漳州市2011-2012学年八年级(上)期末数学试卷(含答案)

合集下载

2021-2022学年八上学期期末数学试题(含解析)

2021-2022学年八上学期期末数学试题(含解析)
9.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(-1,0)和B(3,0)两点,则不等式组 的解集为( )
A. B.
C. D. 或
10.如图,在四边形 中,连接 、 ,已知 , , , ,则四边形 的面积为()
A. B.3C. D.4
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
答案与解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是历届的冬奥会会徽设计的部分图形,其中不是轴对称图形的是()
A. B. C. D.
6.下列函数中,属于正比例函数的是()
A. B. C. D.
7.已知 , , 分别是 的三边,根据下列条件能判定 为直角三角形的是()
A. , , B. , ,
C. , , D. , ,
8.等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()
A.5cmB.11cmC.8cm或5cmD.11cm或5cm
17.如图, 中, , 为 中点, 在 上,且 ,若 , ,则边 的长度为______.
18.如图,在边长为2的等边 中,射线 于点 ,将 沿射线 平移,得到 ,连接 、 ,则 的最小值为______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
【答案】A
【解析】
【分析】题目给出等腰三角形一条边长为5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

福建省漳州市2022—2023学年八年级上学期期末考试数学试卷

福建省漳州市2022—2023学年八年级上学期期末考试数学试卷

福建省漳州市2022—2023学年八年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.8-的立方根是( ) A .2-B .2C .2±D .42.10月1日至6日,苏老师手机“微信运动”步数统计如图所示,下列说法错误的是( )A .10月1日至3日,运动步数逐日增加B .10月3日运动步数最多C .10月3日至6日,运动步数逐日减少D .10月7日运动步数比10月6日少3.计算23x x -⋅的结果是( ) A .5x -B .5xC .6x -D .6x4.若三角形的三边长分别等于下列各组数,则能构成直角三角形的是( ) A .1,2,3B .2,3,5C .5,12,13D .6,8,125.如图,AC 与BD 相交于点O ,AB DC =,要使ABO DCO △≌△,则需添加的一个条件可以是( )A .OB OC = B .AD ∠=∠ C .OA OD=D .AOB DOC ∠=∠6.若()()222x a x x bx +-=--,则a b +的值为( )A .2-B .1-C .0D .2三、解答题17.计算:2(2)3x x x -+⋅.18.已知23a +的平方根是3±,32b -的算术平方根是5,求ab 的值.19.先化简、再求值:()()()23422x y x y x y x ⎡⎤++-+÷⎣⎦,其中7x =,2y =. 20.如图,在Rt ABC △中、90B ??,AC DF =,BF EC =,且A B D E ∥.求证:AB DE =.21.如图、在Rt ABC △中,90C ∠=︒.(1)过点C 作CD AB ⊥,垂足为D ;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若6AC =,10AB =,求AD 的长.22.研学旅行继承和发展了我国传统游学“读万卷书,行万里路”的教育理念和人文精神.某校准备组织八年级学生进行研学,现随机抽取了部分学生进行问卷调查,要求学生必须从A ,B ,C ,D 四个研学点中选择一个,并将结果绘制成以下两幅尚未完整的统计图.请根据统计图提供的信息,回答下列问题:(1)求选择A 研学点的学生人数m ;(2)求选择C 研学点的学生人数,并补全条形统计图; (3)求扇形统计图中D 研学点对应的圆心角度数.23.将两数和(差)的平方公式:()2222a b a ab b ±=±+,通过适当的变形,可以解决很多数学问题.例如:若3a b -=,1ab =,求22a b +的值. 解:3a b -=Q ,1ab =,()2222232111a b a b ab +=-+=+⨯=∴.请根据上面的解题思路和方法,解决下列问题:(1)若10x y +=,2256x y +=,求xy 的值;(2)将边长为x 的正方形ABCD 和边长为y 的正方形CEFG 按如图所示放置,其中点D 在边CE 上,连接AG ,EG ,若8x y +=,14xy =,求阴影部分的面积.24.如图,在四边形ABCD 中,90ABC ∠=︒,CA 平分BCD ∠,且CA CD =,过点D 作DE AC ⊥于点E ,连接BE 并延长交AD 于点F .(1)求证:CB CE =; (2)求证:CBE CAD ∠=∠;(3)若2AB =, 1.5BC =,求AF 的长. 25.在Rt ACB V 中,90ACB ∠=︒,AC BC =.(1)如图1,点E 在AB 上(不与点A ,B 重合),连接CE ,将CE 绕点C 逆时针旋转90︒,得到CD ,连接DE ,AD . ①求证:≌ACD BCE V V ;②若5AB =,2AE =,求DE 的长.(2)如图2,若点E 在AB 外,且CE CB =,将CE 绕点C 逆时针旋转90︒,得到CD ,连接DE 交AB 于点G ,射线DA 与射线BE 相交于点H .求证:HA HE =.。

2021-2022学年八上期末数学题(含答案)

2021-2022学年八上期末数学题(含答案)
(2)当5是腰时,符合三角形的三边关系,
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.

2023-2024学年沪科版(安徽)八年级上学期数学期末模拟试卷

2023-2024学年沪科版(安徽)八年级上学期数学期末模拟试卷

沪科版2023-2024学年(安徽合肥)八年级上数学期末模拟试卷(含答案) (本试卷来源于安徽省合肥市蜀山区区属名校期末模拟作业试卷)沪科版11.1~15.4、共4页三大题、23小题,满分100分,时间100分钟(自创文稿,精品ID :13421203解析无耻)一、选择题(本大题共10小题,每小题3分,满分30分)1、下列图案中不是轴对称图形的是( )A B C D2、若点A (n ,-3)在y 轴上,则点B (n-1,n+1)在( )A.第一象限B.第二象限 C 第二象限 D.第四象限3、下列各组数中,不能作为一个三角形三边长的是( )A.4,4,4B.2,7,9C.3,4,5D.5,7,94、下列命题中,逆命题是真命题的是( )A.对顶角相等B.全等三角形的对应角相等C.若x 2=1,则x=1D.若a=b ,则a 2=b 25、如图,直线EF 经过AC 中点O ,交AB 于点E ,交CD 于点F ,下列哪个条件不能使△AOE ≌△COF ( )A .∠A=∠CB .AB ∥CDC .AE=CFD .OE=OF第5题图 第7题图 第9题图 第10题图6、已知△ABC 的内角分别为∠A 、∠B 、∠C ,下列能判定ΔABC 是直角三角形的条件是( )A.∠A=2∠B=3∠CB.∠C=2∠BC.∠A+∠B=∠CD.∠A :∠B :∠C= =3:4:57、如图,△ABC 中,∠ACB=90°,∠A= 30°,CD ⊥AB 于点D ,若BD=1,则AD 的长度为( )A 5B 4C 3D 28、在同一平面直角坐标系中,函数y=ax-b 和y=bx+a 的图象可能是( )A B C D9、如图,已知△ABC 的内角∠A=α,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2024,则∠A 2024的度数是( )A 2αB 20232αC 20242αD 902α+ 10、如图,在锐角△ABC 中,BC=4,∠ABC=30°,∠ABD=15°,点D 在边AC 上,点P 、Q 分别在线段BD 、BC 上运动,则PQ+PC 的最小值是( )A 1B 2C 3D 4二、填空题(本大题6小题,每小题3分,满分18分)11.函数y=2xx中,自交量x的取值范围是12、一副分别含有30°和45°角的两个直角三角板拼成如图所示图形,则α的度数是°第12题图第13题图第14题图13、如图,在△ABC中,∠ACB=90°,∠BAC=75°,D为AB的中点,DE⊥AB交BC于点E,AC=8cm,则BE= cm14、由图可知,在平面直角坐标系中,一块等腰直角三角板如图放置,其中A(3,0),B(0,2),则点C的坐标为15、如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D.PC=10,则PD的长度是第15题图第16题图16、甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:①甲步行的速度为60m/min;②乙走完全程用了32min;③乙用16min追上甲;④乙到达终点时,甲离终点还有300m,其中错误的结论有(填序号).三、(本大题7小题,满分52分)17、已知△ABC的三边长分别为m+2,2m,8.(1)求m的取值范围;(2)如果△ABC是等腰三角形,求m的值.18、如图,已知△ABC 的三个顶点分别为A(-2,4)、B(-6,0)、C(-1,0).(1)将ΔABC沿y轴翻折,画出翻折后图形ΔA1B1C1,并写出点A1的坐标;(2)在y轴上确定一点P,使AP+PB的值最小,直接写出点P的坐标(3)若△DBC与△ABC全等,请找出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标19、已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.20、直线1与直线y=-2x+1交于点A(2,a),与直线y=-x+2交于点B(b,1)(1)求直线l的表达式;(2)求直线1、y轴、直线y=2x+1所围成的图形的面积;21、如图,在△ABC中,∠B=40°,∠C=70°,(1)用直尺和圆规按下列要求作图(保留作图痕迹,不写作法)①作∠BAC的平分线交BC于点D;②过点A作△ABC中BC边上的高AE,垂足为点E;(2)在(1)的基础上,求∠DAE的度数.22、如图,已知直线l1与y轴相交于点A(0,3),直线l2:y=-x-2交y轴于点B,交直线l1于点P(-3,m).(1)求直线l1的解析式;(2)过动点D(a,0)作x轴的垂线,与直线l1相交于点M,与直线l2相交于点N,当MN=3时求a的值;(3)点Q为l2上一点,若S△A PQ=13S△AP B.直接写出点Q的坐标.23、在等腰ΔABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE交DE于点F,连接FC。

2011~2012年八年级上期末数学试卷含答案

2011~2012年八年级上期末数学试卷含答案

2011—2012学年第一学期期末考试试卷初二数学下列各小题均有4个选项,其中只有一个..选项是正确的,请你把正确答案的字母序号填在下表中相应题号的下面 1.若分式21x -的值为0,则x 的值为 A .1B .1-C .1±D .22x 的取值范围是A .1x >B .1x ≥C .1x <D .1x ≤ 3.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 A .4cmB .5cmC .6cmD .13cm4.如图,AC ∥BD ,AD 与BC 相交于O ,4530A B ∠=∠=,,那么AOB ∠等于 A .75° B .60° C .45° D .30°5.下列判断中,你认为正确的是 AB .π是有理数 第4题C xD 26.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是A .冠军属于中国选手B .冠军属于外国选手C .冠军属于中国选手甲D .冠军属于中国选手乙7.下列运算中正确的是A .623x x x = B .1x y x y -+=-+C .22222a ab b a b a b a b +++=--D .11x xy y+=+8.如图,在Rt △ABC 中,∠C =90︒,AB=4,BC =2, D 为AB 的中点,则△ACD 的面积是 AB.C .2D .49.2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁.为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?设原计划每天铺设x 米管道,所列方程正确的是A .5505505(110%)x x -=+B .5505505(110%)x x -=+ C .5505505(110%)x x-=-D .5505505(110%)x x-=-10.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是 第10题A .60°B .70°C .80°D .不确定 二、填空题(本题共15分,每小题3分) 11.如图,在ABC △中,∠C 是直角,AD 平分∠BAC 交BC 于点D .如果AB =8,CD =2那么△ABD 的面积 等于 .12.计算:222233yx y x-÷= . 第11题 13.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .若4BC =, 则BE CF +=_____________. 14.如果11m m-=-,那么2m m += . 15.一般的,形如1x a x+=(a 是已知数)的分式方程有两个解,通常用1x ,2x 表示. 请你观察下列方程及其解的特征:(1)12x x +=的解为121x x ==;(2)152x x +=的解为12122x x ==,; (3)1103x x +=的解为12133x x ==,;…… ……解答下列问题:(1)猜想:方程1265x x +=的解为1x = ,2x = ; (2)猜想:关于x 的方程1x x += 的解为121(0)x a x a a==≠,.CBAF E B C D A第13题三、计算题(本题共15分,每小题5分)16.. 解:17.22⎤-⎦.解:18.2222+224a a a a a a +⎛⎫∙ ⎪+-+⎝⎭. 解:四、解答题(本题共10分,每小题5分)19. 已知:如图,在△ABC 中,∠B=∠C .求证:AB =AC .小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下: 小红:“过点A 作AD ⊥BC 于点D ”;小聪:“作BC 的垂直平分线AD ,垂足为D ”.(1) 请你判断小红和小聪的辅助线作法是否正确; (2) 根据正确的辅助线作法,写出证明过程. 解:(1)判断: ; (2)证明:20.如图,在ABC △中,AB=AC ,D 是AB 的中点,点P 是线段CD 上不与端点重合的 任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F .求证:(1)CAE CBF =∠∠; (2)AE BF =. 证明(1)(2)五、解答题(本题共15分,每小题5分) 21.已知20x y -=, 求22y 1x y x y÷-- 的值. 解:22. 解分式方程: 223124x x x --=+-. 解:23.列方程或方程组解应用题:随着人们环保意识的增强,环保产品进入千家万户.今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米? 解:六、解答题(本题共9分,其中24小题4分,25小题小题5分)24. 如图,ABC △中,90ACB ∠=°,将ABC △沿着一条直线折叠后,使点A 与点C 重合(图②).(1)在图①中画出折痕所在的直线l .设直线l 与AB AC ,分别相交于点D E ,,连结CD .(画图工具不限,不要求写画法) (2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明) 解:(2)25. 已知:如图,ABC △中,45ACB ∠=︒,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,BAD FCD ∠=∠. 求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC . 证明:(1)(2)①A B ②B 折叠后七、解答题(本题6分)26.已知ABC △,以AC 为边在ABC △外作等腰ACD △, 其中AC =AD .(1)如图1,若2DAC ABC ∠=∠,△ACB ≌△DAC , 则ABC ∠= °;(2)如图2,若30ABC ∠=︒,ACD △是等边三角形, AB =3,BC =4. 求BD 的长. 解:(2)答案及评分参考一 、选择题(本题共30分,每小题3分)11. 8, 12.392x -, 13. 2, 14. 1 ,15.1215,5x x ==(2分);21a a +(1分)三、计算下列各题(本题共20分,每小题5分) 16.解: 1=3452⨯⨯⨯==分分.................................................................5分222(13)(62)..........................................288⎤-⎦=+--=++=分分....................................4=分分2222222+224(2)2(2)(2)=.......................3(2)(2)(2)(2)422+4(2)................................................4(2)(2)4 (2)a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫∙ ⎪+-+⎝⎭⎡⎤-+++∙⎢⎥+-+-+⎣⎦-++=∙+-+=-分分....................................................................5分四、解答题(本大题共2个小题,每小题5分,共10分) 19. 解:(1)判断:小红的辅助线作法正确 ;………….1分 (2)证明:∵AD ⊥BC ,∴ ∠ADB=∠ADC =90°.…………………………2分 ∵ ∠B=∠C ,AD =AD . ………………………………………3分 ∴ △ABD ≌△ACD .………………………………4分 ∴ AB =AC . ……………………………………..5分 20.证明(1) ∵ AB=AC ,D 是AB 的中点,∴ CD 平分∠ACB ………………………………………1分 ∴ ACP BCP ∠=∠ ∵ CP CP =,∴ △ACP ≌△BCP ………………………………2分 ∴ CAE CBF ∠=∠…………………………………3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴ △ACE ≌△BCF …………………………………………………………………4分 ∴ BF AE =. ………………………………………………………………………5分 五、解答题(本大题共15分,每小题5分) 21.解:原式=()())(y x y x y x y-⋅-+………………………………………………………2分 =yx y+………………………………………………………………………3分 ∵ 20x y -=, ∴ x =2y∴y x y +=312=+y y y ………………………………………………………………5分 22. 解分式方程:223124x x x --=+-. 解:22(2)(4)3x x ---=..................................................................................................2分45x -=-.………………………………………………………………3分54x =.………………………………………………………………..4分经检验,54x =是原方程的解.……………………………………………………….5分23.解:解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x .………………………………………….2分 解这个方程,得x =30 .…………………………………………………………………..3分 经检验,x =30是所列方程的根.………….……………………………………………….4分 答:小明家2月份用气30立方米. …………………………………………………….5分 六、解答题(本大题共9分,其中24小题4分,25小题小题5分) 24. 解:(1)如图所示: 2分 (2)ADC △,BDC △为等腰三角形. 4分25,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒……………………..1分∴ AD=CD. ………………………………………2分 ∵ BAD FCD ∠=∠,∴ △ABD ≌△CFD ………………………………3分(2) ∴ BD=FD. ………………………………………………………………………4分 ∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒. ∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒.∴ BE ⊥AC .……………………………………………………………………………5分 七、解答题(本题6分)26. 解:(1)45;…….………………………………………………………………………..2分 (2)如图2,以A 为顶点AB 为边在ABC △外作BAE ∠=60°, 并在AE 上取AE =AB ,连结BE 和CE .∵ ACD △是等边三角形, ∴AD =AC ,DAC ∠=60°. ∵ BAE ∠=60°,∴ DAC ∠+BAC ∠=BAE ∠+BAC ∠.即EAC ∠=BAD ∠. ∴EAC △≌BAD △. …….…………………………….3分∴ EC =BD.∵ BAE ∠=60°,AE =AB=3, ∴ AEB △是等边三角形,∴ =60EBA ∠︒,EB =3.………………………………………………………………….4分∵ 30ABC ∠=︒, ∴ 90EBC ∠=︒.∵ 90EBC ∠=︒,EB =3,BC =4,∴ EC =5…………………………………………………………………………………5分 ∴ BD =5. ……………………………………………………………………………….6分A AEBCD2图。

2024-2025学年福建省漳州市高三(上)第一次质检数学试卷(含答案)

2024-2025学年福建省漳州市高三(上)第一次质检数学试卷(含答案)

2024-2025学年福建省漳州市高三(上)第一次质检数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设全集U=R,集合A={x|x2−3x−4>0},则∁U A=( )A. {x|−1<x<4}B. {x|−4<x<1}C. {x|−1≤x≤4}D. {x|−4≤x≤1}2.复数z=3−i1+i的虚部为( )A. 2B. −2C. 2iD. −2i3.已知a,b为单位向量,若|a+b|−|a−b|=0,则|a−b|=( )A. 2B. 2C. 1D. 04.若tanα=2tanβ,sin(α−β)=t,则sin(α+β)=( )A. 2tB. −2tC. 3tD. −3t5.已知点M为双曲线C:x2−y2=4上任意一点,过点M分别作C的两条渐近线的垂线,垂足分别为A,B,则四边形OAMB(O为原点)的面积为( )A. 4B. 2C. 1D. 126.在正四棱锥P−A1B1C1D1中,PB1⊥PD1.用一个平行于底面的平面去截该正四棱锥,得到几何体ABCD−A1B1C1D1,AB=1,A1B1=2,则几何体ABCD−A1B1C1D1的体积为( )A. 26B. 423C. 726D. 17297.已知函数f(x)=tan(ωx+π4)(ω>0),若方程f(x)=1在区间(0,π)上恰有3个实数根,则ω的取值范围是( )A. (2,3]B. [2,3)C. (3,4]D. [3,4)8.已知函数f(x)=2x+2−x+cosx+x2,若a=f(−3),b=f(e),c=f(π),则( )A. b<a<cB. b<c<aC. c<a<bD. c<b<a二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知X∼N(μ,σ2),则( )A. E(X)=μB. D(X)=σC. P(X≤μ+σ)+P(X≤μ−σ)=1D. P(X≥μ+2σ)>P(X≤μ−σ)10.已知定义在R上的函数f(x)不恒等于0,f(π)=0,且对任意的x,y∈R,有f(2x)+f(2y)=2f(x+y)f(x−y),则( )A. f(0)=1B. f(x)是偶函数C. f(x)的图象关于点(π,0)中心对称D. 2π是f(x)的一个周期11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线C:y2=2px(p>0)绕其顶点分别逆时针旋转90°、180°、270°后所得三条曲线与C围成的(如图阴影区域),A,B为C与其中两条曲线的交点,若p=1,则( )A. 开口向上的抛物线的方程为y=12x2B. |AB|=4C. 直线x+y=t截第一象限花瓣的弦长最大值为34D. 阴影区域的面积大于4三、填空题:本题共3小题,每小题5分,共15分。

2023-2024学年北京市西城区八年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区八年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.火纹是一种常见的装饰图案,多用于建筑、家具设计等.下列火纹图案中,可以看成处轴对称图形的是( )A. B.C. D.2.下列运算中,正确的是( )A. B. C. D.3.在平面直角坐标系xOy中,点关于x轴的对称点坐标是( )A. B. C. D.4.下列各式从左到右变形一定正确的是( )A. B. C. D.5.如图,在中,,,BD是的角平分线.若点D到BC的距离为3,则AC的长为( )A. 12B.C. 9D. 66.如果,那么代数式的值为( )A. B. C. 6 D. 137.如图,在平面直角坐标系xOy中,已知点,,且,则点C的横坐标为( )A. B. C. D.8.如图,在中,,,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,的大小是( )A. B. C. D.二、填空题:本题共8小题,每小题2分,共16分。

9.计算:______;______.10.若分式有意义,则x的取值范围是______.11.计算:______.12.如图,为等腰三角形,,,连接BD,只需添加一个条件即可证明≌,这个条件可以是______写出一个即可13.如图,有甲、乙、丙三种正方形和长方形纸片,用1张甲种纸片、4张乙种纸片和4张丙种纸片恰好拼成无重叠、无缝隙一个大正方形,则拼成的大正方形的边长为______用含a,b的式子表示14.甲、乙两名同学作为志愿者帮助图书馆清点一批图书,甲3h清点完这批图书的,乙加入清点剩余的图书,两人合作清点完剩余的图书.如果乙单独清点这批图书需要几小时?若设乙单独清点这批图书需要xh,则根据题意可列方程为______.15.在正三角形纸片ABC上按如图方式画一个正五边形DEFGH,其中点F,G在边BC上,点E,H分别在边AB,AC上,则的大小是______16.如图,动点C与线段AB构成,其边长满足,,点D在的平分线上,且,则a的取值范围是______,的面积的最大值为______.三、解答题:本题共10小题,共84分。

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

八年级上学期期末综合测评卷时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.在下列四个实数中,最大的实数是( )A.-2B.2C.12D.02.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( )A.每小时用电量B.室内温度C.设置温度D.用电时间3.甲、乙两名学生在相同条件下各射靶10次,两人命中环数的平均数均为7,经过计算知,s 2甲=3,s 2乙=1.2,则射靶技术较稳定的是( )A.乙B.甲C.甲、乙一样稳定D.不能确定4.若点A (-3,m )与B (n ,-2)关于y 轴对称,则m+n 的值是( )A.1B.2C.5D.-15.在满足下列条件的△ABC 中,不是直角三角形的是( )A.AB ∶AC ∶BC=1∶2∶3B.BC 2-AB 2=AC 2C.∠A ∶∠B ∶∠C=3∶4∶5D.∠A-∠B=∠C 6.已知a ,b 满足方程组2a +b =6,a +2b =3,则a+b 的值为( )A.1B.-1C.-3D.37.已知图形A 在y 轴的右侧,如果将图形A 上的所有点的横坐标都乘-1,纵坐标不变得到图形B ,则( )A.两个图形关于x 轴对称B.两个图形关于y 轴对称C.两个图形重合D.两个图形不关于任何一条直线对称8.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个格点三角形中不是直角三角形的是( )A. B.C. D.9.如图,点D在AC上,点F,G分别在AC,BC的延长线上,CE平分∠ACB分别交BD,AB于点O,E,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB一定相等的角有( )A.6个B.5个C.4个D.3个10.如图(1),在平面直角坐标系中,长方形ABCD在第一象限,且AB∥y轴.直线y=-x 沿x轴正方向平移,如果被长方形ABCD截得的线段EF的长度l与平移的距离a 之间的函数图象如图(2)所示,那么长方形ABCD的面积为( ) 图(1) 图(2)A.10B.12C.15D.18二、填空题(共5小题,每小题3分,共15分)11.“三角形三个内角中最多只能有一个直角”,这个命题是 命题.(填“真”或“假”)12.小明八年级上学期数学期中成绩是110分,期末成绩是115分,若这学期的总评成绩根据如图所示的权重计算,则小明该学期的数学总评成绩为 分.13.已知方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,则一次函数y=2x+3与y=ax+c 的图象的交点坐标是 .14.如图,AB ∥CD ,AE ⊥CE 于点E ,∠1=125°,则∠C= .(第14题) (第15题)15.如图所示,ABCD 是长方形地面,长AB=16 m,宽AD=9 m,中间竖有一堵砖墙,墙高MN=1 m .一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要爬 m 的路程.三、解答题(共8小题,共75分)16.(共2小题,每小题4分,共8分)计算:(1)8+182-16.(2)316+(22-3)2-2×12.17.(8分)数学课上,同学们用代入消元法解二元一次方程组2x -y=5, ①8x-3y=20, ②下面是两位同学的解答思路,请你认真阅读并完成相应的任务.小彬:由①,得y= , ③将③代入②,得……小颖:由①,得2x= , ③将③代入②,得……任务:(1)按照小彬的思路,第一步要用含x的代数式表示y,得到方程③,即y= ;第二步将③代入②,可消去未知数y.(2)按照小颖的思路,第一步要用含y的代数式表示2x,得到方程③,即2x= ;第二步将“2x”看作整体,将③代入②,可消去未知数x.(3)请从下面A,B两题中任选一题作答.我选择 题.A.按照小彬的思路求此方程组的解.B.按照小颖的思路求此方程组的解.18.(8分)如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)求证:AB∥DE.(2)若DC是∠NDE的平分线,求证:BD是∠ABC的平分线.19.(9分)小王剪了两张直角三角形纸片,进行了如下操作.操作一:如图(1),将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6 cm,BC=8 cm,可求得△ACD的周长为 ;(2)如果∠CAD∶∠BAD=4∶7,可求得∠B为 °.操作二:如图(2),小王拿出另一张直角三角形纸片,将Rt△ABC沿直线AD折叠,使直角边AC落在斜边AB上,且与AE重合,若AC=9 cm,BC=12 cm,请求出CD的长. 图(1) 图(2)20.(9分)践行文化自信,让中华文化走向世界.某市甲、乙两校的学生人数基本相同,为了解这两所学校学生的中华文化知识水平,在同一次知识竞赛中,从两校各随机抽取了30名学生的竞赛成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分(如图).甲校:93 82 76 77 76 89 89 89 8394 84 76 69 83 92 87 88 8984 92 87 89 79 54 88 98 9087 68 76乙校:85 61 79 91 84 92 92 84 6390 89 71 92 87 92 73 76 9284 57 87 89 88 94 83 85 8094 72 90(1)请根据乙校的数据补全条形统计图.(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格:平均数中位数众数甲校83.6 乙校83.28692(3)请判断哪所学校学生的中华文化知识水平更高一些,并根据(2)中的数据说明理由.(4)为进一步提高两所学校学生的中华文化知识水平,请你提出一条合理化建议.21.(10分)某工厂承接了一批纸箱加工任务,用如图(1)所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)若该厂购进正方形纸板1 000张,长方形纸板2 000张.问竖式、横式纸盒各加工多少个,恰好能将购进的纸板全部用完.(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<n<136,且一个竖式纸箱成本300元,一个横式纸箱成本200元,试求在这一天加工两种纸箱时,a的所有可能值中,成本最低花费多少元. 图(1) 图(2)22.(11分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 m/min;(2)求AB所在直线的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.23.(12分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=k2x的图象的交点为C(3,4).(1)求正比例函数与一次函数的表达式.(2)求△OBC的面积.(3)在y轴上是否存在一点P,使△POC为等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.八年级上学期期末综合测评卷12345678910B CAA CDBCBC11.真12.11313.(-1,1)14.35°15.951.B2.C ∵空调的每小时用电量随开机设置温度的高低而变化,∴自变量是设置温度.3.A4.A ∵点A (-3,m )与B (n ,-2)关于y 轴对称,∴n=3,m=-2∴m+n=-2+3=1.5.C A 选项中,设AB=k ,则AC=2k ,BC=3k ,∵AB 2+AC 2=k 2+2k 2=3k 2=BC 2,∴△ABC 是直角三角形;B 选项中,∵BC 2-AB 2=AC 2,∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形;C 选项中,∵∠A ∶∠B ∶∠C=3∶4∶5,∴∠C=53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形;D 选项中,∵∠A-∠B=∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC 是直角三角形.6.D 2a +b =6,①a +2b =3,②①+②得3a+3b=9,∴a+b=3.7.B ∵将图形A 上的所有点的横坐标都乘-1,纵坐标不变,∴横坐标变为相反数,纵坐标不变,∴得到的图形B 与A 关于y 轴对称.8.C 设网格中每个小正方形的边长都是1.逐项分析如下.选项分析判断A各边长为2,4,25,22+42=(25)2是直角三角形B各边长为2,22,10,(2)2+(22)2=(10)2是直角三角形C各边长为5,10,17,(5)2+(10)2≠(17)2不是直角三角形D各边长为5,2 5,5,(5)2+(2 5)2=52是直角三角形9.B ∵∠EOD=∠BOC ,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC ∥BF ,∴∠ECD=∠F ,∠ECB=∠CBF.∵CE 平分∠ACB ,∴∠ECD=∠ECB.∵∠F=∠G ,∴∠G=∠ECB ,∴DG ∥CE ,∴∠CDG=∠DCE ,∴∠CDG=∠G=∠F=∠DCE=∠CBF=∠ECB.10.C (特殊值法)由图象和题意可知,当直线y=-x 沿x 轴平移的距离为1时,沿y 轴平移的距离也为1,即直线y=-x+1经过点A ,且与x 轴,y 轴分别交于点(1,0),(0,1),假设点A 的坐标为(12,12).同理,当直线y=-x 沿x 轴平移的距离为4时,直线为y=-x+4,经过点B (12,72),所以AB=72-12=3.同理,当直线y=-x 沿x 轴平移的距离为6时,直线为y=-x+6,经过点D (112,12),所以AD=112-12=5.所以长方形ABCD 的面积=AB×AD=3×5=15.11.真 因为三角形内角和为180°,所以三角形三个内角中最多只能有一个直角,所以命题“三角形三个内角中最多只能有一个直角”为真命题.12.113 根据题意得110×40%+115×60%=44+69=113(分),则小明该学期的数学总评成绩为113分.13.(-1,1) ∵方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,∴一次函数y=2x+3与y=ax+c 的图象的交点坐标是(-1,1).14.35° 如图,过点E 作EF ∥AB ,∴∠BAE=∠AEF.∵AB ∥CD ,∴EF ∥CD ,∴∠C=∠CEF.∵AE ⊥CE ,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°-125°=55°,∴∠C=90°-55°=35°.15.9 5如图所示,将图展开,新图形长度增加了2个MN 的长度,即新图形中AB 的长度增加2米,∴AB=16+2=18(米).连接AC ,∵四边形ABCD 是长方形,AB=18米,AD=9米,在Rt △ABC 中,由勾股定理得AC=AB 2+BC 2=182+92=9 5(米),∴蚂蚁从A 点爬到C 点,它至少要爬9 5米的路程.16.(1)原式=82+182-4(2分)=2+3-4=1.(4分)(2)原式=62+8-4 6+3-2 6(2分)=11-1162.(4分)17.(1)2x-5(2分)(2)5+y (4分)(3)解法一:A 由①,得y=2x-5, ③把③代入②,得8x-3(2x-5)=20,解得x=2.5,把x=2.5代入③,得y=0.故原方程组的解为x =2.5,y =0.(8分)解法二:B由①,得2x=5+y , ③把③代入②,得4(5+y )-3y=20,解得y=0,把y=0代入③,得2x=5,解得x=2.5.故原方程组的解为x =2.5,y =0.(8分)18.(1)证明:∵MN ∥BC ,∴∠ABC=∠1=60°.又∠1=∠2,∴∠ABC=∠2,∴AB ∥DE. (3分)(2)证明:∵DC 是∠NDE 的平分线,∴∠EDC=∠NDC.∵BD ⊥DC ,∴∠BDE+∠EDC=90°,∠ADB+∠NDC=90°,∴∠BDE=∠ADB.∵MN ∥BC ,∴∠DBC=∠ADB ,∴∠BDE=∠DBC.∵AB ∥DE ,∴∠ABD=∠BDE ,∴∠ABD=∠DBC ,∴BD 是∠ABC 的平分线.(8分)19.操作一:(1)14 cm(2分)(2)35(4分)操作二:由折叠知,AE=AC=9 cm,DE ⊥AB ,设CD=DE=x cm,则BD=(12-x )cm .在Rt △ABC 中,AB 2=AC 2+BC 2=81+144=225,∴AB=15 cm,∴BE=15-9=6(cm).(6分)又在Rt △BDE 中,BD 2=DE 2+BE 2,∴(12-x )2=x 2+36,解得x=92,即CD=92 cm .(9分)20.(1)由题意可得乙校竞赛成绩在70~79分的有5人,在60~69分的有2人,补全条形统计图,如图.(2分)(2)87 89(4分)解法提示:甲校数据按照从小到大排列是54,68,69,76,76,76,76,77,79,82,83,83,84,84,87,87,87,88,88,89,89,89,89,89,90,92,92,9 3,94,98,∴这组数据的中位数m=87+872=87,众数n=89.(3)甲校学生的中华文化知识水平更高一些.理由:甲校成绩的平均数高于乙校,说明总成绩甲校高于乙校,甲校成绩的中位数高于乙校,说明甲校一半以上的学生成绩较好.(7分) (4)为进一步提高两所学校学生的中华文化知识水平,建议在课后多开展中华文化知识活动.(9分)21.(1)设加工竖式纸盒x个,加工横式纸盒y个,根据题意得x+2y=1000,4x+3y=2000,解得x=200,y=400.答:加工竖式纸盒200个,加工横式纸盒400个,恰好能将购进的纸板全部用完.(4分) (2)设加工竖式纸盒m个,加工横式纸盒n个,根据题意得m+2n=50,4m+3n=a,∴n=40-a5.(6分)∵n,a为正整数,∴a为5的倍数.又∵120<a<136,∴满足条件的a为125,130,135.(8分)当a=125时,n=15,m=20,成本费为300×20+200×15=9 000(元);当a=130时,n=14,m=22,成本费为300×22+200×14=9 400(元);当a=135时,n=13,m=24,成本费为300×24+200×13=9 800(元).∵9 000<9 400<9 800,∴a的所有可能值中,成本最低花费9 000元.(10分)22.(1)1(2分)解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min),“猫”的平均速度为30÷(6-1)=6(m/min),故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB所在直线的函数表达式为y=kx+b(k≠0),将A(7,30),B(10,18)代入得30=7k+b,18=10k+b,解得k=-4, b=58,故AB所在直线的函数表达式为y=-4x+58.(6分) (3)在y=-4x+58中,令y=0,则-4x+58=0,解得x=14.5.14.5-1=13.5(min).故“猫”从起点出发到返回至起点所用的时间为13.5 min.(11分) 23.(1)∵正比例函数y=k2x的图象经过点C(3,4),∴4=3k2,解得k2=43,∴正比例函数的表达式为y=43x.(2分)∵一次函数y=k1x+b的图象经过点A(-3,0),C(3,4),∴-3k1+b=0,3k1+b=4,解得k1=23,b=2.∴一次函数的表达式为y=23x+2.(4分)(2)在y=23x+2中,令x=0,则y=2,∴B(0,2),∴S△OBC=12×2×3=3.(7分) (3)假设存在满足条件的点P,设P(0,m).∵C(3,4),∴OP=|m|,OC=5,CP=(0-3)2+(m-4)2=9+(m-4)2.(8分)①当OP=OC时,|m|=5,∴m=±5,∴P(0,5)或P(0,-5).②当CP=CO时,9+(m-4)2=5,解得m=8或m=0(舍去),∴P(0,8).③当CP=PO 时,|m|=9+(m -4)2,∴m=258,∴P (0,258).综上,存在满足条件的点P ,且点P 的坐标为(0,5),(0,-5),(0,8)或(0,258).(12分)。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

湖南省衡阳市衡南县2023-2024学年八年级上学期期中数学试卷(含答案)

湖南省衡阳市衡南县2023-2024学年八年级上学期期中数学试卷(含答案)

2023年秋季八年级上学期期中考试数学测试范围:11-13章第2节考试注意:1.本试卷共三道大题,满分120分,时量120分钟.2.本试卷的作答一律答在答题卷上,直接在试题卷上作答无效.一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的算术平方根是()A .2±B .C .2-D .22.下列说法中,正确的是()A .()22-的平方根是2B .1-的立方根是1±C 10=±D .是6的一个平方根3.一个正方形的面积为30,那么它的边长估计在()A .2~3之间B .3~4之间C .4~5之间D .5~6之间4.实数0.618,,47π-中,无理数的个数是()A .1B .2C .3D .45.下面计算正确的是()A .224x x x+=B .()5315x x -=-C .()22411681x x x --=-+D .()323532424x y x x y -⋅=-6.下列能使用平方差公式的是()A .()()33x x ++B .()()x y x y -+-C .1122m n m n ⎛⎫⎛⎫+--⎪⎪⎝⎭⎝⎭D .()()33m n m n +-7.给出下列条件:①两边一角分别对应相等;②两角一边分别对应相等;③三个角分别对应相等;④三边分别对应相等,其中,不能..使两个三角形全等的条件是()A .①③B .①②C .②③D .②④8.如果()219x m x +-+是一个完全平方式,那么m 的值是()A .7B .7-C .5-或7D .5-或59.下列因式分解正确的是()A .()29613321x x x x -+=-+B .()()22444x y x y x y -=+-C .()222555a b a b +=+D .()3221a a aa -=-10.化简()263a a +-的结果是()A .2a B .3aC .2a -D .3a-11.从前,古希腊一位庄园主把一块长为a 米,宽为b 米(100a b >>)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A .变小了B .变大了C .没有变化D .无法确定12.如图,90,,E F B C AE AF ∠=∠=︒∠=∠=,结论:①;EM FN =②;CD DN =③;FAN EAM ∠=∠④CAN ABM ≌△△.其中正确的有()A .①②④B .①③④C .②③④D .①②③④二、填空题(本大题共6个小题,每小题3分,满分18分)13.27-的立方根是______.14.已如22a ==,且0ab <=______.15.把命题“等角的补角相等”改写成“如果……那么……”的形式为__________________.16.已知2,3m na a ==,则n m a -=______.17.已知26,2x xy x y -=-=-,则x =______.18.如图,已知12∠=∠,要判定ABD ACD ≌△△,请你添加一个条件是______.(写出一个即可)三、解答题(本大题共8小题,满分66分.解答题写出文字说明、证明过程或演算步骤)19.(6分)计算:5+-20.(6分)分解因式:(1)22ayay a-+(2)2294m n-+21.(6分)先化简,再求值:()()()22x y x y x y x ⎡⎤+++-+⎣⎦,其中1,1x y ==-.22.(8分)如图,//,,,AB FE AD CF B E A D C F =∠=∠、、、四点在同一直线上.求证://BC DE .23.(8分)计算:已知3,10a b ab -==.(1)求22a b +的值;(2)求a b +的值.24.(10分)如图,ACD BCE 、△△都是等边三角形,点A 、点C 、点B 在同一直线上.求证:AE BD =.25.(10分)已知a b c 、、是ABC △的三边的长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.26.(12分)(1)拼一拼、画一画:请你用如图1所示的4个长为a ,宽为b 的长方形拼成一个大正方形,并且正中间留一个洞,这个洞恰好是一个小正方形.请画出草图.图1图2(2)用不同方法计算中间的小正方形的面积,聪明的你能写出什么样的等量关系式?(3)当拼成的这个大正方形的边长比中间小正方形的边长多3cm 时,面积就多224cm ,求中间小正方形的边长.(4)实际上有许多代数恒等式可以用同一个图形面积的不同方法来表示.如图2,它表示的代数恒等式是_________________________.2023年秋季期中考试试题八年级数学答案一、选择题(每小题3分,共36分)题号123456789101112答案DDDBBDACDCAB二、填空题(每小题3分,共18分)13.3-14.215.如果两个角是相等的,那么这两个角的补角也相等16.3217.3-18.AB AC =或B C ∠=∠或ADB ADC ∠=∠三、解答题(共66分)19.解:原式1055=--+=.20.解:(1)()21a y -(2)()()2323n m n m +-21.解:原式()()2222222222x xy y x y x xxy x x y =+++-÷=+÷=+.当1,1x y ==-时,原式0=.故答案为:原式x y =+,值为0.22.证明://,AB FE A F ∴∠=∠ .又,AD CF AD DC CF DC ∴=+=+,即,AC DF B E =∠=∠.(A.A.S.)ABC FED ∴≌△△,ACB FDE ∠=∠.//BC DE ∴.23.解:(1)3,10a b ab -== ,()22222321029.a b a b ab ∴+=-+=+⨯=(2)3,10,a b ab -== ()22222921049,a b a b ab ∴+=++=+⨯=7.a b ∴+=±24.证明:(S.A.S.)ACE DCB ≌△△,即可得AEBD =.25.解:由()222220a b c b a c ++-+=,可得:()()220a b b c -+-=.从而得到0,0a b b c -=-=,所以a b c ==,此三角形是等边三角形.26.解:(1)图形如下:(2)()()224a b ab a b +-=-(3)中间小正方形得边长为:2.5cm (4)()()22223m n m n m mn n++=++。

湖南省张家界市桑植县2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖南省张家界市桑植县2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖南省张家界市桑植县2023-2024学年八年级上学期期中考试数学试卷注意事项:本试卷共三道大题,满分120分,时量120分钟一、单选题(本题8小题,每小题3分,共24分)1.若分式11x +有意义,则x 的取值范围()A.1x ≠ B.1x ≠- C.0x ≠ D.1x >2.如图,α∠的大小为()A.120°B.110°C.100°D.90°3.计算()63a a -÷的结果是()A.2aB.3aC.2a -D.3a -4.若三角形的两边长分别为2与3,则不能作为第三边的线段长是()A.4B.3C.2D.15.下列分式是最简分式的是()A.22a B.63x C.22m mn D.211x x +-6.下列命题是假命题的是()A.对顶角相等B.三角形内角和为180°C.有一个角是60°的三角形是等边三角形D.等腰三角形的两个底角相等7.如图,在ABC △与DEC △中,AC DC =,AB DE =,补充下列条件后能判定ABC DEC △≌△的是A.B E ∠=∠B.//AB DEC.BC EC =D.ACB DCE∠=∠8.观察下列数:1x ,2x ,3x ,4x ,…,1m x -,m x ,(其中正整数2m ≥),若设12x =,214x x =+,326x x =+,438x x =+,…,12m m x x m -=+,若23411115051011m x x x x +++⋅⋅⋅=,则m 的值为()A.2024 B.2023 C.2022 D.2021二、填空题(本题8小题,每小题3分,共24分)9.当x =______时,分式1x x +的值等于0.10.计算:x y x y y x+=++______.11.世界上最小的晶体管的长度只有0.00000004米,用科学记数法表示0.00000004是______.12.如图,AD 为ABC △的中线,ABC △的面积为10,则ABD △的面积为______.13.已知等边ABC △中,AD 是BC 边上的高,则BAD ∠=______°.14.若方程1122k x x+=--有增根,则方程的增根是______.15.如图,ABC DEC △≌△,点B ,C ,D 在同一直线上,且12BD =,7AC =,则CE 长为______.16.如图,直线垂直平分ABC △的AB 边,在直线上任取一动点O ,连结OA ,OB ,OC .若5OA =,则OB =______.若9AC =,6BC =,则BOC △的最小周长是______.三、解答题(本题8小题,共72分)17.(8分)计算:()20202411453π-⎛⎫-⨯+-+- ⎪⎝⎭.18.(8分)解方程:3211x x x+=--.19.(10分)计算下列各式:(1)()24422x x x -÷-+;(2)()222211121a a a a a a +-÷+---+.20.(8分)先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中3a =-.21.(8分)如图,在ABC △中,AD 是ABC △的高线,AE 是ABC △的角平分线,已知100BAC ∠=︒,30C ∠=︒,求DAE ∠的大小.22.(8分)如图,在ABC △中,已知AB AC =,AD 平分BAC ∠,点M ,N 分别在AB ,AC 边上,2AM MB =,2AN NC =.求证:DM DN =.23.(10分)某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10350元,乙种电器共用了9600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?24.(12分)如图①,60OAP ∠=︒,以OAP ∠的顶点A 为顶点作正ABC △,延长边BC 与OAP ∠的AP 边交于E 点,在AO 边上截取一点D ,使得AD AE =,并连结BD .(1)求证:BE AB BD =+;(2)①将正ABC △绕顶点A 按顺时针旋转,使顶点B 落在OAP ∠内部,如图②,请确定BD ,AB ,BE 之间的数量关系,并说明理由;(2)将图②中的正ABC △绕顶点A 继续按顺时针旋转,使顶点B 落在射线OP 下方,如图③,请确定BD ,AB ,BE 之间的数量关系,不必说明理由;(3)在(1)和(2)的条件下,若4AC =,1BD =,求BE 的长.图①图②图③()02202453141-+⎪⎭⎫⎝⎛-+⨯--π11112-÷⎪⎭⎫ ⎝⎛-+a aa 数学试卷参考答案一、选择题1、B2、A3、B4、D5、A6、C7、C8、D二、填空题9、010、111、8410⨯-12、513、3014、2x =15、516、①.5②.15三、解答题17.解:1491=-⨯++6=18.解:3211x x x -=--,去分母,得322x x -=-,移项、合并同类项得=1x -,检验:当=1x -时,10x -≠,∴=1x -是原方程的解.19.解:(1)24(42)2x x x -÷-+()()()221222x x x x +-=⋅+--12=-;(2)原式20.解:()()()()aaa a a a aa a a -=-+--=-+⨯⎪⎭⎫ ⎝⎛-+=111111111当3a =-时,原式=1-(-3)=421解:∵10030BAC C ∠=︒∠=︒,,∴18050B BAC C ∠=︒-∠-∠=︒,∵AE 是ABC 的角平分线,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是ABC 的高线,∴90ADB ∠=︒,∴50409090BAD B ∠=-∠=-︒=︒︒︒,∴504010DAE BAE BAD ∠=∠-∠=︒-︒=︒22证明:∵=,=,=,∴=,∵平分,∴=,在与中,,∴,∴=.23解:(1)设乙种电器购进x 件,则甲种电器购进1.5x 件,根据题意得:960010350901.5x x-=,解得:30x =,经检验,30x =是原方程的解,且符合题意,1.545x =∴.答:甲种电器购进45件,乙种电器购进30件.24、(1)证明:ABC 为正三角形,AB BC AC ∴==,60BAC ∠=︒,60BAD CAD ∠∠∴+=︒,60OAP ∠=︒ ,60CAE CAD ∠∠∴+=︒,BAD EAC ∠∠∴=,在BAD 与CAE 中,AB AC BAD EAC DA AE =⎧⎪∠=∠⎨⎪=⎩,BAD CAE ∴ ≌()SAS ,BD CE ∴=,BE BC EC =+ ,BE AB BD ∴=+;解:(2)①结论为:BE AB BD =-,如图②,理由如下:ABC 为正三角形,AB BC AC ∴==,60BAC ∠=︒,60BAD DAC ∠∠∴+=︒,60OAP ∠=︒ ,60EAC DAC ∠∠∴+=︒,BAD EAC ∠∠∴=,在DAB 与EAC 中,AB AC BAD EAC DA AE =⎧⎪∠=∠⎨⎪=⎩,()SAS DAB EAC ∴ ≌,BD CE ∴=,BE BC EC =- ,BE AB DB ∴=-,②结论为:BE BD AB=-(3)在(1)条件下,415BE AB BD AC BD =+=+=+=;在(2)条件下,413BE AB BD AC BD =-=-=-=,综上所述,3BE =或5,答案:3或5.8。

上海市 八年级(上)期末数学试卷(五四学制)-(含答案)

上海市  八年级(上)期末数学试卷(五四学制)-(含答案)

2017-2018学年上海市浦东新区八年级(上)期末数学试卷(五四学制)副标题一、选择题(本大题共4小题,共8.0分)1.如果反比例函数的图象经过点(3,-5),那么这个反比例函数的图象一定经过点()A. B. C. D.2.在下列四个命题中的逆命题中,是真命题的个数共有()①相等的角是对顶角;②等腰三角形腰上的高相等;③直角三角形的两个锐角互余;④全等三角形的三个角分别对应相等.A. 1个B. 2个C. 3个D. 4个3.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、254.下列两数都是方程x2-2x=7+4x的根是()A. 1,7B. 1,C. ,7D. ,二、填空题(本大题共15小题,共30.0分)5.初二(2)班共有38名学生,其中参加读书活动的学生人数为n(1≤n≤38,且n为整数),参与率为p,那么p关于n的函数解析式为______.6.函数y=的定义域为______.7.已知在平面直角坐标xOy中,正比例函数y=-4x的图象经过点A(-3,m),点B在x轴的负半轴上,过点A作直线AC∥x轴,交∠AOB的平分线OC于点C,那么点C到直线OA的距离等于______.8.的有理化因式为______.9.如果二次三项式x2-8x+m能配成完全平方式,那么m的值是______.10.如果点A的坐标为(3,5),点B的坐标为(0,-4),那么A、B两点的距离等于______.11.如果等边三角形的边长为m厘米,那么这个三角形的面积等于______平方厘米(用含m的代数式表示).12.如果关于x的方程(m-1)x3-mx2+2=0是一元二次方程,那么此方程的根是______.13.已知正比例函数的图象经过点(-2,6),那么这个函数中的函数值y随自变量x值的增大而______.14.已知在△ABC中,AB=9,AC=10,BC=17,那么边AB上的高等于______.15.在实数范围内分解因式:x2-3y2=______.16.已知直线AB上有一点P,那么在直线AB上,且到点P的距离为3厘米的点共有______个.17.如果方程5x2-4x=m没有实数根,那么m的取值范围是______.18.已知函数f(x)=,那么f(6)=______.19.如图,已知在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,且∠CBD:∠ABD=4:3,那么∠A=______度.三、计算题(本大题共1小题,共15.0分)20.(1)计算:;(2)解不等式:x≤2x+3;(3)解方程:3x2+4x-1=0.四、解答题(本大题共6小题,共45.0分)21.已知:如图,BD=CD,∠B=∠C,求证:AD平分∠BAC.22.如图,已知在Rt△ABC中,∠ACB=90°,M是边AB的中点,连接CM并延长到点E,使得EM=AB,D是边AC上一点,且AD=BC,联结DE,求∠CDE的度数.23.已知:如图,反比例函数y=的图象上的一点A(m,n)在第一象限内,点B在x轴的正半轴上,且AB=AO,过点B作BC⊥x轴,与线段OA的延长线相交于点C,与反比例函数的图象相交于点D.(1)用含m的代数式表示点D的坐标;(2)求证:CD=3BD;(3)联结AD、OD,试求△ABD的面积与△AOD的面积的比值.24.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.25.已知:如图,在Rt△ABC中,∠ACB=90°,将这个三角形绕点A旋转,使点B落在边BC延长线上的点D处,点C落在点E处.求证:AD垂直平分线段CE.26.某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约______分钟后,药物发挥作用.(2)服药后,大约______小时,每毫升血液中含药量最大,最大值是______微克;(3)服药后,药物发挥作用的时间大约有______小时.答案和解析1.【答案】B【解析】解:∵反比例函数的图象经过点(3,-5),∴k=2×(-5)=-15.∵A中3×5=15;B中-3×5=-15;C中-2×(-5)=15;D中0×(-5)=0,∴反比例函数的图象一定经过点(-3,5).故选:B.由反比例函数的图象经过点(3,-5)结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.2.【答案】C【解析】解:①相等的角是对顶角,错误;②等腰三角形腰上的高相等,正确;③直角三角形的两个锐角互余,正确;④全等三角形的三个角分别对应相等,正确;故选:C.根据对顶角、等腰三角形的性质、直角三角形的性质、全等三角形的性质即可一一判断.本题考查命题与定理、对顶角、等腰三角形的性质、直角三角形的性质、全等三角形的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.3.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【答案】C【解析】解:x2-6x-7=0,(x+1)(x-7)=0,所以x1=-1,x2=7,即方程x2-2x=7+4x的根为-1和7.故选:C.先把方程化为一般式,再利用因式分解法解方程,从而得到方程的解.本题考查了一元二次方程的解:能使一元次方程左右两边相的未知数的是一二次方的解.5.【答案】p=(1≤n≤38,且n为整数)【解析】解:依题意得:p=(1≤n≤38,且n为整数)故答案是:p=(1≤n≤38,且n为整数).根据概率的定义列出函数关系式即可.考查了函数关系式,列函数关系式的依据:参与率=.6.【答案】x>-3【解析】解:∵函数y=中,x+3>0,解得x>-3,∴函数y=的定义域为x>-3,故答案为:x>-3.当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.本题主要考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.7.【答案】12【解析】解:过点C作CD⊥x轴于点D,如图所示.∵正比例函数y=-4x的图象经过点A(-3,m),∴m=-4×(-3)=12.∵OC平分∠AOB,∴点C到直线OA的距离等于线段CD的长度.∵AC∥x轴,CD⊥x轴,点A的坐标为(-3,12),∴CD=12.故答案为:12.过点C作CD⊥x轴于点D,利用正比例函数图象上点的坐标特征可求出m值,根据角平分线的性质可得出点C到直线OA的距离等于线段CD的长度,再根据平行线的性质结合点A的坐标即可求出CD的长度,此题得解.本题考查了一次函数图象上点的坐标特征、角平分线的性质以及平行线的性质,利用角平分线的性质找出点C到直线OA的距离等于线段CD的长度是解题的关键.8.【答案】【解析】解:二次根式的有理化的目的就是去掉根号,所以,的一个有理化因式是.故答案为.一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.本题考查了有理化因式的定义:两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.一般地,a的有理化因式是;a-b的有理化因式是a+b.9.【答案】16【解析】解:∵二次三项式x2-8x+m能配成完全平方式,∴x2-8x+m=(x-4)2,则m=16.故答案为:16.直接利用完全平方公式计算得出答案.此题主要考查了完全平方公式,正确配方是解题关键.10.【答案】3【解析】解:A、B两点间的距离==3.故答案为3.直接利用两点间的距离公式计算.本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.11.【答案】【解析】解:因为等边三角形的边长为m厘米,可得等边三角形的高是厘米,所以这个三角形的面积=平方厘米;故答案为:.根据等边三角形的性质和三角形面积公式解答即可.此题考查等边三角形的性质,关键是得出等边三角形的高.12.【答案】【解析】解:由题意得:,∴m=1,原方程变为:-x2+2=0,x=,故答案为:.直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键.13.【答案】减小【解析】解:设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-2,6),∴6=-2k,∴k=-3<0,∴这个函数中的函数值y随自变量x值的增大而减小.故答案为:减小.利用一次函数图象上点的坐标特征可求出k值,再根据正比例函数的性质即可找出函数值y随自变量x值的增大而减小.本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征求出k值是解题的关键.14.【答案】8【解析】解:作CD⊥AB延长线于D点,设CD=x,AD=y,在直角△ADC中,AC2=x2+y2,在直角△BDC中,BC2=x2+(y+AB)2,解方程得y=6,x=8,即CD=8,∵CD即AB边上的高,∴AB边上的高等于8.故答案为8.作CD⊥AB延长线于D点,根据直角△ADC和直角△BDC中关于CD的计算方程求AD,CD;CD即AB边上的高.本题考查了勾股定理的正确运用,设x、y两个未知数,根据解直角△ADC和直角△BDC求得x、y的值是解题的关键.15.【答案】(x+y)(x-y)【解析】解:原式=(x+y)(x-y).故答案是:(x+y)(x-y).直接利用平方差公式分解因式得出即可.此题主要考查了利用公式法分解因式,熟练应用平方差公式是解题关键.16.【答案】2【解析】解:如图所示:,所以在直线AB上,且到点P的距离为3厘米的点共有2个,故答案为:2根据两点间的距离解答即可.此题考查两点间的距离,关键是根据到点P的距离为3厘米的点有两个解答.17.【答案】m<-【解析】解:∵方程5x2-4x=m没有实数根,∴△=(-4)2-4×5×(-m)<0,解得:m<-故答案为:m<-.根据方程没有实数根得出不等式△=(-4)2-4×5×(-m)<0,求出不等式的解集即可.本题考查了根的判别式,能根据根的判别式得出关于m的不等式是解此题的关键.18.【答案】【解析】解:把x=6代入f(x)==,故答案为:将x=6代入计算即可.本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.19.【答案】27【解析】解:∵AB的垂直平分线DE,∴AD=BD,∴∠A=∠ABD,设∠CBD=4x,∠ABD=3x,则∠A=3x,∵∠C=90°,∴∠A+∠ABC=3x+4x+3x=90°,∴10x=90°,∴x=9°,∴∠A=3x=27°,故答案为:27.根据线段垂直平分线得出AD=BD,推出∠A=∠ABD,设∠CBD=4x,∠ABD=3x,则∠A=3x,根据三角形内角和定理即可求出答案.本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形性质等知识点,注意:线段垂直平分线上的点到线段两个端点的距离相等.20.【答案】解:(1)原式=2+3-=2+3-(-)=2+3-+=+4;(2)(-2)x≤3,x≤,x≤3(+2).即x≤3+6;(3)△=42-4×3×(-1)=28,x==,所以x1=,x2=.【解析】(1)先利用因式分解的方法变形a-b,再约分,然后把二次根式化为最简二次根式后合并即可;(2)先移项,再把系数化为1得到x≤,然后分母有理化即可;(3)先计算判别式的值,然后利用求根公式解方程.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解一元二次方程和一元一次不等式.21.【答案】证明:连接BC,∵BD=CD,∴∠DBC=∠DCB,∵∠ABD=∠ACD,∴∠ABC=∠ACB,∴AB=AC,在△ABD与△ACD中,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.【解析】连接BC,利用SSS可得△ABD≌ACD,由全等三角形的性质证明即可.此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.22.【答案】解:如图,连接AE,∵∠ACB=90°,AM=BM,∴CM=AB,∵EM=AB,∴CM=EM,在△AME和△BMC中,∵ ,∴△AME≌△BMC(SAS),∴AE=BC,∠EAM=∠B,∵AD=BC,∴AD=AE,∵∠BAC+∠B=90°,∴∠BAC+∠EAM=90°,即∠DAE=90°,∴∠ADE=45°,∴∠CDE=135°.【解析】连接AE,先证△AME≌△BMC得AE=BC、∠EAM=∠B,再结合AD=BC、∠BAC+∠B=90°可得AD=AE、∠DAE=90°,据此得出∠ADE=45°,从而得出答案.本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握直角三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识点.23.【答案】解:(1)如图,∵点A(m,n)在反比例函数y=的图象上,∴n=,∴A(m,),过点A作AH⊥x轴于H,∴H(m,0),∵AB=OA,∴OB=2OH,∴B(2m,0),∵BD⊥x轴于D,∴点D的横坐标为2m,∵点D在反比例函数y=的图象上,∴D(2m,);(2)设直线AO的解析式为y=kx,∵点A(m,),∴,∴k=,∴直线AO的解析式为y=x,∵点C在直线AO上,且横坐标为2m,∴C(2m,),∴CD=,∵BD=,∴CD=3BD;(3)由(2)知,CD=3BD,∴S△ACD=3S△ABD,∵AB=AO,∴∠AOB=∠ABO,∵∠CBO=90°,∴∠AOB+∠C=90°,∠ABO+∠ABC=90°,∴∠C=∠ABC,∴AB=AC,∴AC=AO,∴S△AOD=S△ACD,∴S△AOD=3S△ABD,∴△.△【解析】(1)先用m表示点A的坐标,进而利用等腰三角形的性质得出点B的坐标,即可得出结论;(2)先确定出直线OA的解析式,即可得出点C的坐标,求出CD,BD即可得出结论;(3)先判断出S△ACD=3S△ABD,再判断出S△AOD=S△ACD,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,平面坐标系中几何图形的面积的计算,等腰三角形的性质,解本题的关键是得出CD=3BD.24.【答案】解:设这个增长率是x,根据题意,得300(1-4%)(1+x)2=450,整理,得(1+x)2=,解得x1=0.25,x2=-2.25(不合题意舍去).答:这个增长率是25%.【解析】先表示出第二季度的销售数量为300(1-4%)件,再设这个增长率是x,根据增长后的产量=增长前的产量(1+增长率),则第四季度的销售量是300(1-4%)(1+x)2件,依此列出方程,解方程即可.此题考查了一元二次方程的应用,解答本题的关键是利用增长率表示出第四季度的销售量是300(1-4%)(1+x)2件,然后得出方程.25.【答案】证明:∵△ADE是由△ABC旋转得到,∴AD=AB,AE=AC,∠DAE=∠BAC,∵AD=AB,∴∠ADC=∠B,∵∠ACB=90°,∴∠DAC=∠BAC,∴∠DAC=∠DAE,∵AE=AC,∴AD垂直平分线段CE.【解析】根据旋转的性质得出AD=AB,AE=AC,∠DAE=∠BAC,进而利用等边对等角和垂直平分线的判定证明即可.此题考查旋转的性质,关键是根据旋转得出AD=AB,AE=AC,∠DAE=∠BAC.26.【答案】20;2;80;6.7【解析】解:(1)由图象可知:服药一个小时时,每毫升血液中含药60微克,所以大约20分钟后,每毫升血液中含药20微克,所以服药后,大约20分钟后,药物发挥作用.故答案为:20;(2)由图象得:服药后,大约2小时,每毫升血液中含药量最大,最大值是80微克;故答案为:2;80;(3)由图象可知:x=7时,y=20,7-=≈6.7(小时)则服药后,药物发挥作用的时间大约有6.7小时.故答案为:6.7.(1)先观察图象得:1小时对应y=60,可知20分时含药为20微克,根据如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,可得结论;(2)根据图象得出;(3)利用y=20时,对应的x的差可得结论.本题考查了函数的图象的运用,利用数形结合的思想解决问题是本题的关键,并注意理解本题中“含药量不小于20微克,那么这种药物才能发挥作用”的意义.。

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

武昌区多校2023-2024学年上学期期中联考八年级数学试题一、单选题(每小题3分,共30分)1.已知一个三角形的两边长分别为4和1,则这个三角形的第三边长可能是()A.3B.4C.5D.62.“甲骨文”,是中国的一种古老文字,又称“契文”、“殷墟文字”,下列甲骨文中,不是轴对称图形的是()A. B. C. D.3.一个多边形内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.下列说法正确的是()A.三角形的一个外角等于任意两个内角的和B.三角形的一个外角小于它的一个内角C.三角形的一个外角大于它的相邻的内角D.三角形的一个外角大于任何一个与它不相邻的内角5.已知图中的两个三角形全等,则1∠的度数是()A.50°B.54°C.60°D.76°6.如图,点E ,F 在BC 上,BE FC =,B C ∠=∠.添加下列条件不能使得ABF DCE △≌△的是()A.AB DC =B.A D ∠=∠C.AFB DEC ∠=∠D.AF DE=7.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若15BC =,且:3:2BD CD =,则点D 到AB 的距离为()A.5B.6C.8D.98.如图,AC AB BD ==,AB BD ⊥,10BC =,则BCD △的面积为()A.15B.25C.20D.509.如图,A 、B 是5×6网格中的格点,网格中的每个小正方形边长都为1,以A 、B 、C 为顶点的三角形是等腰三角形的格点C 的位置有()A.8个B.11个C.12个D.14个10.如图,ABM △和CDM △均为等边三角形,直线BC 交AD 于点F ,点E 、N 分别为AD 、BC 的中点,下列结论:①AD BC =;②ME CB ⊥;③AF BF MF -=;④MNE △为等边三角形;⑤MF 平分BME ∠,其中一定成立的有()个A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.点()1,3A -关于x 轴的对称点A '的坐标为__________.12.在ABC △中::1:2:3A B C ∠∠∠=,则C ∠的度数为___________.13.如图,在ABC △和DCB △中,AB DC =.若不添加任何字母与辅助线,要使ABC DCB △≌△,则可以添加一个角相等的条件是_______________.14.如图,在AOB ∠的边OA 、OB 上取点M 、N ,连接MN ,MP 平分AMN ∠,NP 平分MNB ∠,若1MN =,PMN △的面积是1,OMN △的面积是4,则OM ON +的长是______________.15.多边形的一个内角的外角与其他内角的度数和为600°,则此多边形的边数为____________.16.如图120MON =︒∠,点A 为ON 上一点,且3OA =B 为直线OM 上的一动点,以AB 为边作等边ABC △,连接OC ,当BC 最小时,此时OC =______________.三、解答题(共8小题,共72分)17.(本题满分8分)用一条长为20cm 的细绳围成一个等腰三角形,能围成一边长是6cm 的等腰三角形吗?为什么?18.(本题满分8分)如图,在四边形ABCD 中,E 是BC 的中点,延长AE 、DC 相交于点F ,BEF B F =∠+∠∠.求证:AB CF =.19.(本题满分8分)如图,点D 、E 在ABC △的边BC 上,AB AC =,AD AE =,求证:BD CE =.20.(本题满分8分)如图,在四边形ABCD 中,AB CD ∥,E 为AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:CDE FAE △≌△.(2)连接BE ,当BE GF ⊥时,3CD =,2AB =,求BC 的长.21.(本题满分8分)如图,在5×5的正方形网格中,请仅用无刻度直尺完成下列画图问题(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,画出线段AB 的中点M .(2)在图2中,线段AC 与第3条,第5条水平网格线分别相交于D 、E 两点,在直线上画一点P ,连接PD 和PE ,使得PD PE +最小.(3)在图3中的直线上画一点F ,使45CAF ∠=︒.(4)在图4中,线段AC 与第3条水平网格线相交于D 点,过D 点画DH AG ⊥于H 点.22.(本题满分10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在ABC △中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC △的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在ABC △中,30B ∠=︒,AD 和DE 是ABC △的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请直接写出C ∠所有可能的值_________________.23.(本题满分10分)ABE △和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF =∠∠,BE CF =,求证:ABE ACF △≌△.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:__________________.24.(本题满分12分)如图1,ABC △是等腰直角三角形,点B 是y 轴上的一点,边AC 交y 轴于点D .(1)若点()1,1C -,直接写出点B 的坐标__________.(2)如图2,将ABC △沿y 轴负方向平移一定单位后,使AB 边交y 轴于点E .过点B 作BG y ⊥轴且BG OB =,连接OG .过点G 作GF x ⊥轴交BC 于点F ,连接EF ,求证:FG OE EF =+.(3)如图3,在(1)的条件下,若点M 坐标为()2,0,点P 在第一象限内,连接PM ,过点P 作PH PM ⊥交y 轴于点H ,在PH 上截取PN PM =,连接BN ,过点P 作45OPQ ∠=︒交BN 于点Q ,试探究点Q 在BN 上的位置关系,并说明理由.参考答案1.B2.A3.B4.D5.A6.D7.B8.B9.C 10.C二、填空题11.()1,312.90°13.ABC DCB ∠=∠14.515.5或6(注:对1个给1分,全对3分)16.32三、解答题17.【解析】分两种情况讨论:①当6cm 为腰长时,设底边长为cm x ,6220x ⨯+=,8x =,∴三边长分别为6cm ,6cm ,8cm②当6cm 为底边长时,设底边长为cm y ,6220y +=,7y =,∴三边长分别为6cm ,7cm ,7cm18.【解析】∵BEF F ECF ∠=∠+∠,BEF B F ∠=∠+∠,∴B ECF ∠=∠∵点E 是BC 中点,∴CE BE=在ABE △和FCE △中B ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABE FCE △≌△,∴AB CF =.19.【解析】证明:过点A 作AH BC ⊥于点H (辅助线交代不清扣1分)∵AB AC =,AH BC ⊥,∴BH CH=∵AD AE =,AH DE ⊥,∴DH EH=∴BH DH CH EH -=-即BD CE=20.【解析】(1)证明:∵AB CD ∥∴DCE F ∠=∠,∵点E 是AD 中点,∴DE AE =,在CDE △和FAE △中DCE F CED FEA DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CDE FAE ≌△△(2)由(1)知CDE FAE ≌△△,∴CE FE =,CD AF=∵BE GF ⊥,∴BE 垂直平分CF∴BC BF =,∵3CD =,2AB =∴3AF CD ==,∴325BC BF AF AB ==+=+=21.【解析】22.【解析】(1)设=A x ∠,∵AB BD BC==∴ABD A x ∠=∠=,2C BDC x x x∠=∠=+=∵AB AC =,∴2ABD C x∠=∠=在ABC △中,22180x x x ++=︒,36x =︒∴36A ∠=︒(2)(画对和度数表明即可,两个图每个各给2分)(3)20°或40°(写对1个给2分)23.【解析】(1)在ABE △和ACF △中A A ABE ACF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACF ≌△△(2)过点C 作CM BE ⊥于M ,作CN AB ⊥的延长线于N∵BOC BFC ABE BEC ACF ∠=∠+∠=∠+∠,ABE ACF∠=∠∴BFC BEC ∠=∠,即NFC MEC∠=∠∵CM BE ⊥,CN AB ⊥,∴90CNF CME ∠=∠=︒在CNF △和CNB △中NFC MEC CNF CME CF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CNF CME ≌△△,∴CN CM =,又CM BE ⊥,CN AB ⊥,∴BC 平分EBN∠∴EBC NBC ∠=∠,∵ABE α∠=∴1809022EBC αα︒-∠==︒-(3)2COE OGH ∠=∠或12OGH COE ∠=∠24.【解析】(1)()0,2B (2)在GF 上截取GR OE =,连接BR (或过点B 作BR BA ⊥交于GF 于R )∵BG y ⊥轴,BR x ⊥轴∴90OBG BGR BOE∠=∠=︒=∠在BGR △和BOE △中BG BO BOE BGR GR OE =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGR BOE ≌△△,∴BR BE =,GBR OBE ∠=∠∵90GBR OBR ∠+∠=︒,∴90OBE OBR ∠+∠=︒,即90ABR ∠=︒∵ABC △是等腰直角三角形∴45ABC ∠=︒,∴904545RBF EBF∠=︒-︒=︒=∠在BFR △和BFE △中BR BE RBF EBF BC BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFR BFE ≌△△,∴RF EF=∴FG RF GR EF OE=+=+(3)过点O 作OR OP ⊥交PQ 的延长线于点R ,连接BR ∵45OPQ ∠=︒,OR OP ⊥,∴904545ORP ∠=︒-︒=︒∴OPR △是等腰直角三角形∴OP OR =,90POR ∠=︒∵90BOM ∠=︒可证BOR MOP ∠=∠,再可证()SAS BOR MOP ≌△△∴BR PM PN ==,BRO MPO ∠=∠设=OPH x ∠,则90OPM ORB x ∠=∠=︒-∵45OPQ ∠=︒,∴45NPQ x ∠=︒-,904545BRQ x x ∠=︒--︒=︒-得NPQ BRQ ∠=∠,再证()AAS PNQ RBQ ≌△△得BQ NQ =,即点Q 为BN 的中点。

福建漳州中考数学题解析

福建漳州中考数学题解析

福建省漳州市2011年中考数学试卷一、选择题(共10题,每题3分,满分30分)1、(2011•漳州)在﹣1、3、0、四个实数中,最大的实数是()A、﹣1B、3C、0D、2、(2011•漳州)下列运算正确的是()A、a3•a2=a5B、2a﹣a=2C、a+b=abD、(a3)2=a93、(2011•漳州)9的算术平方根是()A、3B、±3C、D、±4、(2011•漳州)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是()A、B、 C、D、5、(2011•漳州)下列事件中,属于必然事件的是()A、打开电视机,它正在播广告B、打开数学书,恰好翻到第50页C、抛掷一枚均匀的硬币,恰好正面朝上D、一天有24小时6、(2011•漳州)分式方程=1的解是()A、﹣1B、0C、1D、7、(2011•漳州)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A、79,85B、80,79C、85,80D、85,858、(2011•漳州)下列命题中,假命题是()A、经过两点有且只有一条直线B、平行四边形的对角线相等C、两腰相等的梯形叫做等腰梯形D、圆的切线垂直于经过切点的半径9、(2011•漳州)如图,P(x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积()A、不变B、增大C、减小D、无法确定10、(2011•漳州)如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A、0.6mB、1.2mC、1.3mD、1.4m二、填空题(共6题,每题4分,共24分.)11、(2011•海南)分解因式:x2﹣4=_________.12、(2011•漳州)2010年我市为突出“海西建设,漳州先行”发展主线,集中力量大干150天,打好五大战役,全市经济增长取得新的突破,全年实现地区生产总值约为140 070 000 000元,用科学记数法表示为_________元.13、(2011•漳州)口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是_________.14、(2011•漳州)两圆的半径分别为6和5,圆心距为10,则这两圆的位置关系是_________.15、(2011•漳州)如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为_________cm2.(结果保留π)16、(2011•漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_________枚.(用含n的代数式表示)三、解答题(共10题,满分96分)17、(2011•漳州)|﹣3|+(﹣1)0﹣()﹣1.18、(2011•漳州)已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:19、(2011•漳州)如图,∠B=∠D,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC≌△ADE,并证明.(1)添加的条件是_________;(2)证明:20、(2011•漳州)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.21、(2011•漳州)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_________人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?22、(2011•漳州)某校“我爱学数学”课题学习小组的活动主题是“测量学校旗杆的高度”.以课题测量学校旗杆的高度图示发言记录小红:我站在远处看旗杆顶端,测得仰角为30°小亮:我从小红的位置向旗杆方向前进12m看旗杆顶端,测得仰角为60°小红:我和小亮的目高都是1.6m请你根据表格中记录的信息,计算旗杆AG的高度.(取1.7,结果保留两个有效数字)23、(2011•漳州)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.24、(2011•漳州)2008年漳州市出口贸易总值为22.52亿美元,至2010年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.(1)求这两年漳州市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测2011年漳州市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563)25、(2011•漳州)如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(_________,_________),点D的坐标是(_________,_________);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.26、(2011•漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB=_________,OC=_________;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.答案与评分标准一、选择题(共10题,每题3分,满分30分.)1、(2011•漳州)在﹣1、3、0、四个实数中,最大的实数是()A、﹣1B、3C、0D、考点:实数大小比较。

福建省漳州市龙海市学八年级数学上学期期末考试试题(含解析) 新人教版

福建省漳州市龙海市学八年级数学上学期期末考试试题(含解析) 新人教版

福建省漳州市龙海市2015-2016学年度八年级数学上学期期末考试试题一、选择题(共12小题,每小题2分,满分24分)1.下列实数中属于无理数的是()A.πB.C.3.14 D.2.记录一天中气温的变化情况,选用比较合适的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上三种都可以3.的值等于()A.﹣3 B.C.3 D.±34.下列计算结果正确的是()A.a3•a2=a6B.(ab)3=a3b3C.(a5)3=a8D.a6÷a2=a35.计算频率时不可能得到的数值是()A.0 B.0.5 C.1 D.1.26.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.1,2,3 B.4,5,6 C.6,8,9 D.7,24,257.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°8.下列命题中,属于假命题的是()A.等角的余角相等B.相等的角是对顶角C.同位角相等,两直线平行D.有一个角是60°的等腰三角形是等边三角形9.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()A.2 B.1 C.0 D.﹣110.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1711.如图,∠1=∠2,若要使△ABD≌△ACD,则要添加的一个条件不能是()A.AB=AC B.BD=CD C.∠BAD=∠CAD D.∠B=∠C12.分解因式2x3﹣18x结果正确的是()A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)二、填空题(共8小题,每小题3分,共24分)13.= .14.命题“直角都相等”的逆命题是,它是命题.(填“真”或“假”).15.因式分解:3ab+6a= .16.若△OAB≌△OCD,且∠B=58°.则∠D=°.17.计算:(x2﹣4xy)÷x=.18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.19.在投掷一枚硬币的试验中,共投掷了100次,其中“正面朝上”的频数为55,则“反面朝上”的频率为.20.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=13厘米,BC=12厘米,则点D到直线AB的距离是厘米.三、解答题.(共7小题,满分52分)21.计算:(1)+﹣(2)(﹣2ab)2•(﹣3ab2)22.因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.23.先化简,再求值:(x+2)2﹣(x+2)(x﹣2),其中x=﹣2.24.某校为进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)把图1补充完整;(2)在这次问卷调查中,喜欢“科普书籍”出现的频率为;(3)在扇形统计图中,喜欢“文艺书籍”的所占的圆心角度数.25.如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.26.如图,在△ABC中,∠B=90°,AB=BC=4,点D在BC上,将△ABC沿AD折叠,使点B落在AC边上的点E处.(1)判断△CDE是什么特殊三角形,并说明理由;(2)求线段BD的长.27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD=°,∠DEC=°;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.福建省漳州市龙海市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.下列实数中属于无理数的是()A.πB.C.3.14 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、π是无理数,故A正确;B、是有理数,故B错误;C、3.14是有理数,故C错误;D、是有理数,故D错误;故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.记录一天中气温的变化情况,选用比较合适的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上三种都可以【考点】折线统计图.【分析】根据统计图的特点进行分析可得:条形统计图能清楚地表示出每个项目的具体数目;折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况;扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据.【解答】解:记录一天中气温的变化情况,选用比较合适的统计图是折线统计图,故选:B.【点评】本题考查的是统计图的选择,注意条形统计图能看出具体数目的多少,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图不但可以表示出数量的多少,而且能够表示出事物的变化情况.3.的值等于()A.﹣3 B.C.3 D.±3【考点】算术平方根.【专题】计算题;实数.【分析】原式利用算术平方根定义计算即可得到结果.【解答】解:==3,故选C.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.4.下列计算结果正确的是()A.a3•a2=a6B.(ab)3=a3b3C.(a5)3=a8D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,积的乘方等于乘方的积,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.计算频率时不可能得到的数值是()A.0 B.0.5 C.1 D.1.2【考点】频数与频率.【分析】根据频率的概念:频率是指每个对象出现的次数与总次数的比值,可得1.2是错误的.【解答】解:∵频率是指每个对象出现的次数与总次数的比值,∴频率≤1.故选D.【点评】本题考查了频数和频率的知识,频率是指每个对象出现的次数与总次数的比值.6.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.1,2,3 B.4,5,6 C.6,8,9 D.7,24,25【考点】勾股定理的逆定理.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+22≠32,不是直角三角形,故此选项错误;B、42+52≠62,不是直角三角形,故此选项错误;C、62+82≠92,不是直角三角形,故此选项错误;D、72+242=252,是直角三角形,故此选项正确.故选:D.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.7.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【考点】全等三角形的性质.【分析】根据三角形内角和定理可求∠ABC=60°,根据全等三角形的性质可证∠DCB=∠ABC,即可求∠DCB.【解答】解:∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.【点评】本题考查了全等三角形的性质和三角形内角和定理.解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及内角之间的关系联系起来.8.下列命题中,属于假命题的是()A.等角的余角相等B.相等的角是对顶角C.同位角相等,两直线平行D.有一个角是60°的等腰三角形是等边三角形【考点】命题与定理.【分析】利用余角的定义、对顶角的性质、平行线的判定及等边三角形的判定分别判断后即可确定正确的选项.【解答】解:A、等角的余角相等,正确,为真命题;B、相等的角不一定是对顶角,错误,为假命题;C、同位角相等,两直线平行,正确,为真命题;D、有一个角是60°的等腰三角形是等边三角形,正确,为真命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解余角的定义、对顶角的性质、平行线的判定及等边三角形的判定方法,难度不大.9.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()A.2 B.1 C.0 D.﹣1【考点】整式的混合运算—化简求值.【分析】先算乘法,再变形,最后整体代入求出即可.【解答】解:∵x+y=3,xy=1,∴(2﹣x)(2﹣y)=4﹣2y﹣2x+xy=4﹣2(x+y)+xy=4﹣2×3+1=﹣1,故选D.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,用了整体代入得思想,难度适中.10.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.11.如图,∠1=∠2,若要使△ABD≌△ACD,则要添加的一个条件不能是()A.AB=AC B.BD=CD C.∠BAD=∠CAD D.∠B=∠C【考点】全等三角形的判定.【分析】利用三角形全等的判定方法SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、添加AB=AC,不能判定△ABD≌△ACD,故此选项符合题意;B、添加BD=CD,可利用SAS判定△ABD≌△ACD,故此选项不符合题意;C、添加∠BAD=∠CAD,可利用ASA判定△ABD≌△ACD,故此选项不符合题意;D、添加∠B=∠C,可利用AAS判定△ABD≌△ACD,故此选项不符合题意;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.分解因式2x3﹣18x结果正确的是()A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2x,再利用平方差公式分解即可.【解答】解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故选D【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.二、填空题(共8小题,每小题3分,共24分)13.= 2 .【考点】立方根.【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.14.命题“直角都相等”的逆命题是相等的角都是直角,它是假命题.(填“真”或“假”).【考点】命题与定理.【分析】把一个命题的题设和结论互换就可得到它的逆命题,根据真命题与假命题的概念,判断正确的命题叫真命题,判断错误的命题叫假命题,即可判断出命题的真假.【解答】解:命题“直角都相等”的逆命题是:相等的角都是直角,∵相等的角不一定都是直角,∴命题是假命题,故答案为:相等的角都是直角,假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,还考查了真假命题的定义,难度适中.15.因式分解:3ab+6a= 3a(b+2).【考点】因式分解-提公因式法.【分析】直接提取公因式3a,进而分解因式即可.【解答】解:3ab+6a=3a(b+2).故答案为:3a(b+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.若△OAB≌△OCD,且∠B=58°.则∠D=58 °.【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等解答即可.【解答】解:∵△OAB≌△OCD,∴∠D=∠B=58°,故答案为:58.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键》17.计算:(x2﹣4xy)÷x=x﹣4y .【考点】整式的除法.【分析】此题直接利用多项式除以单项式的法则即可求出结果.【解答】解:(x2﹣4xy)÷x=x﹣4y,故答案为:x﹣4y.【点评】本题考查多项式除以单项式.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10 .【考点】勾股定理.【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.19.在投掷一枚硬币的试验中,共投掷了100次,其中“正面朝上”的频数为55,则“反面朝上”的频率为0.45 .【考点】频数与频率.【分析】根据频数和频率的概念求解.【解答】解:由题意得:“反面朝上”的频数为45,则频率为:45÷100=0.45.故答案为:0.45.【点评】本题考查了频数和频率的知识,频数是指每个对象出现的次数,频率是指每个对象出现的次数与总次数的比值.20.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=13厘米,BC=12厘米,则点D到直线AB的距离是 5 厘米.【考点】角平分线的性质;勾股定理.【专题】应用题.【分析】本题需先根据已知条件得出DC的长,再根据角平分线定理得点D到直线AB的距离等于DC 的长度,即可求出答案.【解答】解:∵BD=13厘米,BC=12厘米,∠C=90°,∴DC=5厘米,由角平分线定理得点D到直线AB的距离等于DC的长度,故点D到直线AB的距离是5厘米;故答案为:5.【点评】本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键,难度适中.三、解答题.(共7小题,满分52分)21.计算:(1)+﹣(2)(﹣2ab)2•(﹣3ab2)【考点】实数的运算;单项式乘单项式.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式先利用积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:(1)原式=﹣2+4﹣=1;(2)原式=4a2b2•(﹣3ab2)=﹣12a3b4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式利用平方差公式分解即可;(2)原式提取2,再利用完全平方公式分解即可.【解答】解:(1)原式=(5x+4y)(5x﹣4y);(2)原式=2(a2+2ab+b2)=2(a+b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.先化简,再求值:(x+2)2﹣(x+2)(x﹣2),其中x=﹣2.【考点】整式的混合运算—化简求值.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+2)2﹣(x+2)(x﹣2)=x2+4x+4﹣x2+4=4x+8,当x=﹣2时,原式=4×(﹣2)+8=0.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.24.某校为进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)把图1补充完整;(2)在这次问卷调查中,喜欢“科普书籍”出现的频率为0.25 ;(3)在扇形统计图中,喜欢“文艺书籍”的所占的圆心角度数144°.【考点】条形统计图;扇形统计图.【分析】(1)根据喜欢文艺的人数是80,所占的百分比是40%,即可求得调查的总人数,然后利用总人数减去其它组的人数即可求得喜欢科普书籍的人数,从而补全直方图;(2)根据频率的计算公式即可直接求解;(3)利用360°乘以对应的百分比即可求解.【解答】解:(1)调查的总人数是:80÷40%=200(人),则喜欢科普类书籍的人数是:200﹣80﹣30﹣40=50(人).;(2)喜欢“科普书籍”出现的频率为=0.25;(3)喜欢“文艺书籍”的所占的圆心角度数是:360×40%=144°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.【解答】证明:∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF【点评】本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.26.如图,在△ABC中,∠B=90°,AB=BC=4,点D在BC上,将△ABC沿AD折叠,使点B落在AC边上的点E处.(1)判断△CDE是什么特殊三角形,并说明理由;(2)求线段BD的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)根据等腰直角三角形的性质得到∠C=45°,根据折叠的性质得到∠AED=∠B=90°,可以得到结论.(2)由折叠的性质得BD=DE,AE=AB=4,∠AED=∠B=90˚,设DE=DB=EC=x,则CD=(4﹣x),在Rt△CED 中依据勾股定理列方程求解即可.【解答】解:(1)∵AB=BC,∠B=90°,∴∠C=45°,由折叠可知∠CED=90°,∴∠CED=∠C=45°,∴△CDE是等腰直角三角形.(2)设BD=x,则DE=CD=x,由勾股定理得到CD=x,∵BC=4,∴x+x=4,∴x==4﹣4,即BD=4﹣4.【点评】本题考查了翻折变换的性质,勾股定理,主要利用了翻折前后的两个图形对应边相等,对应角相等,利用勾股定理列出关于x的方程是解题的关键27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD=25 °,∠DEC=115 °;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【解答】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣115°﹣40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°﹣∠ADB﹣∠ADE=25°,∴∠DEC=180°﹣∠EDC﹣∠C=115°,故答案为:25°,115°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点评】此题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.。

2023-2024学年湖北省武汉市青山区八年级(上)期末数学试卷+答案解析

2023-2024学年湖北省武汉市青山区八年级(上)期末数学试卷+答案解析

2023-2024学年湖北省武汉市青山区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列交通标志中,是轴对称图形的是()A. B. C. D.2.要使分式的值存在,则x的取值应满足()A. B. C. D.3.点关于y轴的对称点N的坐标是()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形6.下列各式从左到右的变形,一定正确的是()A. B. C. D.7.如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个矩形不重叠无缝隙,则该矩形的面积是()A. B. C. D.8.如图,在中,,,则的度数为()A.B.C.D.9.已知:a,b,c三个数满足:,,,则的值()A. B. C. D.10.如图,等边的边长为2,于点D,E为射线CD上一点,以BE为边在BE左侧作等边,则DF的最小值为()A.1B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.______.12.华为Mate20系列搭载了麒麟980芯片,这个被华为称之为全球首个7纳米工艺的AI芯片,拥有8个全球第一,7纳米就是米.数据用科学记数法表示为______.13.计算:______.14.如图,在四边形ABCD中,,,M,N分别是边BC,CD上的动点,当的周长最小时,______15.已知下列结论:①;②;③;④其中正确的有______请填写序号16.在中,,E,D分别是AB,AC边上一点,,,,,,则EB的长=______用含a,b,c的式子表示三、计算题:本大题共3小题,共24分。

17.计算:;18.因式分解:;19.先化简,再求值:,其中四、解答题:本题共5小题,共48分。

解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漳州市2011-2012学年上学期华师大版期末考八年级数学试卷一、选择题(每小题2分,共20分) 1、求7的平方根,正确的表达式是( ). A 、7 B 、7± C 、37 D 、272、下列语句正确的是( )A 、一个数的立方根不是正数就是负数B 、负数没有立方根C 、如果一个数的立方根是这个数本身,那么这个数一定是零D 、一个数的立方根与这个数同号,零的立方根是零 3、下列运算正确的是( )A 、3a +2a =5a 2B 、(2a +b )(2a -b )=4a 2-b 2C 、5a 2 ·a 3=5a 6D 、(2a +b )2=4a 2+b 24、如果42++my y 是某个多项式的平方,那么m 的值一定是( )A 、2B 、4C 、±2D 、±4 5、放学以后,小李和小王从学校分手, 分别沿东南方向和西南方向回家,若小李和小王行走的速度都是40米/分,小李用15 分钟到家,小王20分钟到家,小李家和小王家的距离为( )A 、600米B 、 800米C 、 1000米D 、 不能确定 6、 下列平面图形中,属于中心对称图形的是( ) ABC D学校小李家小王家第5题图北7、菱形具有的,而矩形不具有的性质是()A、对角相等B、对角线互相平分且相等C、对边相等D、对角线互相垂直8、如图,平行四边形ABCD中,CE垂直于AB,∠D=o53,则∠BCE的大小是()A、o53B、o43C、o47D、o379、直角三角形有两边分别为3和4,下列说法错误的是()A、斜边一定为5B、面积可能为6C、斜边可能为4D、斜边上的高可能为2.410、如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角的度数应为……()A.60°B.30°C.45°D.90°二、填空题(每小题3分,共24分)11、在71-,π-,0,22-,33-,49中,是无理数的数有____________。

12、计算:)2()6(252abcba-÷-=_________。

13、若将三个数-3,10,313表示在数轴上,其中介于2和3之间的数是_____。

14、因式分解:aa93-=____________________。

15、如图在Rt⊿ABC中,∠C=90°CD⊥AB,BC=5,AC=12, 则CD=______。

第16题DABC第15题图AECDB第8题图第10题图CNDPPMA第18题图BQCB A16、如图,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,则△ABC 绕着点A 逆时针旋转______度能与△ADE 重合。

17、若△ABC ≌△DEF ,且∠A =∠D ,∠B =∠E ,请写出一组相等的对应边:_________。

18、如图,正方形ABCD 边长为6, MN ∥BC 分别交AB 、CD 于点M 、N ,在MN 上任取两点P 、Q ,那么图中阴影部分的面积是_______。

三、解答题(共56分)19、(本题6分)如图,在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC 向右平移4个单位,得到△A 1B 1C 1,再把△A 1B 1C 1,绕点A 1逆时针旋转90°得到△A 2B 2C 2,请你画出△A 1B 1C 1和△A 2B 2C 2(不要求写画法)。

20、计算:(每题6分,共12分) (1) (3a 2) 3·4b 3÷(6ab ) 2(2)先化简,再求值:2)1()12()2))(2(-+---+x x x x x ,其中2=x21、(本题6分)如图,在△ABC 中,若AB =10,BD =6,AD =8,AC =17,求DC 的长。

22、 (本题6分)如图,在平行四边形ABCD 中,点E 是BC 边上的一点,且AB =BE ,AE 的延长线交DC 的延长线于点F ,若∠F =56°求∠D 的度数. 解:ABDFEC23、(本题6分) 如图,四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,CE 平行于DB ,交AB 的延长线于E ,试说明AC =CE.ADCEBO第23题图 AB D C第21题图第22题图a baa babb ba a图1图2第24题图24、(本题6分) 我们已经知道,利用面积的不同表示方法可以写出一个代数恒等式,例如:(2a +b )(a +b )=2a 2+3ab +b 2,就可以用图1的图形面积的不同表示方法来表示。

(1)请写出图2所解释的代数恒等式:________________________;(2)利用上述方法画出一个几何图形说明代数恒等式:(a +3b )(a +b )=a 2+4ab +3b 2的正确性。

解:25、(本题6分)木匠王师傅在做家具时遇到一块不规则的木板(图1),现需要将这块木板锯开后胶合成一正方形,王师傅沿AB 、BC 两线锯开木板,使得EB =1(图2),(1)请在图2上画出拼成后的正方形。

(2)请写出在锯拼过程中王师傅运用到了什么运动变换? 解:答:在锯拼过程中王师傅运用到了____________运动变换。

a 2 a 2abab ab b 2 ab ab b 2a 2 a 2ab ab abb 2E B 1CA第25题图20.510.511.5第25题图126、(本题8分)如图,在梯形ABCD中,AB∥DC,AB=14cm,CD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t 秒。

(1)当DQ=AP时,四边形APQD是平形四边形,求出此时t的值;(2) 试问在这样的运动过程中,是否存在某一时刻,使梯形PBCQ的面积是梯形ABCD 面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。

第26题图CB A参考答案一、选择题1、B2、D3、B4、D5、C6、C7、D8、D9、A 10、C 二、填空题 11、-π,22-,33- 12、c ab 33 13、31314、)3)(3(+-a a a 15、1360 16、4517、AB =DE 或AC =DF 或BC =EF (只需写出一种情况即可) 18、18 三、解答题 19、(满分6分)20、(满分12分)(1) 解:原式=223636427b a b a ÷∙ …………………4分=b a 43…………………………………6分 (2)解:原式=)12()2()4(222+-+---x x x x x ………………3分=1224222+-++--x x x x x3--=x ,…………………………………4分当2=x 时,…………………………………5分原式=532-=--…………………………………6分21、(满分6分)解:∵AB =10,BD =6,AD =8∴AD 2+BD 2=62+82=100=AB 2………2分∴△ADB 是直角三角形……………3分90=∠=∠∴ADC ADB °……………4分在222AD ACDCADC Rt -=∆中:……………………………5分∴DC =15…………………………………6分22、(满分6分)解:在平行四边形中ABCD 中,056,//=∠F CD AB ,……1分A 1(A 2)C 1B 1C 2B 256=∠=∠∴F BAF ………………2分BE AB = 056=∠=∠∴BAE AEB ………………3分68562180=⨯-=∠B ,………………5分又在平行四边形ABCD 中,B D ∠=∠, 068=∠∴D ………………6分 23、(满分6分)解:在矩形ABCD 中:BO BD AC AO ===2121, ………2分OBA OAB ∠=∠∴………………3分∵CE ∥DB E O B A ∠=∠∴………………4分E OAB ∠=∠∴………………5分∴CA =CE ………………6分24、(满分6分)解:(1)22252)2)(2(b ab a b a b a ++=++…………3分 (2)解:………………6分25、(满分6分) 解:………3分如图2,在锯拼过程中王师傅运用旋转变换。

………………6分 26、(满分8分)解:(1)∵DQ =6-t ,AP =2t ………………2分而DQ =AP ∴6-t =2t ………………3分 ∴t =2 ………………4分(2)过C 作CE ⊥AB 交AB 于点Eaa 2ab ab abbab b 2b 2b 2abbb1CA1.50.51E 1 B 第25题图1第25题图2∵S 梯形ABCD =CE AB CD ⋅+)(21, S梯形PBCQ=CE PB CQ ⋅+)(21………………5分而梯形PBCQ 的面积是梯形ABCD 面积的一半, ∴CE PB CQ ⋅+)(21=⎥⎦⎤⎢⎣⎡⋅+CE PB CD )(2121 ……………6分 ∴CQ +PB =)(21AB CD + 又∵CQ =t ,PB =14-2t∴t +14-2t =10 ………………7分 ∴t =4 ………………8分。

相关文档
最新文档