专题4——四边形中常见的辅助线的作法

合集下载

中考数学 考点系统复习 第五章 四边形 方法技巧突破(五) 四边形中常见辅助线的作法

中考数学 考点系统复习 第五章 四边形 方法技巧突破(五) 四边形中常见辅助线的作法

证明:(1)∵四边形 ABCD 为菱形, ∴AB=CD,且∠BAE=∠DCF, 又∵AE=CF,∴△ABE≌△CDF(SAS).
(2)连接 BD 交 AC 于点 O,如解图. ∵四边形 ABCD 为菱形, ∴AC⊥BD,且 O 为 AC,BD 中点, 又∵ AE=CF,∴EO=FO, ∴BD 与 EF 互相垂直且平分, 故四边形 BEDF 是菱形.
在 Rt△BCE 中,由勾股定理可得 BC=8,
由矩形性质易知 OB=OD,∴OF 为△BCD 的中位线,∴OF=12BC=4.
1
1
∴△ODE 的面积为2DE·OF=2××4=24.
4.如图,在梯形 ABCD 中,AD∥BC,若 E 为 AB 的中点,若梯形 ABCD 的 面积为 34 个平方单位,则△ECD(阴影部分)的面积为 1 177 个平方单位.
5.如图,矩形 ABCD 的对角线 AC,BD 相交于点 O,过 点 B 作 AC 的平行线交 DC 的延长线于点 E. (1)求证:BD=BE; (2)若 BE=10,CE=6,连接 OE,求△ODE 的面积.
2.(2021 春·靖江期末)如图,在▱ABCD 中,BE 垂直平分 CD 于点 E,∠
BAD=45°,AD=6,则▱ABCD 的对角线 AC 的长为
( A)
A.6 5 B.4 5 C.10 3 D.10 2
3.(2021·随州)如图,在菱形 ABCD 中,E,F 是对角线 AC 上的两点,且 AE=CF. (1)求证:△ABE≌△CDF; (2)证明四边形 BEDF 是菱形.
方法技巧突破(五) 四边形中常见 辅助线的作法
1.(2021 春·铜官区期末)如图,在△ABC 中,∠C=90°,AC=8,BC=
6,点 P 为斜边 AB 上一动点,过点 P 作 PE⊥AC 于点 E,PF⊥BC 于点 F,

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有
辅助线)
相似四边形中常见的辅助线作法(有辅助线)
相似四边形是指具有相同比例关系的四边形。

在研究相似四边形时,可以利用一些常见的辅助线作法来简化问题的分析和解决。

以下是几种常见的辅助线作法:
1. 完全相似定理:如果两个四边形的所有对应角相等,并且对应边的比例相等,那么这两个四边形是相似的。

根据这个定理,我们可以直接判断两个四边形是否相似,而无需计算其边长和角度。

2. 高度定理:相似的五边形(包括四边形)中,对应的高度之比等于对应边的比例。

通过测量两个四边形的高度,我们可以推导出它们的边长比例。

3. 中线定理:相似的五边形(包括四边形)中,对应的中线之比等于对应边的比例。

通过测量两个四边形的中线,我们可以推导出它们的边长比例。

4. 角平分线定理:相似的五边形(包括四边形)中,对应的角平分线之比等于对应边的比例。

通过测量两个四边形的角平分线,我们可以推导出它们的边长比例。

这些辅助线作法可以帮助我们在研究相似四边形时更加简化问题,减少计算量,并且提供了直接判断相似性的方法。

在实际应用中,可以根据具体问题的需求选择合适的辅助线作法。

希望以上内容对您有帮助!如有其他问题,请随时提问。

四边形辅助线常用做法

四边形辅助线常用做法

四边形常用的辅助线做法作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度, 得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心” 和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

” 五:面积找底高,多边变三边。

如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

如遇多边形,想法割补成三角形;反之,亦成立。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为△和口。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

添加辅助线解特殊四边形题特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形•在解决一些和四边形有关的问题时往往需要添加辅助线•下面介绍一些辅助线的添加方法•和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形•平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

初中数学特殊四边形的辅助线做法及口决

初中数学特殊四边形的辅助线做法及口决

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.一、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.1.利用一组对边平行且相等构造平行四边形例1 、如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.求证:OE与AD互相平分.分析:因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证.证明:连结AE、OD,因为是四边形OCDE是平行四边形,所以OC//DE,OC=DE,因为0是AC的中点,所以A0//ED,AO=ED,所以四边形AODE是平行四边形,所以AD与OE互相平分.说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.2.利用两组对边平行构造平行四边形例2、如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG,所以AH=FG,所以FG+DE=AH+HC=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.3.利用对角线互相平分构造平行四边形例3 、如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.证明:延长AD到G,使DG=AD,连结BG,CG,因为BD=CD,所以四边形ABGC是平行四边形,所以AC=BG,AC//BG,所以∠1=∠4,因为AE=EF,所以∠1=∠2,又∠2=∠3,所以∠1=∠4,所以BF=BG=AC.图3 图4说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4 、如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF 是菱形.分析:要证明四边形CDEF是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD是∠BAC的平分线,AE=AC,可通过连接CE,构造等腰三角形,借助三线合一证明AD垂直CE.求AD平分CE.证明:连结CE交AD于点O,由AC=AE,得△ACE是等腰三角形,因为AO平分∠CAE,所以AO⊥CE,且OC=OE,因为EF//CD,所以∠1=∠2,又因为∠EOF=∠COD,所以△DOC可以看成由△FOE绕点O旋转而成,所以OF=OD,所以CE、DF互相垂直平分.所以四边形CDEF是菱形.例5、如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC 上一个动点,求证EF+BF的最小值等于DE长.分析:要证明EF+BF的最小值是DE的长,可以通过连结菱形的对角线BD,借助菱形的对角线互相垂直平分得到DF=BF,然后结合三角形两边之和大于第三边解决问题.证明:连结BD、DF.因为AC、BD是菱形的对角线,所以AC垂直BD且平分BD,所以BF=DF,所以EF+BF=EF+DF≥DE,当且仅当F运动到DE与AC的交点G处时,上式等号成立,所以EF+BF的最小值恰好等于DE的长.说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.三、与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例6、如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.解:过点P分别作两组对边的平行线EF、GH交AB于E,交CD于F,交BC于点H,交AD于G.因为四边形ABCD是矩形,所以PF2=CH2=PC2-PH2,DF2=AE2=AP2-EP2,PH2+PE2=BP2,所以 PD2=PC2-PH2+AP2-EP2=PC2+AP2-PB2=52+32-42=18,所以 PD=3.说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD与PA、PB、PC之间的关系,进而求到PD的长.四、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例7、如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:∠BCF=∠AEB.分析:由BE//AC,CF//AE,AE=AC,可知四边形AEFC是菱形,作AH ⊥BE于H,根据正方形的性质可知四边形AHBO是正方形,从AH=OB= AC,可算出∠E=∠ACF=30°,∠BCF=15°.证明:连接BD交AC于O,作AH⊥BE交BE于H.在正方形ABCD中,AC⊥BD,AO=BO,又BE//AC,AH⊥BE,所以BO⊥AC,所以四边形AOBH为正方形,所以AH=AO=AC,因为AE=AC,所以∠AEH=30°,因为BE//AC,AE//CF,所以ACFE是菱形,所以∠AEF=∠ACF=30°,因为AC是正方形的对角线,所以∠ACB=45°,所以∠BCF=15°,所以∠BCF=∠AEB.说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题.三角形中两中点,连结则成中位线。

数学初三平行四边形中常做的辅助线

数学初三平行四边形中常做的辅助线

数学初三平行四边形中常做的辅助线一、平行四边形的对角线平行四边形有两条对角线,我们可以通过引入对角线来研究平行四边形的性质。

首先,我们可以证明平行四边形的对角线互相平分。

具体证明如下:设平行四边形ABCD的对角线AC和BD相交于点O,连接OA、OB、OC 和OD。

由于平行四边形的两对边分别平行且相等,所以可以得到AO=CO,BO=DO。

又由于AO=CO,BO=DO,所以AOBO和CODA都是菱形。

因为菱形的对角线互相平分,所以AC和BD互相平分。

利用对角线平分的性质,我们可以得到平行四边形中很多有用的结论。

例如,当平行四边形的两对角线相等时,它是一个矩形;当平行四边形的两对角线垂直且相等时,它是一个正方形。

二、平行四边形的中位线平行四边形的中位线是连接相邻两边中点的线段。

通过引入中位线,我们可以研究平行四边形的对应边的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的中位线互相平行且相等;2. 平行四边形的中位线平分平行四边形的面积;3. 平行四边形的中位线长度等于对应边长度的平均值。

三、平行四边形的高线平行四边形的高线是从一个顶点到与对立边垂直相交的线段。

通过引入高线,我们可以研究平行四边形的高度和底边的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的高线互相平行;2. 平行四边形的高线长度相等;3. 平行四边形的高线长度等于底边长度乘以对应高度的比值。

四、平行四边形的角平分线平行四边形的角平分线是从一个内角的顶点到对立边上的一点并且与对立边相交的线段。

通过引入角平分线,我们可以研究平行四边形的内角之间的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的角平分线互相平行;2. 平行四边形的角平分线平分对立角,即对立内角的两个角平分线相交于对立边上的一点。

五、平行四边形的中心连线平行四边形的中心连线是连接两对对边中点的线段。

通过引入中心连线,我们可以研究平行四边形的对角线之间的关系。

与平行四边形有关的常用辅助线作法归类解析

与平行四边形有关的常用辅助线作法归类解析

与平行四边形有关的常用辅助线作法归类解析本文结合例题归纳六类与平行四边形有关的常见辅助线,供同学们借鉴: 第一类:连结对角线,把平行四边形转化成两个全等三角形。

例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)⑴连结BF ⑵DE BF =⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =图2图1ECAAB第二类:平移对角线,把平行四边形转化为梯形。

例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<-m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。

例3已知:如左下图3,四边形ABCD 为平行四边形求证:222222DA CD BC AB BD AC +++=+证明:过D A ,分别作BC AE ⊥于点E ,BC DF ⊥的延长线于点F∴BC BE BC AB BE BC BE AB CE AE AC ⋅-+=-+-=+=2)(22222222CF BC BC CD CF BC CF CD BF DF BD ⋅++=++-=+=2)()(22222222则BE BC CF BC DA CD BC AB BD AC ⋅-⋅++++=+22222222∵四边形ABCD 为平行四边形 ∴AB ∥CD 且CD AB =,BC AD =∴DCF ABC ∠=∠ ∵090=∠=∠DFC AEB ∴DCF ABE ∆≅∆ ∴CF BE = ∴222222DA CD BC AB BD AC +++=+图4图3KCFBB第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。

四边形辅助线专题训练

四边形辅助线专题训练

一、和平行四边形有关的辅助线作法1.利用一组对边平行且相等构造平行四边形例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分.说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.2.利用两组对边平行构造平行四边形例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.3.利用对角线互相平分构造平行四边形例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.图3 图4说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长.图6说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.三、 与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例6 如图7,已知矩形ABCD 内一点,PA=3,PB=4,PC=5.求 PD 的长.图7四、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例7如图8,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.求证:∠BCF=21∠AEB.说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO ,进一步得到菱形,借助菱形的性质解决问题.与中点有关的辅助线作法一、有中线时可倍长中线,构造全等三角形或平行四边形.例1.已知:如图,AD 为ABC ∆中线,求证:AD AC AB 2>+.类题1.已知:如图,AD 为ABC ∆的中线,AE=EF.求证:BF=AC.二、有以线段中点为端点的线段时,常加倍此线段,构造全等三角形或平行四边形. 例2.已知:如图,在ABC ∆中,︒=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且QM PM ⊥于M.求证:222BQ AP PQ +=.类题2.已知:ABC ∆的边BC 的中点为N ,过A 的任一直线BD AD ⊥于D ,AD CE ⊥于E.求证:NE=ND.三、有中点时,可连结中位线.例3.如图,ABC ∆中,D 、E 分别为AB 、AC 上点,且BD=CE ,M 、N 为BE 、CD 中点,连MNCCM交AB 、AC 于P 、Q ,求证:AP=AQ .类题3.已知:如图,E 、F 分别为四边形ABCD 的对角线中点,AB>CD.求证:()CD AB EF ->21.类题4.如图,ABC ∆中,AD 是高,CE 为中线,CE DG ⊥,G 为垂足,DC=BE.求证:(1)G 是CE 的中点;(2)BCE B ∠=∠2.四、有底边中点,连中线,利用等腰三角形“三线合一”性质证题例4.已知:如图,在ABC Rt ∆中,︒=∠90BAC ,AB=AC ,D 为BC 边中点,P 为BC上一A D P BCQ EM NAD FE BC点,AB PF ⊥于F ,AC PE ⊥于E.求证:DF=DE.类题5.已知:如图,矩形ABCD ,E 为CB 延长线上一点,且AC=CE ,F 为AE 中点,求证:FD BF ⊥.六、与梯形中点有关的辅助线:有腰中点时,常见以下三种引辅助线法例5.已知:如图,在直角梯形ABCD 中,AD ∥BC ,BC AB ⊥,M 为CD 的中点.求证:AM=MB.类题6.已知:梯形ABCD 中,AB ∥CD ,E 为BC 中点,AD EF ⊥于F.求证:F (1)B (2)G B(3)AAD EF S ABCD ⋅=梯形.【作业】1、 已知△ABC 和△DBE 为等腰直角三角形,∠ABC=∠DBE=90°,A 、B 、D 在同一直线上,M 、N 、P 分别是AD 、AC 、DE 边上的中点,试说明MP 与MN 的关系并证明。

专题04 平行四边形几何辅助线(专题详解)(原卷版)

专题04 平行四边形几何辅助线(专题详解)(原卷版)

专题04 平行四边形几何辅助线专题详解专题04 平行四边形几何辅助线专题详解 (1)1 平行四边形 (2)知识框架 (2)方法1 分类讨论思想 (2)一、动态讨论 (2)(1)1个点的移动 (2)(2)2个点的移动 (2)二、高的位置的讨论 (3)(1)过点作下(上)侧边的高 (3)(2)过点右(左)侧边的高 (3)三、求平行四边形第4点坐标 (3)方法2 平行四边形的面积 (4)一、利用面积解决问题 (4)二、方程思想 (4)方法3 构造中位线 (4)一、连接法 (4)(1)连接两中点 (5)(2)知一中点,取另一中点 (5)(3)知两中点,构双中位线 (5)二、倍长法 (5)(1)倍长垂直于角平分线的线段 (6)(2)倍长线段 (6)2 特殊的平行四边形 (7)知识框架 (7)方法1 矩形的折叠问题 (7)方法2 构造斜边上的中线 (8)一、连中点 (8)二、取中点 (9)方法3 60°的菱形模型 (9)方法4 利用菱形的对称性解题 (10)方法5 正方形的典型模型 (10)一、a=2b型 (11)二、a=2b型 (11)三、a±b=c型 (11)四、a±b=2c型 (12)方法6 构造正方形 (12)一、利用45°角构造正方形 (12)二、利用四边形构造正方形 (13)三、利用直角三角形构造正方形 (13)方法7 运用正方形的性质求坐标 (13)方法8 动点问题的研究 (14)1 平行四边形知识框架{ 分类讨论思想{ 动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果(1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C 、D 在线段AB 上移动(C 、D 两点在AB 中),会出现2种情况:①点C 在点D 的左侧;②点C 在点D 的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。

四边形中常见的辅助线

四边形中常见的辅助线

四边形中常见的辅助线特殊四边形主要包括平行四边形、矩形、菱形和正方形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.平行四边形是最常见的特殊四边形之一,它有许多性质。

为了利用这些性质往往需要添加辅助线构造平行四边形.平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.一、与平行四边形有关的辅助线的作法:1.利用一组对边平行且相等构造平行四边形例题:如图,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.求证:OE与AD 互相平分分析:因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证.证明:连结AE、OD,因为是四边形OCDE是平行四边形,所以OC//DE,OC=DE,因为0是AC的中点,所以A0//ED,AO=ED,所以四边形AODE是平行四边形,所以AD与OE互相平分.说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.2.利用两组对边平行构造平行四边形例题:如图,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC. 分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG,所以AH=FG,所以FG+DE=AH+HC=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.3.利用对角线互相平分构造平行四边形例题:如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.,求证BF=AC.分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.证明:延长AD到G,使DG=AD,连结BG,CG,因为BD=CD,所以四边形ABGC是平行四边形,所以AC=BG,AC//BG,所以∠1=∠4,因为AE=EF,所以∠1=∠2,又∠2=∠3,所以∠1=∠4,所以BF=BG=AC.说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.4.连对角线构造三角形例题:如图,AB=3,BC=4,CD=13,AD=12,∠B=900,求四边形ABCD的面积分析:由∠B=900,AB=3,BC=4,联想到连结AC,利用勾股定理解得AC=5,又AD=12,CD=13,由勾股定理的逆定理有∠DAC为直角,从而S四边形ABCD=S△ABC+ S△ACD解:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∵CD=13,AD=12,∴AD2+AC2=CD2,∴△ACD是直角三角形,∠DAC=900,∴S四边形ABCD=S△ABC+ S△ACD=0.5AB·BC+0.5AD·AC=0.5×3×4+0.5×12×5=365.延长对边构造三角形例题:如图,在四边形ABCD中,∠A=600,∠B=∠D=900,BC=2,CD=3,则AB等于多少?6.延长一边中点与顶点连线,把平行四边形转化为三角形例题:如图,正方形ABCD中,E、F分别是CD、DA的中点,BE与CF交于P点。

四边形辅助线做法

四边形辅助线做法

四边形复习提高例1:如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)图2图1OOECCABDABDEF例2:如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m例3:如左下图5,在平行四边形ABCD 中,点E 为边CD 上任一点,请你在该图基础上,适当添加辅助线找出两对相似三角形。

图6图5FONDD BACBACEFE例4:已知:如右上图6,在平行四边形ABCD 中,BN AN =,BC BE 31=,NE 交BD 于F ,求BD BF :例5:如图所示,已知P 、R 分别是矩形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定ABCDEF PR例6: 已知:如图所示,四边形ABCD 中,∠C =90°,∠ABD =∠CBD ,AB =CB ,P 是BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为E 、F ,求证:PA =EF .ABCDEF P例7: 如图所示,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且△ACE 是等边三角形.(1)说明四边形ABCD 是菱形;(2)若∠AED =2∠EAD ,请说明此时四边形ABCD 是正方形.ABCDOE例8: 如图所示,在△ABC 中,BD 是∠ABC 的平分线,DE ∥BC 交AB 于E ,EF ∥AC 交BC 于F ,猜想BE 与CF 的数量关系,并加以说明.ABCDE F123例9:如图所示,小明画了一个梯形ABCD ,AB ∥CD ,∠C =76°,∠D =52°,他通过测量发现BC =DC -AB .但他说不出为什么,你能帮助他找出原因并说明理由吗?ABCD例10:如图所示,在矩形ABCD 中,AB =6cm ,BC =8cm .若将矩形对角线BD 对折,使B 点与D 点重合,四边形EBFD 是菱形吗?如果是,求这个菱形的边长.ABCDOEF例11:如图1,已知E 为梯形ABCD 的腰CD 的中点;例12:如图2.已知∠A =90°,AB =AC ,∠1=∠2,CE ⊥BD ,求证:BD =2CE例13:如图3,在梯形ABCD 中,AD ∥BC ,∠B +∠C =90°,F 、G 分别是AD 、BC 的中点,若BC =18,AD =8,求FG 的长。

四边形中常见辅助线地作法

四边形中常见辅助线地作法

儒洋教育学科教师辅导讲义作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:面积找底高,多边变三边。

如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

如遇多边形,想法割补成三角形;反之,亦成立。

另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为△和□。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

添加辅助线解特殊四边形题特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

最新初中四边形辅助线规律

最新初中四边形辅助线规律

3.1 一般四边形常用的辅助线 1、连对角线构造三角形【例1】 已知:如图(1),在四边形ABCD 中,AB=3,BC=4,CD=13,AD=12,︒=∠90B .求四边形ABCD 的面积。

分析:由︒=∠90B ,AB=3,BC=4,联想到连结AC ,利用勾股定理解得AC=5,又AD=12,CD=13,由勾股定理的逆定理有DAC ∠为直角,从而ACD ABC ABCD S S S ∆∆+=四边形 。

3651221432121219012,13254322222222=⨯⨯+⨯⨯=•+•=+=∴︒=∠∆∴=+∴===+=+=∆∆∆ACAD BC AB S S S DAC ACD CD AC AD AD CD BC AB AC ABC Rt AC ACD ABC ABCD 四边形是直角三角形,中,,在解:连结2、 延长对边构造三角形【例2】 如图(2),在四边形ABCD 中,,2,90,60=︒=∠=∠︒=∠BC D B A CD=3,则AB 等于多少?分析:,90,60︒=∠︒=∠B A 如果延长AD 、BC 即可出现︒30角的直角三角形,从而把四边形问题转化为三角形只是解决。

33833883,2,8,62903060,90==∴====∆=+===∴︒=∠︒=∠∴︒=∠︒=∠AB x x BG x AG x AB ABG Rt CG BC BG CD CG ADC G A ABC G BC AD 即则中,设在又的延长线于点交解:延长3、化为三角形和特殊四边形【例3】 在四边形ABCD 中,AD=3,33=BC ,BD=7, ︒=∠︒=∠90,120ABC BAD . 如图(3),求: CD 的长 和AB 的长。

二、 多边形中常用的辅助线一般地,解决多边形问题的思路是:转化为三角形和特殊四边形的问题来解决。

1连对角线转化【例4】 已知:如图(4),求证:︒=∠+∠+∠+∠+∠+∠360F E D C B A分析:要证此六角只和为︒360,想到四边形的内角和为︒360,故转化为一个四边形的四个内角,由图很容易想到连结BE 。

平行四边形辅助线的常见添法

平行四边形辅助线的常见添法

平行四边形辅助线的常见添法平行四边形是一种特殊的四边形,其对边平行且相等。

在平面几何中,我们常常需要绘制平行四边形,而平行四边形的绘制又离不开辅助线。

本文将介绍平行四边形的常见添法及其应用。

一、基础概念1. 平行四边形:对边分别平行且相等的四边形。

2. 辅助线:在图形中引入的额外直线,以便更容易地进行计算或绘制。

二、常见添法1. 中点法中点法是最简单也是最基础的添法之一。

它的原理是在两条对角线上各取一个中点,然后连接这两个中点即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线;(3)在AC和BD上各取一个中点E和F;(4)连接EF即可得到平行四边形。

2. 三角形法三角形法也是一种简单易懂的添法。

它的原理是在原来图形上构造一个与之相似但比例不同的三角形,然后通过旋转或移动这个三角形,使其与原来的图形组成平行四边形。

步骤如下:(1)在原来的四边形ABCD上选择一个顶点A;(2)连接AC和AD两条边;(3)以A为顶点,做一个与△ACD相似但比例不同的三角形AEF;(4)将三角形AEF沿着AD旋转或移动到AB上,得到平行四边形ABFE。

3. 重心法重心法是一种比较常用的添法。

它的原理是在四边形的对角线交点处作一条平行于其中一条边的直线,然后将这条直线延长至四边形另一侧,再将这两条直线分别延长至与四边形相交即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线,并求出它们的交点O;(3)在O点处作一条平行于CD的直线EF,并延长至BC上;(4)将EF和BD分别延长至与AC相交,即可得到平行四边形ABFE。

4. 中垂线法中垂线法也是一种比较实用的添法。

它的原理是在任意一侧边上取一点,然后分别连接这个点与对角线的中点,再将这两条线段延长至另一侧边上即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)在AB上取一点E,并连接EC和AD的中点F;(3)在BC上取一点G,并连接AG和BD的中点H;(4)将EF和GH分别延长至CD上,即可得到平行四边形EFGH。

四边形中常用的辅助线

四边形中常用的辅助线

分别是BC,CD上的点.移动而点R不动时,下列结论成立的是=1(第2题) 放在一组距离相等的平行线中,已知,则两条平行线间的距离为(A) ,过点C作CF⊥BD=1AE BD+12CF·BD=12BD的面积为24 cm2,,∴两条平行线间的距离为2 cm. PG等于A. 2B. 3 C. 2D. 3DC于点H.和四边形BEFG都是菱形,=∠= 3. =2,的长为5.(第4题解) 顺时针旋转90°,到达=90°,AP=CQ,=PB2+BQ2=(2)2+(2)2=PC2+PQ212+22= 5. (第5题) 5.如图,已知正方形ABCD 的边长为1,连结AC ,BD 相交于点O ,CE 平分∠ACD ,交BD 于点E ,则DE 的长为2-1.【解】 过点E 作EF ⊥DC 于点F .∵四边形ABCD 是正方形,∴∠ODC =45°,AC ⊥BD .∵CE 平分∠ACD ,EF ⊥DC ,∴CO =CF ,∠DEF =45°=∠ODC ,∴EF =DF .∵正方形ABCD 的边长为1,∴AC =2,∴CO =12AC =22, ∴CF =CO =22,∴EF =DF =DC -CF =1-22,∴DE =EF 2+DF 2=2-1. (第6题) 6.如图,P 为▱ABCD 内一点,△P AB ,△PCD 的面积分别记为S 1,S 2,▱ABCD 的面积记为S ,试探究S 1+S 2与S 之间的关系.之间的关系.(第6题解) 【解】 如解图,过点P 作EF ∥AB ,交AD 于点E ,交BC 于点F .∵AB ∥CD ,∴EF ∥AB ∥CD ,∴四边形ABFE ,四边形EFCD 都是平行四边形,∴S 1=12S ▱ABFE ,S 2=12S ▱EFCD .∵S ▱ABFE +S ▱EFCD =S ,∴S 1+S 2=12S . (第7题) =∠D=90°,∠A∶∠2 3.=3,-3,23-=1 2×23×-12×3×=32 3. (第8题) 。

做数学怎么懂得做辅助线方法

做数学怎么懂得做辅助线方法

做数学怎么懂得做辅助线方法几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面给大家分享一些关于做数学怎么懂得做辅助线方法,希望对大家有所帮助。

一.三角形中常见辅助线的添加1. 与角平分线有关的(1) 可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °二.四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1) 利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线三.圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A F
E
D C
B
E
D
C
B
A F D C
B
A 专题四:四边形中常见的辅助线的作法
-------------有关梯形问题
解决梯形问题经常要根据条件添加辅助线,把梯形问题转化为较简单的三角形或平行四边形问题解决,使一些分散的条件适当集中,再进行解答.常用辅助线又如下几种:
一、如图,从同一底的两端作另一底的垂线,把梯形分成一个矩形和两个直角三角形(如
果是等腰梯形,所得的两个直角三角形是全等的,BE+FC=B C -AD.)
例1:如图,等腰梯形ABCD 中,AD ∥BC ,AD =4cm ,BC =10cm ,∠B =45°.利用图中的提示
求出梯形ABCD 的面积.
例2:如图1,在梯形 中, 。


证: 。

例3 :如图,梯形
中,
, 、 为对角线,求证:
二、 如图,平移一腰,即从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形(如果是等腰梯形,平移一腰,把梯形分成一个平行四边形和一个等腰三角形。

图1中:BE=BC -AD.图2中:DF=BC -AD )
图1 图2
F E D C B A
F E
D
C
B
A
例1:已知:如图2,在梯形ABCD 中,。

求证:
例2:已知,如图,梯形ABCD 中,AD//BC ,AB=DC=12cm ,EF 是中位线,EF 与BD 交于G ,EG=4cm,GF=10cm 。

求梯形各角度数。

例3: 如图,梯形
中,

为腰
的中点,求证:。

分析: 与梯形ABCD 的面积关系不明显,如果利用梯形助
三、 如图,延长的两腰交于一点E ,得到两个三角形。

(如果是等腰梯形,则得到两个分
别以梯形两底为底的等腰三角形)。

例1:已知:如图8,在梯形
中,、N 分别是
、AB 的中点。

求证:。

A B
C
D E
G
F
E D
C
B A
例2:如图,在梯形 中, , ,梯形 的面积与梯形
的面积相等.求证:
.
四、如图,移动一条对角线,即过底的一端作对角线的平行线, 可以借助所得的平行四边形和三角形来研究。

BF=BC+AD.
例1:已知:等腰梯形ABCD 中,AD//BC ,AC ⊥BD ,AD+BC=10,
DE ⊥BC 于点E ,求DE 的长。

例2:已知:如图3,在梯形 中, 。

求证:梯形 是
等腰梯形。

例3 :如图,等腰梯形 中,
, ,且 , 是
高,
是中位线,求证:

五、如图,连结一个顶点与一条对角线中点,得△AD E ≌△GEB,再利用△AGC 来研究。

F
D
C B A
G
A
B C D
F
E
F
E N
M
A B C D A
B
C
D F
E
A
B
C
D
F
E
例1: 已知:如图5,在梯形
中,
、N 分别是

的中点。

求证: 。

六、如图,过一腰中点,作另一腰的平行线,得到一个平行四边形
和两个全等的三角形。

GC=
1
2
(BC -AD )。

例1:已知,梯形ABCD 中,A D ∥BC,DE=EC,EF ⊥AB 于点F 。

求证:梯形ABCD 的面积=A B ×EF
七、如图,连结上底和一腰中点的直线,与下底延长线相交,得到两个全等的三角形,△ADE ≌△FCE ,BF=BC+AD 。

例1: 已知:如图6,在梯形 中,
是CD 的中点。

求证:。

八、有梯形一腰中点常构造中位线这是常用的辅助线方法。

例1:已知:如图,梯形ABCD中,AD//BC,∠DAB=90°,
E为CD的中点,连结AE、BE,
求证:AE=BE。

例2:已知:如图4,在梯形中,是的中点,且。

求证:。

例3 :如图,在正方形中,是的中点,是上
的一点,且,求证: .
(9)平移两腰
例1:已知:如图7,在梯形中,、N分别是、AB的中点。

求证:。

例2 :如图,在梯形中,,、分别是、的中点,若。

,,求.。

相关文档
最新文档