数学试卷第一部分选择题一、(本部分共12 题,每小题 3 分,共36 分,每小题给出 4 个选项,其中只有一个选项是正确的)1.-2 的绝对值是()A .-2 B.2 C.-12D.122.图中立体图形的主视图是()立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学计数法表示为()5 B.82×105 C.8.2×106 D.82×107A .8.2×104.观察下列图形,其中既是轴对称又是中心对称图形的是()A B C D5.下列选项中,哪个不可以得到l1∥l 2?()A .∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°6.不等式组32x 5x 2 1的解集为()A .x 1 B.x 3 C.x 1 或x 3 D. 1 x 37.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A .10 %x 330 B. 1 10% x 330C. 21 10% x 330 D.1 10% x 3308.如图,已知线段AB ,分别以A、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l,在直线l 上取一点C,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数()A .40°B.50C.60°D.70°9.下列哪一个是假命题()A .五边形外角和为360°B.切线垂直于经过切点的半径1C.(3,-2)关于y 轴的对称点为(-3,2)D.抛物线 2 4 2017y x x 对称轴为直线x=210.某共享单车前 a 公里1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱,a 应该要取什么数()A .平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C处测得树顶 B 的仰角为60°,然后在坡顶 D 测得树顶 B 的仰角为30°,已知斜坡CD 的长度为20m,DE 的长为10m,则树AB 的高度是()mA .20 3 B.30 C.30 3 D.4012.如图,正方形ABCD 的边长是3,BP=CQ,连接AQ 、DP 交于点O,并分别与边CD、BC 交于点F,2=OE·OP;③E,连接AE ,下列结论:①AQ ⊥DP;②OA其中正确结论的个数是()13tan OAE .16 S S四边形,④当BP=1 时,D O A F CE OA .1 B.2 C.3 D.4第11 题第12 题第16 题第二部分非选择题二、填空题(本题共 4 题,每小题 3 分,共12 分)13.因式分解: 3 4a a .14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.阅读理解:引入新数i,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么 1 i 1 i =.16.如图,在Rt△ABC 中,∠ABC =90°,AB =3,BC=4,Rt△MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E,PN 交BC 于点F,当PE=2PF 时,AP =.三、解答题( 5 6 7 8 8 9 9 52 )17.计算: 22 2 2 cos45 1 8218.先化简,再求值:2x x x2x 2 x 2 x 4,其中x=-1.19.深圳市某学校抽样调查, A 类学生骑共享单车, B 类学生坐公交车、私家车, C 类学生步行, D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共人,x=,y=(2)补全条形统计图;(3)若该校共有2000 人,骑共享单车的有人.20.一个矩形周长为56 厘米,(1)当矩形面积为180 平方厘米时,长宽分别是多少?(2)能围成面积为200 平方厘米的矩形吗?请说明理由.21.如图,一次函数y=kx+b 与反比例函数别交于点C、D.ymx(x>0)交于A(2,4)、B(a,1),与x 轴、y 轴分(1)直接写出一次函数y=kx+b 的表达式和反比例函数(2)求证:AD =BC.ymx(x>0)的表达式;322.如图,线段AB 是⊙O 的直径,弦CD⊥AB 于点H,点M 是CBD 上任意一点,AH =2,CH=4.(1)求⊙O 的半径r 的长度;(2)求si n∠CMD ;(3)直线BM 交直线CD 于点E,直线MH 交⊙O 于点N,连接BN 交CE 于点F,求HE HF 的值.F23.如图,抛物线 2 2y ax bx 经过A (-1,0),B(4,0),交y 轴于点C.(1)求抛物线的解析式(用一般式表示);(2)点 D 为y 轴右侧抛物线上一点,是否存在点 D 使得若不存在请说明理由;2S S ,若存在请直接给出点 D 坐标,ABC ABD3(3)将直线BC 绕点 B 顺时针旋转45°,与抛物线交于另一点E,求BE 的长.4深圳市2017 年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC13.a a 2 a 2 ;14.23;15.2 ;16.3;17.3;18.原式=2x x 2 x x 2 x 2 x 2x 2 x 2 x=3x+2 把x=-1 代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120 人,x=30÷120=0.25,m=120×0.4=48,y=1-0.25-0.4-0.15=0.2,n=120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x)厘米,列方程:x(28-x)=180,解方程得x1 10 ,x2 18 ,答:长为18 厘米,宽为10 厘米;(2)解:设长为x 厘米,则宽为(28-x)厘米,列方程得:x(28-x)=200,化简得: 2 28 200 0x x ,2 4 282 4 200 16 0b ac ,方程无解,所以不能围成面积为200 平方厘米的矩形.21.(1)将 A (2,4)代入y mx中,得m=8,∴反比例函数的解析式为y 8x ,∴将B(a,1)代入y 8x中得a=8,∴B(8,1),将A (2,4)与B(8,1)代入y=kx+b 中,得8k b 12k b 4,解得kb 512,∴ 1 5y x ;2(2)由(1)知,C、D 两点的坐标为(10,0)、(0,5),如图,过点 A 作y 轴的垂线与y 轴交于点E,过 B 作x 轴的垂线与x 轴交于点F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,∴在Rt△ADE 和Rt△BCF 中,根据勾股定理得,AD = 2 2 5AE DE ,BC=2 2 5 CF BF ,∴AD =BC.22.(1)连接OC,在Rt△COH 中,CH=4,OH=r-2,OC=r,由勾股定理得:(r-2)2+42=r2,解得:r=5;(2)∵弦CD 与直径AB 垂直,∴1AD AC CD ,∴∠AOC=212∠COD,1∵∠CMD =∠COD ,∴∠CMD =∠AOC ,∴sin∠CMD =sin∠AOC ,25在Rt△COH 中,sin∠AOC=O HOC 45,即si n∠CMD =45;(3)连接A M ,则∠AMB =90°,在Rt△ABM 中,∠MAB +∠ABM =90°,在Rt△EHB 中,∠E+∠ABM =90°,∴∠MAB =∠E,∵BM BM ,∴∠MNB =∠MAB =∠E,∵∠EHM =∠NHF,∴△EHM ∽△NHF ,∴HE HMHN HF ,∴HE·HF=HM ·HN,∵AB 与MN 相交于点H,∴HM ·HN=HA ·HB =HA ·(2r -HA )=2×(10-2)=16,即HE ·HF=16.23.(1)由题意得a b 2 016a 4b 2 0,解得ab3212 ,∴ 1 32y x x 2;2 2(2)依题意知:AB =5,OC=2,∴1 1S AB OC 2 5 5,ABC2 2∵ 2S S ,∴ABC ABD33 15 S 5 ,ABD2 2设D(m,1 32m m 2 )(m>0),2 2∵1 15S AB y ,∴ABD D2 21 1 3 1525 m m 2 ,2 2 2 2解得:m=1 或m=2 或m=-2(舍去)或m=5,∴D1(1,3)、D2(2,3)、D3(5,-3);(3)过 C 点作CF⊥BC ,交BE 于点F,过点 F 作y 轴的垂线交y 轴于点H,∵∠CBF=45°,∠BCF=90°,∴CF=CB,∵∠BCF=90°,∠FHC=90°,∴∠HCF+∠BCO =90°,∠HCF+∠HFC=90°,即∠HFC=∠OCB,CHF COB∵HFC OCB,∴△CHF≌△BOC(AAS ),FC CB∴HF=OC=2,HC=BO=4,∴F(2,6),∴易求得直线B E:y=-3x+12,1 32y x x2 2 联立y 3x 12 2 ,解得x1 5,x2 4(舍去),故E(5,-3),∴ 2 2BE 5 4 3 0 10 .6。

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()△AODA.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()A.20B.30 C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF 时,AP=3.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=,频率之和为1,属于中考常考题型.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,=AB•OC=×5×2=5,∴S△ABC=S△ABD,∵S△ABC=×5=,∴S△ABD设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.2017年黑龙江省佳木斯市中考数学试卷(农垦、森工用)一、填空题(每题3分,满分30分)1.(3分)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.2.(3分)函数y=中,自变量x的取值范围是.3.(3分)如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.5.(3分)不等式组的解集是x>﹣1,则a的取值范围是.6.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.7.(3分)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.8.(3分)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为cm2.9.(3分)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.10.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有个三角形.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x512.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个 B.7个 C.8个 D.9个14.(3分)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.215.(3分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.16.(3分)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠417.(3分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.1818.(3分)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A.1<x<6 B.x<1 C.x<6 D.x>119.(3分)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有( )A .2种B .3种C .4种D .5种20.(3分)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.22.(6分)如图,在平面直角坐标系中,Rt △ABC 三个顶点都在格点上,点A 、B 、C 的坐标分别为A (﹣1,3),B (﹣3,1),C (﹣1,1).请解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出B 1的坐标.(2)画出△A 1B 1C 1绕点C 1顺时针旋转90°后得到的△A 2B 2C 1,并求出点A 1走过的路径长.23.(6分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.=4S△ABD,求点P的坐标.(2)抛物线上有一点P,满足S△ABP24.(7分)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a、b的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.25.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=分钟.26.(8分)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.27.(10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B 型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?28.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x 轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.2017年黑龙江省佳木斯市中考数学试卷(农垦、森工用)参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)(2017•黑龙江)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 3.2×109.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3200000000=3.2×109.故答案为:3.2×109.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(3分)(2017•黑龙江)函数y=中,自变量x的取值范围是x>1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•黑龙江)如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.。

2017深圳中考数学真题试卷(含答案和详解)

2017深圳中考数学真题试卷(含答案和详解)

【答案】 D
5. 下列选项中,哪个不可以得到 l1∥l 2?(

2
C. 1 10% x 330
【考点】 一元一次方程,销售利润问题 【解析】 根据这个月的球鞋数量列等式关系. 【答案】 D
D . 1 10% x 330
1 8. 如图,已知线段 AB ,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的
2
交点得到直线 l ,在直线 l 上取一点 C,使得∠ CAB = 25°,延长 AC 至 M ,
求∠ BCM 的度数(

A .40°
B. 50
C. 60° 【考点】 尺规作图 【解析】 根据尺规作图可知 【答案】 B 9. 下列哪一个是假命题(
D. 70° CA =CB ,再利用三角形外角和求出∠
EB DA 3
4
4
13
则 QO OE QE PA AD PD
4 ,解得 QO
13 , OE
39 , AO = 5- QO = 12 ,∴ tan OAE
OE
13 ,故④正确.
5
5
20
5
OA 16
【答案】 C
【考点】 三角函数的实际应用
【解析】 在 Rt△CDE 中, CD =20, DE= 10,∴ sin DCE
【答案】 D
1 x 3.
7. 一球鞋厂,现打折促销卖出 330 双球鞋,比上个月多卖 10%,设上个月卖出 x 双,列出方程(

A . 10%x 330
B . 1 10% x 330
3. 随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)
运输量达 8200000 吨,将 8200000 用科学计数法表示为(

2017年深圳市中考数学真题试卷及详细答案(word版))

2017年深圳市中考数学真题试卷及详细答案(word版))

C.7 3=7 5D.7 3+7 4=1802017年广东省深圳市中考数学试卷、选择题1. (3分)-2的绝对值是( )A .- 2B. 2C .-丄2. (3分)图中立体图形的主视图是()3. (3分)随着一带一路”建设的不断发展,我国已与多个国家建立了经贸合作 关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000吨,将8200000用科学记数法表示为( )A . 8.2X 105B . 82X 1054. (3分)观察下列图形,其中既是轴对称又是中心对称图形的是()B.C. 8.2X 106D. 82X 107A .Z 仁/ 2 B.Z 2=7 3 C. 11 II 12 ?(D.6. (3分)不等式组、 :的解集为( ) A . x >- 1B . x v 3C . x v- 1 或 x >3D .- 1 <x <37. (3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个 月卖出x 双,列出方程(11. (3分)如图,学校环保社成员想测量斜坡 CD 旁一棵树AB 的高度,他们先 在点C 处测得树顶B 的仰角为60。

,然后在坡顶D 测得树顶B 的仰角为30。

,已 知斜坡CD 的长度为20m ,DE 的长为10cm ,则树AB 的高度是()m .A . 10%x=330 B. (1 - 10%) x=330 C. (1 - 10%) 2x=3308. (3分)如图,已知线段AB, 接弧的交点得到直线I ,在直线D . (1 +10%) x=330B 为圆心,大于二AB 为半径作弧,连2 C,使得/ CAB=25, 分别以A 、 l 上取一点 长AC 至M ,求/ BCM 的度数为( A . 40°B. 50°C. 60°D . 70°9. (3分)下列哪一个是假命题( A . 五边形外角和为360° B. 切线垂直于经过切点的半径C. D . (3,- 2)关于y 轴的对称点为(-3, 抛物线y=f - 4X+2017对称轴为直线x=2 2) 10. (3分)某共享单车前a 公里1元,超过a 公里的,每公里用该共享单车50%的人只花1元钱,a 应该要取什么数(2元,若要使使A .平均数B .中位数C .众数D .方差延A. 20 二B. 30 D. 4012. (3分)如图,正方形ABCD的边长是3,BP=CQ连接AQ, DP交于点0,并分别与边CD, BC交于点F, E,连接AE,下列结论:①AQ丄DP;②0A?=0E?0R③Sx A0D=S四边形0ECF;④当BP=1 时,tan/ 0AE—,A. 1B. 2C. 3二、填空题13. (3分)因式分解:a3-4a= _______ .14. (3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是_____________________________________________15. (3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=- 1,那么(1+i)? (1- i)= ______ .16. (3 分)如图,在Rt A ABC中,/ ABC=90, AB=3, BC=4 Rt A MPN, / MPN=90 ,点P在AC上, PM交AB于点E, PN交BC于点F,当PE=2PF 时,AP= .三、解答题17. (5 分)计算:- 2| - 2cos45+(- 1)2砸.18 (6分)先化简,再求值:(亍+z-)宁^—,其中x=- 1.19. (7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y(2) 补全条形统计图;(3) _______________________________________ 若该校共有2000人,骑共享单车的有______________________________________ 人.20. ( 8分)一个矩形周长为56厘米.(1) 当矩形面积为180平方厘米时,长宽分别为多少?(2) 能围成面积为200平方米的矩形吗?请说明理由.21. (8分)如图,一次函数y=kx+b与反比例函数y壬(x>0)交于A (2,4),B (a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y亠(x>0)的表达式;22. (9分)如图,线段AB是。

2017年中考数学试题(含答案解析) (39)

2017年中考数学试题(含答案解析) (39)

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B 的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC 交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC 上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∵∠Q +∠QAB=90°, ∴∠P +∠QAB=90°, ∴∠AOP=90°, ∴AQ ⊥DP ; 故①正确;∵∠DOA=∠AOP=90°,∠ADO +∠P=∠ADO +∠DAO=90°, ∴∠DAO=∠P , ∴△DAO ∽△APO , ∴,∴AO 2=OD•OP , ∵AE >AB , ∴AE >AD , ∴OD ≠OE ,∴OA 2≠OE•OP ;故②错误; 在△CQF 与△BPE 中,∴△CQF ≌△BPE , ∴CF=BE , ∴DF=CE ,在△ADF 与△DCE 中,,∴△ADF ≌△DCE ,∴S △ADF ﹣S △DFO =S △DCE ﹣S △DOF , 即S △AOD =S 四边形OECF ;故③正确; ∵BP=1,AB=3, ∴AP=4,∵△AOP ∽△DAP , ∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=,频率之和为1,属于中考常考题型.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵H M•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE 和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.参与本试卷答题和审题的老师有:1987483819;星期八;gbl210;zhjh;CJX;三界无我;HLing;2300680618;王学峰;ZJX;sd2011;szl;神龙杉;弯弯的小河;tcm123;HJJ;星月相随;Ldt(排名不分先后)菁优网2017年7月22日。

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的) 1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为( )A .8。

2×105B .82×105C .8。

2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B CD5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB,分别以A 、B 为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°, 延长AC 至M,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差 11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m,则树AB 的高度是( )mA .203B .30C .303D .4012.如图,正方形ABCD 的边长是3,BP =CQ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E,连接AE ,下列结论:①AQ ⊥DP;②OA 2=OE ·OP ;③AODOECF S S =四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= . 16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN,∠MPN =90°,点P 在AC 上,PM交AB 与点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=) 17()22224518cos ---+-+18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率 A 30 x B 18 0.15 C m 0.40 Dny(1)学生共 人,x = ,y = ; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有 人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y =kx +b 与反比例函数my x=(x >0)交于A (2,4)、B (a ,1),与x 轴、y 轴分别交于点C 、D .(1)直接写出一次函数y =kx +b 的表达式和反比例函数my x=(x >0)的表达式; (2)求证:AD =BC .22.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H,点M 是CBD 上任意一点,AH =2,CH =4. (1)求⊙O 的半径r 的长度; (2)求s i n ∠CMD;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N,连接BN 交CE 于点F ,求HE HF •的值.23.如图,抛物线22y ax bx =++经过A (-1,0),B (4,0),交y 轴于点C . (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABDS S ∆=,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.F深圳市2017年中考试数学试卷参考答案1-5.BACDC 6—10.DDBCB 11-12.BC 13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0。

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的) 1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达吨,将用科学计数法表示为( )A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B CD5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°, 延长AC 至M ,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差 11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .B .30C .D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AOD OECF S S =V 四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= . 16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=)17()222451cos ---+-+o18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率 A 30 x B 18 0.15 C m 0.40 Dny(1)学生共 人,x = ,y = ; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有 人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y =kx +b 与反比例函数my x=(x >0)交于A (2,4)、B (a ,1),与x 轴、y 轴分别交于点C 、D .(1)直接写出一次函数y =kx +b 的表达式和反比例函数my x=(x >0)的表达式; (2)求证:AD =BC .22.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是¼CBD上任意一点,AH =2,CH =4. (1)求⊙O 的半径r 的长度;(2)求s i n ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE HF •的值.23.如图,抛物线22y ax bx =++经过A (-1,0),B (4,0),交y 轴于点C . (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABD S S ∆=V ,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.F深圳市2017年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC 13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米, 列方程:x (28-x )=180, 解方程得110x =,218x =, 答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米,列方程得:x (28-x )=200, 化简得:2282000x x -+=, 224284200160b ac ∆=-=-⨯=-<, 方程无解,所以不能围成面积为200平方厘米的矩形. 21.(1)将A (2,4)代入my x=中,得m =8, ∴反比例函数的解析式为8y x =, ∴将B (a ,1)代入8y x=中得a =8, ∴B (8,1), 将A (2,4)与B (8,1)代入y =kx +b 中,得 8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩, ∴152y x =-+;(2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5),如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与 x 轴交于点F , ∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得, AD =225AE DE +=,BC =225CF BF +=, ∴AD =BC . 22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r , 由勾股定理得:(r -2)2+42=r 2,解得:r =5; (2)∵弦CD 与直径AB 垂直,∴»»»12AD AC CD==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC ,在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°,∴∠MAB =∠E ,∵¼¼BMBM =,∴∠MNB =∠MAB =∠E , ∵∠EHM =∠NHF ,∴△EHM ∽△NHF , ∴HE HMHN HF=,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H , ∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16, 即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴213222y x x =-++;(2)依题意知:AB =5,OC =2,∴1125522ABC S AB OC ∆=⨯=⨯⨯=,∵23ABC ABD S S ∆=V ,∴315522ABD S =⨯=V ,设D (m ,213222m m -++)(m >0),∵11522ABD D S AB y ==V ,∴211315522222m m ⨯⨯-++=,解得:m =1或m =2或m =-2(舍去)或m =5,∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H ,∵∠CBF =45°,∠BCF =90°,∴CF =CB , ∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COB HFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ), ∴HF =OC =2,HC =BO =4,∴F (2,6), ∴易求得直线BE :y =-3x +12,联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3), ∴()()22543010BE =-+--=.。

2017年深圳市中考数学试题及答案

2017年深圳市中考数学试题及答案

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的)1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为( )A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B CD5.下列选项中,哪个不可以得到l1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180° 6.不等式组32521x x -<⎧⎨-<⎩的解集为( ) A .1x >- B .3x < C .1x <-或3x > D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .B .30C .D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AOD OECF S S =四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( ) A .1 B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= .16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=)17()222451cos --+-18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共 人,x = ,y = ;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有 人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y =kx +b 与反比例函数m y x =(x >0)交于A (2,4)、B (a ,1),与x 轴、y 轴分别交于点C 、D .(1)直接写出一次函数y =kx +b 的表达式和反比例函数m y x=(x >0)的表达式; (2)求证:AD =BC .22.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度;(2)求s i n ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE HF ∙的值.23.如图,抛物线22y ax bx =++经过A (-1,0),B (4,0),交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABD S S ∆=,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.F深圳市2017年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-∙+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1. 19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米,列方程:x (28-x )=180, 解方程得110x =,218x =,答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米,列方程得:x (28-x )=200, 化简得:2282000x x -+=, 224284200160b ac ∆=-=-⨯=-<,方程无解,所以不能围成面积为200平方厘米的矩形.21.(1)将A (2,4)代入m y x =中,得m =8, ∴反比例函数的解析式为8y x =, ∴将B (a ,1)代入8y x=中得a =8, ∴B (8,1), 将A (2,4)与B (8,1)代入y =kx +b 中,得 8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩, ∴152y x =-+; (2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5),如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与x 轴交于点F ,∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得,AD=BC=∴AD =BC .22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r ,由勾股定理得:(r -2)2+42=r 2,解得:r =5;(2)∵弦CD 与直径AB 垂直, ∴12AD AC CD ==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC ,在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°, ∴∠MAB =∠E ,∵BM BM =,∴∠MNB =∠MAB =∠E ,∵∠EHM =∠NHF ,∴△EHM ∽△NHF , ∴HE HM HN HF=,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H , ∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16, 即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴213222y x x =-++; (2)依题意知:AB =5,OC =2,∴1125522ABC S AB OC ∆=⨯=⨯⨯=, ∵23ABC ABD S S ∆=,∴315522ABD S =⨯=, 设D (m ,213222m m -++)(m >0), ∵11522ABD D S AB y ==,∴211315522222m m ⨯⨯-++=, 解得:m =1或m =2或m =-2(舍去)或m =5,∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H ,∵∠CBF =45°,∠BCF =90°,∴CF =CB ,∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COB HFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ),∴HF =OC =2,HC =BO =4,∴F (2,6),∴易求得直线BE :y =-3x +12, 联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3),∴BE =。

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()△AODA.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【解答】解:|﹣2|=2.故选B.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:216.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF 时,AP=3.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【解答】解:当x=﹣1时,原式=×=3x+2=﹣119.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,=AB•OC=×5×2=5,∴S△ABC∵S=S△ABD,△ABC=×5=,∴S△ABD设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.参与本试卷答题和审题的老师有:1987483819;星期八;gbl210;zhjh;CJX;三界无我;HLing;2300680618;王学峰;ZJX;sd2011;szl;神龙杉;弯弯的小河;tcm123;HJJ;星月相随;Ldt(排名不分先后)菁优网2017年7月11日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的) 1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形 A B C D3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为( )A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B CD5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°, 延长AC 至M ,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差 11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .B .30C .D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AODOECF S S =四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= . 16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=)17()222451cos ---+-+18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率 A 30 x B 18 0.15 C m 0.40 Dny(1)学生共 人,x = ,y = ; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有 人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y =kx +b 与反比例函数my x=(x >0)交于A (2,4)、B (a ,1),与x 轴、y 轴分别交于点C 、D .(1)直接写出一次函数y =kx +b 的表达式和反比例函数my x=(x >0)的表达式; (2)求证:AD =BC .22.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =2,CH =4. (1)求⊙O 的半径r 的长度; (2)求s i n ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE HF •的值.23.如图,抛物线22y ax bx =++经过A (-1,0),B (4,0),交y 轴于点C . (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABDS S ∆=,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.F深圳市2017年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC 13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米, 列方程:x (28-x )=180, 解方程得110x =,218x =, 答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米,列方程得:x (28-x )=200, 化简得:2282000x x -+=, 224284200160b ac ∆=-=-⨯=-<, 方程无解,所以不能围成面积为200平方厘米的矩形. 21.(1)将A (2,4)代入my x=中,得m =8, ∴反比例函数的解析式为8y x =, ∴将B (a ,1)代入8y x=中得a =8, ∴B (8,1), 将A (2,4)与B (8,1)代入y =kx +b 中,得 8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩, ∴152y x =-+;(2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5),如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与 x 轴交于点F , ∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得, AD =225AE DE +=,BC =225CF BF +=, ∴AD =BC . 22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r , 由勾股定理得:(r -2)2+42=r 2,解得:r =5; (2)∵弦CD 与直径AB 垂直, ∴12AD AC CD ==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC ,在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°, ∴∠MAB =∠E ,∵BM BM =,∴∠MNB =∠MAB =∠E , ∵∠EHM =∠NHF ,∴△EHM ∽△NHF , ∴HE HMHN HF=,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H , ∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16, 即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴213222y x x =-++;(2)依题意知:AB =5,OC =2,∴1125522ABC S AB OC ∆=⨯=⨯⨯=,∵23ABC ABD S S ∆=,∴315522ABD S =⨯=,设D (m ,213222m m -++)(m >0),∵11522ABDD SAB y ==,∴211315522222m m ⨯⨯-++=,解得:m =1或m =2或m =-2(舍去)或m =5,∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H ,∵∠CBF =45°,∠BCF =90°,∴CF =CB , ∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COB HFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ), ∴HF =OC =2,HC =BO =4,∴F (2,6), ∴易求得直线BE :y =-3x +12,联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3), ∴()()22543010BE =-+--=.。

相关文档
最新文档