4.1.1直角体系

合集下载

4.1.1中职数学-任意角

4.1.1中职数学-任意角

4.1.1任意角课程名称中职数学基础模块(上册)第四章三角函数授课时间月日设计者授课班级高一教授者课题4.1.1任意角课时安排1课时课型新授教学目标知识与技能1、理解任意角的概念,能够正确判断正角、负角、零角。

2、能在直角坐标系中讨论任意角。

3、能判断象限角与界限角。

过程与方法通过的实际生活中角的应用,通过画图和判断角的象限,培养学生数形结合的思想方法。

情感态度与价值观(思政)1、创设情境,激发学生分析探求的意识,强化参与意识。

2、通过借助旋转运动定义任意角,学会用运动变化的观点认识事物。

重点根据图像判断角是正角、负角、零角难点根据角的度数确定象限角是第几象限角教法讲练结合资源PPT前置任务课堂教学统一组案单班个案教师活动学生活动时间个性化调整(二次备课)引入你知道吗?在义务教育阶段我们学习过,角是有公共端点的两条射线构成的图形。

已经学习过的角包括锐角、直角、钝角、平角、周角等,它们都在0°~360°范围内.体操运动员转体720º,跳水运动员向内、向外转体1080º各转了多少度?这些例子不仅不在范围0°~360°,而且方向不同,想想用什么办法才能推广到任意角?(运动)展示情境,提出问题,引导学生观察观察情境思考问题作答2情境导入提出问题:(1)公园里的摩天轮,选定一个机械臂的起始位置作为始边,如果机械臂从这个起始位置旋转一周,就说它转过了360°,那么当它转过一周半或者转过两周时,它转过了多少度呢?(2)如果时钟快2h,应该如何校准?校准过程中分针相对起始位置转过了多少度?如果时钟慢了2h呢?思考解决老师提出的问题交流分析作答3探索新知1.规定:一条射线绕其端点按逆时针方向旋转形成的角称为正角;按顺时针方向旋转形成的角称为负角;如果一条射线没有做任何旋转,也认为形成了一个角,这个角称为零角. 这样,我们不仅能表示0°~360°范围内的角,也能表示0°~360°范围之外的角.也就是把角的概念推广到了任意角。

北师大版数学七年级下册4.1.1《认识三角形》教案

北师大版数学七年级下册4.1.1《认识三角形》教案
实践活动环节,学生们分组讨论和实验操作的表现挺不错。但在小组讨论时,有些同学过于依赖别人,自己的想法和观点不够明确。在接下来的教学中,我要注意引导学生们独立思考,鼓励他们大胆提出自己的观点。
学生小组讨论环节,大部分同学能够围绕“三角形在实际生活中的应用”这一主题展开讨论,并提出一些有创意的想法。但在引导与启发过程中,我发现有些问题设置得不够合理,导致学生们在思考问题时有些困惑。以后我需要在这个环节多下功夫,提高问题的针对性。
4.增强学生的模型建立与问题解决能力,通过相似三角形的探究,能够建立模型,解决实际问题,体会数学与生活的密切联系。
三、教学难点与重点
1.教学重点
-三角形的定义及其特性:理解三角形是由三条线段首尾相连所围成的图形,掌握三角形的稳定性、内角和为180度等基本性质。
-三角形的分类:能够根据边长和角的大小对三角形进行分类,并理解各类三角形的特点。
-相似三角形的判定:相似三角形的判定条件较多,学生容易混淆,需要通过实例和练习强化掌握。
举例:针对内角和定理的难点,可以设计一些几何图形,让学生通过折叠、剪拼等操作直观感受内角和为180度的原理,并通过数学证明加强理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识三角形》这一章节。在开始之前,我想先问大家一个问:“你们在日常生活中是否见过三角形的结构?”比如,自行车的三角架、房屋的屋顶等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的图形。它具有稳定性,广泛应用于日常生活和工程建筑中。

苏教版4-44.1.1直角坐标系

苏教版4-44.1.1直角坐标系

坐标原点
坐标原点是直角坐标系的起点, 也是x轴和y轴的交点。
在二维平面上,任何一点P都可 以用一对有序实数(x, y)表示,
这对实数被称为点P的坐标。
坐标原点记作O(0,0),是所有点 的坐标参考点。
02
点的坐标表示
点在坐标系中的位置
点在平面上的确定
通过直角坐标系,每个点都可以 被唯一确定,从而在平面上进行 定位。
在平面直角坐标系中,水平的数轴称 为x轴,竖直的数轴称为y轴。
坐标平面
坐标平面由x轴和y轴构成,它 们将平面划分为四个象限。
第一象限:x>0, y>0;第二象 限:x<0, y>0;第三象限: x<0, y<0;第四象限:x>0, y<0。
坐标平面还可以表示为平面直 角坐标系,用于描述二维平面 上的点。
正方向上的点
在坐标轴上,沿着正方向 上的点具有正的坐标值, 例如x轴上的正方向点坐 标为+x。
负方向上的点
在坐标轴上,沿着负方向 上的点具有负的坐标值, 例如x轴上的负方向点坐 标为-x。
03
距离与坐标变换
点间距离的计算
两点间距离公式
$d = sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
图像的旋转是指直线绕原点 逆时针或顺时针旋转一定的 角度。
当直线绕原点逆时针旋转 θ 度时,其方程变为 y = mx + ny,其中 m = a cosθ - b sinθ,n = a sinθ + b cosθ; 顺时针旋转时,m 和 n 的值 相反。
05
应用实例
实际生活中的直角坐标系应用
地理定位
坐标轴的交叉点

人教版初中数学七年级上册第四章4.1.1几何图形的概念

人教版初中数学七年级上册第四章4.1.1几何图形的概念
第四章 几何图形初步
4.1.1 第1课时 几何图形的概念
到城雕
从古剪代 纸 到现代 从长城 到立交
从植物 到动物
从四通八达的立交桥 到街头巷尾的交通标志
从日常生活用品 到生产劳动工具
现实世界中有形态各异、丰富多彩的图形,千姿百态的图 形美化了我们的生活空间.
几何------研究图形的形状、大小和位置关系的一门学科.
说一说下面这些几何图形有什么共同特点?
正方体
圆柱体
球体
长方体
三棱柱 圆锥体 四棱锥 六棱柱
三棱锥
这些几何图形的各部分不都在同一平面内,它们
是立体图形.
4.1.1 第1课时 几何图形的概念
知识点 3 平面图形的认识
6. 有下列几何图形:圆、圆柱、球、扇形、等腰三角形、长 方体、正方体、直角,其中平面图形有____4____个.
以半圆的直径所在直线为旋转轴,半圆 面旋转一周形成的旋转体
4.1.1 第1课时 几何图形的概念 4. 在如图 4-1-1 所示的图形中,柱体有_①__②_③__⑦__,锥体有 ___⑤__⑥___,球体有___④_____.(填序号)
图 4-1-1
圆柱 圆锥
圆台
棱柱:
有两个面互相平行,其余各面都是平行四边形,并且每相邻两 个四边形的公共边都互相平行,由这些面所围成的多面体叫做 棱柱。
斜棱柱 直棱柱
长方体和正方体都是特殊的棱柱 (四棱柱)
棱柱
三棱柱
四棱柱 五棱柱 六棱柱
n棱柱
面的个数 顶点个数 棱的条数
圆柱: 棱锥: 圆锥:
一个长方形以一边为轴顺时针或逆时针旋转 一周,所经过的空间叫做圆柱体。
从实物中抽象出的各种图形统称为几何图形.

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。

高中数学选修4-4-1.1平面直角坐标系

高中数学选修4-4-1.1平面直角坐标系
由b2 c2 5a2,可得到 | AC |2 | AB |2 5 |
x , F y ). 2BC2|2 ,
B
x
即 x2 y2 c2 5[(x c)2 y2 ].
整理得 2x2 2 y2 2c2 5cx 0.
因为 BE ( x c, y ), CF ( c x, y),
在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。
设点P(x,y)经变换得到点为 p x, y
x x
y
3
y
2
通常把 2 叫做平面直角坐标系中的一个坐标伸 长变换。
(3)怎样由正弦曲线y=sinx得到曲 线y=3sin2x? 写出其坐标变换。
xxz
例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别
为边AC,CF上的中线,建立适当的平面直角坐标系探
究BE与CF的位置关系。
y
解:以△ABC的顶点A为原点O,
C
边AB所在的直线x轴,建立直角
坐标系,由已知,点A、B、F的
E
坐标分别为
c
设A点( 0C,的0 坐) ,标B为( c(x,0,y)),,F则(点2E,的0 坐). 标O 为 (A) (
x
1
x
2 y 3 y
3
通常把 3 叫做平面直角坐标系中
的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点,
在变换
:
x y
' '
x y
( 0) ( 0)
4
的作用下,点P(x,y)对应 px, y 称
为平面直角坐标系中的伸缩变换。

人教A版高中数学选修4-4:1.1平面直角坐标系 课件

人教A版高中数学选修4-4:1.1平面直角坐标系 课件
2.已知 ABC 的三边 a,b,c 满足b2 c2 5a2 ,BE,CF 分别为边 AC,AB 上的中线,建立适
当的平面直角坐标系探究 BE 与 CF 的位置关系。
问题2.平面直角坐标系中的伸缩变换有什么意义?
1.怎样由正弦曲线 y sin x 得到曲线 y sin 2x, y 3sin x, y 3sin 2 x ?
x y
' '
1 3 1 2
x y
后的图形。
(1) x2 y2 1;(2) x2 y2 1;(3) y2 2 x
94
18 12
问题2.平面直角坐标系中的伸缩变换有什么意义?
3.在同一平面直角坐标系中,经过伸缩变换
x'
y
'
3x y
后,曲线
C
变为曲线
x
'2
9
y
'2
9
,求曲线
C
的方程
例:在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换
x y
' '
2x 3y
后的图形。
(1)2x+3y=0
(2)x2+y2=1
(3)y2=4x
x2
(4)
y2
1
43
练习: 1.已知点 A 为定点,线段 BC 在定直线上滑动,已知,点 A 到直线的距离为 3,求的外心的 轨迹方程。
2.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换
并画出图形。 4.在同一平面直角坐标系中,求满足下列图形变换的伸缩变换: (1)直线 x-2y=2 变成直线 2x’-y’=4; (2)曲线 x2-y2-2x=0 变成曲线 x’2-16y’2-4x’=0。

4.1.1认识三角形(三角形内角和定理).docx

4.1.1认识三角形(三角形内角和定理).docx

第三章三角形3.1.1 •认识三角形(三角形内角和定理)教学目标1 •知识目标1)能在三角形内角的基础上了解三角形的外角,掌握三角形内角和,掌握三角形外角与其邻角的关系。

2)通过学习可以发展学生的思维品质,提高动手能力,培养学生自住学习能力,合作探究,推理论证,学以致用的能力。

2.技能目标1)通过观察操作,推理等活动,利用拼图让学生猜想,启发学生添加辅助线验证三角形内角和定理,进而再验证外角性质。

2)通过老师耐心指点,学生猜想,然后合作探索,添加辅助线,运用转化思想进而验证定理。

3)学习到了人胆猜想,动手操作,积极探索,一步步推理论证的能力,同时也学会了转化思想。

3.情感态度与价值观1)通过教材知识和实际生活相联系,感受数学的实用性,体验数学的魅力, 还可以与各科知识相联系,有效激发学牛学习兴趣。

2)通过老师提出问题,学生自主思考,互动研讨,经历观察,分析,猜想,论证的过程,推导结论,同时借助多媒体的直观演示,加深学习对知识的理解,再通过习题练习,巩I古I重点内容,最后进行变式训练,从而熟练应用并突破难点。

3)在本节学习中,让学生体验到数学的逻辑,严密,科学美,对学生培养严谨认真的态度有积极意义;同时通过解决牛活中的实际问题,增强数学的牛活味,促使学生在生活中用数学眼光看待世界,用数学大脑去认识世界,学会用数学思考问题,并大胆提问,善于发现问题,并从屮发现的乐趣,同时培养了学生的创新能力。

教学重点、难点教学重点:验证三角形内角和定理,能运用三角形内角和定理进行推理和计算;动手操作,探索发现,验证三角形外角性质。

教学难点:添加辅助线证明三角形内角和定理和外角性质,运用三角形外角性质进行计算时能准确表达推理过程和方法,并运用到实际中去。

教学过程一、知识回顾1.师:展示课件图片,地板可以用正方形密铺而成,蜂巢可以用正六边形密铺而成,那么形状、大小完全相同的任意三角形能否镶嵌成平面图形呢?生:能师:通过课件展示形状、大小完全相同的任意三角形镶嵌成平面图形的过程, 其依据是什么?生:三角形三个内角的和等于180°师:小学和初一阶段又是如何验证三角形三个内角的和等于180度的呢?生:通过度量和撕角验证三角形三个内角的和等于180°师:展示课件,演示三角形撕角(即搬角)形成平角的过程,师:利用几何画板演示任意三角形的三个内角和等于180°师:用几何画板验证很多个三角形的内角和为180度,能不能作为三角形内角和定理的证明依据?生:不能。

高中新课程数学(新课标人教A版)选修4-4《1.1平面直角坐标系》教案新部编本2

高中新课程数学(新课标人教A版)选修4-4《1.1平面直角坐标系》教案新部编本2

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第一章坐标系【课标要求】1.坐标系:了解极坐标系;会在极坐标系中用极坐标刻画点的位置;会进行极坐标和直角坐标的互化。

了解在球坐标系、柱坐标系中刻画空间中点的位置的方法(本节内容不作要求)。

2.曲线的极坐标方程:了解曲线的极坐标方程的求法;会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。

3.平面坐标系中几种常见变换(本节内容不作要求)了解在平面直角坐标系中的平移变换与伸缩变换。

第一课时直角坐标系一、教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题三、教学方法:启发、诱导发现教学.四、教学过程:(一)、平面直角坐标系与曲线方程1、教师设问:问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?2、思考交流:(1).在平面直角坐标系中,圆心坐标为(2,3)、 5为半径的圆的方程是什么?(2).在平面直角坐标系中,圆心坐标为(a,b)半径为r的圆的方程是什么?3、、学生活动:学生回顾并阅读课本,思考讨论交流。

教师准对问题讲解。

刻画一个几何图形的位置,需要设定一个参照系(1)、数轴它使直线上任一点P都可以由惟一的实数x确定(2)、平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

人教版七年级上数学:4.1.1《几何图形(1)》学案(附模拟试卷含答案)

人教版七年级上数学:4.1.1《几何图形(1)》学案(附模拟试卷含答案)

数学:4.1.1《认识几何图形(1)》学案(人教版七年级上)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。

图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

(1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点2.立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

高中数学 4.1.1直角体系学案 苏教版选修4-2

高中数学 4.1.1直角体系学案 苏教版选修4-2
所 在 直 线 的 方 程 为 x0.解 方 程 组 xy 0b a(xc)得 垂 心 坐 标 H( 0, abc).
线段AB的垂直平分线所的 在方 直程 线y为 b a(xa),线段AC的垂直 2b 2
平分线所在直线为 的x方 a程 2c.解方程 acb2)
思考: 一炮弹在某处爆炸,在A处听到爆炸的时间比在B
处晚2s,A、B两地相距800米,并且此时的声速为 340m/s,求曲线的方程。
第十页,编辑于星期五:十点 三十八分。
第八页,编辑于星期五:十点 三十八分。
课堂小结
平面直角坐标系建系时,根据几何特点选择 适当的直角坐标系。 〔1〕如果图形有对称中心,可以选对称中心为坐 标原点; 〔2〕如果图形有对称轴,可以选择对称轴为坐标 轴;
〔3〕使图形上的特殊点尽可能多的在坐标轴上。
第九页,编辑于星期五:十点 三十八分。
课后作业
2 2b
第六页,编辑于星期五:十点 三十八分。
数学运用
向 O 'G = 量 a c ,b ( ) ( a c ,a b c 2 ) ( a c , 3 a b c 2 ) 33 2 2 b 6 6 b
向 O 'H 量 ( 0 , a ) c ( a c ,a b c 2 ) ( a c , 3 a b c 2 ) b 2 2 b 2 2 b
因 为 向 量 O 'H3O 'G ,所 以 三 角 形 的 外 心 、 重 心 、 垂 心 在 一 条 直 线 上 , 且 重 心 是 连 接 外 心 、 重 心 和 垂 心 的 一 个 三 等 分 点 。
第七页,编辑于星期五:十点 三十八分。
数学运用
例4、 点Q(a, b),分别按以下条件求出点P的坐标: (1) P是点Q关于点M(m, n)的对称点; (2) P是点Q关于直线 l: x-y+4=0 的对称点. (1) 点关于点对称: “中点问题〞. (2) 点关于直线对称: “垂直平分〞.

苏教版数学高二数学苏教版选修4-4知识必备4.1.1直角坐标系

苏教版数学高二数学苏教版选修4-4知识必备4.1.1直角坐标系

4.1 坐标系4.1.1 直角坐标系自主整理1.坐标系是一个______________,它是实现_____________与___________互相转化的基础. 答案:1.参照系几何图形代数形式2.建立坐标系是为了______________,在所创建的坐标系中,应满足:任意一点都有______________与它对应;反之,依据一个点的坐标就能______________.答案:2.确定点的位置确定的坐标确定这个点的位置3.在数轴上,直线上所有点的集合与全体实数的集合建立______________;在平面直角坐标系中,平面上所有点的集合与______________的集合建立一一对应;在空间直角坐标系中,空间所有点的集合与___________________________的集合建立一一对应.确定点的位置就是_______________________.答案:3.一一对应全体有序实数对(x,y)全体由三个实数组成的有序实数组(x,y,z)求出这个点在设定的坐标系中的坐标高手笔记1.坐标系是解析几何的基础.在坐标系中,可以用有序实数对(组)确定点的位置,进而用方程刻画几何图形.为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系.2.平面和空间中点的位置都可以用有序数对(组),也就是坐标来刻画,在不同坐标系中,这些数所体现的几何含义不同.同一几何图形在不同坐标系中具有不同的形式.3.坐标系包括直角坐标系、极坐标系、柱坐标系、球坐标系等.对于不同类型的几何图形,选用相应的坐标系可以使建立的方程更加简单.如要确定体育馆内一个位置,建立柱坐标系就比较适合,通过柱坐标我们可以比较精确地找到这个位置的所在地.4.坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.它是解析几何中最基本的研究方法.例如在平面直角坐标系中,根据确定直线位置的几何要素,我们可以探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.在空间坐标系中,通过高次方程的计算,使人们对一些星体的轨迹运动和变化规律有所了解和掌握.5.坐标法解决几何问题的“三步曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.6.坐标法在生活中的应用很广泛,如研究台风、寒流、沙暴中心的运动规律,可以帮助人们预防自然灾害的发生等等.名师解惑1.建立坐标系可以解决哪些问题,它是如何体现数学思想的?剖析:坐标系是现代数学中的重要内容,它在数学发展的历史上,起过划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁.利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究.建立直角坐标系,数形结合,我们可以解决许多数学问题,如函数问题就常常需要借助直角坐标系来解决.而在其他领域,坐标系与物理、化学等相关学科交织在一起,在日常生活中有着广泛的应用.如飞机航行、炮弹发射问题等等.我们生活中有这样一个例子:教室的墙壁上挂着一块黑板,它的上、下边缘分别在学生的水平视线上方a 米和b 米,那么学生距墙壁多远时看黑板最清楚(即所张的视角最大)?我们就可以建立一个平面直角坐标系,运用三角的知识加以解决.平面直角坐标系是进一步学习函数、三角及其他坐标系的必备基础知识.我们画函数的图象、定义任意角的三角函数等许多知识都是与坐标系的建立紧密联系的,这就需要我们对各方面的知识扎实掌握,从而能得心应手地解决问题.2.建立直角坐标系的一般规律有哪些?剖析:一般情况下我们有这样一个建立直角坐标系的规律:(1)当题目中有两条互相垂直的直线时,以这两条直线为坐标轴;(2)当题目中有对称图形时,以对称图形的对称轴为坐标轴;(3)当题目中有已知长度的线段时,以线段所在直线为坐标轴,以线段端点或中点为原点.3.利用坐标法解决问题应注意什么?剖析:坐标系建立完后,需仔细分析曲线的特征,注意揭示隐含条件,抓住曲线上任意点有关的等量关系、所满足的几何条件,列出方程.在将几何条件转化为代数方程的过程中,要注意圆锥曲线定义和初中平面几何知识的应用,还会用到一些基本公式,如两点间的距离公式、点到直线的距离公式、直线斜率公式等.另外,在化简过程中,我们要注意运算和变形的合理性与准确性,避免“失解”和“增解”. 讲练互动【例题1】如图,在长方体OABC —D 1A 1B 1C 1中,|OA |=4,|OC |=3,|OD 1|=2,AC 与OB 相交于P 点,OB 1与BD 1相交于点M ,建立适当的坐标系,分别写出点P 、M 的坐标.思路分析:以长方体的一个顶点为坐标原点,过此点的三条棱所在的直线为坐标轴建立空间直角坐标系,进而写出点的坐标.解:如右图,以O 为原点,OA 为x 轴,OC 为y 轴,OD 1为z 轴建立空间直角坐标系.∴O (0,0,0),B (4,3,0).∵P 为OB 中点,∴P 为(240+,230+,200+),即P (2,23,0). 又∵D 1(0,0,2),M 为BD 1中点, ∴M 为(240+,230+,220+),即M (2,23,1). 绿色通道建立坐标系应注意图形的特点,恰当建立往往给解决问题带来很大方便.变式训练1.如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为BB 1、D 1B 1的中点,建立适当的坐标系,并求点E 、F 的坐标.思路分析:建立空间直角坐标系,先作出E 、F 分别在xOy 平面内的射影,由射影确定E 、F 的横、纵坐标,由垂线段的长确定竖坐标.解:建立如下图所示的空间直角坐标系,则E 点在xOy 面上的射影为B (1,1,0),且E点的竖坐标为21,所以E (1,1,21).F 点在xOy 面上的射影为BD 的中点G ,F 点的竖坐标为1,所以F (21,21,1). 【例题2】如图,圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.思路分析:本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:PM=2PN ,即PN 2=2PN 2,结合图形由勾股定理转化为P 21-1=2(P 22-1),设P (x,y ),由距离公式写出代数关系式,化简整理可得.解:如图,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则两圆心的坐标分别为O 1(-2,0),O 2(2,0).设P (x,y ),则PM 2=PO 21-MO 21=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1.∵PM=2PN ,即PM 2=2PN 2,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即(x-6)2+y 2=33.这就是动点P 的轨迹方程.绿色通道本题考查解析几何中求点的轨迹方程的方法应用,考查建立坐标系、数形结合思想、勾股定理、两点间距离公式等相关知识点及分析推理、计算化简技能、技巧等,是一道很综合的题目.变式训练2.如图,某城市中的高空观览车的高度是100m,在离观览车约150m 处有一建筑物,某人在离建筑物100m 的地方刚好可以看到观览车,你能根据上述数据求出该建筑物的高度吗?(人的高度不计,眼睛和高空观览车的最低点在同一水平线上,精确到0.01m )思路分析:由已知条件可知,视线与观览车所在圆是相切关系,可以求得视线所在的直线方程,进而求得建筑物的高度.解:首先,以高空观览车的最低点为坐标原点,原点与高空观览车的中心的连线所在直线为y 轴,建立直角坐标系(如图).由此可得圆C 的方程为x 2+(y-50)2=502.设看到观览车的视线方程为y=k (x-250).因为直线BT 与圆C 相切,所以501|25050|2=++k k .解得k=0(舍去)或k=125-.所以直线BT 的方程是y=125-(x-250).当x=150时,y≈41.67 m.即建筑物的高度约为41.67 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为向量O' H = 3O 'G, 所以三角形的外心、重心、垂心 在一条直线上,且重心是连接外心、重心和垂心的一 个三等分点。
数学运用
的坐标: 例4、 已知点 、 已知点Q(a, b),分别按下列条件求出点 的坐标: ,分别按下列条件求出点P的坐标 (1) P是点 关于点 是点Q关于点 的对称点; 是点 关于点M(m, n)的对称点; 的对称点 (2) P是点 关于直线 l: x-y+4=0 的对称点 是点Q关于直线 的对称点. 是点 中点问题” (1) 点关于点对称: “中点问题”. 点关于点对称: (2) 点关于直线对称: “垂直平分”. 点关于直线对称: 垂直平分”
C H B D G
O’
A x
数学运用
a AB边上的高CD所在直线的方程为y = ( x c), AC边上的高BO b a ac y = ( x c) 所在直线的方程为x = 0.解方程组 得垂心坐标H(0, ). b b x = 0
b a a = ( x ), 线段AC的垂直 2 b 2 b a a y = (x ) a+c 2 b 2 平分线所在直线的方程为x = .解方程组 得外心坐标 2 x = a + c 2 2 ' a + c ac + b 为O ( , ) 2 2b 线段AB的垂直平分线所在直线的方程为y
课堂小结
平面直角坐标系建系时, 平面直角坐标系建系时,根据几何特点选 择适当的直角坐标系。 择适当的直角坐标系。 (1)如果图形有对称中心,可以选对称中心为 )如果图形有对称中心, 坐标原点; 坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐 )如果图形有对称轴, 标轴; 标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。 )使图形上的特殊点尽可能多的在坐标轴上。
直角坐标系
1 数轴 直线坐标系 : 数轴(直线坐标系 直线坐标系): 任意 2 平面直角坐标系: 平面直角坐标系: 点P 3 空间直角坐标系: 空间直角坐标系:
确定 确定 确定
实数x 实数 有序实数对(x, 有序实数对 y) 有序实数组(x, 有序实数组 y, z)
建立坐标系目的是确定点的位置. 建立坐标系目的是确定点的位置 目的 求出此点在该坐标系中的坐标 坐标. 求出此点在该坐标系中的坐标 创建坐标系的基本原则: 创建坐标系的基本原则: 基本原则 (1) 任意一点都有确定的坐标与它对应; 任意一点都有确定的坐标与它对应; (2) 依据一个点的坐标就能确定此点的位置 依据一个点的坐标就能确定此点的位置.
数学运用
a+c b a + c ac + b 2 a + c 3ac + b 2 向量O 'G=( , )( , ) = ( , ) 3 3 2 2b 6 6b
ac a + c ac + b 2 a + c 3ac b 2 向量O ' H = (0, ) ( , ) = ( , ) b 2 2b 2 2b
数学运用
例1、选择适当的平面直角坐标系,表示边长为 的正 、选择适当的平面直角坐标系,表示边长为1的正 六边形的顶点. 六边形的顶点
C y B y C B
D E
O F
A
x
x
数学运用
某地区原计划经过B地沿着东北方向修建一条 例2. 某地区原计划经过 地沿着东北方向修建一条 高速公路,但在A村北偏西 方向距A村 村北偏西30 高速公路,但在 村北偏西 0方向距 村500m处, 处 发现一古代文物遗址W。经过初步勘察, 发现一古代文物遗址 。经过初步勘察,文物管理 部门将遗址W周围 周围200m范围划为禁区,已知 地 范围划为禁区, 部门将遗址 周围 范围划为禁区 已知B地 位于A村的正西方向 村的正西方向1km 处,试问:修建高速公路 试问: 位于 村的正西方向 y y 和计划需要修改吗? 和计划需要修改吗? C 解决问题的关键: 解决问题的关键: 确定遗址W与高速公路BC的 确定遗址 与高速公路 的 相对位置. 相对位置
W
500
0 0 B 45 1000 60 A x O O
数学运用
例3、求证:三角形的外心、重心、垂心在一条 、求证:三角形的外心、重心、 直线上。 直线上。 y
解 :建立如图所示坐标系, 设A(a,0), B(0, b)C (c,0), 三角形 ABC的外心、重心和垂心分别 a+0+c ' 为O , G各H。则有x G = , 3 0+b+0 即重心坐标为 yG = 3 a+c b G( , ). 3 3
相关文档
最新文档