常用电力电缆载流量计算
电工常用的电线线径及载流量计算方法
电工常用的电线线径及载流量计算方法其实电线也可以称呼它的直径的,比如1平方的也可称直径1.13mm,1.5平方的也可说是1.37(mm直径)。
由于选用电线时重要考虑电线使用时会不会严重发热造成事故,电线的(截面积)平方数与通过的电流安培数有直接对应的倍数关系,计算起来很简单便利。
比如一平方铜电线流过6A电流是安全的,不会严重发热。
如2.5平方铜电线就是6A*2.5=15A,就这么简单地算出来这2.5平方通过15A 电流是安全的,如用直径计算就麻烦多了规格里面的1.5/2.5/4/6是指线的横截面积。
单芯的线缆,单芯面积就是规格,多芯的里面还要乘以根数。
参照《GB50231997》单芯结构;导体直径均为:1—1.13、1.5—1.38、2.5—1.78、4—2.25、6—2.76、其实大家说线径1.5/2之类的只是为了便利,是个很常见但是不常常被人矫正的错误。
没想到还怀疑住你了...三相电机的口决"容量除以千伏数,商乘系数点七六"(注0.76是取的功率因数0.85效率为0.9时)由此推导出来的关系就有:三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
负荷量:16A最多供3500W,实际掌控在1500W内20A最多供4500W,实际掌控在2000W内25A最多供5000W,实际掌控在2000W内32A最多供7000W,实际掌控在3000W内40A最多供9000W,实际掌控在4500W内表2电器的额定电流与导线标称横截面积数据现在知道多大的电源线径可以负荷最大多少的功率和电流了吧例如:请分别以0.75、1、1.5、2.5、4、6(平方毫米)的铜芯线来计算。
答:0.75mm2、5A;1mm2、6A;1.5mm2、9A;2.5mm2、15A;4mm2、24A;6mm2、36A如何来计算电线所能承受的电功率?假如已知电线的截面积要如何,要如何计算该电线所能承受的最大电功率?或已知所需电功率,如何计算出该使用多少mm2电线?回复:我们可以通过查电工手册,得出电线的最大允许载流量,依据公式功率P=电压U×电流I计算出的功率就是电线所能承受的最大电功率。
电缆载流量计算公式
电缆载流量计算公式电缆的载流量是指电缆能够承受的最大电流。
电缆的载流量计算是电缆设计和选择过程中非常重要的一部分。
下面将介绍几种常见的电缆载流量计算方法。
1.造成电缆温升的热损耗计算方法:热损耗是电缆运输电流时产生的热量。
可以使用以下公式来计算电缆的热损耗:P=I^2*R其中,P是电缆的热损耗(单位是瓦特),I是电缆的电流(单位是安培),R是电缆的电阻(单位是欧姆)。
2.电缆允许载流量计算方法:电缆允许载流量是指电缆能够承受的最大电流。
可以使用以下公式来计算电缆的允许载流量:Ic=k*S其中,Ic是电缆的允许载流量(单位是安培),k是电流的载流量系数,S是电缆的截面积(单位是平方毫米)。
3.电缆的最大短时载流量计算方法:电缆的最大短时载流量是指电缆能够承受的短时间内的最大电流。
它通常用于预防电流过载和电缆烧损。
可以使用以下公式来计算电缆的最大短时载流量:Imax = k * S * √(t/td)其中,Imax是电缆的最大短时载流量(单位是安培),k是电流的载流量系数,S是电缆的截面积(单位是平方毫米),t是最大短时负荷时间(单位是秒),td是电缆的定时器冷却时间(单位是秒)。
4.多芯电缆的载流量计算方法:对于多芯电缆,可以使用以下公式来计算电缆的总载流量:Itotal = ∑(Ii^2 * ni)其中,Itotal是多芯电缆的总载流量(单位是安培),Ii是每一芯线的电流(单位是安培),ni是每一芯线的导线数目。
需要注意的是,电缆的载流量计算还需要考虑因素如环境温度、电缆的安装条件、地下敷设深度等。
此外,载流量系数k的选择也需要参考相关的标准和规范。
总结起来,电缆载流量的计算涉及到热损耗、允许载流量、最大短时载流量和多芯电缆的载流量四个方面。
这些计算方法能够帮助工程师正确设计和选择电缆,确保电缆在使用过程中能够正常工作。
电缆载流量计算公式
下面这是一条最简单的,JIS标准,所以是125平方。
单芯耐温电缆:125平方参数导体直径:13.5 绝缘厚度:2.0 绝缘外径:17.2 护套厚度:1.25 电缆外径:19.7 导体电阻:0.1461.導體交流電阻: R=R’(1+YS+YP )1.1 最高工作溫度下導體直流電阻R’=R0*[1+ a20(θ-20)]a20=0.00393=0.146*[1+ 0.00393*(90-20)]=0.1862 OHM/KM=0.0001862 OHM/M1.2集膚效應因數:Xs2=8πf ×10-7Ks/R’ Ks=1=8*3.1416*50*10-7/0.0001862=0.674886Xs4=0.455471Ys=Xs4/(192+0.8Xs4)=0.455471/(192+0.8*0.455471)=0.0023678*软件计算结果为:0.0023687 因软件计算中为计算到结果才进行一定位数的舍取,计算过程中都是按能计算的最大位数,所以更精确.而手工计算中间过程也只能取有限的小数位数,所以有一些较小的差异.(下同)1.3三芯或三根單芯電纜佈設的鄰近效應因數:Y P =XP4×(dC/s)2×{0.312×(dC/s)2+ 1.18/[Xp4/(192+0.8Xp4) ]}/(192+0.8XP4)XP2=8πf×10-7KP/R’ =0.674886 (如上) KP=1 不乾燥浸漬緊壓及非緊壓絞合導體K P均為1.0XP4=0.455471(d C/s)2=(13.5/39.4)2=0.117402Y P =XP4×(dC/s)2×{0.312×(d C/s)2 + 1.18/{[Xp4/(192+0.8X p4) ]+0.27}}/(192+0.8XP4)=0.05347321×[0.035787+1.18/(0.0023678+0.27)]/192.36438 =0.001419*软件计算结果为:0.0012151.4 非钢管中导体90度交流电阻:R=R’(1+YS+YP)= 0.0001862*(1+0.0023678+0.001419)=0.0001868OHM/M=0.1868 ohm/km1.5 钢管中导体90度交流电阻:R=R’[1+1.5(YS+YP)]= 0.0001862*[1+1.5*(0.0023678+0.001419)] =0.0001873 OHM/M=0.1873 ohm/km2.电缆本体热阻2.1 绝缘热阻:单芯电缆: T1=ρT* ln (1+2t1/dc) / (2π) ρT=3.5 t1=2.0dc=13.5=3.5*ln(1+2*2/13.5)/6.28319=0.144559 2.2 外被热阻:T 3=ρT* ln (1+2t3/D’a) / (2π) ρT=5.0 t3=1.25 D’a =17.2=[5*ln(1+2*1.25/17.2)]/6.283185=0.107994 2.3 电缆槽布设外部热阻: S=2D不受日光直接照射時的外部熱阻計算T 4=1/ [π*De*h*(△θS)1/4]h:散熱係數 h=Z/De g +E De单位为米当单根电缆以S=2D即平面间距排列时,Z,EG的参数分别为: 0.21 3.94 0.60h=Z/De g +Eh=0.21/(0.0197)0.6+3.94=0.21/0.0947719+3.94=6.15585T 4=1/ [π*De*h*(△θS)1/4]=1/[3.141593*0.0197*6.15585*(△θS )1/4 ](△θS)1/4=2.52=1/[0.38098175*(△θS)1/4]=1.041585注:因(△θS)1/4无法进行手动计算,由计算机编程迭代算出.2.4 土壤中布设外部热阻: S=2D按马国栋先生<<电线电缆载流量>>中P86页之2 <水平排列且损耗大致相等的三根电缆>热阻计算:T4=Pt*{ln[u+(u2-1)1/2 ]+ln[1+(2L/S1)2]}/(2π)Pt即土壤热阻系数1.0u=2L/D=2000/19.7=101.5228 L埋地深度:1000 D :电缆外径:19.7s1相邻电缆间轴心距离 2*19.7=39.4 mm]T4=1.0{ln[(101.5228+(101.52282-1)1/2)+ln[1+(2000/39.4)2]]/6.283185 =(5.313406+7.85466)/6.283185=2.0957632.5 钢管中布设外部热阻:T4=T’4+T’’4+T’’’42.5.1 电缆表面和管道内表面之间的空气热阻:T’4=U/[1+0.1(V+Yθm)*De]θm:電纜與管道之間的介質平均溫度請確認:θm:建議XLPE電纜取30℃(即假定電纜護套溫度為60℃,管道溫度為30℃);PE耐火電纜取 15℃(即假定電纜護套溫度為45℃,管道溫度為30℃)U,V,Y取值为:5.2 1.4 0.011 θm=30 De=19.7T’4=5.2/[1+0.1(1.4+0.011*30)*19.7]=1.1796472.5.2 钢管本体热阻忽略2.5.3 管道外部热阻:( 钢管及PVC管)按<<电线电缆手册>>中P343页中的镜象法:T’’’4=PT4*ln(4*L*Fe/Dg) Dg=为管道外径 PT4=1.0 L=1000 (埋地深度)——————————电线电缆辅助设计/材料核算/价格管理软件 CableExpert V5.0永久免费试用版下载: 注册2006-6-1917:11:31[专业英语] doped fiber离线 IP:已记录leopan 〖资料〗〖短讯〗〖搜索〗〖引用〗〖回复〗≡帖子操作≡No.10Re:大家讨论一下载流量怎么算得准?( 发表于2006-6-26 21:43:51 )角色:VIP等级:等级2 威望:5积分:7发帖:27经验:122金币:95 [该贴已经被管理员于2006-6-26 21:43:51奖励+1威望] 接上:Dg:管道外徑(等於管道內徑+2倍管道厚度)Dd:管道內徑按1.5倍電纜外徑計算;管道厚度按 0.06倍管道內徑計算即:Dg=1.5*19.7+2*0.06*(1.5*19.7)=33.1 mm4孔3条布设(按最左下角一条计算):离地最近一条镜象与左下角电缆距离为:1200右下角电缆镜象与左下角电缆距离为: 2409 即(24002+2002)1/2=2409Fe=(2200/200)*(2409/200)=132.5T’’’4=1.0*ln(4*1000*132.5/33.1)/6.283185=1.5416孔6条(按最左下角一条计算):竖排中间一条电缆Fe=2200*2600*2209*2408*2608/200/200/200/283/283=123 849最左下角一条电缆Fe=2400*2600*2408*2607*2807/200/400/200/283/447=543 26* 6孔6条的布设方式中,由于埋地电缆间被土壤填充,相互间的热影响理论计算与实际有很大差异,因此6条6孔的电缆布设选择最左下角一条电缆(即载流量处于三条电缆载流量中间值的电缆)进行计算,这个计算值在实际工作状态与中间电缆的效应基本符合.(如果按中间电缆计算,其电缆安全电流仅为257A)T’’’4= PT4*ln(4*L*Fe/Dg)/(2π) PT4为土壤热阻系数:1.0=1.0*ln(4*1000*54326/33.1)/6.28315=2.49831钢管中布设电缆外部热阻:4孔3条:T4=T4’+T4’’+T4’’’=1.179647+1.541=2.7206476孔6条:T4=T4’+T4’’+T4’’’=1.179647+2.49831=3.6779572.6 pvc管中布设外部热阻:T4=T’4+T’’4+T’’’42.6.1 电缆表面和管道内表面之间的空气热阻:T’4=U/[1+0.1(V+Yθm)*De]θm:電纜與管道之間的介質平均溫度請確認:θm:建議XLPE電纜取30℃(即假定電纜護套溫度為60℃,管道溫度為30℃);PE耐火電纜取 15℃(即假定電纜護套溫度為45℃,管道溫度為30℃)U,V,Y取值为:5.2 0.91 0.01 θm=30 De=19.7 T’4=5.2/[1+0.1(0.91+0.01*30)*19.7]=1.53677 92.6.2 PVC管本体热阻:T’’4=ρT *ln(Dg/Dd)/(2π) PT=6.0 pvc管热阻Dg=33.1 Dd=1.5*19.7=29.6=6.0*ln(33.1/29.6)/6.28315=0.10672252.6.3 管道外部热阻:用镜象法与钢管外部热阻相同.PVC管中布设电缆外部热阻:4孔3条:T4=T4’+T4’’+T4’’’=1.536779+0.1067225+1.541=3. 18456孔6条:T4=T4’+T4’’+T4’’’=1.536779+0.1067225+2.49831= 4.1418电缆槽中载流量:I={△θ/[ nT1+NR(1+λ1)T2+NR(1+λ1+λ2)(T3+T4)]}1/2△θ=90-40=50R=0.1868 OHM/KM=0.0001868 OHM/M简化后:I={△θ/[RT1+R (T3+T4)]}1/2={50/[0.0001868*0.144559+0.0001868*(0.107994+1.041585)]}2=[50/(0.0000270036212+0.0002147413572)]1/2=(50/0.0002417449784)^2=455 A土壤中载流量:△θ=90-25=65+R (T3+T4)]}1/2I={△θ/[RT1={65/[0.0001868*0.144559+0.0001868*(0.107994+2.09 5763)]}2=[65/(0.0000270036212+0.000411644996)]1/2=385 A4孔3条金属管道:△θ=90-25=65I={△θ/[RT+R (T3+T4)]}1/21={65/[0.0001873*0.144559+0.0001873*(0.107994+2.72 0647)]}2=[65/(0.0000270759007+0.000411644996)]1/2=342 A6孔6条金属管道:△θ=90-25=65+R (T3+T4)]}1/2I={△θ/[RT1={65/[0.0001873*0.144559+0.0001873*(0.107994+3.67 7957)]}2=297 A4孔3条PVC管道:△θ=90-25=65+R (T3+T4)]}1/2I={△θ/[RT1={65/[0.0001868*0.144559+0.0001868*(0.107994+3.18 45)]}2=318 A6孔6条PVC管道:△θ=90-25=65I={△θ/[RT+R (T3+T4)]}1/21={65/[0.0001868*0.144559+0.0001868*(0.107994+4.14 18)]}2。
电缆电线的载流量计算口诀
电缆电线的载流量计算口诀
1.环境温度考虑法
根据不同环境温度下的载流量,可以使用下面的计算公式:
I = I_ref × K_T × K_C × K_P × K_A
其中,I为实际载流量,I_ref为参考载流量,K_T为温度系数,K_C 为拟合系数,K_P为土壤散热系数,K_A为海拔系数。
2.截面积法
I=K×S
其中,I为载流量,K为系数,取决于电线的材料和工作条件,S为电线的截面积。
3.电导率法
根据电线的电导率,可以采用以下公式计算载流量:
I=K'×G
其中,I为载流量,K'为系数,取决于电线的材料和工作条件,G为电线的电导率。
4.等效电流法
通过将电缆电线与等效电阻串联,求得等效电流,然后根据等效电流和电缆电线的长度、散热条件等参数得出实际载流量。
计算载流量时,应根据实际工况选择合适的计算方法,并结合电缆电线的特性参数进行计算,以确保电缆电线的安全运行。
此外,为了确保电缆电线的安全使用,还需要考虑以下因素:
-线路长度:较长的线路会引起电压降低,需要在计算载流量时考虑
这个因素。
-散热条件:电缆电线在不同的散热条件下,其载流量也会有所不同,因此需要对散热系数进行综合考虑。
总之,电缆电线的载流量计算过程较为复杂,需要综合考虑多个因素,并结合具体情况选择合适的计算方法。
在实际应用中,应参考相关的标准
和规范,确保电缆电线的安全运行。
电缆载流量对照表大全
电缆载流量对照表大全电缆是电力传输的重要设备,选择合适的电缆型号对于电力系统的安全和稳定运行至关重要。
下面介绍常见电力电缆的载流量,供用户参考。
但需要注意的是,具体标准还需按照各个电缆厂提供的数据为准。
一、0.6/1KV聚氯乙烯绝缘电力电缆的载流量,常用型号为VV22、VLV22型。
其中,VV22是聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆,其载流量需要满足以下条件:线芯长期工作温度为70℃,环境温度为25℃,埋地深度为1000mm,土壤热阻系数为1.0m.℃/W,线芯轴间距离为S=2D。
二、常见的BVVB型、BLVVB型、RVVB型电线的载流量也需要考虑。
其中,BVVB型电线的载流量需要满足中性线截面面积同主线芯面积,BLVVB型、RVVB型电线的载流量需要按照2芯电缆数据计算,当一根线芯不载流时,其流量按2芯电缆数据计算。
三、通用橡套软电缆的载流量需要考虑450V/750V及以下橡胶绝缘电力电缆YQ、YQW、YHQ、YC、YCW、YHC 型号的载流量。
其中,1中性线截面面积同主线芯面积,2、3芯电缆中一根线芯不载流时,其流量按2芯电缆数据计算。
四、阻燃电线电缆的载流量需要考虑B、R系列阻燃电线电缆的载流量。
具体载流量参数请参考相关资料。
五、最常用的交联聚氯乙烯绝缘电力电缆的载流量需要参考ZR-YJV电力电缆载流量表。
具体载流量参数请参考相关资料。
六、高压交联聚氯乙烯绝缘阻燃电力电缆的载流量需要参考ZR-YJV、ZR-YJLV电力电缆载流量表。
具体载流量参数请参考相关资料。
七、矿物质绝缘电缆的载流量需要参考BTTZ铜芯铜护套氧化镁矿物质绝缘电缆载流量表。
具体载流量参数请参考相关资料。
需要注意的是,以上载流量参数仅供参考,具体标准还需按照各个电缆厂提供的数据为准,以确保电缆使用过程中参数正确,避免不必要的麻烦。
更多电缆载流量参数表可以参考相关资料。
电缆载流量的计算方法
电缆载流量的计算方法
1.电缆的运行温升计算法
电缆的运行温升是指电缆工作时由于电流通过引起的温度升高。
电缆在正常运行温度下应保持稳定,因此需要计算电缆的载流量。
2.等效电阻法
等效电阻法是一种常用的计算电缆载流量的方法。
它基于电缆的电阻和散热能力来计算电缆的最大负载电流。
首先,根据电缆的材料、导体截面积和电阻率等参数,计算出电缆的电阻。
然后,根据电缆的散热能力(通常由电缆额定电流和最高操作温度决定)计算出电缆的最大载流量。
3.热稳定法
热稳定法是一种更加精确的计算电缆载流量的方法。
它基于电缆的导体温度、敷设方式、周围环境温度和散热条件等因素。
首先,根据电缆敷设方式和周围环境温度等参数,计算出电缆的散热系数。
然后,根据电缆的导体温度上升情况和散热系数,计算出电缆的最大载流量。
4.电缆负载能力表法
在实际工程应用中,一些电缆制造商提供了相关的电缆负载能力表,其中列出了不同型号和规格的电缆的最大负载电流值。
在使用这种方法时,需要参考电缆负载能力表,根据电缆的型号、规格和敷设环境等条件,直接查找对应的最大载流量值。
在进行电缆载流量计算时
-电缆材料和结构:包括导体截面积、导体材料、绝缘材料等。
-敷设方式和环境温度:电缆的敷设方式和周围环境温度会影响电缆
的散热能力。
-最高操作温度:根据电缆的材料和结构,确定电缆的最高操作温度。
-安全系数:根据实际应用情况和可靠性要求,选取合适的安全系数。
-国际标准和规范:根据国际标准和规范,使用合适的计算方法和公式。
常用电力电缆截面积与载流量之间的关系
常用电力电缆截面积与载流量之间的关系截面与载流量表载流量估算口决:二点五以下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)以上口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数"来表示,通过心算而得。
(2)由上表可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走"说的是2.5mm2及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm2导线,载流量为2.5×9=22.5(A)。
(3)从4mm2及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五",说的是35mm2的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
(4)从50mm2及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
即50、70mm2导线的载流量为截面数的3倍;95、120mm2导线载流量是其截面积数的2.5倍,依次类推。
(5)“条件有变加折算,高温九折铜升级"。
上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
如16mm’铜线的载流量,可按25mm2铝线计算。
1.林黛玉:三生石畔,灵河岸边,甘露延未绝,得汝日日倾泽。
离恨天外,芙蓉潇湘,稿焚情不断,报汝夜夜苦泪。
2.薛宝钗:原以为金玉良缘已成,只待良辰,奈何君只念木石前盟,纵然艳冠群芳牡丹姿,一心只怜芙蓉雪。
电线电缆载流量计算方法
电线电缆载流量计算方法电线电缆载流量,指的是一条标准型号的电线电缆在固定的条件下,能够保证正常运行,温度不会超过固定值,不会发生短路的流通电流相关数值。
而电线电缆达到长期允许工作温度时的载流量大小就是长期允许载流量。
影响载流量大小的因素有很多,并不是同一根电线电缆的载流量就一定相同。
导体线芯的标称截面积的大小、导体的材质、电线电缆的型号、敷设方式位置及周边环境的条件、温度等,都能或多或少的影响到电线电缆载流量的大小。
因此,载流量的计算要考虑到不同的时机不同的条件。
首先,对于普通电线电缆来说,载流量的计算主要是根据导体的材质和标称截面积的大小来决定。
一般铜导体的载流量为5-8A/mm2,铝导体的载流量为3-5A/mm2。
那么,计算下来就非常简单了。
比如说:6mm2 BV电线的最大载流量为6×8=48A。
另一方式,就是利用载流量计算口诀了,那就是:“十下五;百上二;二五三五四三界;七零九五两倍半;穿管温度八九折;铜线升级算;裸线加一。
”只要对电线电缆的相关知识进行合理整合和理解,载流量的计算就十分简单了。
十下五,就是说电线电缆导体标称截面积在10 mm2以下的,载流量大体可以表示为截面积×5。
百上二,就是电线电缆标称截面积在100 mm2以上的,载流量为截面积×2。
二五三五四三界就是标称截面积为25 mm2的乘以四,35 mm2的乘以三。
七零九五两倍半就是标称截面积为70 mm2和95 mm2的都乘以二点五。
穿管温度八九折,指的是电线电缆若是穿管敷设,那么计算后的载流量要再乘以0.8;若所处的环境温度超过25℃,则结果要乘以0.9。
如果穿管的同时环境温度又超过25℃,则结果要先乘以0.8再乘0.9才是最终载流量。
铜线升级算,指的是铜芯电线电缆的载流量计算方式就是在相同截面积大小240、300、400、500、630、800、1000。
电线载流量的计算方法
电线载流量的计算方法
电线的载流量取决于多个因素,包括导体的截面积、材料、长度、温度、环境温度等等。
以下是一些常用的计算方法:
1. 根据电线的截面积和材料查找对应的额定电流值。
一般来说,电线的生产厂家会提供对应的额定电流值,也可以参考相关的标准。
2. 根据电线的长度和电阻来计算电流。
电线的电阻可以根据材料和截面积来计算,公式为R = ρl/A,其中 R 为电阻,ρ 为电线的电阻率,l 为电线的长度,A 为电线的截面积。
然后,根据欧姆定律 I = V/R,其中 I 为电流,V 为电压,就可以计算出电流值。
3. 使用电线的温度系数来计算电流。
电线的温度系数是指电阻随温度的变化率,可以通过相关标准或者电线生产厂家提供的参数来获取。
根据 I = (K S T^2)/(L R),其中 K 为常数,S 为电线的截面积,T 为电线的温度系数,L 为电线长度,R 为电线电阻,就可以计算出电流值。
4. 电线截面积÷ 2×6A(每平方毫米的截面积铜芯电缆载流量按6A计算) 。
例如:每平方毫米的截面积铝芯绝缘线载流量为4A。
此外,还可以根据以下公式计算:I = (k d²) / L其中,I是电线的载流量,d是电线的截面直径,L是电线长度,k是一个材料特定的常数。
不同材料的k值不同,具体的数值可以在相关的标准中查看。
请注意,以上只是一些常用的计算方法,实际应用中可能还需要考虑其他因素。
如果需要精确计算或使用特殊类型的电线,建议咨询专业的电气工程师或电线供应商。
电线电缆安全载流量计算方法
电线电缆安全载流量计算方法口诀1:按功率计算工作电流:电力加倍,电热加半(如5.5KW电动机的额定工作电流按“电力加倍”算得为11A) 口诀2:按导线截面算额定载流量: 各种导线的安全载流量通常可以从手册中查找,但利用口诀再配合一些简单的心算便可直接得出。
口诀如下:10下五,100上二;25、35四、三界;70、95两倍半;穿管、温度八、九折;裸线加一半;铜线升级算。
10下五是指10个平方以下的线安全载流量为线径的五倍,如6平方毫米的铝芯线,他的安全载流量为30A 100上二是指100平方以上的线安全载流量为线径的二倍,如150平方的铝芯绝缘线安全载流量为300A 25、35四三界是指10平方至25平方的铝芯绝缘线载流量为线径的四倍,35平方至70平方内的线(不含70)为三倍。
70、95两倍半是指70平方与95平方的铝芯绝缘线安全载流量为线径的两倍半。
“穿管、温度,八九折”是指若是穿管敷设(包括槽板等,即线加有保护套层),不明露的,按上面方法计算后再打八折(乘0.8)。
若坏境温度超过25度的,按上面线径方法计算后再打九折。
对于穿管温度两条件同时时,安全载流量为上面线径算得结果打七折算 裸线加一半是指相同截面的裸铝线是绝缘铝芯线安全载流量的1.5倍。
铜线升级算即将铜导线的截面按铝芯线截面排列顺序提升一级,再按相应的铝芯线条件计算,如:35平方裸铜线,升一级按50平方铝芯线公式算得50*3*1.5=225安,即225安为35平方裸铜线的安全载流量。
先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。
电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。
一般有公式可供计算。
由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。
2.口诀低压380/220伏系统每千瓦的电流,安。
千瓦、电流,如何计算?电力加倍,电热加半。
①单相千瓦,4.5安。
电缆及电线的电流计算公式
电缆及电线的电流计算公式1、电线的载流量是这样计算的:对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。
对于16、25mm2的导线可将其截面积数乘以4倍。
对于35、50mm2的导线可将其截面积数乘以3倍。
对于70、95mm2的导线可将其截面积数乘以2.5倍。
对于120、150、185mm2的导线可将其截面积数乘以2倍。
看你的开关是多少安的用上面的工式反算一下就可以了。
2、二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由表53可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。
“条件有变加折算,高温九折铜升级”。
上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
电缆载流量对照表大全
电缆载流量对照表大全
胜华电气提供最新的电缆载流量对照表,以帮助用户选择适合的电力电缆型号。
以下是常见电力电缆的载流量数据,但具体标准应以各电缆厂提供的数据为准。
一、1KV聚氯乙烯绝缘电力电缆的载流量,常用型号
VV22、VLV22型聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电
缆载流量。
计算条件包括线芯长期工作温度为70℃、环境温
度为25℃、埋地深度为1000mm、土壤热阻系数为°C/W、线
芯轴间距离为S=2D。
二、常见BVVB型、BLVVB型、RVVB型电线的载流量。
三、通用橡套软电缆的载流量,包括450V/750V及以下
橡胶绝缘电力电缆YQ、YQW、YHQ、YC、YCW、YHC型
号的载流量。
其中,中性线截面面积与主线芯面积相同。
当芯电缆中一根线芯不载流时,其流量按照2芯电缆数据计算。
四、阻燃电线电缆的载流量,包括B、R系列阻燃电线电缆的载流量。
更多数据可下载资料查看。
五、最常用的交联聚氯乙烯绝缘电力电缆的载流量,包括ZR-YJV电力电缆载流量表的各种规格型号。
更多数据可下载资料查看。
六、高压交联聚氯乙烯绝缘阻燃电力电缆的载流量表,包括ZR-YJV、ZR-YJLV的各种多芯载流量数据。
更多数据可下载资料查看。
七、矿物质绝缘电缆的载流量表。
常用电力电缆截面积与载流量之间的关系.
常用电力电缆截面积与载流量之间的关系截面与载流量表载流量估算口决:二点五以下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)以上口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数"来表示,通过心算而得。
(2)由上表可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走"说的是2.5mm2及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm2导线,载流量为2.5×9=22.5(A)。
(3)从4mm2及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五",说的是35mm2的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
(4)从50mm2及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
即50、70mm2导线的载流量为截面数的3倍;95、120mm2导线载流量是其截面积数的2.5倍,依次类推。
(5)“条件有变加折算,高温九折铜升级"。
上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
如16mm’铜线的载流量,可按25mm2铝线计算。
导线截面积与载流量的计算(导体的)(连续)截流量(continuous) current-carrying capacity (of a conductor)是指:(导体的)(连续)截流量(contin在规定条件下,导体能够连续承载而不致使其稳定温度超过规定值的最大电流。
电线电缆安全载流量计算方法
电线电缆安全载流量计算方法口诀1:按功率计算工作电流:电力加倍,电热加半(如5.5KW电动机的额定工作电流按“电力加倍”算得为11A)口诀2:按导线截面算额定载流量:各种导线的安全载流量通常可以从手册中查找,但利用口诀再配合一些简单的心算便可直接得出。
口诀如下:10下五,100上二;25、35四、三界;70、95两倍半;穿管、温度八、九折;裸线加一半;铜线升级算。
10下五是指10个平方以下的线安全载流量为线径的五倍,如6平方毫米的铝芯线,他的安全载流量为30A100上二是指100平方以上的线安全载流量为线径的二倍,如150平方的铝芯绝缘线安全载流量为300A25、35四三界是指10平方至25平方的铝芯绝缘线载流量为线径的四倍,35平方至70平方内的线(不含70)为三倍。
70、95两倍半是指70平方与95平方的铝芯绝缘线安全载流量为线径的两倍半。
“穿管、温度,八九折”是指若是穿管敷设(包括槽板等,即线加有保护套层),不明露的,按上面方法计算后再打八折(乘0.8)。
若坏境温度超过25度的,按上面线径方法计算后再打九折。
对于穿管温度两条件同时时,安全载流量为上面线径算得结果打七折算裸线加一半是指相同截面的裸铝线是绝缘铝芯线安全载流量的1.5倍。
铜线升级算即将铜导线的截面按铝芯线截面排列顺序提升一级,再按相应的铝芯线条件计算,如:35平方裸铜线,升一级按50平方铝芯线公式算得50*3*1.5=225安,即225安为35平方裸铜线的安全载流量。
先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。
电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。
一般有公式可供计算。
由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。
2.口诀低压380/220伏系统每千瓦的电流,安。
千瓦、电流,如何计算?电力加倍,电热加半。
①单相千瓦,4.5安。
电线负荷的计算方法
一、常用电线的载流量:500V及以下铜芯塑料绝缘线空气中敷设,工作温度30℃,长期连续100%负载下的载流量如下:平方毫米——22A平方毫米——30A4平方毫米——39A6平方毫米——51A10平方毫米——74A16平方毫米——98A二、家用的一般是单相的,其最大能承受的功率(Pm)为:以平方毫米为例Pm=电压U×电流I=220伏×22安=4840瓦取安全系数为,那么其长时间工作,允许的功率(P)为:P=Pm÷=4840÷=3723瓦“平方”的铜线。
能承受3723瓦的负荷。
三、平方毫米铜电源线的安全载流量是22A,220V的情况可以长时间承受3723W的功率,所以24小时承受2000瓦的功率的要求是完全没有问题的。
一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。
一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。
综合上述所说的,现在的电力衰减厉害,加上电力设备的质量中等化,所以安全的电力是每平米6A,电力使用每平米7A ,安全的电力使用每平米应该为6A,如果您需要计算方式应该是平米×6A=×220W=2310W这就是单轴最大输出功率如: mm2 bvV铜导线安全载流量的推荐值×8A/mm2=12A 220V的电压的话就是功率=电压×电流=220×12=2640瓦=千瓦应该根据负载的电流来计算功率的,平方的铜芯电缆最大能承载接近25A电流的,可用于三相动力设备额定电压380V的以下的电机),可用于单相照明等(额定电压220V)设备,每相能承载以下的单相设备的。
在作为三相电机的接线电缆不太长(10米内)时可载荷,线段过长相应载荷降低。
一般按每平方载流4~6A选取,长线取小值,短线取大值。
2根平方铜芯电线穿线管理论上是3平方,实际载荷多少千瓦。
在220V电压是千瓦。
电线电缆安全载流量计算方法
电线电缆安全载流量计算方法口诀1:按功率计算工作电流:电力加倍,电热加半(如 5.5KW 电动机的额定工作电流按“电力加倍”算得为11A )口诀2:按导线截面算额定载流量:各种导线的安全载流量通常可以从手册中查找,但利用口诀再配合一些简单的心算便可直接得出。
口诀如下:10下五,100上二;25、35四、三界;70、95 两倍半;穿管、温度八、九折;裸线加一半;铜线升级算。
10 下五是指10 个平方以下的线安全载流量为线径的五倍,如6平方毫米的铝芯线,他的安全载流量为30A100上二是指100平方以上的线安全载流量为线径的二倍,如150平方的铝芯绝缘线安全载流量为300A25、35 四三界是指10平方至25 平方的铝芯绝缘线载流量为线径的四倍,35平方至70 平方内的线(不含70 )为三倍。
70、95 两倍半是指70 平方与95 平方的铝芯绝缘线安全载流量为线径的两倍半。
“穿管、温度,八九折”是指若是穿管敷设(包括槽板等,即线加有保护套层),不明露的,按上面方法计算后再打八折(乘0.8)。
若坏境温度超过25 度的,按上面线径方法计算后再打九折。
对于穿管温度两条件同时时,安全载流量为上面线径算得结果打七折算裸线加一半是指相同截面的裸铝线是绝缘铝芯线安全载流量的 1.5 倍。
铜线升级算即将铜导线的截面按铝芯线截面排列顺序提升一级,再按相应的铝芯线条件计算,如:35 平方裸铜线,升一级按50 平方铝芯线公式算得50*3*1.5=225 安,即225 安为35平方裸铜线的安全载流量。
先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。
电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。
一般有公式可供计算。
由于工厂常用的都是380/220 伏三相四线系统,因此,可以根据功率的大小直接算出电流。
2.口诀低压380/220 伏系统每千瓦的电流,安。
千瓦、电流,如何计算?电力加倍,电热加半。
电缆选型载流量计算书
电缆选型载流量计算书电缆选型计算输出电缆线计算【Ⅰ】以负载功率计算电流:1、负载额定工作电流计算负载功率:a.1500KW工作电流计算:I=P÷(U×1.732×cosΦ)--P—功率(KW);--U—电压(0.38KV);--cosΦ—功率因素(0.8);--I—相线电流(A)=1500÷(0.38×1.732×0.8)=2848.85A负载额定工作电流:Iaw【Ⅱ】根据载流量对电缆选型与计算:电缆型号:VV铜导体3*300mm222电缆直埋敷设中心距离为电缆直径的2倍,电缆线载流量为:Ic=435A根据温度曲线表查得30℃环境稳定时载流量系数为:Kt=0.94。
a.1500kW距离500m负载、功率因素0.8,电缆线条数:N=7根,电缆总输出载流量为:I=N*Ic*kt*ki= 7*435A*0.94*1=2862A 高于Iw: 2848.85A;【Ⅲ】电压校验:a.最长输电线路为500m,最大负载1500kW为对象校验查厂家单根电缆线数据:r=0.068Ω/km,x=0.055Ω/km计算电压降:△u=1500*0.5*(0.068+0.055*0.75)/7*(0.42*10)=7.31%>7%,不符合GB/T 12325-2008要求的标准。
若要达到标准至少需要8根3*300mm2电缆线。
【Ⅲ】经济性计算:负载线路至少总需电缆线长度:L=8*500=4000m线路的电能损耗:有功损耗:=(0.5*0.068/8)*2848.852=34.49 kWP损无功损耗:=(0.5*0.055/8)*2848.852=27.90 kVarQ损。
电缆载流量计算口诀
电缆载流量计算口诀
1.口诀一:根据电缆截面积计算载流量
电缆截面积乘以载流量系数得电缆的额定载流量,密度乘以额定载流
量得电缆的最大运行载流量。
2.口诀二:计算单芯电缆的载流量
单芯电缆的载流量等于截面积乘以载流量系数,再乘以电缆敷设方式
的修正系数。
3.口诀三:计算多芯电缆的载流量
多芯电缆的载流量等于单芯电缆的载流量乘以对称修正系数和并排修
正系数。
4.口诀四:计算敷设在地面上的电缆的载流量
敷设在地面上的电缆的载流量等于电缆的额定载流量乘以地表修正系数。
5.口诀五:计算埋地电缆的载流量
埋地电缆的载流量等于电缆的额定载流量乘以敷设在地下的修正系数。
6.口诀六:计算电缆的热稳定电流
电缆的热稳定电流等于电缆的额定载流量乘以电流修正系数。
7.口诀七:计算电缆的短路电流
电缆的短路电流等于电缆的额定载流量乘以短路电流修正系数。
8.口诀八:计算电缆的瞬时热稳定电流
电缆的瞬时热稳定电流等于电缆的额定载流量乘以瞬时热稳定电流修正系数。
以上是一些常见的电缆载流量计算口诀,可以帮助工程师快速准确地计算电缆的载流量。
当然,在实际工程中,还需要根据具体情况考虑各种修正系数和特殊要求,以获得更准确的计算结果。
常用电力电缆截面积与载流量之间的关系.
常用电力电缆截面积与载流量之间的关系截面与载流量表载流量估算口决:二点五以下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)以上口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数"来表示,通过心算而得。
(2)由上表可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走"说的是2. 5mm及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2. 5mm2导线,载流量为2. 5X9= 22. 5(A)。
(3)从4mm2及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减I,即4X 8、6X 7、10X 6、16X 5、25X4。
“三十五乘三点五,双双成组减点五",说的是35mm的导线载流量为截面数的3. 5倍,即35X 3. 5 =122. 5(A)。
(4)从50mm2及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0. 5。
即50、70mm2导线的载流量为截面数的3倍;95、120mm导线载流量是其截面积数的2. 5倍,依次类推(5)“条件有变加折算,高温九折铜升级" 。
上述口诀是铝芯绝缘线、明敷在环境温度25 C的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25C的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
如16mm铜线的载流量,可按25mm铝线计算。
导线截面积与载流量的计算(导体的)(连续)截流量(continuous) current-carrying capacity (of a conductor)是指:(导体的)(连续)截流量(contin 在规定条件下,导体能够连续承载而不致使其稳定温度超过规定值的最大电流。
电力电缆常用计算公式
✧电线电缆载流量计算交流电阻计算绝缘介质损耗计算电线电缆金属套和屏蔽的损耗计算铠装损耗计算热阻计算载流量计算✧电线电缆允许短路电流计算✧电线电缆短时过负荷电缆载流量计算✧电力电缆相序阻抗计算✧电线电缆导体和金属屏蔽热稳定计算电线电缆载流量计算一、交流电阻计算1. 集肤和邻近效应对应的Ks 和Kp 系数的经验值: 导体不干澡浸渍:0.1=sk 0.1=p k导体干燥浸渍:0.1=s k 8.0=p k2. 工作温度下导体直流电阻:)]20(1[200-+⨯='θαR R0R —20oC 时导体直流电阻 OHM/M 20α—20oC 时导体电阻温度系数3. 集肤效应系数:1.一般情况:s SR f X κπ72108-⨯'=448.0192ss s X X Y +=2. 穿钢管时:s SR f X κπ72108-⨯'=5.18.019244⨯+=ss s X X Y f —电源频率Hz4. 邻近效应系数:a. 二芯或二根单芯电缆邻近效应因数:p pR fX κπ72108-⨯'=一般情况:9.2)(8.0192244⨯+=sd X X Y c p pp穿钢管时:5.19.2)(8.0192244⨯⨯+=sd X X Y c p ppdc:导体直径 mm s :各导体轴心间距 mmb. 三芯或三根单芯电缆邻近效应因数:p pR f X κπ72108-⨯'=(1) 圆形导体电缆 一般情况:]27.08.019218.1)(312.0[)(8.0192442244+++⨯+=ppc c p pp XXsd s d X X Ydc:导体直径 mm s :各导体轴心间距 mm穿钢管时:5.1]27.08.019218.1)(312.0[)(8.0192442244⨯+++⨯+=ppc c p pp XXsd s d X X Ydc:导体直径 mm s :各导体轴心间距 mm(2) 成型导体电缆 一般情况:]}27.08.019218.1)(312.0[)(8.0192{32442244++++⨯++=ppx X x X p p p XXtd d t d d X X Y 穿钢管时:5.1]}27.08.019218.1)(312.0[)(8.0192{32442244⨯++++⨯++=ppx X x X p p p XXtd d t d d X X Y dx: 截面和紧压程度均等同于圆导体的直径 t:导体之间的绝缘厚度(即两倍相绝缘厚度)5. 集肤效应产生电阻:S s Y R R '=6. 邻近效应产生电阻:p p Y R R '=7. 导体交流电阻:)](1[p s Y Y R R ++'=二、绝缘介质损耗计算1.导体电容:D i —— 绝缘层直径(除屏蔽层),mm dc —— 导体直径(含导体屏蔽层),mm 非屏蔽多芯或直流电缆不需计算绝缘损耗 ε:介电常数 PE:2.3 pvc:6.0 2. 单相绝缘介质损耗:ω=2πf)/( (20)m W tg U c W d δω=U 0:对地电压 V C :电容 F/m tg δ:介质损耗角正切 0.004三、电线电缆金属套和屏蔽的损耗计算金属套截面积:A = π(Ds o + t) t 'MM^2)/(10)ln(189m F d D c ci-⨯=ε金属带截面积:A=π(Ds o +nt)nt/(1±k) (重叠:1-k,间隙1+k)金属套电阻:1011131/)](1[10A K R S S S S θθαρ-+= 2022232/)](1[10A K R S S S S θθαρ-+=Rs:金属套工作温度时电阻,Ohm/km ρs:20oC 时金属套材料电阻率, Ohm.mm^2/m αs :金属套电阻温度系数,1/oC K: 金属套工作温度系数(0.8-0.9) θs:电缆导体最高工作温度,oC θo:标准工作温度,一般为20oC A: 金属套截面积,mm^2 总金属套电阻:3211111S S S R R R Rs ++=Rs1:金属套电阻,Ohm/km Rs2:金属带电阻,Ohm/km Rs3:其它电阻,Ohm/km1.单芯电缆或三芯SL 型,三芯钢管型电缆:)/(102ln 29cm D Sx ss Ω⨯=-ωS:带电段内各导体间的轴间距离 Ds:金属套平均直径Ds:金属套平均直径D 1….D n:第1至n 层的金属护套前外径,mm t1….tn:第1至n 层的金属护套厚度,mm N:金属护套层数电缆类型1:单芯三相电路等边三角形敷设电缆;三芯非铠装分相铅包(SL 型)电缆; 两根单芯和三根单芯电缆(三角形排列)金属套两端互联接地;正常换位金属套两端互联平面排列的三根单芯电缆 (1).护套二端接地(涡流损失系数不计)2221ss s s x r x r r +⨯='λNt D t D t D t D t D D n n S 2244233222211).......()()()()(++++++++=(2).护套单点或交叉换位互联接地(环流损失系数不计)Ss s s s D S r S D A S D r r A 52)/10.(])2/(1[)2(.2922211++="ωλ A 1=3 A 2=0.417电缆类型2:单芯三相电路等距平面布设(1).护套二端接地(涡流损失系数不计) 电缆换位:)/(102ln 29cm D S x se sΩ⨯='-ω S e =1.26S (cm)2221ss s s x r x r r '+'⨯='λ电缆不换位:a x r M s s+=3a x r N s s -=)/(102ln 29cm a Ω⨯=-ω fπω2=A 相:)1)(1(44)(323.22221+++-++='N M N M N M r r s λB 相:11.21+='N r r s λC 相:)1)(1(44)(323.22221+++--+='N M N M N M r r s λ(2).护套单点或交叉换位互联接地(环流损失系数不计)Ss s s s D S r S D A S D r r A 52)/10.(])2/(1[)2(.2922211++="ωλ 两侧电缆:A 1=1.5 A 2=0.27 中间电缆:A 1=6 A 2=0.083电缆类型3:钢管型三芯缆(分相屏蔽或分相金属护套,不分连接方式)22217.1ss sx r x r r s+⨯='λ分裂导线:)1)(1(4)(422222++++=N M N M N M FF⨯''=''11λλrs:每cm 电缆的金属套电阻(OHM/cm) r:每cm 电缆的导体电阻(OHM/CM) Ds:金属套平均直径 S:导体轴间距离 f:电源频率 Hz2.二芯统包金属套非铠装电缆 圆形或椭圆形导体:])(1[)(.1016221421dc d c R R S +⨯=''-ωλ扇形导体:])48.1(2.12[)48.1(.108.1021211621dt r d t r R R S +++⨯=''-ωλfπω2=椭圆形导体mM d d d*= dM :椭圆的长轴直径mm dm :椭圆的短轴直径 mmc :一根导体轴心和电缆轴心之间的距离mm二芯圆形电缆:c=0.5*绝缘外径 三芯圆形电缆:c=1.155*绝缘半径(1.155即 r 332(r 绝缘半径) d :金属套平均直径 mmr1:两个扇形导体的外接圆半径mm f :频率 Hz t :导体之间的绝缘厚度3.三芯统包金属套非铠装电缆圆形或椭圆形导体,当R S ≤100μohm/m 时:])10(411)2()10(11)2[(32742721⨯++⨯+=''ωωλSSS R dc R dc R R圆形或椭圆形导体,当R S >100μohm/m 时:1422110)2(.2.3-⨯=''dc R R S ωλ扇形导体Rs 为任意值:])/10(11)2[(94.027211ωλ⨯++=''S S R d t r R Rr1:三根扇形导体的外接圆半径mm f :频率 Hz d :金属套平均直径 mm t :导体之间的绝缘厚度4.二芯和三芯钢带铠装电缆:钢带铠装使金属套涡流增加,所以应按二三芯统包金属套非铠装电缆(见上)计算的1λ''值乘以下述因数:22]11)(1[μδAAd d d ++四、铠装损耗计算非磁性材料铠装:以护套和铠装的并联电阻代替金属套和屏蔽损耗计算(如上节)中的r s ,护套直径D s1和铠装直径D s2的均方根值代替金属护套的平均直径(即22221s s sD D D +=)铠装金属丝总截面积:42d nA π=A:铠装金属丝总截面积,mm^2 n:金属丝总根数 d:金属丝直径,mm铠装金属带总截面积: A=π(Ds+nt)nt/(1±k) (重叠:1-k,间隙1+k) A:金属带总截面,mm^2 Ds:铠装前外径,mm n:金属带层数 t:金属带厚度,mm k:重叠或间隙率(即重叠或间隙宽度与带宽的比值),% 铠装层电阻(工作温度时):A K R S S S S /)](1[1003θθαρ-+=Rs:铠装层工作温度时电阻,Ohm/km ρs:20oC 时铠装层材料电阻率, Ohm.mm^2/m αs :铠装层电阻温度系数,1/oC K:铠装层工作温度系数(0.8-0.9) θs:电缆导体最高工作温度,oC θo:标准工作温度,一般为20oC A:铠装层总截面积,mm^2 铠装层平均直径(即节圆直径):D A =Ds+ntD A :铠装层平均直径,mm Ds:铠装前外径,mm n: 铠装层数 t:铠装单层厚度,mm 铠装层等效厚度:Ad A πδ=δ:铠装层等效厚度,mm A:铠装层横截面积,mm^2 d A :铠装平均直径,mm导磁性材料铠装: 1.两芯电缆钢丝铠装:22151422]7.9548.1[1082.31062.0Ad t r R A RR A A ++⨯+⨯=--ωωλr1:外切于各导体的外接圆半径 mm 其余见后所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝缘导线载流量估算
铜芯绝缘导线载流量与截面的倍数关系:
估算口诀:二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:
本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由上表可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。
“条件有变加折算,高温九折铜升级”。
上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;
当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
如16mm’铜线的载流量,可按25mm2铝线计算。
“穿管根数二三四,八七六折满载流”指的是导线需穿管铺设时,穿2根导线,要按8折计算载流量,穿3根7折,穿4根6折。
常用电力电缆载流量表
VV29-铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆VV29-铝芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆
标称面积mm2线芯结构no/mm
绝缘厚度
mm
护套厚度
mm
计算外径
mm
环境25℃时载流量
(A)空气敷设
环境25℃时载流量
(A)埋土敷设
成品近似重量kg/km 备注
铜芯铝芯铜芯铝芯铜芯铝芯
1*10 7*1.35 1.0 1.6 13.4 80.6 61.5 103.9 79.0 346 285 1*16 7*1.70 1.0 1.6 14.5 106.0 81.5 126.7 104.9 436 336 1*25 7*2.14 1.2 1.6 16.3 143.1 110.2 181.3 138.7 569 414 1*35 7*2.52 1.2 1.6 17.7 173.8 133.6 220.5 169.6 696 480 1*50 19*1.78 1.4 1.8 19.8 217.3 167.5 270.3 208.8 918 605 1*70 19*2.14 1.4 1.8 19.8 268.2 206.7 331.8 255.5 1272 783 1*95 19*2.52 1.6 2.0 22.0 329.7 253.4 394.3 304.2 1622 1036 1*120 37*2.03 1.6 2.0 26.2 377.4 292.6 454.7 350.7 1902 1162 1*150 37*2.25 1.8 2.0 28.4 434.6 335.0 518.3 398.6 2274 1355 1*185 37*2.52 2.0 2.2 30.9 494.0 380.5 580.9 447.3 2729 1582 1*240 61*2.25 2.2 2.2 33.6 584.0 449.4 676.3 521.5 3339 1853 1*300 61*2.52 2.4 2.6 37.0 669.9 515.2 760.0 584.1 4045 2073 2*4 2*1*2.25 0.8 1.6 15.4 38.2 28.6 47.7 37.1 385 335 2*6 2*1*2.76 1.0 1.6 17.2 47.7 37.1 59.4 45.6 480 403 2*10 2*7*1.35 1.0 1.8 20.5 63.8 48.8 77.4 59.4 661 538 2*16 2*7*1.7 1.0 1.8 23.5 85.7 65.7 106.0 80.6 998 797 2*25 2*7*2.14 1.2 2.0 27.2 112.4 85.7 138.7 106.0 1330 1019 2*35 2*7*2.52 1.2 2.2 29.9 135.7 104.9 166.4 128.3 1631 1192 2*50 2*18*1.9 1.4 2.0 27.3 169.6 130.4 202.5 155.6 1775.0 1166.0 2*70 2*18*2.25 1.4 2.2 30.3 208.8 161.1 247.0 190.8 2272.0 1419.0 2*95 2*24*2.25 1.6 2.2 33.7 254.4 196.1 294.7 226.8 2878.0 1718.0 2*120 2*24*2.55 1.6 2.6 36.7 294.7 227.9 339.2 261.8 3477.0 2012.0 2*150 2*45*2.07 1.8 2.6 39.7 338.1 260.7 382.7 293.6 4175.0 2346.0 3*4 3*1*2.25 0.8 1.6 16.0 32.9 24.4 41.3 31.8 444.0 370.0
3*6 3*1*2.76 1.0 1.6 18.0 41.3 31.8 51.9 40.3 564.0 454.0 3*10 3*7*1.35 1.0 1.8 22.2 55.1 42.4 70.0 54.1 937.0 753.0 3*16 3*7*1.7 1.0 2.0 25.0 75.3 57.2 92.2 71.0 1229.0 128.0 3*25 3*7*3.14 1.2 2.0 28.6 101.8 77.4 121.9 93.3 1643.0 1176.0 3*35 3*7*2.52 1.2 2.2 31.4 120.8 93.3 147.3 113.4 2251.0 1599.0 3*50 3*18*1.9 1.4 2.2 31.2 152.6 117.7 182.3 141.0 2432.0 1619.0 3*70 3*18*2.25 1.4 2.6 35.0 189.7 146.3 236.4 171.7 3153.0 1872.0 3*95 3*24*2.25 1.6 2.6 38.8 230.0 177.0 261.8 201.4 4027.0 2287.0 3*120 3*24*2.55 1.6 2.6 41.5 267.1 205.6 299.9 231.1 4819.0 2622.0 3*150 3*45*2.07 1.8 3.0 46.5 309.5 238.5 343.4 262.9 5932.0 3188.0 3*180 3*45*2.30 2.0 3.0 50.5 353.0 272.0 382.7 295.7 7110.0 3725.0 3*240 3*45*2.62 2.2 3.4 56.2 415.5 323.3 446.3 343.4 8965.0 4573.0 3*4+1*2.5 3*1*2.25+1*1*1.75 0.8 1.6 16.8 31.8 24.4 39.2 30.7 492.0 403.0 3*6+1*4 3*1*2.76+1*1*2.25 1.0 1.8 19.3 41.3 31.8 50.9 39.2 644.0 515.0 3*10+1*6 3*7*1.35+1*1*2.76 1.0 1.8 23.0 55.1 42.4 67.8 53.0 1027.0 807.0 3*16+1*6 3*7*1.7+1*1*2.76 1.0 2.0 25.7 74.2 57.2 90.1 68.9 1315.0 978.0 3*25+1*10 3*7*2.14+1*7*1.35 1.2 2.2 29.8 99.6 77.4 121.9 90.1 1800.0 1272.0 3*35+1*10 3*7*2.52+1*7*1.35 1.2 2.2 32.0 126.1 97.5 151.6 116.6 2174.0 1461.0 3*50+1*16 3*10*1.9+1*7*1.70 1.4 2.6 34.7 157.9 121.9 185.5 143.1 2763.0 1748.0 3*70+1*25 3*10*2.25+1*7*2.14 1.4 2.6 38.0 195.0 149.5 233.7 171.7 3498.0 2062.0 3*95+1*35 3*24*2.25+1*7*2.52 1.6 2.6 43.0 239.6 184.4 269.2 207.8 4564.0 2607.0 3*120+1*35 3*24*2.55+1*7*2.52 1.6 3.0 46.0 275.6 213.1 374.0 236.4 5412.0 2998.0 3*150+1*50 3*45*2.07+1*19*1.78 1.8 3.0 50.0 319.1 244.9 346.7 267.1 6606.0 3548.0 3*182+1*50 3*45*2.30+1*19*1.78 2.0 3.0 53.9 365.7 282.0 391.1 301.0 7781.0 4082.0。