江苏省无锡市江阴四校2017-2018学年高一下学期期中考试数学试卷

合集下载

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(理)试题(解析版)

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(理)试题(解析版)

2017-2018学年第二学期高二期中考试数学试题(理科)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.复数的虚部为__________.【答案】【解析】分析:利用复数除法的运算法则化简复数为的形式,即可得到复数虚部.详解:,则复数的虚部,故答案为.点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.2.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是.【答案】a、b都不能被2整除.【解析】试题分析:先写出要证明题的否定,即为所求.解:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故答案为:a、b都不能被2整除.点评:本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属于中档题.3.设复数虚数单位),的共轭复数为,则________.【答案】【解析】分析:由,可得,代入,利用复数乘法运算法则整理后,直接利用求模公式求解即可. 详解:因为,所以,,故答案为.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意和4.用数学归纳法证明“对于的自然数都成立”时,第一步证明中的起始值应取_____________.【答案】5【解析】由于n=1时,;n=2时,;n=3时,,n=4时,;n=5时,.所以当时,成立5.三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是.(填写序号)【答案】②【解析】试题分析:小前提是特殊的对象,题中②正方形相对于长方形是特殊对象,因此②是小前提.考点:演绎推理.6.观察下列等式1-=,1-+-=+,1-+-+-=++,…据此规律,第n个等式可为________________.【答案】1-+-+…+-=++…+【解析】试题分析:观察等式知:第n个等式的左边有个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到的连续正整数,等式的右边是.故答案为.考点:归纳推理.7.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数有__________ 个【答案】【解析】分析:用组成无重复数字的五位奇数,可以看作是个空,要求个位是奇数,其它位置无条件限制,因此先从个奇数中任选个填入个位,其它个数在个位置上全排列即可.详解:要组成无重复数字的五位奇数,则个位只能排中的一个数,共有3种排法,然后还剩个数,剩余的个数可以在十位到万位个位置上全排列,共有种排法,由分步乘法计数原理得,由组成的无重复数字的五位数中奇数有个,故答案为.点睛:本题主要考查分步计数原理及位置有限制的排列问题,属于中档题.元素位置有限制的排列问题有两种方法:(1)先让特殊元素排在没限制的位置;(2)先把没限制的元素排在有限制的位置.8.设,那么______.【答案】【解析】分析:根据函数表达式含义,准确判断出与项数变化规律以及之间的关系即可得到结论.详解:,,,故答案为.点睛:项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.9.已知,则_________.【答案】【解析】分析:由组合数性质得,解方程求出,进而能求出的值.详解:,,化简得,,,解得或(舍去),,故答案为.点睛:本题主要考查组合式的运算,解答这类问题,一定注意记忆常见组合式:(1);(2);(3).10.的展开式中的系数为70,则________.【答案】【解析】分析:先求出二项式展开式的通项公式,再令的幂指数等于,求得的值,即可求得展开式中的的系数,再根据的系数为70 ,求得的值.详解:的展开式中通项公式的为,令,求得,故的系数为,则,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.11.在数列中,,可以猜测数列通项的表达式为_________.【答案】【解析】分析:根据,,,依次由,分别求出,仔细观察,总结规律,可猜想.详解:,,,由此猜测,故答案为.点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.12.记等差数列得前项和为,利用倒序相加法的求和办法,可将表示成首项,末项与项数的一个关系式,即;类似地,记等比数列的前项积为,类比等差数列的求和方法,可将表示为首项,末项与项数的一个关系式,即公式______.【答案】【解析】分析:由等差数列类比等比数列,在运用类比推理时,通常等差数列中的求和类比等比数列中乘积,从而可得结果,.详解:在等差数列得前项和为,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列的前项积,故答案为.点睛:本题主要考查类比推理,属于中档题.类比推理问题,常见的类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与实数的类比.13.已知,则__________.【答案】180【解析】,,,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14.学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.【答案】【解析】分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.二、解答题(本大题共6小题,共90分。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<2.已知集合A={x|x2≥1},,则A∩(∁RB)=()A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.175.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±647.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S138.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.201512.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016= .16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a 2n ,求数列{b n }的前n 项和T n .20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c 且acosC ,bcosB ,ccosA 成等差数列. (1)求B 的值;(2)求2sin 2A ﹣1+cos (A ﹣C )的取值范围.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<【考点】2K:命题的真假判断与应用.【分析】举例说明A、C、D错误,利用反证法说明B正确.【解答】解:a、b为非零实数,且a<b.当a=﹣2,b=1时,有a<b,但a2>b2,故A错误;若a<0,b>0,则<;若a<b<0,假设<,则ab2>a2b,即b>a,假设成立;若b>a>0,假设<,则ab2>a2b,即b>a,假设成立.综上,<,故B正确;当a=﹣2,b=1时,有a<b,但a2b>ab2,故C错误;当a=﹣2,b=1时,有a<b,但,故D错误.故选:B.2.已知集合A={x|x2≥1},,则A∩(∁B)=()RA.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】分别求解一元二次不等式和分式不等式化简集合A,B,然后利用交、并、补集的混合运算得答案.【解答】解:A={x|x2≥1}={x|x≤﹣1或x≥1},由,得0<x≤2,∴={x|0<x≤2},∴∁RB={x|x≤0或x>2},∴A∩(∁RB)=(﹣∞,﹣1)∪(2,+∞).故选:C.3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.【考点】HR:余弦定理.【分析】利用余弦定理可得A,再利用三角形面积计算公式即可得出.【解答】解:△ABC中,∵a2=b2+c2﹣bc,∴cosA==,又A∈(0,π),∴A=,又bc=2,∴△ABC的面积S=sinA==,故选:D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.17【考点】8H:数列递推式.【分析】利用递推关系可得:an+3=an,再利用数列的周期性即可得出.【解答】解:∵a1=3,an+1=﹣(n∈N*),∴a2=﹣,同理可得:a3=,a4=3,…,∴an+3=an,∴a16=a1=3,能使an=3的n可以等于16.故选:C.5.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.【考点】HP:正弦定理.【分析】由题意设a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化简所求的式子,可得答案.【解答】解:∵,∴设a=7k、b=4k、c=5k,(k>0)在△ABC中,由余弦定理得cosA==,由正弦定理得===,故选:C.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±64【考点】88:等比数列的通项公式.【分析】利用等比数列通项公式及其性质即可得出.【解答】解:设此等比数列为{an },公比为q,a1=1,a5=16,∴a3==4.则a2a3a4==64.故选:C.7.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S13【考点】84:等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式能求出a6=1,从而利用等差数列的前n项和公式能求出S11.【解答】解:∵等差数列{an }的前n项和记为Sn,a2+a6+a10=3,∴3a6=3,解得a6=1,∴.∴各和数S6,S11,S12,S13中可确定值的是S11.故选:B.8.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【考点】HR:余弦定理;HP:正弦定理.【分析】由题意和余弦定理变形已知式子可得b=c,结合A=60°可判.【解答】解:∵在△ABC中A=60°,a2=bc,∴由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc,∴bc=b2+c2﹣bc,即(b﹣c)2=0,∴b=c,结合A=60°可得△ABC一定是等边三角形.故选:D9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列【考点】87:等比数列.【分析】可根据数列{an }的前n项和Sn=2n+t(t是实常数),求出a1,以及n≥2时,an,再观察,t等于多少时,{an}是等比数列即可.【解答】解:∵数列{an }的前n项和Sn=2n+t(t为常数),∴a1=s1=2+t,n≥2时,an =sn﹣sn﹣1=2n+t﹣(2n﹣1+t)=2n﹣2n﹣1=2n﹣1当t=﹣1时,a1=1满足an=2n﹣1故选:B10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)【考点】3R:函数恒成立问题.【分析】不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.【解答】解:不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立∴[2(3﹣m)]2﹣4×2×(3﹣m)<0,故m的取值范围为(1,3).故选:A.11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.2015【考点】8F:等差数列的性质.【分析】正项等差数列{an }满足a1+a2015=2,可得a1+a2015=2=a2+a2014,再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵正项等差数列{an }满足a1+a2015=2,∴a1+a2015=2=a2+a2014,则=(a2+a2014)=≥=2,当且仅当a2=a2014=1时取等号.故选:B.12.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤【考点】3W:二次函数的性质.【分析】不等式等价变化为a≤=+,则求出函数Z=+的最小值即可.【解答】解:依题意,不等式2x2﹣axy+y2≤0等价为a≤=+,设t=,∵x∈[1,2]及y∈[1,3],∴≤≤1,即≤≤3,∴≤t≤3,则Z=+=3t+,∵3t+≥2=2,当且仅当3t=,即t=时取等号,故a≤2,故选:B.二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.【考点】74:一元二次不等式的解法.【分析】由一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),可知:﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,利用根与系数的关系可得a,b.进而解出一元一次不等式ax+b<0的解集.【解答】解:∵一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),∴﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,∴﹣3+1=﹣a,﹣3×1=b,解得a=2,b=﹣3.∴一元一次不等式ax+b<0即2x﹣3<0,解得.∴一元一次不等式ax+b<0的解集为.故答案为:.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】7E:其他不等式的解法.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016=18 .【考点】88:等比数列的通项公式.【分析】由4x2﹣8x+3=0,解得x=,.根据{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,可得a2013=,a2014=.q=3.即可得出.【解答】解:由4x2﹣8x+3=0,解得x=,.∵{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,∴a2013=,a2014=,∴q=3.∴a2015+a2016=q2(a2013+a2014)=18.故答案为:18.16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.【考点】HT:三角形中的几何计算.【分析】根据,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为,根据等差中项性质,可得b+c=1.△ABC面积S=bcsinA,利用基本不等式可得最大值.【解答】解:向量,,∵,∴b(b﹣c)+(c﹣a)(c+a)=0.得:b2﹣bc=﹣c2+a2.即﹣a2+b2+c2=bc由余弦定理:b2+c2﹣a2=2bccosA可是:bc=2bccosA.∴cosA=.∵0<A<π∴A=又b和c的等差中项为,根据等差中项性质,可得b+c=1.∴b+c,(当且仅当b=c时取等号)可得:bc≤.则△ABC面积S=bcsinA≤=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)直接利用二次不等式转化求解即可.(2)利用函数恒成立,分离变量,利用函数的最值求解即可.【解答】解:(1)当a=﹣2时,不等式f(x)>2可化为x2+3x﹣4>0,解得{x|x<﹣4或x>1} …(2)若对任意的x∈[1,+∞),f(x)>0恒成立,则a>﹣x2﹣3x在x∈[1,+∞)恒成立,设g(x)=﹣x2﹣3x则g(x)在区间x∈[1,+∞)上为减函数,当x=1时g(x)取最大值为﹣4,∴a得取值范围为{a|a>﹣4} ….18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】HX:解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =a2n,求数列{bn}的前n项和Tn.【考点】8M:等差数列与等比数列的综合.【分析】(Ⅰ)运用等比数列的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)设bn =a2n=2n+1+1,运用分组求和的方法,结合等比数列的求和公式,计算即可得到Tn.【解答】解:(I)依题意,a1,a4,a13成等比数列.即有a42=a1a13,则,解得,因此an =a1+(n﹣1)d=3+2(n﹣1)=2n+1,即an=2n+1.(Ⅱ)依题意,.Tn =b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1),=22+23+…+2n+1+n==2n+2+n﹣4.20.在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.(1)求B的值;(2)求2sin2A﹣1+cos(A﹣C)的取值范围.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由于acosC,bcosB,ccosA成等差数列,可得2bcosB=acosC+ccosA,再利用正弦定理、和差化积、诱导公式等即可得出.(2)由,可得A﹣C=2A﹣,再利用倍角公式即可化为2sin2A﹣1+cos(A﹣C)=,由于,可得<π,即可得出.【解答】解:(1)∵acosC,bcosB,ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理可得:2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵B∈(0,π),sinB ≠0,∴cosB=,B=.(2)∵,∴A﹣C=2A﹣,∴=,∵,∴<π,∴<≤1,∴2sin2A﹣1+cos(A﹣C)的取值范.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?【考点】7G:基本不等式在最值问题中的应用;5C:根据实际问题选择函数类型.【分析】(1)利用休闲区A1B1C1D1的面积为4000平方米,表示出,进而可得公园ABCD所占面积S关于x的函数S(x)的解析式;(2)利用基本不等式确定公园所占最小面积,即可得到结论.【解答】解:(1)由A1B1=x米,知米∴=(2)当且仅当,即x=100时取等号∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.【考点】8K :数列与不等式的综合;8E :数列的求和;8I :数列与函数的综合.【分析】(Ⅰ)利用已知条件得出数列的通项和前n 项和之间的等式关系,再结合二者间的基本关系,得出数列{a n }的通项公式,根据{b n }的相邻两项满足的关系得出递推关系,进一步求出其通项公式;(Ⅱ)利用放缩法转化各项是解决该问题的关键,将所求的各项放缩转化为能求和的一个数列的各项估计其和,进而达到比较大小的目的;(Ⅲ)利用错位相减法进行求解T n 是解决本题的关键,然后对相应的和式进行估计加以解决.【解答】解:(Ⅰ)由题意可得2a n =s n+2, 当n=1时,a 1=2,当n ≥2时,有2a n ﹣1=s n ﹣1+2,两式相减,整理得a n =2a n ﹣1即数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .点P (b n ,b n+1)在直线x ﹣y+2=0上得出b n ﹣b n+1+2=0,即b n+1﹣b n =2, 即数列{b n }是以1为首项,2为公差的等差数列, 因此b n =2n ﹣1.(Ⅱ)B n =1+3+5+…+(2n ﹣1)=n 2 ∴=. (Ⅲ)T n =①②①﹣②得∴又∴满足条件Tn<c的最小值整数c=3.。

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)副标题一、填空题(本大题共14小题,共14.0分)1.已知集合,0,,且,则a等于______.【答案】【解析】解:集合,0,,且,,解得:.故答案为:由A为B的子集,得到A中的所有元素都属于B,得到,即可求出a的值.此题考查了集合的包含关系判断与应用,弄清题意是解本题的关键.2.若,则______.【答案】【解析】解:,.则,故答案为:,利用复数的运算法则、共轭复数的性质即可得出.本题考查了复数的运算法则、共轭复数的性质,考查了推理能力与计算能力,属于基础题.3.已知命题p:,,那么命题¬为______.【答案】,【解析】解:命题是全称命题,则命题的否定是:,,故答案为:,.根据全称命题的否定是特称命题进行求解即可.本题主要考查含有量词的命题的否定,比较基础.4.函数的定义域是______.【答案】【解析】解:由,解得.函数的定义域是.故答案为:.由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.本题考查函数的定义域及其求法,是基础的计算题.5.已知,,,则a,b,c的大小关系为______.【答案】【解析】解:,,.故答案为:.根据指数函数和幂函数的性质可得判断a与b与1的关系,根据对数函数的性质可得判断c与1的关系,即可得到所求大小关系.本题考查对数值大小的比较,关键在于掌握三类函数的性质并灵活运用之,注意与0与1的比较,属于基础题.6.是的______条件.【答案】充分不必要条件【解析】解:成立,充分性成立;而或,即不能推出,必要性不成立;是的充分不必要条件.故答案为:充分不必要.由充分条件与必要条件的概念即可判断.本题考查必要条件、充分条件与充要条件的判断,掌握充分条件与必要条件的概念是判断的基础,属于基础题.7.设函数,则满足的x的取值范围是______.【答案】【解析】解:当时,,,解得,当时,,,恒成立,综上所述满足的x的取值范围是,故答案为:根据分段函数和指数函数和对数函数的性质即可求出.本题考查了分段函数和不等式的解法,属于基础题.8.二维空间中,圆的一维测度周长,二维测度面积;三维空间中,球的二维测度表面积,三维测度体积应用合情推理,若四维空间中,“特级球”的三维测度,则其四维测度______.【答案】【解析】解:二维空间中,圆的面积的导数圆周长L,三维空间中,球的体积导数球的表面积S,由此类比,可以求得四维空间中,“特级球”W的导数,所以.故答案为.本题考查类比推理,和初级求导.二维空间中,圆的面积的导数,三维空间中,球的体积导数,由此类比,可以求得四维空间中,W的导数,所以.本题考查类比推理,初级求导,属于基础题目.9.已知函数,若对于任意,都有成立,则实数m的取值范围是______.【答案】【解析】解:二次函数的图象开口向上,对于任意,都有成立,,即,解得,故答案为:.由条件利用二次函数的性质可得,由此求得m的范围.本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.10.若函数定义在R上的奇函数,且在上是增函数,又,则不等式的解集为______.【答案】【解析】解:函数定义在R上的奇函数,且在上是增函数,又,在上是增函数,且,当或时,,当或时,,如图则不等式等价为或,即或,则或,解得或,故不等式的解集为,故答案为:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知函数,则______.【答案】【解析】解:时,,即有,,,,则,故答案为:.求得,,由函数的周期性计算可得所求和.本题考查函数值的求和,注意运用函数的周期性和分段函数的解析式,考查运算能力,属于基础题.12.设函数,则使成立的x的取值范围是______.【答案】【解析】解:根据题意,函数,有,则函数为偶函数,当时,,其导数,则函数在上为增函数,若,必有,即,变形可得:,解可得:,即x的取值范围为;故答案为:.根据题意,分析可得函数为偶函数,且在上为增函数,进而可以将转化为,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是分析函数的奇偶性与单调性.13.已知函数是定义在R上的奇函数,对任意的,均有,当时,,则下列结论正确的是______.的图象关于对称的最大值与最小值之和为2 方程有10个实数根当时,【答案】【解析】解:是定义在R上的奇函数,,又时,,设,则,,又,是以2为周期的函数,画出函数与的图象,如图所示,结合图象可得函数无对称轴,的最大值与最小值之和为0,当时,与有个交点,当与有5个交点,故方程有10个实数根;当时,,,当时,,故错误,综上所述,正确的为,故答案为:根据奇函数的性质求出时,函数的解析式,再根据函数的周期性,即可得到函数的图象,再画出的图象,由图象即可判断.本题考查了函数的奇偶性周期性,对称性,以及函数零点的问题,考查了转化能力和运算能力,属于中档题.14.已知函数函数,若函数恰有4个零点,则实数a的取值范围是______.【答案】【解析】解:由题意当时,即方程有4个解.又由函数与函数的大致形状可知,直线与函数的左右两支曲线都有两个交点当时,函数的最大值为a,则,同时在上的最小值为,当时,在上,要使恰有4个零点,,解得.则满足,即或故答案为:根据函数和的关系,将转化为,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用条件转化为,利用数形结合以及绝对值函数以及一元二次函数的性质进行求解即可.二、解答题(本大题共6小题,共6.0分)15.已知p:实数x,满足,q:实数x,满足.若时为真,求实数x的取值范围;若p是q的必要不充分条件,求实数a的取值范围.【答案】解:由,得当时,,即p为真命题时,.由得,所以q为真时,.若为真,则所以实数x的取值范围是.设,,q是p的充分不必要条件,所以,从而.所以实数a的取值范围是.【解析】利用不等式的解法、复合命题的真假性质即可得出.设,,q是p的充分不必要条件,可得,即可得出.本题考查了不等式的解法、简易逻辑的判定方法、集合的运算性质,考查了推理能力与计算能力,属于中档题.16.已知函数.求函数的定义域.若为偶函数,求实数a的值.【答案】解:因为,即,当时,不等式的解为或,此时,函数的定义域为或;当时,不等式的解为,此时,函数的定义域为;当时,不等式的解为或,此时,函数的定义域为或;如果函数是偶函数,则其定义域关于原点对称,由知,.检验:当时,定义域为或,关于原点对称,,则,因此,当时,是偶函数.【解析】由对数的真数大于零得,即,然后对和a的大小进行分类讨论,求出不等式的解,从而求出函数的定义域;由函数为偶函数得函数的定义域关于原点对称,可求出a的值,并将a的值代入函数的解析式,利用偶函数的定义验证函数为偶函数,从而检验a的值是否合乎题意.本题考察函数的定义域的求解以及函数的奇偶性,在求函数的定义域时,关键在于合理进行分类讨论,在考察函数的奇偶性时,关键在于函数奇偶性定义的应用,属于中等题.17.已知函数其中a,b为常量且且的图象经过点,试求a、b的值;若不等式在时恒成立,求实数m的取值范围.【答案】解:Ⅰ函数,其中a,b为常数且,的图象经过点,,,解得,,,Ⅱ设,在R上是减函数,当时,.若不等式在时恒成立,即.【解析】Ⅰ由函数,其中a,b为常数且,的图象经过点,,得到关于a,b的方程组,由此能求出.Ⅱ设,则在R上是减函数,故当时,由此能求出实数m的取值范围.本题考查函数解析式的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.18.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入单位:万元满足,乙城市收益Q与投入单位:万元满足,设甲城市的投入为单位:万元,两个城市的总收益为单位:万元.当甲城市投资50万元时,求此时公司总收益;试问如何安排甲、乙两个城市的投资,才能使总收益最大?【答案】解:当时,在乙城市投资为70万元,公司总收益为万元..,令得,当时,,当时,,在上单调递增,在上单调递减,当时,取得最大值.该公司在甲城市投资72万元,在乙城市投资48万元,总收益最大.【解析】根据收益公式计算;得出的解析式,判断在定义域上的单调性,从而可得取得最大值时对应的x的值,从而得出最佳投资方案.本题考查了函数模型的应用,函数最值的计算,属于中档题.19.已知函数,.若,且,求x的值;当时,若在上是增函数,求a的取值范围;若,求函数在区间上的最大值.【答案】解:由知,又即,.,在上是增函数,即,.,图象如图当时,;当时,;综上.【解析】,再由即可求得x的值;由在上是增函数,利用二次函数的单调性可求得a 的取值范围;作出的图象,对m分与及三种情况讨论即可求得答案.本题考查函数单调性的判断与证明,考查函数最值的应用,考查分类讨论思想与数形结合思想、方程思想的综合运用,属于难题.20.已知函数,.若函数在区间上存在零点,求实数a的取值范围;当时,若对任意的,总存在,使成立,求实数m的取值范围;若的值域为区间D,是否存在常数t,使区间D的长度为?若存在,求出t的值;若不存在,请说明理由.注:区间的长度【答案】解:由题意得:的对称轴是,故在区间递增,函数在区间存在零点,故有,即,解得:,故所求实数a的范围是;若对任意的,总存在,使成立,只需函数的值域是函数的值域的子集,时,,的值域是,下面求,的值域,令,则,,时,是常数,不合题意,舍去;时,的值域是,要使,只需,解得:;时,的值域是,要使,只需,解得:,综上,m的范围是;由题意得,解得:,时,在区间上,最大,最小,,即,解得:或舍去;时,在区间上,最大,最小,,解得:;时,在区间上,最大,最小,,即,解得:或,故此时不存在常数t满足题意,综上,存在常数t满足题意,或.【解析】求出函数的对称轴,得到函数的单调性,解关于a的不等式组,解出即可;只需函数的值域是函数的值域的子集,通过讨论,,的情况,得到函数的单调性,从而确定m的范围即可;通过讨论t的范围,结合函数的单调性以及,的值,得到关于t的方程,解出即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,集合思想,是一道综合题.。

2018-2019学年江苏省无锡市江阴四校高一下学期期中考试数学试题(解析版)

2018-2019学年江苏省无锡市江阴四校高一下学期期中考试数学试题(解析版)

江苏省无锡市江阴四校高一下学期期中考试数学试题一、单选题1.直线的倾斜角的大小为()A.B.C.D.【答案】D【解析】解:因为直角坐标系中,直线斜率为-,倾斜角,选D2.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】由已知利用正弦定理,利用大边对大角可求为锐角,即可利用特殊角的三角函数值求解,得到答案.【详解】在中,因为,,,由正弦定理,可得,∵,可得,所以为锐角,∴.故选:B.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了转化思想,属于基础题.3.点是直线上的动点,点是圆上的动点,则线段长的最小值为()A.B.1 C.D.2【答案】A【解析】根据题意,分析圆的圆心与半径,求出圆心到直线的距离,结合直线与圆的位置关系,即可得到答案.【详解】根据题意,圆的圆心为,半径,则线段长的最小值为;故选:A.【点睛】本题考查直线与圆的位置关系,涉及点到直线的距离公式,其中根据圆的性质合理转化求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.4.方程表示圆,则实数的取值范围为()A.B.C.D.【答案】C【解析】将圆的方程变形为,进而可得,求得实数的取值范围,即可得答案.【详解】根据题意,方程变形为,若其表示圆,则有,解得或,即实数的取值范围为;故选:C.【点睛】本题考查了二元二次方程表示圆的条件,其中解答中把圆的一般方程与标准方程,列出相应的不等式是解答的关键,着重考查了运算与求解能力,属于基础题.5.在中,若,则等于()A.1 B.C.4 D.【答案】C【解析】因为,故选C6.圆与圆的位置关系()A.相交B.外离C.内切D.外切【答案】A【解析】把两个圆的方程化为标准方程,分别求出圆心和半径,再根据两个圆的圆心距大于两圆的半径之差而小于半径之和,可得两个圆的位置关系,得到答案.【详解】半径等于4的圆,圆,即,表示以为圆心、半径等于2的圆;两圆的圆心距,可得圆心距大于两圆的半径之差而小于半径之和,故两个圆的位置关系为相交,故选:A.【点睛】本题考查圆与圆的位置关系的判定,其中解答中熟记两圆的位置关系的判定方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.直线和平面,若与平面都平行,则直线的关系可以是()A.相交B.平行C.异面D.以上都有可能【答案】D【解析】根据是否共面,分类讨论,即可求解,得到答案.【详解】若,则,显然可能平行,也可能相交,若分别在平面两侧,且在平面的射影为相交直线,则异面.故选:D.【点睛】本题考查了空间直线与平面的位置关系判定与应用,其中解答中熟记线面位置关系的判定方法,以及异面直线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.在中,角的对边分别是,若,且,则的面积最大值为()A.1 B.2 C.3 D.4【答案】C【解析】由已知及正弦定理可得可得,由余弦定理可得,再由余弦定理可得,利用同角三角函数基本关系式可求,进而利用三角形面积公式,利用二次函数的性质可求最大值.【详解】由题意,因为,且,∴由正弦定理可得:,可得,∴由余弦定理可得:,可得:,①∵,∴,∴(当时,等号成立),即的面积最大值为3.故选:C . 【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式,二次函数的性质在解三角形中的综合应用,考查了计算能力、转化思想和函数思想的应用,属于中档题.二、填空题 9.已知,直线,,若,则实数的值为______. 【答案】1或2【解析】根据两直线平行的条件,列出方程,即可求解,得到答案. 【详解】 直线,, 若,则, 解得或, 当时,直线, , 当时,直线,,故答案为:1或2. 【点睛】本题主要考查了两直线的位置关系的判定及应用,其中解答中熟记两直线的位置关系的判定方法,列出满足条件的方程是解答的关键,着重考查了运算与求解能力,属于基础题.10.在ABC ∆中,已知22,7,3BC AC B π===,那么ABC ∆的面积是______. 【答案】32【解析】试题分析:由余弦定理B ac c a b cos 2222-+=,得1=c ,故ABC ∆的面积23sin 21==∆B ac S ABC .【考点】余弦定理. 11.如图,在三棱锥中,底面,,则与底面所成角的正切值______.【答案】【解析】根据条件,得出是与底面所成的角,然后根据直角三角形的边角关系,即可求解线面角的正切值,得到答案. 【详解】 由题意,因为底面,∴是在底面上的射影,∴是与底面所成的角.∵,∴,∴,即与底面所成角的正切值为.故答案为:. 【点睛】本题主要考查直线和平面所成角的求解问题,其中解答中利用线面角的定义确定线面角,再利用直角三角形求解是解答的关键,着重考查了推理与运算能力,属于基础题. 12.如果平面直角坐标系中的两点关于直线对称,那么直线的方程为______. 【答案】.【解析】试题分析:直线斜率为,所以斜率为,设直线方程为,由已知直线过点,所以,即, 所以直线方程为,即【考点】直线方程.13.的内角的对边分别为,若,则________.【答案】【解析】根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B 的值,即得B角.【详解】由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=.∴B=.∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=.又0<B<π,∴B=.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.14.如图,为测塔高,在塔底所在的水平面内取一点,测得塔顶的仰角为,由向塔前进30米后到点,测得塔顶的仰角为,再由向塔前进米后到点后,测得塔顶的仰角为,则塔高为______米.【答案】15【解析】在三角形中由余弦定理得,可求出,最后在中,即可求解,得到答案.【详解】,∴,在三角形中由余弦定理得,∴,∴,∴,∴.故答案为:15米.【点睛】本题主要考查了正、余弦定理解三角形的实际应用问题,其中解答中根据图形,在中,合理应用正弦定理、余弦定理,以及直角三角形的性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.【答案】【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.【考点】直线和圆的位置关系.三、解答题16.如图,在四棱锥中,底面为矩形,平面,分别为与的中点.(2)求证:平面.【答案】(1)详见解析(2)详见解析【解析】(1)由DP⊥平面PBC,得BC⊥DP,由底面ABCD为矩形,得BC⊥DC,由此能证明BC⊥平面PDC.(2)取PD中点G,推导出四边形ABCD为矩形,从而四边形EGCF为平行四边形,进而EF∥CG,由此能证明EF∥平面PDC.【详解】证明:(1)∵平面,平面,∴.又底面为矩形,∴.∵,平面,∴平面.(2)取中点,∵为的中点,∴,且.又为中点,四边形为矩形,∴,且.故与平行且相等,即四边形为平行四边形,∴.又平面,平面,∴平面.【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查学生的计算能力,是中档题.17.在中,角的对边分别是,若.(1)求角的值;(2)若的面积,,求的值.【答案】(1) ;(2) .【解析】分析:(1)利用正弦定理边化角化简得到B的值.(2)先求c 的值,再利用余弦定理求b的值.详解:(1)由及正弦定理得:,①又,②由①②得,在中,∵,∴,∴,而,∴.(2)由,得.又,所以.由余弦定理,得,故.点睛:(1)本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些基础知识的掌握水平和分析推理的能力.(2)化简三角等式时,一般利用正弦定理和余弦定理实行角化边或边化角,本题的解答就是利用正弦定理边化角,也可以角化边.18.如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.【解析】试题分析:解:①∴(4分)∴∴V海里/小时(6分)甲②在中,由正弦定理得∴∴(12分)【考点】正弦定理,余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。

高一下期中数学试题精选文档

高一下期中数学试题精选文档

高一下期中数学试题精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2017-2018学年度第二学期高一年级期中考试数学试题(考试时间:120分钟,满分160分)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若直线l 过两点()()6,3,2,1B A ,则l 的斜率为 .2.已知等差数列{}n a 中,7,141==a a ,则它的第5项为__________. 3.在△ABC 中,角A,B,C 的对边分别为,,a b c,若60a A ︒==,则=Bbsin ________. 4.不等式01<-xx 的解集为 .5.在△ABC 中,角A,B,C 的对边分别为,,a b c ,若(a +c )(a -c )=b (b +c ),则A =________.6.若点()t P ,2-在直线062:=++y x l 的上方,则t 的取值范围是 .7.已知点()1,1-A 与点B 关于直线03:=+-y x l 对称,则点B 坐标为 .8.若圆M 过三点()()()1,3,4,2,1,7A B C -,则圆M 的面积为__________.9.若方程组23{22ax y x ay +=+=无解,则实数a =_____. 10.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若15323S S S +=,则{}n a 的公比等于__________.11.已知实数x,y 满足⎪⎩⎪⎨⎧≤+≥≥200y x y x ,若{}y x y x z 24,3m ax --=,则z 的取值范围是____________.({}b a ,m ax 表示b a ,中的较大数) 12.已知实数x,y 满足322=+y x ,22y x ≠,则()()22222122y x y x y x -+++的最小值为____________.13.已知数列{}n a 的前n 项和为n S ,若1,,51221=-=+=+n n n n a a n a a a ,则100S =___________.14.在△ABC 中,角A,B,C 所对的边分别为c b a ,,,且32cos 422=-+C ab b a ,则ABC ∆的面积的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)如图,在ABC ∆中, 36,4AB B π=∠=, D 是BC 边上一点,且3ADB π∠=.(1)求AD 的长;(2)若10CD =,求AC 的长.16.(本小题满分14分)已知函数1)1()(2++-=x a a x x f ,(1)当2a =时,解关于x 的不等式0)(≤x f ; (2)若0>a ,解关于x 的不等式0)(≤x f .17.(本小题满分14分)已知正项等差数列{}n a 的前n 项和为n S ,且满足63,7272351==+S a a a . (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1111,++=-=n n n a b b a b ,若数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和为n T ,求使得20kT n <对任意的*N n ∈都成立的最小正整数k 的值.18.(本小题满分16分)如图所示,直角三角形ABC 是一块绿地,90C =,20AC =米,50BC =米,现要扩大成更大的直角三角形DEF 绿地,其斜边EF 过点A ,且与BC 平行,DE 过点C ,DF 过点B .(1)设∠=BCD α,试用α表示出三角形DEF 面积S (平方米);(2)如果在新增绿地上种植草皮,且种植草皮的费用是每平方米100元,那么在新增绿地上种植草皮的费用最少需要多少元?19.(本小题满分16分)已知圆C 过A (0,2)且与圆M :04822=+++y x y x 切于原点. (1)求圆C 的方程;(2)已知D 为y 轴上一点,若圆C 上存在两点M ,N ,使得2π=∠MDN ,求D 点纵坐标的取值范围;(3)12,l l 是过点B (1,0)且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点.求三角形EPQ 的面积的最小值.F EDABC20. (本小题满分16分)已知数列{}n a 满足112++-=n n n n a a a a ,且*1,21N n a ∈=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:⎪⎪⎩⎪⎪⎨⎧=-=++-=+k n a a k n n n b nn n 2,12,111122()*∈N k ,求{}n b 的前n 项和n S (用n 表示); (3)设nn a C 1=,n T 为{}n C 前n 项和,从{}n C 中抽取一个公比为q 的等比数列{}nk C ,其中11=k,且*∈<<<<N k k k k n n ,21 ,若关于()*∈N n n 的不等式12+>n n k T 有解,求q 的值.数学试题参考答案1.2 2.9 3.2 4.{}10<<x x 5.120° 6.()+∞-,2 7.()2,2- 8.π25 9.2± 10.2 11.[]8,2- 12.5913.1314 14.5515.解:(1)在ABD ∆中,由正弦定理得sin sin AD ABB ADB=∠,2=∴6AD=(2)∵3ADBπ∠=,∴23ADCπ∠=在ACD∆中,由余弦定理得22222cos3AC AD DC AD DCπ=+-⋅⋅13610026101962⎛⎫=+-⨯⨯⨯-=⎪⎝⎭∴14AC=16.解:(1)当2a=时得()2111210202222x x x x x⎛⎫⎛⎫-++≤∴--≤∴≤≤⎪ ⎪⎝⎭⎝⎭,解集为1[,2]2(2)∵不等式))(1()(≤--=axaxxf,>a当10<<a时,有aa>1,∴不等式的解集为}1|{axax≤≤;当1>a时,有aa<1,∴不等式的解集为}1|{axax≤≤;当1=a时,不等式的解集为{1}.17.解:(1)12+=nan(2)321+=-+nbbnn,当2≥n时,()()()112211bbbbbbbbnnnnn+-++-+-=---=()2+n n又31=b也满足上式,所以()2+=nnbn()⎪⎭⎫⎝⎛+-=+=∴21121211nnnnbn⎪⎭⎫⎝⎛+++-=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=∴21112143211412131121nnnnTnkkTn∴≤∴<204343的最小正整数值为15.18.(1)αααααcos 20sin 50tan ,sin 20cos 50+==+=DE DF DE ⎪⎭⎫⎝⎛∈+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=⋅=∴∆2,0,1000cos sin 4cos sin 2550cos 20sin 50sin 20cos 502121παααααααααDF DE S DEF(2)设新增绿地上种植草皮的费用为()15000050000cos sin 4cos sin 2550001005001000cos sin 4cos sin 2550≥+⎪⎭⎫⎝⎛+=⨯⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛+=αααααααααf当且仅当52cos sin =αα即542sin =α时等号成立 答:(1)⎪⎭⎫⎝⎛∈+⎪⎭⎫ ⎝⎛+=∆2,0,1000cos sin 4cos sin 2550παααααDEF S(2)新增绿地上种植草皮的费用最少需要15万元.19.(1)圆C 方程为:22(2)(1)5x y -+-= (2)设()t D ,0,则()61611014102+≤≤-∴≤-+∴≤t t CD所以D 点纵坐标范围是[]61,61+-;(3)(i )当直线2l :1x =时,直线1l 的方程为0y =,此时,2EPQS=;(ii )当直线2l 的斜率存在时,设2l 的方程为:(1)y k x =-(0k ≠),则1l 的方程为:1(1)y x k =--,点1(0,)E k.所以,BE =.又圆心C到2l 的距离为1|1|2+-k k ,所以,222214242)1|1|(52k k k k k PQ +++=+--=.故12EPQSBE PQ =⋅=2<所以,()EPQ min S =20.解:(1)由112++-=n n n n a a a a ,得:21,21111==-+a a a n n ⎭⎬⎫⎩⎨⎧∴n a 1是首项为2公差为2的等差数列,所以()na n n a n n 2122121=∴=-+= (2)由(1)可得()⎪⎭⎫⎝⎛+-=+=+111411411n n n n a a n n , ,211111--+=++-n n n n当n 为偶数时,()2422214121212131212114122224202++=⎪⎭⎫ ⎝⎛+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=∴n n n n n n n n n S n 当n 为奇数时,()211141211--+++-+-=+=-n n n n n b S S n n n =()14121+-++n n n ()()⎪⎪⎩⎪⎪⎨⎧+-++++=∴为奇数为偶数n n n n n n nn S n ,14121,242; (3)()1,2+==n n T n C n n ,1122--=∴==n n n n k q k q k C n , 由*∈<<<<N k k k k n n ,21 ,得*∈>N q q ,112+>n n k T 即()()11212>+∴>+nn qn n q n n 当3,2=q 时均存在n 满足上式,下面证明*∈≥N q q ,4时,不满足题意, 设()nn qn n e 12+=, ()()[]()n n n n n e e q n q q q n q n e e <∴<+-≤+-∴≥+-+=-+++1110221221422112{}n e ∴递减,()112141≤+=∴≤=n n qn n e q e 综上, 3,2=q .。

最新版江苏省无锡市江阴四校高一下学期期中考试数学试题Word版含答案

最新版江苏省无锡市江阴四校高一下学期期中考试数学试题Word版含答案

2017-2018学年第二学期高一期中考试数学学科试题一、填空题:(本大题共14小题,每小题5分,共70分)1.在等比数列{a n}中,已知a1=2,q=3,则公比a5=.2._______.3. 的方程为.4.已知△ABC的三个内角A、B、C成等差数列,且边a=4,c=2,则△ABC的面积为.5.在等差数列d=.6.07.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.8.在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为.9. R的取值范围是.10. n.11.10=.12. 已知数则该数列的通项公式13. 对任意m∈[-1,1]x的取值范围 .14.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是________.二、解答题(本大题共6小题,共计90分)15.(本题14(1(2.16.(本题14分)在△ABC中,a、b、c分别是角A,B,C(1)求角B的大小;(2)若a+c=4,求△ABC的面积.17.(本题15分)如图,A、B位于A B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B C点的救援船立即前往营救,其航行速度为30海里/小时,试求:(1)轮船D与观测点B的距离;(2)救援船到达D点所需要的时间.18.(本题15(1(219.(本题161(2(3)20.(本题16(1(2(3)若数等差数列,项和对任意均存使得.2017-2018学年第二学期高一期中考试数学学科答案1、162 23456、27、等腰89101112、错误!未找到引用源。

13、x<1或x>314、6-2<AB<6+ 2.15、(1-------------------------------4分------------------------------------------7分(2分当A-----------------------10分当A分-----------------------14分16、(1分分-----------------------4分分分(2-----------------------8分分分-----------------------14分17、解:(1分分分分答:轮船D与观测点B----------------------7分(2分分-----------------------14分答:救援船到达D所需的时间为1小时。

。2017-2018学年江苏省无锡一中高一(下)期中数学试卷

。2017-2018学年江苏省无锡一中高一(下)期中数学试卷

2017-2018学年江苏省无锡一中高一(下)期中数学试卷一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.(5分)等差数列{a n}中,已知a2=4,a6=12,则a1=2.(5分)已知{a n}是等比数列,a4+2a3+a2=0,则该数列的公比q=.3.(5分)运行如图所示的流程图,如果输入a=1,b=2,则输出的a的值为.4.(5分)执行如图所示算法的伪代码,则输出的b的值为.5.(5分)已知x>0,y>0,且xy=9,则x+2y的最小值为.6.(5分)设变量x、y满足约束条件,则目标函数z=3x﹣y的最大值为.7.(5分)已知在数列{a n}中,a1=1,,则a2018=.8.(5分)已知数列{a n}的前n项和,则数列{}前n项和为T n=.9.(5分)已知点A(1,2),B(2,4),直线ax﹣y+1=0与线段AB有公共点,则a的最大值为.10.(5分)已知方程x2﹣a2x﹣a+1=0的两根分别在区间(0,1),(1,﹢∞)之内,则实数a的取值范围为.11.(5分)已知在等差数列{a n}中,a3=12,S12S13<0,则S n最大时n=.12.(5分)已知数列{a n}是各项均不为0的等差数列,S n为其前n项和,且满足,则数列{}的前n项和为T n=.13.(5分)若a>0,b>2,且a+b=3,则使得+取得最小值的实数a=.14.(5分)若关于x的不等式ax2+x﹣2a<0的解集中至少有4个整数解,则实数a的取值范围为.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(14分)解下列不等式:(1)x4﹣x2﹣2≥0;(2).16.(14分)已知数列{a n},{b n}是正项数列,{a n}为等差数列,{b n}为等比数列,且a1=b1=1,a2=b2+1,a3=b3﹣2.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n+}的前n项和T n.17.(14分)要制作一个如图的框架(单位:米),其中ABCD是一个矩形,EFCD 是一个等腰梯形,梯形高h=AB,tan∠FED=,设AB=x米,BC=y米.(1)若材料总长为34米(材料全用完),且围成的总面积不少于(米2),求x的取值范围;(2)在所围成的总面积S固定的要求下,当使所用材料最少时,求的值.18.(16分)已知{a n}是无穷等差数列,公差为d,{b n},{c n}都是无穷等比数列,公比分别为q1,q2.(1)若a1+b1,a2+b2,a3+b3是等差数列,求q1的值;(2)若{b n+c n}是等比数列,且b1=1,c1=2,判断q1,q2的关系并证明.19.(16分)已知f(x)=x2+1,g(x)=a|x﹣1|.(1)当a=1时,解不等式f(x)≥g(x);(2)若对任意x>1,不等式f(x)≥g(x)恒成立,求实数a的取值范围;(3)若0<a<4,解关于x的不等式f(x)≥g(x).20.(16分)已知等比数列{a n}的公比为q,首项a1=1,且满足,n≥3).(1)求实数q的值;(2)设数列{na n}的前n项和T n,①求T n;②若a2≠1,求满足T n>的所有正整数n的取值集合.2017-2018学年江苏省无锡一中高一(下)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.(5分)等差数列{a n}中,已知a2=4,a6=12,则a1=2【分析】利用等差数列的通项公式能求出结果.【解答】解:∵等差数列{a n}中,已知a2=4,a6=12,∴,解得a1=2,d=2.故答案为:2.【点评】本题考查等差数列的首项的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(5分)已知{a n}是等比数列,a4+2a3+a2=0,则该数列的公比q=﹣1.【分析】根据等比数列的公式和性质进行求解即可.【解答】解:∵{a n}是等比数列,∴由a4+2a3+a2=0得q2a2+2qa2+a2=0,即q2+2q+1=0,得(q+1)2=0,得q=﹣1,故公比q=﹣1,故答案为:﹣1【点评】本题主要考查等比数列通项公式的应用,利用等比数列的性质建立方程关系是解决本题的关键.3.(5分)运行如图所示的流程图,如果输入a=1,b=2,则输出的a的值为11.【分析】模拟程序语言的运行过程,即可得出该程序运行后输出的结果.【解答】解:模拟程序的运行,可得a=1,b=2,不满足条件a>8,执行循环体,a=3不满足条件a>8,执行循环体,a=5不满足条件a>8,执行循环体,a=8不满足条件a>8,执行循环体,a=11满足条件a>8,退出循环,输出a的值为11.故答案为:11.【点评】本题考查了程序语言的应用问题,是基础题目.4.(5分)执行如图所示算法的伪代码,则输出的b的值为8.【分析】模拟执行程序的运行过程,即可得出程序运行后输出b的值.【解答】解:执行如图所示算法的伪代码,如下;a=1,b=1,i=1;a=1,b=2,i=2;a=2,b=4,i=3;a=4,b=8,i=4;终止循环,输出b=8.故答案为:8.【点评】本题考查了程序语言的语言问题,是基础题.5.(5分)已知x>0,y>0,且xy=9,则x+2y的最小值为6.【分析】由条件运用基本不等式a+b≥2(a,b>0,a=b取得等号),即可得到所求最小值.【解答】解:x>0,y>0,且xy=9,则x+2y≥2=6,当且仅当x=2y=3时上式取得等号,则x+2y的最小值为6,故答案为:6.【点评】本题考查基本不等式的运用:求最值,考查运算能力,属于基础题.6.(5分)设变量x、y满足约束条件,则目标函数z=3x﹣y的最大值为4.【分析】作出满足不等式组的可行域,由z=3x﹣y可得y=3x﹣z可得﹣z为该直线在y轴上的截距,截距越小,z越大,结合图形可求z的最大值.【解答】解:作出满足不等式组的可行域,如图所示的阴影部分由z=3x﹣y可得y=3x﹣z可得﹣z为该直线在y轴上的截距,截距越小,z越大,作直线L:3x﹣y=0,可知把直线平移到A(2,2)时,Z最大,故z max=4.故答案为:4.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.7.(5分)已知在数列{a n}中,a1=1,,则a2018=2018.【分析】由条件可得=,将n换为n﹣1,…,3,2,1,可得数列的通项公式,代入即可得到所求值.【解答】解:在数列{a n}中,a1=1,,即为===…===a1=1,即有a n=n,可得a2018=2018,故答案为:2018.【点评】本题考查数列的通项公式的求法和运用,考查运算能力,属于基础题.8.(5分)已知数列{a n}的前n项和,则数列{}前n项和为T n=.【分析】由数列{a n}的前n项和,求出,从而,由此能求出数列{}前n项和.【解答】解:∵数列{a n}的前n项和,∴a1=3﹣1=2,a n=S n﹣S n﹣1=(3n﹣1)﹣(3n﹣1﹣1)=,n=1时,成立,∴,∴,∴数列{}前n项和为:T n===.故答案为:.【点评】本题考查等比数列的前n项和的求法,考查等比数列的性质、数列的前n项和与数列的通项的关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9.(5分)已知点A(1,2),B(2,4),直线ax﹣y+1=0与线段AB有公共点,则a的最大值为.【分析】根据条件结合直线斜率的公式,利用数形结合进行求解即可.【解答】解:由ax﹣y+1=0得y=ax+1,在a的几何意义是过定点C(0,1)的直线斜率,由图象知,BC的斜率最大,则BC的斜率k==,即a的最大值为,故答案为:【点评】本题主要考查直线斜率的求解和应用,利用数形结合以及直线斜率的公式是解决本题的关键.10.(5分)已知方程x2﹣a2x﹣a+1=0的两根分别在区间(0,1),(1,﹢∞)之内,则实数a的取值范围为(﹣∞,﹣2).【分析】设f(x)=x2﹣a2x﹣a+1,由题意可得f(0)>0,f(1)<0,解不等式可得所求范围.【解答】解:设f(x)=x2﹣a2x﹣a+1,方程x2﹣a2x﹣a+1=0的两根分别在区间(0,1),(1,﹢∞)之内,可得f(0)>0,f(1)<0,即有﹣a+1>0,且2﹣a2﹣a<0,即为,解得a<﹣2.故答案为:(﹣∞,﹣2).【点评】本题考查二次方程实根的分布,注意运用二次函数的图象和性质,考查运算能力,属于基础题.11.(5分)已知在等差数列{a n}中,a3=12,S12S13<0,则S n最大时n=6.【分析】设等差数列{a n}的公差为d,由a3=12,S12S13<0,可得a1+2d=12,<0,化为:(d+3)(d+)<0,解得<d<﹣3,可得等差数列{a n}单调递减,令a n=a1+(n﹣1)d=12+(n﹣3)d≥0,可得n≤3﹣,即可得出.【解答】解:设等差数列{a n}的公差为d,∵a3=12,S12S13<0,∴a1+2d=12,<0,化为:(d+3)(d+)<0,解得<d<﹣3,可得:<﹣<4.因此等差数列{a n}单调递减,∴S12>0,S13<0.a n=a1+(n﹣1)d=12﹣2d+(n﹣1)d=12+(n﹣3)d≥0,可得n≤3﹣,∵≤3﹣≤7,∴n≤6.则S n最大时n=6.故答案为:6.【点评】本题考查了等差数列的通项公式与求和公式、不等式的解法、数列的单调性,考查了推理能力与计算能力,属于中档题.12.(5分)已知数列{a n}是各项均不为0的等差数列,S n为其前n项和,且满足,则数列{}的前n项和为T n=.【分析】设等差数列{a n}的公差为d,a n≠0,由,可得=S1=a1≠0,=S3,即=3a1+d,联立解得:a1,d.再利用裂项求和方法即可得出.【解答】解:设等差数列{a n}的公差为d,a n≠0,∵,∴=S1=a1≠0,=S3,即=3a1+d,第11页(共19页)联立解得:a 1=1,d=2或﹣1.d=﹣1时,a 2=0,舍去.∴d=2,a n =1+2(n ﹣1)=2n ﹣1.∴==,则数列{}的前n 项和为T n ===.故答案为:.【点评】本题考查了等差数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.13.(5分)若a >0,b >2,且a+b=3,则使得+取得最小值的实数a=.【分析】构造基本不等式的性质即可求解.利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵a >0,b >2,且a+b=3,∴a+b ﹣2=1,那么:(+)[a+(b ﹣2)]=4+1+(+)≥5+2=9,当且仅当2(b ﹣2)=a 时即取等号.联立,解得:a=.故答案为:.【点评】本题考查了构造不等式的思想,利用“乘1法”与基本不等式的性质,属于中档题.14.(5分)若关于x 的不等式ax 2+x ﹣2a <0的解集中至少有4个整数解,则实数a 的取值范围为(﹣∞,).。

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)和答案

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)和答案

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)复数z=的虚部为.2.(5分)用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是.3.(5分)设复数z=﹣1﹣i(i为虚数单位),z的共轭复数为,则|(1﹣z)|=.4.(5分)用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值自然数n0应取为.5.(5分)三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是.(填写序号)6.(5分)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.7.(5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(用数字回答)8.(5分)设f(k)=+++…+(k∈N*),那么f(k+1)﹣f(k)=.9.(5分)已知﹣=,则C21m=.10.(5分)(ax﹣)8的展开式中x2的系数为70,则a=.11.(5分)在数列{a n}中,a1=2,,可以猜测数列通项a n的表达式为.12.(5分)记等差数列{a n}得前n项和为S n,利用倒序相加法的求和办法,可将S n表示成首项a1,末项a n与项数的一个关系式,即S n=;类似地,记等比数列{b n}的前n项积为T n,b n>0(n∈N*),类比等差数列的求和方法,可将T n表示为首项b1,末项b n与项数的一个关系式,即公式T n=.13.(5分)已知(1+x)10=a0+a1(1﹣x)+a2(1﹣x)2+…+a10(1﹣x)10,则a8=.14.(5分)学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有种.(用数字作答)二、解答题(本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)(1)设(3x﹣1)4=a0+a1x+a2x2+a3x3+a4x4.①求a0+a1+a2+a3+a4;②求a0+a2+a4;③求a1+a2+a3+a4;(2)求S=C271+C272+…+C2727除以9的余数.16.(14分)已知复数w满足w﹣4=(3﹣2w)i(i为虚数单位).(1)求w;(2)设z∈C,在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积.17.(14分)(1)证明:当a>2时,;(2)已知x,y∈R+,且x+y>2,求证:与中至少有一个小于2.18.(16分)男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.19.(16分)已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+9c+81c+…+9n﹣1c的值.20.(16分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)复数z=的虚部为﹣1.【解答】解:z===,则复数z的虚部﹣1,故答案为:﹣1.2.(5分)用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是a、b都不能被2整除.【解答】解:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故答案为:a、b都不能被2整除.3.(5分)设复数z=﹣1﹣i(i为虚数单位),z的共轭复数为,则|(1﹣z)|=.【解答】解:∵复数z=﹣1﹣i,∴=﹣1+i.∴(1﹣z)=(1+1+i)•(﹣1+i)=﹣3+i.∴|(1﹣z)|=|﹣3+i|=.故答案为:.4.(5分)用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值自然数n0应取为5.【解答】解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;结合本题,要验证n=1时,左=21=2,右=12+1=2,2n>n2+1不成立,n=2时,左=22=4,右=22+1=5,2n>n2+1不成立,n=3时,左=23=8,右=32+1=10,2n>n2+1不成立,n=4时,左=24=16,右=42+1=17,2n>n2+1不成立,n=5时,左=25=32,右=52+1=26,2n>n2+1成立,因为n>5成立,所以2n>n2+1恒成立.5.(5分)三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是②.(填写序号)【解答】解:推理:“①矩形是平行四边形,②正方形是矩形,③正方形是平行四边形.”中大前提:矩形是平行四边形;小前提:正方形是矩形;结论:所以正方形是平行四边形.故小前提是:②正方形是矩形.故答案为:②6.(5分)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为+…+=+…+.【解答】解:由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.∴第n个等式为:+…+=+…+.7.(5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为72(用数字回答)【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有A44=24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个.8.(5分)设f(k)=+++…+(k∈N*),那么f(k+1)﹣f(k)=.【解答】解:∵f(k)=+++…+(k∈N*),∴f(k+1)=++…++;(k∈N*),则f(k+1)﹣f(k)=++…++﹣(+++…+)=;故答案为:9.(5分)已知﹣=,则C21m=210.【解答】解:∵﹣=,∴﹣=,化简,得:6×(5﹣m)!﹣(6﹣m)!=,6﹣(6﹣m)=,∴m2﹣23m+42=0,解得m=2或m=21(舍去),∴=210.故答案为:210.10.(5分)(ax﹣)8的展开式中x2的系数为70,则a=±1.【解答】解:(ax﹣)8的展开式中的通项公式为T r+1=•(﹣1)r•a8﹣r•,令8﹣=2,求得r=4,故x2的系数为•a4=70,则a=±1,故答案为:±1.11.(5分)在数列{a n}中,a1=2,,可以猜测数列通项a n的表达式为.【解答】解:∵a1=2,,∴,,,,由此猜测a n=.故答案为:a n=.12.(5分)记等差数列{a n}得前n项和为S n,利用倒序相加法的求和办法,可将S n表示成首项a1,末项a n与项数的一个关系式,即S n=;类似地,记等比数列{b n}的前n项积为T n,b n>0(n∈N*),类比等差数列的求和方法,可将T n表示为首项b1,末项b n与项数的一个关系式,即公式T n=.【解答】解:在等差数列{a n}的前n项和为S n=,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{b n}的前n项积T n==,故答案为:13.(5分)已知(1+x)10=a0+a1(1﹣x)+a2(1﹣x)2+…+a10(1﹣x)10,则a8= 180.【解答】解:∵(1+x)10=[2﹣(1﹣x)]10∴其展开式的通项为T r+1=(﹣1)r210﹣r C10r(1﹣x)r令r=8得a8=4C108=180故答案为:18014.(5分)学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有930种.(用数字作答)【解答】解:若甲乙都入选,则从其余6人中选出2人,有C62=15种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有A44﹣2A33+A22=14种,故共有15×14=210种;若甲不入选,乙入选,则从其余6人中选出3人,有C63=20种,女生乙不适合担任四辩手,则有C31A33=18种,故共有20×18=360种;若甲乙都不入选,则从其余6人中选出4人,有C64=15种,再全排,有A44=24种,故共有15×24=360种;综上所述,共有210+360+360=930种.故答案为:930种.二、解答题(本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)(1)设(3x﹣1)4=a0+a1x+a2x2+a3x3+a4x4.①求a0+a1+a2+a3+a4;②求a0+a2+a4;③求a1+a2+a3+a4;(2)求S=C271+C272+…+C2727除以9的余数.【解答】解:(1)①令x=1,得a0+a1+a2+a3+a4=(3﹣1)4=16;(3分)②令x=﹣1,得a0﹣a1+a2﹣a3+a4=(﹣3﹣1)4=256,而由①知a0+a1+a2+a3+a4=(3﹣1)4=16,两式相加,得2(a0+a2+a4)=272,所以a0+a2+a4=136;(6分)③令x=0,得a0=(0﹣1)4=1,所以a1+a2+a3+a4=a0+a1+a2+a3+a4﹣a0=16﹣1=15;(2)S=++…+=227﹣1=89﹣1=(9﹣1)9﹣1=×99﹣×98+…+×9﹣﹣1=9×(×98﹣×97+…+)﹣2=9×(×98﹣×97+…+﹣1)+7,显然上式括号内的数是正整数.故S被9除的余数为7.16.(14分)已知复数w满足w﹣4=(3﹣2w)i(i为虚数单位).(1)求w;(2)设z∈C,在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积.【解答】解:(1)∵w(1+2i)=4+3i,∴w===2﹣i.(2)在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形为一个圆环,其中大圆为:以(2,﹣1)为圆心,2为半径的圆;小圆是:以(2,﹣1)为圆心,1为半径的圆.∴在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积=22π﹣12×π=3π.17.(14分)(1)证明:当a>2时,;(2)已知x,y∈R+,且x+y>2,求证:与中至少有一个小于2.【解答】证明:(1)要证+<2,只要证(+)2<(2)2,只要证2a+2<4a,只要证<a,由于a>2,只要证a2﹣4<a2,最后一个不等式成立,所以+<2;(2)(反证法)假设与中均不小于2,即≥2,≥2,∴1+x≥2y,1+y≥2x.将两式相加得:x+y≤2,与已知x+y>2矛盾,故与中至少有一个小于2.18.(16分)男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解答】解:(1)由题意知本题是一个分步计数问题,首先选3名男运动员,有C63种选法.再选2名女运动员,有C42种选法.共有C63•C42=120种选法.(2)法一(直接法):“至少1名女运动员”包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得有C41•C64+C42•C63+C43•C62+C44•C61=246种选法.法二(间接法):“至少1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有C105种选法,其中全是男运动员的选法有C65种.所以“至少有1名女运动员”的选法有C105﹣C65=246种.(3)“只有男队长”的选法为C84种;“只有女队长”的选法为C84种;“男、女队长都入选”的选法为C83种;∴共有2C84+C83=196种.∴“至少1名队长”的选法有C105﹣C85=196种选法.(4)当有女队长时,其他人选法任意,共有C94种选法.不选女队长时,必选男队长,共有C84种选法.其中不含女运动员的选法有C54种,∴不选女队长时共有C84﹣C54种选法.既有队长又有女运动员的选法共有C94+C84﹣C54=191种.19.(16分)已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+9c+81c+…+9n﹣1c的值.【解答】解:(1)由第5项的系数与第3项的系数之比是:=56:3,解得n=10.因为通项:T r+1=•(﹣2)r •,当5﹣为整数,r可取0,6,于是有理项为T1=x5和T7=13440.(2)设第r+1项系数绝对值最大,则.解得,于是r只能为7.所以系数绝对值最大的项为T8=﹣15360.(3)n+9c+81c+…+9n﹣1c=10+9+92•+…+910﹣1•===.20.(16分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.第11页(共13页)(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n 与log a b n+1的大小,并证明你的结论.【解答】解:(1)设数列{b n}的公差为d ,由题意得解得所以b n=3n﹣2.(2)由b n=3n﹣2,知S n=log a(1+1)+log a(1+)++log a(1+)=log a[(1+1)(1+)(1+)],log a b n+1=log a.因此要比较S n 与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1有(1+1)>,取n=2有(1+1)(1+)>,由此推测(1+1)(1+)(1+)>.①若①式成立,则由对数函数性质可断定:当a>1时,S n >log a b n+1.当0<a<1时,S n <log a b n+1.下面用数学归纳法证明①式.(ⅰ)当n=1时已验证①式成立.(ⅱ)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)(1+)>.那么,当n=k+1时,(1+1)(1+)(1+)(1+)>(1+)第12页(共13页)=(3k+2).因为==,所以(3k+2)>.因而(1+1)(1+)(1+)(1+)>.这就是说①式当n=k+1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n都成立.由此证得:当a>1时,S n >log a b n+1.当0<a<1时,S n <log a b n+1.第13页(共13页)。

2017-2018学年江苏省无锡市江阴四校高一(下)期中数学试卷

2017-2018学年江苏省无锡市江阴四校高一(下)期中数学试卷

2017-2018学年江苏省无锡市江阴四校高一(下)期中数学试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.(5分)在等比数列{a n}中,已知a1=2,q=3,则公比a5=.2.(5分)不等式﹣x2+2x+8≥0的解集为.3.(5分)直线l与直线x+2y+3=0垂直,且过点A(2,2),则直线l的方程为.4.(5分)已知△ABC的三个内角A、B、C成等差数列,且边a=4,c=2,则△ABC 的面积为.5.(5分)在等差数列{a n}中,若a3=16,S20=20,则公差d=.6.(5分)已知等差数列{a n}的公差d不为0,且a1,a3,a7成等比数列,则=.7.(5分)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.8.(5分)在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形的最大内角等于.9.(5分)若关于x的不等式ax2+ax+a﹣1>0的解集为R,则实数a的取值范围是.10.(5分)数列{a n}的前n项和为S n=n2+2n﹣1,则a n=.11.(5分)已知数列{a n}的通项公式为a n=,则此数列前10项和S10=.12.(5分)已知数列{a n}满足a1=,a n﹣1﹣a n=,(n≥2),则该数列的通项公式a n=.13.(5分)对任意m∈[﹣1,1],函数f(x)=x2+(m﹣4)x+4﹣2m的值恒大于零,求x的取值范围.14.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.二、解答题(本大题共6小题,共计90分)15.(14分)已知直线l1:x+y﹣3=0和l2:5x+2y﹣12=0的交点为A(1)若直线l3:(a2﹣6)x+ay﹣1=0与l1平行,求实数a的值;(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.16.(14分)在△ABC中,a、b、c分别是角A,B,C的对边,且=﹣.(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.17.(15分)18.(15分)已知数列{a n}的首项,.(1)证明:数列是等比数列;(2)求数列的前n项和为S n.19.(16分)已知函数f(x)=x2+3x+a,g(x)=(1)若不等式f(x)<0的解集是{x|a<x<1},求a的值;(2)当g(b)=b+,其中ab<0,求4a+b的最大值;(3)若对任意x∈[2,+∞),不等式g(x)>1恒成立,求实数a的取值范围20.(16分)已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,设数列{b n}满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.2017-2018学年江苏省无锡市江阴四校高一(下)期中数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.(5分)在等比数列{a n}中,已知a1=2,q=3,则公比a5=162.【分析】直接根据等比数列的通项公式求出即可.【解答】解:a5=a1q4=2×34=162,故答案为:162.【点评】本题考查了等比数列的通项公式,属于基础题.2.(5分)不等式﹣x2+2x+8≥0的解集为[﹣2,4] .【分析】不等式化为x2﹣2x﹣8≤0,求出解集即可.【解答】解:不等式﹣x2+2x+8≥0化为x2﹣2x﹣8≤0,即(x+2)(x﹣4)≤0,解得﹣2≤x≤4,∴不等式的解集为[﹣2,4].故答案为:[﹣2,4].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.3.(5分)直线l与直线x+2y+3=0垂直,且过点A(2,2),则直线l的方程为2x ﹣y﹣2=0.【分析】由两直线垂直的条件:斜率之积为﹣1,可得直线l的斜率,运用点斜式方程可得所求直线方程.【解答】解:直线x+2y+3=0的斜率为﹣,直线l与直线x+2y+3=0垂直,可得直线l的斜率为2,过点A(2,2),可得直线l的方程为y﹣2=2(x﹣2),即为2x﹣y﹣2=0,故答案为:2x﹣y﹣2=0.【点评】本题考查两直线垂直的条件:斜率之积为﹣1,考查直线的方程求法,考查运算能力,属于基础题.4.(5分)已知△ABC的三个内角A、B、C成等差数列,且边a=4,c=2,则△ABC 的面积为2.【分析】根据等差数列的定义求出B的大小,结合三角形的面积公式进行求解即可.【解答】解:∵△ABC的三个内角A、B、C成等差数列,∴A+C=2B,即A+B+C=3B=π,即B=,∵a=4,c=2,∴△ABC的面积S=sinB==2,故答案为:2【点评】本题主要考查三角形面积的计算,根据等差数列求出B的大小是解决本题的关键.5.(5分)在等差数列{a n}中,若a3=16,S20=20,则公差d=﹣2.【分析】在等差数列{a n}中,若a3=16,S20=20,可得a1+2d=16,20a1+d=20,联立解得d.【解答】解:在等差数列{a n}中,若a3=16,S20=20,则a1+2d=16,20a1+d=20,联立解得d=﹣2,a1=20.故答案为:﹣2.【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.(5分)已知等差数列{a n}的公差d不为0,且a1,a3,a7成等比数列,则=2.【分析】由题意可得,解之可得a1=2d≠0,变形可得答案.【解答】解:由题意可得:,即d(2d﹣a1)=0,因为公差d不为0,故2d﹣a1=0,解得a1=2d≠0,故==2,故答案为:2【点评】本题考查等差数列的通项公式,涉及等比数列的概念,属基础题.7.(5分)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.【分析】等式即2cosBsinA=sin(A+B),展开化简可得sin(A﹣B)=0,由﹣π<A﹣B<π,得A﹣B=0,故三角形ABC是等腰三角形.【解答】解:在△ABC中,若2cosBsinA=sinC,即2cosBsinA=sin(A+B)=sinAcosB+cosAsinB,∴sinAcosB﹣cosAsinB=0,即sin(A﹣B)=0,∵﹣π<A﹣B<π,∴A﹣B=0,故△ABC 为等腰三角形,故答案为:等腰.【点评】本题考查两角和正弦公式,诱导公式,根据三角函数的值求角,得到sin(A﹣B)=0,是解题的关键.8.(5分)在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形的最大内角等于.【分析】根据正弦定理化简已知的比例式,得到三边之比,然后设出三角形的三边长,利用大边对大角找出最大角,根据余弦定理表示出最大角的余弦值,把三边长代入即可求出余弦值,由三角形内角的范围,根据特殊角的三角函数值即可求出最大角的度数.【解答】解:由sinA:sinB:sinC=3:5:7,根据正弦定理==得:a:b:c=3:5:7,设a=3k,b=5k,c=7k,显然C为最大角,根据余弦定理得:cosC===﹣,由C∈(0,π),得到C=.故答案为:【点评】此题考查了正弦定理,余弦定理及特殊角的三角函数值.掌握正弦定理,余弦定理的特征是解此类题的关键.同时注意要会根据比例式设出各边长.9.(5分)若关于x的不等式ax2+ax+a﹣1>0的解集为R,则实数a的取值范围是(,+∞).【分析】根据题意知,由此求出a的取值范围.【解答】解:关于x的不等式ax2+ax+a﹣1>0的解集为R,∴,即,化简得,解得,即a>,∴实数a的取值范围是(,+∞).故答案为:(,+∞).【点评】本题考查了一元二次不等式恒成立问题,是基础题.10.(5分)数列{a n}的前n项和为S n=n2+2n﹣1,则a n=.【分析】S n=n2+2n﹣1,n≥2时,a n=S n﹣S n﹣1,n=1时,a1=S1,即可得出.【解答】解:S n=n2+2n﹣1,n≥2时,a n=S n﹣S n﹣1=n2+2n﹣1﹣[(n﹣1)2+2(n ﹣1)﹣1]=2n+1,n=1时,a1=S1=2.则a n=.故答案为:.【点评】本题考查了数列递推关系、数列通项公式,考查了推理能力与计算能力,属于中档题.11.(5分)已知数列{a n}的通项公式为a n=,则此数列前10项和S10=.【分析】a n==,利用裂项求和方法即可得出.【解答】解:a n==,则此数列前10项和S10===.故答案为:.【点评】本题考查了数列通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.12.(5分)已知数列{a n}满足a1=,a n﹣1﹣a n=,(n≥2),则该数列的通项公式a n=.【分析】根据条件,进行转化,利用裂项法以及累加法即可得到结论.﹣a n=得=,【解答】解:由a n﹣1即﹣=,n≥2,即=1﹣,﹣=﹣,…﹣=,等式两边同时相加得=1﹣+=1,即=1+=1+2=3=,则a n=,n≥2,当n=1时,a1=满足a n=,故该数列的通项公式a n=,故答案为:.【点评】本题主要考查数列通项公式的求解,根据递推数列,利用裂项法结合累加法是解决本题的关键.13.(5分)对任意m∈[﹣1,1],函数f(x)=x2+(m﹣4)x+4﹣2m的值恒大于零,求x的取值范围(﹣∞,1)∪(3,+∞).【分析】令g(k)=k(x﹣2)+x2﹣4x+4>0,则,解得答案.【解答】解:∵任意k∈[﹣1,1],函数f(x)=x2+(k﹣4)x﹣2k+4>0,恒成立,令g(k)=k(x﹣2)+x2﹣4x+4>0,则,即﹣(x﹣2)+x2﹣4x+4>0,(x﹣2)+x2﹣4x+4>0,解得x<1或x>3,故答案为(﹣∞,1)∪(3,+∞).【点评】此题是一道常见的题型,把关于x的函数转化为关于k的函数,构造一次函数,因为一次函数是单调函数易于求解,最此类恒成立题要注意.14.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.二、解答题(本大题共6小题,共计90分)15.(14分)已知直线l1:x+y﹣3=0和l2:5x+2y﹣12=0的交点为A(1)若直线l3:(a2﹣6)x+ay﹣1=0与l1平行,求实数a的值;(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.【分析】(1)由l1∥l3得a2﹣6=a,解方程求得a的值;(2)由两直线相交求得交点坐标,求出直线过原点时和不过原点时对应的直线方程即可.【解答】解:(1)由l1∥l3,得a2﹣6=a,解得a=3或a=﹣2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)经检验,当a=3或a=﹣2时,l3∥l1;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(2)由,解得,∴点A的坐标为(2,1);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)①当A过原点时,斜率为k=,直线方程为y=;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)②当A不过原点时,令+=1,解得a=2+1=3,则直线方程为x+y﹣3=0;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)综上,所求的直线方程为x+y﹣3=0或y=x.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查了直线方程的求法与应用问题,是基础题.16.(14分)在△ABC中,a、b、c分别是角A,B,C的对边,且=﹣.(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.【分析】(1)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;(2)由(1)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值.【解答】解:(1)由正弦定理得:a=2RsinA,b=2RsinB,c=2RsinC,将上式代入=﹣得,即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,∵A+B+C=π,∴sin(B+C)=sinA,∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,∵sinA≠0,∴cosB=﹣,∵B为三角形的内角,∴B=.(2)将b=,a+c=4,B=代入余弦定理b2=a2+c2﹣2accosB得:b2=(a+c)2﹣2ac﹣2accosB,即即13=16﹣2ac(1﹣),∴ac=3,=acsinB.∴S△ABC【点评】本题主要考查正弦定理,余弦定理及三角函数的恒等变形.熟练掌握定理及公式是解本题的关键.属于中档题.17.(15分)【分析】(1)由方向坐标求得∠DAB、∠DBA,利用三角形内角和定理与正弦定理求得BD的值;(2)△BCD中,利用余弦定理求得DC的值,再计算救援船到达D所需的时间.【解答】解:(1)由D在A的北偏东45°,在B的北偏西60°,∴∠DAB=45°,∠DBA=30°,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)∴∠ADB=105°;由正弦定理得=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴=;又sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=,﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴BD=10;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)答:轮船D与观测点B的距离为10海里;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(2)△BCD中,BD=10,BC=20,∠DBC=60°,∴DC2=BD2+BC2﹣2BD×BC×cos60°=300+1200﹣2×10×20×,﹣﹣﹣﹣(10分)∴DC2=900,解得DC=30;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)∴t==1(小时);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)答:救援船到达D所需的时间为1小时.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)【点评】本题考查了正弦、余弦定理的实际应用问题,是基础题.18.(15分)已知数列{a n}的首项,.(1)证明:数列是等比数列;(2)求数列的前n项和为S n.【分析】(1)把已知数列递推式两边取倒数,可得,又,得,可得数列是以为首项,为公比的等比数列;(2)求出数列得通项公式,得到,进一步得到数列的通项公式,然后利用数列的分组求和及错位相减法求解.【解答】(1)证明:∵,∴,∴,又,∴,∴数列是以为首项,为公比的等比数列;(2)解:由(1)得,,即,∴设,①则,②由①﹣②得:,∴.又.∴数列的前n项和.【点评】本题考查数列递推式,考查等比关系的确定,训练了错位相减法求数列的前n项和与数列的分组求和,是中档题.19.(16分)已知函数f(x)=x2+3x+a,g(x)=(1)若不等式f(x)<0的解集是{x|a<x<1},求a的值;(2)当g(b)=b+,其中ab<0,求4a+b的最大值;(3)若对任意x∈[2,+∞),不等式g(x)>1恒成立,求实数a的取值范围【分析】(1)根据题意可得a,1是方程x2+3x+a=0的两个根,解得即可,(2)由题意可得4b+a=ab,求出a的范围,再根据4a+b=4(a﹣4)++17,利用基本不等式即可求出,(3)不等式g(x)>1恒成立转化为﹣a<x2+2x﹣1在x∈[2,+∞)恒成立,根据二次函数的性质即可求出.【解答】解(1)不等式f(x)<0的解集是{x|a<x<1},∴a,1是方程x2+3x+a=0的两个根,∴a+1=﹣3,解得a=﹣4,(2)g(b)==b+,∴b2+3b+a=b2+b+ab+,∴4b+a=ab,∴b=,∵ab<0,∴<0,解得a<4,∴a﹣4<0,∴4a+b=4a+=4(a﹣4)++17≤4×(﹣2)+17=9,当且仅当a=3时取等号.∴4a+b的最大值是9,(3)当x∈[2,+∞)时,>1恒成立,∴x2+3x+a>x+1在x∈[2,+∞)恒成立,∴x2+2x+a﹣1>0在x∈[2,+∞)恒成立,∵﹣a<x2+2x﹣1在x∈[2,+∞)恒成立,∴y=x2+2x﹣1的对称轴x=﹣1,故y=x2+2x﹣1在∈[2,+∞)单调递增,∴y≤4+4﹣1=7,∴﹣a<7,∴a>﹣7.【点评】本题考查了不等式的解法基本不等式的应用,不等式恒成立的问题,考查了运算能力和转化能力,属于中档题.20.(16分)已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,设数列{b n}满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.2=0,化为:=2×,【分析】(1)数列{a n}满足a n>0,4(n+1)a n2﹣na n+1即可证明.(2)由(1)可得:=,可得=n•4n﹣1.数列{b n}满足b n=,可得b1,b2,b3,利用数列{b n}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12S n﹣a14n2=16b m,即可得出a1.2=0,【解答】(1)证明:数列{a n}满足a n>0,4(n+1)a n2﹣na n+1,即=2,∴=a n+1∴数列{}是以a1为首项,以2为公比的等比数列.(2)解:由(1)可得:=,∴=n•4n﹣1.∵b n=,∴b1=,b2=,b3=,∵数列{b n}是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{b n}是等差数列,由(2)可得:t=12或4.①t=12时,b n==,S n=,∵对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,b n==,S n=,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.【点评】本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.。

江苏省江阴市高一数学下学期期中试题(扫描版)

江苏省江阴市高一数学下学期期中试题(扫描版)

江苏省江阴市2016-2017学年高一数学下学期期中试题(扫描版)参考答案:一.填空题:1.1;2.2n;3.12-;4.6±;5.(4,1)-;6.32-;7.-256;8.1;9.(4,0]-;10.60︒;11.1,2,4;12.[1,)-+∞;13.15.(1)[1,2);(2)1(0,]216.(1)证明过程略;(2)310x y ++=17.(1)C=233ππ或,1b =(2)证明过程略,9]8 18.(1)由题意可得t 1=ACv 乙=38h ,设此时甲运动到点P ,则AP =v 甲t 1=5×38=158千米,∴f (t 1)=PC =AC 2+AP 2−2AC ⋅AP ⋅cos A −−−−−−−−−−−−−−−−−−−−−−−−−−√=32+(158)2−2×3×158×35−−−−−−−−−−−−−−−−−−−−−−−−−−√=341−−√8千米;(2)当t 1⩽t ⩽78时,乙在CB 上的Q 点,设甲在P 点,∴QB =AC +CB −8t =7−8t ,PB =AB −AP =5−5t ,∴f (t )=PQ =QB 2+PB 2−2QB ⋅PB ⋅cos B −−−−−−−−−−−−−−−−−−−−−−−−−√=(7−8t )2+(5−5t )2−2(7−8t )(5−5t )0.8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√=25t 2−42t +18−−−−−−−−−−−−−√,当78<t ⩽1时,乙在B 点不动,设此时甲在点P ,∴f (t )=PB =AB −AP =5−5t∴f (t )=⎧⎩⎨⎪⎪⎪⎪25t 2−42t +18−−−−−−−−−−−−−√,38⩽t ⩽785−5t ,78<t ⩽1∴当38<t ⩽1时,f (t )∈[0,341−−√8],故f (t )的最大值没有超过3千米。

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)和答案

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)和答案

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)一、填空题(每小题5分,共70分.请把答案直接填写在答题卷相应位置.)1.(5分)已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a等于.2.(5分)若z=3﹣2i,则=.3.(5分)已知命题p:∀x>0,x+≥2,那么命题¬p为.4.(5分)函数y=ln(3﹣x)+的定义域是.5.(5分)已知a=(),b=(),c=log3π,则a,b,c的大小关系为.6.(5分)x>1是的条件.7.(5分)设函数f(x)=,则满足f(x)≤3的x的取值范围是.8.(5分)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积).应用合情推理,若四维空间中,“特级球”的三维测度V=12πr3,则其四维测度W=.9.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.10.(5分)若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为.11.(5分)已知函数f(x)=,则f(1)+f(2)+f(3)+…+f(2017)=.12.(5分)设函数f(x)=x2﹣,则使f(2x)≤f(4﹣x)成立的x的取值范围是.13.(5分)已知函数f(x)是定义在R上的奇函数,对任意的x∈R,均有f(x+2)=f(x),当x∈[0,1)时,f(x)=2x﹣1,则下列结论正确的是.①f(x)的图象关于x=1对称②f(x)的最大值与最小值之和为2③方程f(x)﹣lg|x|=0有10个实数根④当x∈[2,3]时,f(x)=2x+2﹣1 14.(5分)已知函数f(x)=函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是.二、解答题(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤).15.(14分)已知p:实数x,满足x﹣a<0,q:实数x,满足x2﹣4x+3≤0.(1)若a=2时p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.16.(14分)已知函数f(x)=lg[x2+(1﹣a)x﹣a].(1)求函数f(x)的定义域.(2)若f(x)为偶函数,求实数a的值.17.(14分)已知函数f(x)=b•a x(其中a,b为常量且a>0且a≠1)的图象经过点A(l,8),B(3,32)(I)试求a、b的值;(II)若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.18.(16分)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3﹣6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?19.(16分)已知函数f(x)=x|x﹣2a|,a∈R.(1)若a=0,且f(x)=﹣1,求x的值;(2)当a>0时,若f(x)在[2,+∞)上是增函数,求a的取值范围;(3)若a=1,求函数f(x)在区间[0,m](m>0)上的最大值g(m).20.(16分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的值域为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)参考答案与试题解析一、填空题(每小题5分,共70分.请把答案直接填写在答题卷相应位置.)1.(5分)已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a等于﹣2.【解答】解:∵集合A={0,1},B={﹣1,0,a+3},且A⊆B,∴a+3=1,解得:a=﹣2.故答案为:﹣22.(5分)若z=3﹣2i,则=+i.【解答】解:z=3﹣2i,=3+2i.则===+i,故答案为:+i,3.(5分)已知命题p:∀x>0,x+≥2,那么命题¬p为∃x>0,x+<2.【解答】解:命题是全称命题,则命题的否定是:∃x>0,x+<2,故答案为:∃x>0,x+<2.4.(5分)函数y=ln(3﹣x)+的定义域是[2,3).【解答】解:由,解得2≤x<3.∴函数y=ln(3﹣x)+的定义域是[2,3).故答案为:[2,3).5.(5分)已知a=(),b=(),c=log3π,则a,b,c的大小关系为a<b<c.【解答】解:∵0<a=()<()=b=()<()0=1,c=log3π>log33=1,∴a<b<c.故答案为:a<b<c.6.(5分)x>1是的充分不必要条件条件.【解答】解:∵x>1⇒<1成立,∴充分性成立;而<1⇔<0⇔x<0或x>1,即<1不能推出x>1,∴必要性不成立;∴x>1是的充分不必要条件.故答案为:充分不必要.7.(5分)设函数f(x)=,则满足f(x)≤3的x的取值范围是[0,+∞).【解答】解:f(x)≤3当x≤1时,f(x)=31﹣x≤3=31,∴1﹣x≤1,解得1≥x≥0,当x>1时,f(x)=1﹣log3x≤3,∴log3x≥﹣2,恒成立,综上所述满足f(x)≤3的x的取值范围是[0,+∞),故答案为:[0,+∞)8.(5分)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积).应用合情推理,若四维空间中,“特级球”的三维测度V=12πr3,则其四维测度W=3πr4.【解答】解:二维空间中,圆的面积S=πr2的导数S′=2πr=圆周长L,三维空间中,球的体积导数V′=4πr2=球的表面积S,由此类比,可以求得四维空间中,“特级球”W的导数W′=V=12πr3,所以W=3πr4.故答案为W=3πr4.9.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).10.(5分)若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为(0,1)∪(﹣3,﹣1).【解答】解:∵函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(﹣2)=﹣f(2)=0,∴当x>2或﹣2<x<0时,f(x)>0,当x<﹣2或0<x<2时,f(x)<0,(如图)则不等式xf(x+1)<0等价为或,即或,则或,解得0<x<1或﹣3<x<﹣1,故不等式的解集为(0,1)∪(﹣3,﹣1),故答案为:(0,1)∪(﹣3,﹣1)11.(5分)已知函数f(x)=,则f(1)+f(2)+f(3)+…+f(2017)=.【解答】解:x>0时,f(x)=f(x﹣2),即有f(x+2)=f(x),f(2)=f(0)=1,f(3)=f(1)=f(﹣1)=,f(4)=f(0)=1,则f(1)+f(2)+f(3)+…+f(2017)=+1++1+…+=×1008+=,故答案为:.12.(5分)设函数f(x)=x2﹣,则使f(2x)≤f(4﹣x)成立的x的取值范围是[﹣4,].【解答】解:根据题意,函数f(x)=x2﹣,有f(﹣x)=(﹣x)2﹣=x2﹣=f(x),则函数f(x)为偶函数,当x≥0时,f(x)=x2﹣=x2﹣,其导数f′(x)=2x+>0,则函数f(x)在[0,+∞)上为增函数,若f(2x)≤f(4﹣x),必有|2x|≤|4﹣x|,即4x2≤x2﹣8x+16,变形可得:3x2+8x﹣16≤0,解可得:﹣4≤x≤,即x的取值范围为;故答案为:.13.(5分)已知函数f(x)是定义在R上的奇函数,对任意的x∈R,均有f(x+2)=f(x),当x∈[0,1)时,f(x)=2x﹣1,则下列结论正确的是③.①f(x)的图象关于x=1对称②f(x)的最大值与最小值之和为2③方程f(x)﹣lg|x|=0有10个实数根④当x∈[2,3]时,f(x)=2x+2﹣1【解答】解:∵f(x)是定义在R上的奇函数,∴f(0)=0,又x∈[0,1)时,f(x)=2x﹣1,设x∈(﹣1,0],则﹣x∈[0,1),∴f(﹣x)=2﹣x﹣1=﹣f(x),∴f(x)=﹣2﹣x+1又f(x)=f(x+2),∴f(x)是以2为周期的函数,画出函数y=f(x)与y=lg|x|的图象,如图所示,结合图象可得函数f(x)无对称轴,f(x)的最大值与最小值之和为0,当x>0时,y=f(x)与y=lg|x|有个交点,当x<0y=f(x)与y=lg|x|有5个交点,故方程f(x)﹣lg|x|=0有10个实数根;∵当x∈[2,3]时,∴x﹣2∈[0,1),∴f(x﹣2)=2x﹣2﹣1=f(x),∴当x∈[2,3]时,f(x)=2x﹣2﹣1,故④错误,综上所述,正确的为③,故答案为:③14.(5分)已知函数f(x)=函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是(2,3].【解答】解:由题意当y=f(x)﹣g(x)=2[f(x)﹣1]=0 时,即方程f(x)=1 有4个解.又由函数y=a﹣|x+1|与函数y=(x﹣a)2的大致形状可知,直线y=1 与函数f(x)=的左右两支曲线都有两个交点当x≤1时,函数f(x)的最大值为a,则a>1,同时在[﹣1,1]上f(x)=a﹣|x+1|的最小值为f(1)=a﹣2,当a>1时,在(1,a]上f(1)=(1﹣a)2,要使y=f(x)﹣g(x)恰有4个零点,则满足,即,解得2<a≤3.故答案为:(2,3]二、解答题(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤).15.(14分)已知p:实数x,满足x﹣a<0,q:实数x,满足x2﹣4x+3≤0.(1)若a=2时p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:(1)由x﹣a<0,得x<a.当a=2时,x<2,即p为真命题时,x <2.由x2﹣4x+3≤0得1≤x≤3,所以q为真时,1≤x≤3.若p∧q为真,则1≤x<2所以实数x的取值范围是[1,2).(2)设A=(﹣∞,a),B=[1,3],q是p的充分不必要条件,所以B⊆A,从而a>3.所以实数a的取值范围是(3,+∞).16.(14分)已知函数f(x)=lg[x2+(1﹣a)x﹣a].(1)求函数f(x)的定义域.(2)若f(x)为偶函数,求实数a的值.【解答】解:(1)因为x2+(1﹣a)x﹣a>0,即(x+1)(x﹣a)>0,当a<﹣1时,不等式的解为x<a或x>﹣1,此时,函数f(x)的定义域为{x|x <a或x>﹣1};当a=﹣1时,不等式的解为x≠﹣1,此时,函数f(x)的定义域为{x|x≠﹣1};当a>﹣1时,不等式的解为x<﹣1或x>a,此时,函数f(x)的定义域为{x|x<﹣1或x>a};(2)如果函数f(x)是偶函数,则其定义域关于原点对称,由(1)知,a=1.检验:当a=1时,定义域为{x|x<﹣1或x>1},关于原点对称,f(x)=lg(x2﹣1),则f(﹣x)=lg[(﹣x)2﹣1]=lg(x2﹣1)=f(x),因此,当a=1时,f(x)是偶函数.17.(14分)已知函数f(x)=b•a x(其中a,b为常量且a>0且a≠1)的图象经过点A(l,8),B(3,32)(I)试求a、b的值;(II)若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.【解答】解:(Ⅰ)∵函数f(x)=b•a x,(其中a,b为常数且a>0,a≠1)的图象经过点A(1,8),B(3,32),∴,解得a=2,b=4,∴f(x)=4•(2)x=2x+2,(Ⅱ)设g(x)=()x+()x=()x+()x,y=g(x)在R上是减函数,∴当x≤1时,g(x)min=g(1)=.若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,即m≤.18.(16分)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3﹣6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?【解答】解:(1)当x=50时,在乙城市投资为70万元,∴公司总收益为3+=43.5万元.(2)f(x)=3﹣6+=3﹣x+26(40≤x≤80).f′(x)=﹣,令f′(x)=0得x=72,∴当40≤x<72时,f′(x)>0,当72<x≤80时,f′(x)<0,∴f(x)在[40,72]上单调递增,在(72,80]上单调递减,∴当x=72时,f(x)取得最大值.∴该公司在甲城市投资72万元,在乙城市投资48万元,总收益最大.19.(16分)已知函数f(x)=x|x﹣2a|,a∈R.(1)若a=0,且f(x)=﹣1,求x的值;(2)当a>0时,若f(x)在[2,+∞)上是增函数,求a的取值范围;(3)若a=1,求函数f(x)在区间[0,m](m>0)上的最大值g(m).【解答】解:(1)由a=0知f(x)=x|x|,又f(x)=﹣1即x|x|=﹣1,∴x=﹣1.(2)f(x)==,∵f(x)在[2,+∞)上是增函数∴2a≤2,即a≤1,∴0<a≤1.(3)f(x)=,f(x)图象如图当0<m≤1时,g(m)=f(m)=m(2﹣m);当m>+1时,g(m)=f(m)=m(m﹣2);综上g(m)=.20.(16分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的值域为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)【解答】解:(1)由题意得:f(x)的对称轴是x=﹣2,故f(x)在区间[﹣1,1]递增,∵函数在区间[﹣1,1]存在零点,故有,即,解得:0≤a≤8,故所求实数a的范围是[0,8];(2)若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,只需函数y=f(x)的值域是函数y=g(x)的值域的子集,a=0时,f(x)=x2+4x﹣5,x∈[1,2]的值域是[0,7],下面求g(x),x∈[1,2]的值域,令t=4x﹣1,则t∈[1,4],y=mt﹣2m+7,①m=0时,g(x)=7是常数,不合题意,舍去;②m>0时,g(x)的值域是[7﹣m,2m+7],要使[0,7]⊆[7﹣m,2m+7],只需,解得:m≥7;③m<0时,g(x)的值域是[2m+7,7﹣m],要使[0,7]⊆[2m+7,7﹣m],只需,解得:m≤﹣,综上,m的范围是(﹣∞,﹣]∪[7,+∞);(3)由题意得,解得:t<,①t≤﹣6时,在区间[t,2]上,f(t)最大,f(﹣2)最小,∴f(t)﹣f(﹣2)=t2+4t+4=6﹣4t,即t2+8t﹣2=0,解得:t=﹣4﹣3或t=﹣4+3(舍去);②﹣6<t≤﹣2时,在区间[t,2]上,f(2)最大,f(﹣2)最小,∴f(2)﹣f(﹣2)=16=6﹣4t,解得:t=﹣;③﹣2<t<时,在区间[t,2]上,f(2)最大,f(t)最小,∴f(2)﹣f(t)=﹣t2﹣4t+12=6﹣4t,即t2=6,解得:t=或t=﹣,故此时不存在常数t满足题意,综上,存在常数t满足题意,t=﹣4﹣3或t=﹣.。

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(理)试题(解析版)

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(理)试题(解析版)

2017-2018学年第二学期高二期中考试数学试题(理科)一、填空题(每题5分,满分70分,将答案填在答题纸上)1. 复数的虚部为__________.【答案】【解析】分析:利用复数除法的运算法则化简复数为的形式,即可得到复数虚部.详解:,则复数的虚部,故答案为.点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.2. 用反证法证明命题“若能被2整除,则中至少有一个能被2整除”,那么反设的内容是__________.【答案】都不能被2整除【解析】试题分析:先写出要证明题的否定,即为所求.解:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故答案为:a、b都不能被2整除.点评:本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属于中档题.3. 设复数虚数单位),的共轭复数为,则________.【答案】【解析】分析:由,可得,代入,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为,所以,,故答案为.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意和4. 用数学归纳法证明不等式“对于的自然数都成立”时,第一步证明中的起始值自然数应取为__________.【答案】5. 三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是__________.(填写序号)【答案】②【解析】试题分析:小前提是特殊的对象,题中②正方形相对于长方形是特殊对象,因此②是小前提.考点:演绎推理.6. 观察下列等式:…………据此规律,第个等式可为___________.【答案】【解析】试题分析:观察等式知:第n个等式的左边有个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到的连续正整数,等式的右边是.故答案为.考点:归纳推理.7. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数有__________ 个【答案】【解析】分析:用组成无重复数字的五位奇数,可以看作是个空,要求个位是奇数,其它位置无条件限制,因此先从个奇数中任选个填入个位,其它个数在个位置上全排列即可.详解:要组成无重复数字的五位奇数,则个位只能排中的一个数,共有3种排法,然后还剩个数,剩余的个数可以在十位到万位个位置上全排列,共有种排法,由分步乘法计数原理得,由组成的无重复数字的五位数中奇数有个,故答案为.点睛:本题主要考查分步计数原理及位置有限制的排列问题,属于中档题.元素位置有限制的排列问题有两种方法:(1)先让特殊元素排在没限制的位置;(2)先把没限制的元素排在有限制的位置.8. 设,那么______.【答案】【解析】分析:根据函数表达式含义,准确判断出与项数变化规律以及之间的关系即可得到结论.详解:,,,故答案为.点睛:项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.9. 已知,则_________.【答案】【解析】分析:由组合数性质得,解方程求出,进而能求出的值.详解:,,化简得,,,解得或(舍去),,故答案为.点睛:本题主要考查组合式的运算,解答这类问题,一定注意记忆常见组合式:(1);(2);(3).10. 的展开式中的系数为70,则________.【答案】【解析】分析:先求出二项式展开式的通项公式,再令的幂指数等于,求得的值,即可求得展开式中的的系数,再根据的系数为70 ,求得的值.详解:的展开式中通项公式的为,令,求得,故的系数为,则,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.11. 在数列中,,可以猜测数列通项的表达式为_________.【答案】【解析】分析:根据,,,依次由,分别求出,仔细观察,总结规律,可猜想.详解:,,,由此猜测,故答案为.点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.12. 记等差数列得前项和为,利用倒序相加法的求和办法,可将表示成首项,末项与项数的一个关系式,即;类似地,记等比数列的前项积为,类比等差数列的求和方法,可将表示为首项,末项与项数的一个关系式,即公式______.【答案】【解析】分析:由等差数列类比等比数列,在运用类比推理时,通常等差数列中的求和类比等比数列中乘积,从而可得结果,.详解:在等差数列得前项和为,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列的前项积,故答案为.点睛:本题主要考查类比推理,属于中档题.类比推理问题,常见的类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与实数的类比.13. 已知,则__________.【答案】【解析】,,,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14. 学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.【答案】【解析】分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.二、解答题(本大题共6小题,共90分。

江苏省无锡市江阴市青阳中学2017-2018学年高一下学期期中数学试卷 Word版含解析

江苏省无锡市江阴市青阳中学2017-2018学年高一下学期期中数学试卷 Word版含解析

2017-2018学年江苏省无锡市江阴市青阳中学高一(下)期中数学试卷一.填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程.请把答案直接填写在答题纸相应位置上.1.直线x+y+1=0的倾斜角是.2.在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为.3.数列{a n}的前n项和S n=2n2﹣3n(n∈N*),则a4=.4.若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是.5.在平面直角坐标系xOy中,直线x+(m+1)y=2﹣m与直线mx+2y=﹣8互相垂直,则实数m=.6.数列{a n}满足a1=3,﹣=5(n∈N+),则a n=.7.若数列{a n}的通项公式为a n=(﹣1)n+1n,S n是其前n项的和,则S100=.8.已知x+2y=6,则2x+4y的最小值为.9.在△ABC中,角A,B,C的对边分别是a,b,c,若,B=30°,b=2,则△ABC的面积是.10.若公比不为1的等比数列{a n}满足log2(a1•a2…a13)=13,等差数列{b n}满足b7=a7,则b1+b2…+b13的值为.11.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为.12.△ABC中,若sin(π﹣A)=,tan(π+B)=,则cosC=.13.对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.14.设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.二、解答题:本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.设不等式x2≤5x﹣4的解集为A.(Ⅰ)求集合A;(Ⅱ)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若M⊆A,求实数a的取值范围.16.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2(1)求∠A的大小;(2)若b=2,a=,求边c的大小;(3)若a=,求△ABC面积的最大值.17.已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.18.设数列{a n}的前n项和为S n,且满足S n=2﹣a n,n=1,2,3,….(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=1,且b n+1=b n+a n,求数列{b n}的通项公式;(3)设c n=n(3﹣b n),求数列{c n}的前n项和为T n.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.已知数列{a n}满足a n+1=a n+t,a1=(t为常数,且t≠).(1)证明:{a n﹣2t}为等比数列;(2)当t=﹣时,求数列{a n}的前几项和最大?(3)当t=0时,设c n=4a n+1,数列{c n}的前n项和为T n,若不等式≥2n﹣7对任意的n∈N*恒成立,求实数k的取值范围.2017-2018学年江苏省无锡市江阴市青阳中学高一(下)期中数学试卷参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程.请把答案直接填写在答题纸相应位置上.1.直线x+y+1=0的倾斜角是.【考点】直线的倾斜角.【分析】利用倾斜角与斜率的关系即可得出.【解答】解:设直线x+y+1=0的倾斜角为θ,(θ∈[0,π)),∵tanθ=﹣,∴.故答案为:.2.在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为.【考点】余弦定理.【分析】由已知及余弦定理即可求值.【解答】解:∵在△ABC中,A=60°,AC=3,AB=2,∴由余弦定理可得:BC2=AC2+AB2﹣2AC•AB•cosA=9+4﹣2×3×2×cos60°=7.∴BC=.故答案为:.3.数列{a n}的前n项和S n=2n2﹣3n(n∈N*),则a4=.【考点】等差数列的前n项和;等差数列的通项公式.【分析】由题设条件,利用公式求解即可.【解答】解:∵前n项和,∴a4=S4﹣S3=(2×16﹣3×4)﹣(2×9﹣3×3)=20﹣9=11.故答案为:11.4.若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是﹣5<m <10.【考点】简单线性规划.【分析】将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,使它们异号,建立不等关系,求出参数m即可.【解答】解:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,可得两个代数式,∵在直线2x+y+m=0的两侧∴(5+m)(﹣10+m)<0解得:﹣5<m<10,故答案为﹣5<m<10.5.在平面直角坐标系xOy中,直线x+(m+1)y=2﹣m与直线mx+2y=﹣8互相垂直,则实数m=﹣.【考点】直线的一般式方程与直线的垂直关系.【分析】由两直线ax+by+c=0与mx+ny+d=0垂直⇔am+bn=0解得即可.【解答】解:直线x+(m+1)y=2﹣m与直线mx+2y=﹣8互相垂直⇔m+2(m+1)=0⇔m=﹣.故答案为:.6.数列{a n}满足a1=3,﹣=5(n∈N+),则a n=.【考点】数列递推式;等差数列的通项公式.【分析】根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.【解答】解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:7.若数列{a n}的通项公式为a n=(﹣1)n+1n,S n是其前n项的和,则S100=﹣50.【考点】数列递推式.+a2k=(2k﹣1)﹣(2k)=﹣1.利用分组求和方法即可【分析】a n=(﹣1)n+1n,可得a2k﹣1得出.【解答】解:∵a n=(﹣1)n+1n,∴a2k+a2k=(2k﹣1)﹣(2k)=﹣1.﹣1则S100=(a1+a2)+…+(a99+a100)=﹣1×50=﹣50.故答案为:﹣50.8.已知x+2y=6,则2x+4y的最小值为16.【考点】基本不等式.【分析】根据基本不等式的性质,有2x+4y≥2=2,将已知条件x+2y=6代入可得答案.【解答】解:根据基本不等式的性质,有2x+4y≥2=2=2=16,当且仅当2x=4y即x=2y=3时取等号,∴2x+4y的最小值为16.故答案为:16.9.在△ABC中,角A,B,C的对边分别是a,b,c,若,B=30°,b=2,则△ABC的面积是.【考点】解三角形.【分析】根据正弦定理化简,得到a与c的关系式,由余弦定理表示出b2,把b和cosB以及a与c的关系式的值代入,得到关于c的方程,求出方程的解即可得到c 的值,进而得到a的值,利用三角形的面积公式,由a,c和sinB的值,即可求出△ABC的面积.【解答】解:由,根据正弦定理得:a=c,由余弦定理得:b2=a2+c2﹣2accosB,即4=4c2﹣3c2=c2,解得c=2,所以a=2,则△ABC的面积S=acsinB=×2×2×=.故答案为:10.若公比不为1的等比数列{a n}满足log2(a1•a2…a13)=13,等差数列{b n}满足b7=a7,则b1+b2…+b13的值为26.【考点】等比数列的通项公式.【分析】由题意和对数的运算可得a7,再由等差数列的性质可得答案.【解答】解:∵公比不为1的等比数列{a n}满足log2(a1•a2…a13)=13,∴log2(a1•a2…a13)=log2(a7)13=13•log2a7=13,解得a7=2,∴b7=a7=2,由等差数列的性质可得b1+b2…+b13=13b7=26故答案为:2611.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为.【考点】简单线性规划的应用;基本不等式在最值问题中的应用.【分析】先根据条件画出可行域,设z=ax+by,再利用几何意义求最值,将最大值转化为y 轴上的截距,只需求出直线z=ax+by,过可行域内的点(4,6)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=.故答案为:.12.△ABC中,若sin(π﹣A)=,tan(π+B)=,则cosC=.【考点】两角和与差的正弦函数.【分析】由同角三角函数的基本关系可sinA和cosA,sinB和cosB,而cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB,代值计算可得.【解答】解:由题意可得sin(π﹣A)=sinA=,∴cosA=±=±,又可得tan(π+B)=tanB=∴sinB=,cosB=.当cosA=时,cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB=﹣=当cosA=﹣时,A∈(,π),由tanB=>1可得B∈(,),此时两角之和就大于π了,应舍去,故答案为:13.对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.【考点】数列递推式.【分析】根据“光阴”值的定义,及,可得a1+2a2+…+na n=,再写一式,两式相减,即可得到结论.【解答】解:∵∴a1+2a2+…+na n=∵∴a1+2a2+…+na n=①∴a1+2a2+…+(n﹣1)a n=②﹣1①﹣②得﹣=∴故答案为:14.设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.【考点】等比数列的前n项和;等比数列的性质.【分析】首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0【解答】解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.二、解答题:本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.设不等式x2≤5x﹣4的解集为A.(Ⅰ)求集合A;(Ⅱ)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若M⊆A,求实数a的取值范围.【考点】一元二次不等式的解法;集合的包含关系判断及应用.【分析】(I)求出不等式x2≤5x﹣4的解集确定出集合A,(II)若B⊆A,求实数m的取值范围进要注意B是空集的情况,故此题分为两类求,是空集时,不是空集时,比较两个集合的端点即可.【解答】解:(Ⅰ)原不等式即为x2﹣5x+4=(x﹣1)(x﹣4)≤0,所以1≤x≤4所以不等式的解集A={x|1≤x≤4}(Ⅱ)不等式等价于(x﹣a)(x﹣2)≤0若a<2,则M=[a,2],要M⊆A,只需1≤a<2若a>2,则M=[2,a],要M⊆A,只需2<a≤4若a=2,则M=2,符合M⊆A综上所述,a的取值范围为[1,4].16.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2(1)求∠A的大小;(2)若b=2,a=,求边c的大小;(3)若a=,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(1)由已知及余弦定理可得cosA===,即可解得A.(2)由(1)及余弦定理即可得解.(3)由余弦定理可得:3=b2+c2﹣2bccosA=b2+c2﹣bc,从而解得bc≤3,利用三角形面积公式即可得解.【解答】解:(1)∵a2+bc=b2+c2,∴cosA===,∴A=.(2)∵由(1)可得:==,整理可得:c2﹣2c+1=0,∴解得:c=1(3)∵a=,A=.∴由余弦定理可得:3=b2+c2﹣2bccosA=b2+c2﹣bc,解得:bc≤3,∴≤=.17.已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.【考点】直线的一般式方程与直线的平行关系;直线的截距式方程.【分析】(1)利用直线平行求出a,然后验证即可.(2)求出A的坐标,设出方程,求出截距,化简求解即可.【解答】解:(1)……当a=2时,l3:3x+2y﹣1=0,与l1重合,不合题意,舍去∴…(多一解扣1分)(2)…由题知直线l的斜率存在且不为0,设l方程为y﹣2=k(x+1)…∴解得k=﹣1或k=﹣2…∴l的方程为y=﹣x+1或y=﹣2x…(用截距式做漏解扣3分)18.设数列{a n}的前n项和为S n,且满足S n=2﹣a n,n=1,2,3,….(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=1,且b n+1=b n+a n,求数列{b n}的通项公式;(3)设c n=n(3﹣b n),求数列{c n}的前n项和为T n.【考点】数列的求和;数列的函数特性;等比数列的通项公式.【分析】(1)利用数列中a n与Sn关系解决.(2)结合(1)所求得出b n+1﹣b n=.利用累加法求b n(3)由上求出c n=n (3﹣b n)=,利用错位相消法求和即可.【解答】解:(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.因为S n=2﹣a n,即a n+S n=2,所以a n+1+S n+1=2.两式相减:a n+1﹣a n+S n+1﹣S n=0,即a n+1﹣a n+a n+1=0,故有2a n+1=a n.因为a n≠0,所以=(n∈N*).所以数列{a n}是首项a1=1,公比为的等比数列,a n=(n∈N*).(2)因为b n+1=b n+a n(n=1,2,3,…),所以b n+1﹣b n=.从而有b2﹣b1=1,b3=(n=2,3,…).﹣b2=,b4﹣b3=,…,b n﹣b n﹣1将这n﹣1个等式相加,得b n﹣b1=1+++…+==2﹣.又因为b1=1,所以b n=3﹣(n=1,2,3,…).(3)因为c n=n (3﹣b n)=,所以T n=.①=.②①﹣②,得=﹣.故T n=﹣=8﹣﹣=8﹣(n=1,2,3,…).19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【考点】解三角形的实际应用.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tanx在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.20.已知数列{a n}满足a n+1=a n+t,a1=(t为常数,且t≠).(1)证明:{a n﹣2t}为等比数列;(2)当t=﹣时,求数列{a n}的前几项和最大?(3)当t=0时,设c n=4a n+1,数列{c n}的前n项和为T n,若不等式≥2n﹣7对任意的n∈N*恒成立,求实数k的取值范围.【考点】数列递推式;数列的函数特性.【分析】(1)由已知得,由此能证明{a n﹣2t}是以为首项,以为公比的等比数列.(2)当t=﹣时,{a n+}是以为首项,以为公比的等比数列,求出,由此能求出数列{a n}的前几项和最大.(3)当t=0时,a n=,c n=4a n+1=+1,从而T n=4+n﹣,由不等式≥2n﹣7对任意的n∈N*恒成立,得到3k≥对任意的n∈N*恒成立,由此能求出实数k的取值范围.【解答】证明:(1)∵数列{a n}满足a n+1=a n+t,a1=(t为常数,且t≠),∴,∴=,又a1﹣2t=,∴{a n﹣2t}是以为首项,以为公比的等比数列.解:(2)当t=﹣时,{a n+}是以为首项,以为公比的等比数列,∴,∴,由≥0,解得n≤2.∴数列{a n}的前2项和最大.(3)当t=0时,∴{a n}是以为首项,以为公比的等比数列,∴a n=,c n=4a n+1=+1,∴数列{c n}的前n项和:T n==4+n﹣,∵不等式≥2n﹣7对任意的n∈N*恒成立,∴3k≥对任意的n∈N*恒成立,设,由d n+1﹣d n==,∴当n≤4时,d n+1>d n,当n≥4时,d n+1<d n,∵,∴3k,解得k.∴实数k的取值范围是[).2018年7月23日。

2017-2018学年江苏省高一下学期期中考试数学试题(解析版)13

2017-2018学年江苏省高一下学期期中考试数学试题(解析版)13

高一下学期期中考试数学试题一、填空题1.过两点()()1,2,3,4M N 的直线的斜率为__________. 2.若数列{}n a 满足()*1220n n n a a a n N++-+=∈,且122,4aa ==,则数列{}n a 的通项公式为na =____________.3.在A B C ∆中,若sin :sin :sin 3:5:7A B C =,则co s C=___________4.已知三个数12,,3x 成等比数列,则实数x =_______________.5.不等式的解集为______________.(用区间表示)6.过两点()1,1-和()3,9的直线在x 轴上的截距是___________. 7.在等比数列{}n a 中,已知253432,4a a a a =-+=,且公比为整数,则9a =______.8.若直线220a x y -+=与直线()310x a y +-+=平行,则实数a 的值为_______.9.如果关于x 的不等式210m x m x --≥的解集为∅,则实数m 的取值范围是___.10.A B C ∆内角A,B,C 的对边分别为,,a b c ,若,,a b c 成等差数列,且s in ,s in ,s in A B C成等比数列,则角B=___________.11.已知下列四个条件:①0b a>>;②0a b>>;③0ab>>;④0ab >>.能推出11ab<成立的是___________.12.已知函数()2f x x x =-,则不等式()()1fx f ≤的解集为______.13.如图,在A O B ∆中,3,6,4A OB O A Mπ∠==为边A B 上一点,M到边,O A O B的距离分别为2,A B 的长为_____________.14.已知{}{},nna b 均为等比数列,其前n 项和分别为,nnST ,若对任意的*n ∈N ,总有314nn nS T +=,则33a b =.二、解答题 15.设集合A为函数1lg2x y x+=-的定义域,集合B为不等式()()120(0)a x x a -+≥>的解集.(1)若1a =,求A B ⋂;(2)若R B C A⊆,求实数a 的取值范围.16.(1)已知直线l 的方程为()20a x y a a R -++=∈,求证:不论a 为何实数,直线l 恒过一定点P ;(2)过(1)中的点P 作一条直线m ,使它被直线1:430l x y ++=和2:3550l x y --=截得的线段被点P 平分,求直线m 的方程.17.在A B C ∆中,三内角A,B,C 的对边分别为a,b,c. (1)若45,2c A a ===,求,C b ;(2)若tan a b A =,且B 为钝角,证明:2B A π-=,并求sin sin A C +的取值范围.18.如图,A,B,C 三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度是5千米/小时,乙的路线是ACB ,速度是8千米/小时,乙到达B 地后原地等待,设1tt =时,乙到达C 地.(1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上的最大值是否超过3?并说明理由.19.已知数列{}n a 的前n项和为nT ,且*1,2n n T a n N=-+∈,设()*1223lo g n n b a n N+=∈,数列{}nc 满足.nn n c a b =⋅.(1)求数列{}n b 的通项公式; (2)求数列{}n c 的前n 项和n S ; (3)若2114n c mm ≤++对一切正整数n 恒成立,求实数m 的取值范围.20.已知数列{}n a 的奇数项是公差为1d 的等差数列,偶数项是公差为2d 的等差数列, nS 是数列{}n a 的前n 项和,121, 2.a a ==(1)若54516,S a a ==,求10a ;(2)已知15815S a =,且对任意的*n N∈,有1n n a a +<恒成立,求证:数列{}n a 是等差数列; (3)若()12130d d d =≠,且存在正整数(),m n m n ≠,使得m n a a =,求当1d 最大时,数列{}n a 的通项公式.高一下学期期中考试数学试题【解析】一、填空题1.过两点()()1,2,3,4M N 的直线的斜率为__________. 【答案】1【解析】由斜率公式可得: 42131M N k -==-.2.若数列{}n a 满足()*1220n n n a a a n N++-+=∈,且122,4aa ==,则数列{}n a 的通项公式为n a =____________.【答案】2n【解析】由递推公式可得:211n n n na a a a +++-=-,数列{}n a 是等差数列,故:()2112,12n d a a a a n d n=-==+-=.3.在A B C ∆中,若sin :sin :sin 3:5:7A B C =,则co s C=___________【答案】12-【解析】由正弦定理可得: sin :sin :sin ::3:5:7A B C a b c ==,不妨设3,5,7(0)am b m c m m ===>,由余弦定理可得:2221c o s 22a b cC a b+-==-.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.4.已知三个数12,,3x 成等比数列,则实数x =_______________.【答案】6±【解析】由题意结合等比中项的结论有: 2123,6xx =⨯∴=±.5.不等式的解集为______________.(用区间表示)【答案】【解析】不等式即:,则不等式的解集是.6.过两点()1,1-和()3,9的直线在x 轴上的截距是___________. 【答案】32-【解析】由题意可得,直线的斜率()91231k -==--,直线方程为: ()923y x -=-, 令0y=可得: 32x =-,即直线在x 轴上的截距是32-.7.在等比数列{}n a 中,已知253432,4a a a a =-+=,且公比为整数,则9a =______.【答案】-256;【解析】由等比数列的性质结合题意有: 25343432{4a a a a a a ==-+=,解得: 348{4a a ==-或438{4a a ==-,结合公比为整数可得: 43824a q a ===--,则:()()669342256a a q==-⨯-=-.点睛:等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 8.若直线220a x y -+=与直线()310x a y +-+=平行,则实数a 的值为_______. 【答案】1;【解析】由直线平行的充要条件可得: 22131a a -=≠-,解得: 1a =.9.如果关于x 的不等式210m x m x --≥的解集为∅,则实数m 的取值范围是___.【答案】(]4,0- 【解析】当0m=时,原命题成立,否则应有:()()2{410m m m <∆=--⨯⨯-<,解得:40m -<<,综上可得:实数m 的取值范围是(]4,0-.点睛:不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,0{0a >∆<不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,0{a <∆<.10.A B C ∆内角A,B,C 的对边分别为,,a b c ,若,,a b c 成等差数列,且s in ,s in ,s in A B C成等比数列,则角B=___________.【答案】60︒【解析】∵a ,b ,c 成等差数列,且sinA ,sinB ,sinC 成等比数列, ∴2b =a +c ,sin 2B =sinAsinC ,即b 2=ac ,∴(a +c )2=4ac ,整理可得:(a −c )2=0,解得a =c ,∴b 2=ac =a 2=c 2,可得:a =b =c ,△ABC 为等边三角形, 则角60B =︒.11.已知下列四个条件:①0b a >>;②0a b >>; ③0ab>>;④0ab >>.能推出11ab<成立的是___________.【答案】①,②,④; 【解析】①若b>0>a ,则110a b <<,故①正确; ②若0>a>b ,则ab>0,∴a b a ba b>,即11a b <.故②正确; ③若a>0>b ,则110a b>>,故不能推出11a b<,因此③不正确;④若a>b>0,则a b a b a b >,即11a b<,故④正确。

江苏省无锡市江阴四校2018_2019学年高一数学下学期期中试题

江苏省无锡市江阴四校2018_2019学年高一数学下学期期中试题

2018-2019学年第二学期高一期中考试数学学科试题一. 选择题:本题共8小题,每小题5分,共40分,每题给出的四个选项中,只有一项是符合题目要求的。

1. 直线033=-+y x 的倾斜角的大小为( )A.6π B. 3π C. 32π D. 65π2.在ABC ∆中,3A π∠=,3BC =,AB =,则C ∠的大小为( )A. 6πB. 4πC. 2πD. 32π3.点P 是直线02=-+y x 上的动点,点Q 是圆122=+y x 上的动点,则线段PQ 长的最小值为( )A. 12-B.1C.12+D.24.方程052422=+-++m y mx y x 表示圆,则实数m 的取值范围为( ) A. ),2()41,(+∞⋃-∞ B. )1,41( C. ),1()41,(+∞⋃-∞ D.),1[]41,(+∞⋃-∞5. 在△ABC 中,若A =60°,a =2 3 ,则a +b +csinA +sinB +sinC等于 ( )A .1B .2 3C .4D .4 3 6.圆x 2+y 2+4x ﹣4y ﹣8=0与圆x 2+y 2﹣2x+4y+1=0的位置关系( ) A. 相交 B. 外离 C. 内切 D. 外切7. 直线 ,m n 和平面α, 若n m ,与平面α都平行,则直线 ,m n 的关系可以是( ) A. 相交 B. 平行 C. 异面 D. 以上都有可能8. 在ABC ∆中,角A ,B ,C 的对边分别是,,a b c ,若sin 3sin cos A C B =,且2c =,则ABC ∆的面积最大值为( )A .1B .2C .3D .4二.填空题:本大题共8小题,每小题5分,共40分。

请将答案填写在答题卡指定位置.......处.9. 已知R m ∈,直线1:30l mx y ++=,2:(32)20l m x my -++=, 若12//l l ,则实数m 的值为 .10. 在△ABC 中,已知BC=2,AC=7,,32π=B ,那么△ABC 的面积是 . 11.如图,在三棱锥ABC P -中,⊥PA 底面ABC ,90=∠ABC ,1===BC AB PA ,则PC 与平面PAB 所成角的正切值...为 . 12.如果平面直角坐标系中的两点A )1,1(+-a a ,B ),(a a 关于直线L 对称,那么直线L 的方程为 .13. 若圆222)1()1(R y x =++-上有且仅有三个点到直线4x+3y=11的距离等于1,则半径R 的值为___________.14.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,且A c C a B b cos cos cos 2+=,则角B 的值 .15.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E 后,测得塔顶的仰角为4θ,则塔高为_____米.16. 在平面直角坐标系xOy 中,圆C 的方程为22420x y x y +-+=.若直线3y x b =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数b 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17. (10分)如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,DP ⊥平面PBC ,E ,F 分别为PA 与BC 的中点.(1)求证:BC ⊥平面PDC ; (2)求证:EF//平面PDC .18. (10分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若cos sin a b C B =+. (1)求角B 的值;(2)若ABC ∆的面积S =5a =,求b 的值.19. (12分)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,PABC(第11题)CD E ABθ2θ 4θ渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 小时追上,此时到达C 处. (1)求渔船甲的速度; (2)求sin α的值.20. 如图,在三棱柱ABC -A 1B 1C 1中,ABC AA 平面⊥1,底面为正三角形,AB =AA 1,D 是BC 的中点,P 是CC 1的中点.求证:(1)A 1B//1AC D 平面; (2)11B P AC D ⊥平面.21. (12分)如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点(1,0)A -,(1,2)B .(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN AB =,求直线l 的方程; (2)在圆C 上是否存在点P ,使得2212PA PB +=?若存在,求点P 的个数;若不存在,说明理由.22.(14分)如图,圆,:1)2(22=+-y x M 点)1(t P ,-为直线1-=x l :上一动点,过点P 引圆M的两条切线,切点分别为A、B.(1)若,t求切线所在直线方程;1(2)求AB的最小值;(3)若两条切线PA,PB与y轴分别交于S、T两点,求ST的最小值.。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},A)∩B=()则(∁UA.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.167.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.28.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥29.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣210.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A. B.C.D.11.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.12.已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为()A.(﹣2,+∞)B.(﹣2,2)C.(﹣∞,﹣2)D.(﹣∞,+∞)二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是m/s.14.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).15.下列结论中,正确结论的序号为①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.16.若实数a,b满足2a+2b=1,则a+b的最大值是.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁UA)∩B=()A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅【考点】1H:交、并、补集的混合运算.【分析】先计算集合CU A,再计算(CUA)∩B.【解答】解:∵A={﹣1,﹣2,0},B={﹣3,﹣4,0},∴CUA={﹣3,﹣4},∴(CUA)∩B={﹣3,﹣4}.故答案选B.2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)【考点】2E:复合命题的真假.【分析】根据已知条件便知P点是直线y=2x﹣3和直线y=﹣3x+2的交点,所以解方程组即得点P坐标.【解答】解:若“p且q”为真命题,则:P既在直线y=2x﹣3上,又在y=﹣3x+2上;所以点P是直线y=2x﹣3和y=﹣3x+2的交点;∴解得x=1,y=﹣1;∴P(1,﹣1).故选C.3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B【考点】18:集合的包含关系判断及应用.【分析】化解集合A,B,根据集合之间的关系判断即可.【解答】解:集合A={x|﹣x2﹣x+2<0}={x|x>1或x<﹣2},B={x|2x﹣5>0}={x|x>2.5}.∴B⊆A,故选A4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④【考点】2K:命题的真假判断与应用.【分析】结合四种命题的定义,及互为逆否的两个命题,真假性相同,分别判断各个结论的真假,可得答案.【解答】解:①“若a2<b2,则a<b”的否命题为“若a2≥b2,则a≥b”为假命题,故错误;②“全等三角形面积相等”的逆命题“面积相等的三角形全等”为假命题,故错误;③若a>1,则△=4a2﹣4a(a+3)=﹣12a<0,此时ax2﹣2ax+a+3>0恒成立,故“若a>1,则ax2﹣2ax+a+3>0的解集为R”为真命题,故其逆否命题为真命题,故正确;④“若x(x≠0)为有理数,则x为无理数”为真命题,故其的逆否命题,故正确.故选:A5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N【考点】1H:交、并、补集的混合运算.【分析】根据题中的新定义判断即可得到结果.【解答】解:根据题意得:M﹣(M﹣N)=M∩N,故选:B.6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.16【考点】7F:基本不等式.【分析】利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵x>0,y>0, +=1,∴x+y=(x+y)=10+=16,当且仅当y=3x=12时取等号.∴x+y的最小值为16.故选:D.7.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.2【考点】6H:利用导数研究曲线上某点切线方程;3T:函数的值.【分析】利用函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,可求f(1)、f′(1)的值,从而可得结论.【解答】解:∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴f(1)=1,f′(1)=∴f(1)+2f′(1)=2故选D.8.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥2【考点】2L:必要条件、充分条件与充要条件的判断.【分析】解不等式可得x<﹣1,或x>2,由充要条件的定义可得{x|x≥k}是集合{x|x<﹣1,或x>2}的真子集,结合数轴可得答案.【解答】解:解不等式x2﹣x﹣2>0可得x<﹣1,或x>2,要使“x≥k”是“x2﹣x﹣2>0”的充分不必要条件,则需集合A={x|x≥k}是集合B={x|x<﹣1,或x>2}的真子集,故只需k>2即可,故实数k的取值范围是(2,+∞),故选:C.9.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣2【考点】6F:极限及其运算.),【分析】由题意可得=﹣2=﹣2f′(x结合已知可求)=2【解答】解:∵ =﹣2=﹣2f′(x0)=﹣1∴f′(x故选B10.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A .B .C .D .【考点】63:导数的运算;3O :函数的图象.【分析】根据导数和函数的单调性的关系即可判断.【解答】解:由f′(x )图象可知,函数f (x )先减,再增,再减,故选:D .11.若点P 是曲线y=x 2﹣lnx 上任意一点,则点P 到直线y=x ﹣2的最小距离为( )A .1B .C .D .【考点】IT :点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P 到直线y=x ﹣2的最小距离.【解答】解:过点P 作y=x ﹣2的平行直线,且与曲线y=x 2﹣lnx 相切,设P (x 0,x 02﹣lnx 0)则有k=y′|x=x 0=2x 0﹣.∴2x 0﹣=1,∴x 0=1或x 0=﹣(舍去).∴P (1,1),∴d==.故选B .12.已知函数f (x )的定义域为R ,f (﹣2)=2021,对任意x ∈(﹣∞,+∞),都有f'(x )<2x 成立,则不等式f (x )>x 2+2017的解集为( )A .(﹣2,+∞)B .(﹣2,2)C .(﹣∞,﹣2)D .(﹣∞,+∞) 【考点】6B :利用导数研究函数的单调性.【分析】构造函数g (x )=f (x )﹣x 2﹣2017,利用对任意x ∈R ,都有f′(x )<2x 成立,即可得出函数g(x)在R上单调性,进而即可解出不等式.【解答】解:令g(x)=f(x)﹣x2﹣2017,则g′(x)=f′(x)﹣2x<0,∴函数g(x)在R上单调递减,而f(﹣2)=2021,∴g(﹣2)=f(﹣2)﹣(﹣2)2﹣2017=0,∴不等式f(x)>x2+2017,可化为g(x)>g(﹣2),∴x<﹣2,即不等式f(x)>x2+2017的解集为(﹣∞,﹣2),故选:C.二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是 4 m/s.【考点】61:变化的快慢与变化率.【分析】求出位移的导数;将t=3代入;利用位移的导数值为瞬时速度;求出当t=3s时的瞬时速度.【解答】解:根据题意,S=t+t3,则s′=1+t2将t=3代入得s′(3)=4;故答案为:414.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).【考点】2L:必要条件、充分条件与充要条件的判断.【分析】x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.【解答】解:x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,f′(x)=3x2,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.∴f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件.故答案为:必要不充分条件.15.下列结论中,正确结论的序号为①②④①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.【考点】2K:命题的真假判断与应用.【分析】根据充要条件的定义和对数函数的性质,可判断①;根据复合命题的真假,可判断②;根据特称命题的否定方法,可判断③;运用原命题的逆否命题,可判断④.【解答】解:对于①,由M,N>0,函数y=log2x在(0,+∞)递增,可得“M>N”⇔“log2M>log2N”,故①正确;对于②,如果命题“p或q”是真命题,“非p”是真命题,可得P为假命题,q一定是真命题.故②正确;对于③,p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x>0,x2+2x﹣2>0.故③不正确;对于④,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.故④正确.故答案为:①②④.16.若实数a,b满足2a+2b=1,则a+b的最大值是﹣2 .【考点】7F:基本不等式.【分析】由2a+2b=1,得=,从而可求a+b的最大值,注意等号成立的条件.【解答】解:∵2a+2b=1,∴=,即,∴a+b≤﹣2,当且仅当,即a=b=﹣1时取等号,∴a=b=﹣1时,a+b取最大值﹣2.故答案为:﹣2.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算g′(4),求出切线方程即可;(2)设出切点为M(x0,y),表示出切线方程,求出切点坐标,从而求出切线方程即可.【解答】解:(1)∵g(x)=,∴g′(x)=,∴g′(4)=,∴曲线g(x)在点(4,2)处的切线方程为y﹣2=(x﹣4),即y=x+1;(2)曲线方程为y=x3﹣3x,点A(0,16)不在曲线上,设切点为M(x0,y),则点M的坐标满足y=x3﹣3x,因f′(x0)=3(x2﹣1),故切线的方程为y﹣y=3(x2﹣1)(x﹣x),将A(0,16)代入切线方程化简得x03=﹣8,解得x=﹣2.所以切点为M(﹣2,﹣2),切线方程为9x﹣y+16=0.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,即可得出.【解答】解:由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,∴,∴0≤a≤.∴实数a的取值范围是[0,].19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)求得不等式f(x)≤2的解集,再根据不等式f(x)≤2的解集为{x|﹣1≤x≤5},求得实数m的值.(2)由题意可得g(x)=|x﹣2|+|x+3|的最小值大于或等于t﹣2,求得g(x)=|x﹣2|+|x+3|的最小值,可得t的范围.【解答】解:(1)由f(x)≤2得,|x﹣m|≤3,解得m﹣3≤x≤m+3,又已知不等式f(x)≤2的解集为{x|﹣1≤x≤5},∴,解得m=2.(2)当m=2时,f(x)=|x﹣2|﹣1,由于f(x)+f(x+5)≥t﹣2对一切实数x恒成立,则|x﹣2|+|x+3|﹣2≥t﹣2对一切实数x恒成立,即|x﹣2|+|x+3|≥t对一切实数x恒成立,设g(x)=|x﹣2|+|x+3|,于是,所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5,∴t≤5,即t的取值范围为(﹣∞,5].20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,利用导数为0,求解极值点,然后判断求解极值即可.(2)利用导函数的符号,结合基本不等式或函数的导数求解函数的最值,推出结果即可.【解答】解:(1)∵f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx,x>0∴,因为a=1,令=0得x=1或x=(舍去)…又因为,当0<x<1时,f'(x)<0;x>1时,f'(x)>0所以x=1时,函数f(x)有极小值f(1)=0…(2)若f'(x)>0,在x>0上恒成立,则2x2﹣(2﹣a)x﹣(2﹣a)>0恒成立,∴恒成立…而当x>0时∵.检验知,a=2时也成立∴a≥2…[或:令,∴,∵x>0,∴g'(x)<0﹣﹣﹣﹣﹣所以,函数g(x)在定义域上为减函数所以g(x)<g(0)=2检验知,a=2时也成立∴a≥2….21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得 x>3.综上可得,原不等式的解集为{x|x<﹣6,或 x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数,直接让导函数大于0求出增区间,导函数小于0求出减区间即可;(Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值;(Ⅲ)先求出g(x)的导函数,分情况讨论出函数在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最小值.【解答】解:(Ⅰ)因为函数f(x)=,∴f′(x)==,f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,或x>2,故函数f(x)的单调增区间为(0,2),单调减区间为(﹣∞,0)和(2,+∞),(Ⅱ)设切点为(x,y),由切线斜率k=1=,⇒x3=﹣ax+2a,①由x﹣y﹣1=x﹣﹣1=0⇒(x2﹣a)(x﹣1)=0⇒x=1,x=±.把x=1代入①得a=1,把x=代入①得a=1,把x=﹣代入①得a=﹣1(舍去),故所求实数a的值为1.(Ⅲ)∵g(x)=xlnx﹣x2f(x)=xlnx﹣a(x﹣1),∴g′(x)=lnx+1﹣a,解lnx+1﹣a=0得x=e a﹣1,故g(x)在区间(e a﹣1,+∞)上递增,在区间(0,e a﹣1)上递减,①当e a﹣1≤1时,即0<a≤1时,g(x)在区间[1,e]上递增,其最小值为g(1)=0;②当1<e a﹣1<e时,即1<a<2时,g(x)的最小值为g(e a﹣1)=a﹣e a﹣1;③当e a﹣1≥e,即a≥2时,g(x)在区间[1,e]上递减,其最小值为g(e)=e+a﹣ae.。

2017-2018学年江苏省无锡市江阴四校高一下学期期中考试数学试题

2017-2018学年江苏省无锡市江阴四校高一下学期期中考试数学试题

2017-2018学年江苏省无锡市江阴四校高一下学期期中考试数学试题一、填空题:(本大题共14小题,每小题5分,共70分) 1.在等比数列{a n }中,已知a 1=2,q =3,则公比a 5= . 2. 不等式的解集为_______.3. 直线l 与直线032=++y x 垂直,且过点,则直线l 的方程为 .4.已知△ABC 的三个内角A 、B 、C 成等差数列,且边a=4,c=2,则△ABC 的面积为 .5. 在等差数列{}n a 中,若20,16203==S a ,则公差d= .6. 已知等差数列{}n a 的公差d 不为0,且731,,a a a 成等比数列,则=da 1. 7.在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 三角形. 8. 在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为 . 9. 若关于x 的不等式的解集为R ,则实数a 的取值范围是 .10. 数列{}n a 的前n 项和为12S 2-+=n n n ,则.11. 已知数列{}n a 的通项公式为,则此数列前10项和10S = .12. 已知数列{}n a 满足112a =,11(2)(1)n n n na a a a n n n ---=≥-,则该数列的通项公式n a = .13. 对任意m ∈[-1,1],函数的值恒大于零,求x 的取值范围 .14.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 二、解答题(本大题共6小题,共计90分) 15.(本题14分)已知直线和的交点为A(1)若直线与1l 平行,求实数a 的值;(2)求经过点A ,且在两坐标轴上截距相等的直线l 的方程.16.(本题14分)在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.17.(本题15分)如图,A 、B是海面上位于东西方向相距5(3海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距C 点的救援船立即前往营救,其航行速度为30海里/小时,试求:(1)轮船D 与观测点B 的距离; (2)救援船到达D 点所需要的时间.18.(本题15分)已知数列{}n a 的首项123a =,121n n n a a a +=+, *N n ∈ (1)设11-=nn a b 证明:数列{}n b 是等比数列;(2)数列⎭⎬⎫⎩⎨⎧n b n 的前n 项和n S .19.(本题16分)已知函数()a x x x f ++=32,()()1+=x x f x g (1)若不等式()0<x f 的解集是{}1<<x a x ,求a 的值;(2)当1(),02g b b a a b =+<其中,求4a b +的最大值;(3)若对任意[)+∞∈,2x ,不等式恒成立,求实数a 的取值范围20.(本题16分)已知n 为正整数,数列{}n a 满足0n a >,()221410n n n a na ++-=,设数列{}n b 满足2n n n a b t=(1)求证:数列为等比数列;(2)若数列{}n b 是等差数列,求实数t 的值;(3)若数列{}n b 是等差数列,前n 项和为n S ,对任意的n N *∈,均存在m N *∈,使得242211816n n a S a n b -=成立,求满足条件的所有整数1a 的值.2017-2018学年第二学期高一期中考试数学学科答案1、1622、[]4,2-3、022=--y x4、325、2-6、27、等腰8、︒1209、⎪⎭⎫ ⎝⎛∞+,3410、⎩⎨⎧≥+=21212n n n ,, 11、1043512、错误!未找到引用源。

江苏省江阴四校高一数学下学期期中试题

江苏省江阴四校高一数学下学期期中试题

2016-2017学年第二学期高一期中考试数学学科试题考试时间:120分钟 分值:160分一.填空题(本大题共14小题,每小题5分,共70分。

)1. 经过点)3,2(A ,且与直线0332=-+y x 平行的直线方程为 .2. 一元二次不等式(x -2)(x +2)<5的解集为 ______________ .3. 数列{}n a 为等差数列,已知389220a a a ++=,则7a =___________.4. 在△ABC 中,若A b B a cos cos =,则△ABC 的形状是 .5. 不等式042<++ax x 的解集不是空集,则实数a 的取值范围是 _______ 6. 在公比为2=q 的等比数列}{n a 中,n S 是其前n 项和,若64255,2==m m S a ,则=m .7. 在△ABC 中,A =60,b =1,ABC 外接圆的半径为 ___________ . 8. 已知直线l 经过点(5,4)P --,且l 与在坐标轴上的截距互为相反数,直线l 的方程 ____ 9. 在锐角ABC ∆中,已知A=B,则ac的取值范围是 10. 已知(2,3),(4,1),A B -直线:10l kx y k +-+=与线段AB 有公共点,则k 的取值是 _____________.11. 数列{a n }的首项为a 1=1,数列{b n }为等比数列且,若则a 21= .12. 在ABC ∆中,角C B A 、、所对的边分别c b a 、、,45a C ==,tan 21tan A cB b+=,则边长c 的值是____________.13. 设等差数列}{n a 的前n 项和为,n S 且满足,0,01615<>S S 则15152211,,,a S a S a S 中最大的项为 _________ .14. 设S n 为数列}{n a 的前n 项之和,若不等式]2)1[(41211222122----≥+n n n a a a n S a n λ对任何等差数列}{n a 及任何正整数n 恒成立,则λ的最大值为 .二.解答题(本大题共6小题,共70分。

【学期】高一数学下学期期中试题扫描版1

【学期】高一数学下学期期中试题扫描版1

【关键字】学期江苏省江阴市2016-2017学年高一数学下学期期中试题(扫描版)参照答案:一.填空题:1.1;2.2n;3.;4.;5.;6.;7.-256;8.1;9.;10.;11.1,2,4;12.;13.;14.315.(1)(2)16.(1)证明过程略;(2)17.(1)C=,(2)证明过程略,18.(1)由题意可得t1=ACv乙=38h,设此时甲运动到点P,则AP=v甲t1=5×38=,∴f(t1)=PC=AC2+AP2−⋅AP⋅cosA−−−−−−−−−−−−−−−−−−−−−−−−−−√=32+(158)2−2×3×158×35−−−−−−−−−−−−−−−−−−−−−−−−−−√=341−−√;(2)当t1⩽t⩽78时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB−8t=7−8t,PB=AB−AP=5−5t,∴f(t)=PQ=QB2+PB2−2QB⋅PB⋅cosB−−−−−−−−−−−−−−−−−−−−−−−−−√=(7−8t)2+(5−5t)2−2(7−8t) (5−5t)0.8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√=25t2−42t+18−−−−−−−−−−−−−√,当78<t⩽1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB−AP=5−5t∴f(t)=⎧⎩⎨⎪⎪⎪⎪25t2−42t+18−−−−−−−−−−−−−√,38⩽t⩽785−5t,78<t⩽1∴当38<t⩽1时,f(t)∈[0,341−−√8],故f(t)的最大值没有超过。

19.(1)由an+1=12an得,数列{an}是公比为12的等比数列,则an=(12)n+1(n∈N∗),…(2分)所以bn+2=3log12(12)n+1=3n+3,即bn=3n+1.…(4分)(2)由(1)知,an=(12)n+1(n∈N∗),bn=3n+1,则cn=(3n+1)⋅(12)n+1. …(5分)Sn=4×(12)2+7×(12)3+10×(12)4+…+(3n−2)×(12)n+(3n+1)×(12)n+1,①则12Sn=4×(12)3+7×(12)4+10×(12)5+…+(3n−2)×(12)n+1+(3n+1)×(12)n+2,②…(7分)①−②两式相减得12Sn=4×(12)2+3×(12)3+3×(12)4+…+3×(12)n+3×(12)n+1−(3n+1)(12)n+2=1+3×[(12)3+(12)4+…+(12)n+1]−(3n+1)(12)n+2=1+3×(12)3(1−(12)n−1)1−12−(3n+1)(12)n+2=74−(3n+7)(12)n+2所以Sn=72−(3n+7)(12)n+1.…(10分)(3)因为cn=(3n+1)⋅(12)n+1,所以cn+1−cn=(3n+4)(12)n+2−(3n+1)(12)n+1=(1−32n)(12)n+1<0,则数列{cn}单调递减,∴当n=1时,cn取最大值是14,…(13分)又∵cn⩽+m−1对一切正整数n恒成立,∴+m−1⩾14,即m2+−5⩾0,解得:m⩾1或m⩽−5.…(16分)20.(1)根据题意,有a1=1,a2=2,a3=a1+d1=1+d1,a4=a2+d2=2+d2,a5=a3+d1=1+2d1∵S5=16,a4=a5∴a1+a2+a3+a4+a5=7+3d1+d2=16,2+d2=1+2d1∴d1=2,d2=3.∴a10=2+4d2=14(2)证明:当n为偶数时,∵an<an+1恒成立,∴2+(n2−1)d2<1+n2d1,∴n2(d2−d1)+1−d2<0∴d2−d1⩽0且d2>1当n为奇数时,∵an<an+1恒成立,∴1+n−12d1<2+(n+12−1)d2,∴(1−n)(d1−d2)+2>0∴d1−d2⩽0∴d1=d2∵S15=8,∴8+8×72d1+14+7×62×d2=30+45d2∴d1=d2=2∴an=n∴数列{an}是等差数列;(3)若d1=3d2(d1≠0),且存在正整数m、n(m≠n),使得am=an,在m,n中必然一个是奇数,一个是偶数不妨设m为奇数,n为偶数∵am=an,∴1+m−12d1=2+(n2−1)d2∵d1=3d2,∴d1=63m−n−1∵m为奇数,n为偶数,∴3m−n−1的最小正值为2,此时d1=3,d2=1∴数列{an}的通项公式为an=⎧⎧⎧⎧⎧⎧⎧32n−12,n为奇数n2+1,n为偶数.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第二学期高一期中考试数学学科试题
一、填空题:(本大题共14小题,每小题5分,共70分)
1.在等比数列{a n }中,已知a 1=2,q =3,则公比a 5= .
2. 不等式的解集为_______.
3. 直线l 与直线032=++y x 垂直,且过点
,则直线l 的方程为 . 4.已知△ABC 的三个内角A 、B 、C 成等差数列,且边a=4,c=2,则△ABC 的面积为 .
5. 在等差数列{}n a 中,若20,16203==S a ,则公差d= .
6. 已知等差数列{}n a 的公差d 不为0,且731,,a a a 成等比数列,则=d
a 1 . 7.在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 三角形.
8. 在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..
为 . 9. 若关于x 的不等式的解集为R ,则实数a 的取值范围是 .
10. 数列{}n a 的前n 项和为12S 2-+=n n n ,则 . 11. 已知数列{}n a 的通项公式为
,则此数列前10项和10S = . 12. 已知数列{}n a 满足112
a =,11(2)(1)n n n n a a a a n n n ---=≥-,则该数列的通项公式n a = .
13. 对任意m ∈[-1,1],函数
的值恒大于零,求x 的取值范围 .
14.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.
二、解答题(本大题共6小题,共计90分)
15.(本题14分)已知直线和的交点为A (1)若直线与1l 平行,求实数a 的值;
(2)求经过点A ,且在两坐标轴上截距相等的直线l 的方程.
16.(本题14分)在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c
a b +2.
(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.
17.(本题15分)如图,A 、B
是海面上位于东西方向相距5(3海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B
点相距C 点的救援船立即前往营救,其航行速度为30海里/小时,试求:
(1)轮船D 与观测点B 的距离;
(2)救援船到达D 点所需要的时间.
18.(本题15分)已知数列{}n a 的首项123a =,121
n n n a a a +=+, *N n ∈ (1)设11-=
n n a b 证明:数列{}n b 是等比数列;(2)数列⎭
⎬⎫⎩⎨⎧n b n 的前n 项和n S .
19.(本题16分)已知函数()a x x x f ++=32,()()1
+=x x f x g (1)若不等式()0<x f 的解集是{}1<<x a x ,求a 的值;(2)当1(),02g b b a a b =+<其中,求4a b +的最大值;(3)
若对任意[)+∞∈,2x ,不等式
恒成立,求实数a 的取值范围
20.(本题16分)已知n 为正整数,数列{}n a 满足0n a >,()221410n n n a na ++-=
,设数。

相关文档
最新文档