二阶常系数齐次线性微分方程

合集下载

二阶常系数微分方程

二阶常系数微分方程

一、二阶常系数齐次线性微分方程
由上面分析可知,要求二阶常系数齐次线性微分方程的通解,关 键是寻找它的两个线性无关的特解.为此,首先找一个函数y,使 y″+py′+qy=0(p,q为常数).而指数函数erx(r为常数)就具备这种性质, 因为erx的一阶、二阶导数都是erx的常数倍,也就是说,只要适当选取 r,就可以使erx满足方程y″+py′+qy=0.于是,设y=erx (r为待定常数) 为方程y″+py′+qy=0的特解,将y=erx,y′=rerx,y″=r2erx代入方程中得 erx(r2+pr+q)=0.
一、二阶常系数齐次线性微分方程
定理6 如果y*是非齐次方程(12-20)的一个特解,而Y是其对应齐 次方程的通解,则y=Y+y*是非齐次方程(12-20)的通解.
证 因y*是非齐次方程(12-20)的一个特解,所以 y*″+py*′+qy*=f(x).又因Y是其对应齐次方程的通解,所以 Y″+pY′+qY=0.于是,对y=y*+Y有
y″+py′+qy=(Y+y*)″+p(Y+y*)′+q(Y+y*) =Y″+pY′+qY+y*″+py*′+qy* =0+f(x)=f(x) 所以,y=Y+y是非齐次方程(12-20)的解.又因为Y中含有两个任意常数, 从而,y=Y+y中也含有两个任意常数,所以y=Y+y是非齐次方程(1220)的通解.
定理5
如果y1与y2是齐次方程y″+py′+qy=0的两个特解,而且y1/y2不等 于常数,则y=C1y1+C2y2是齐次方程的通解,其中C1,C2为任意常数.

10.6二阶常系数齐次线性微分方程

10.6二阶常系数齐次线性微分方程
y" + py+qy = f (X)
微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0

故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程
第五节
二阶常系数齐次线性 微分方程
一、定义 二、线性微分方程的解的结构 三、二阶常系数齐次线性方程的解法 四、n阶常系数齐次线性方程解法 阶常系数齐次线性方程解法 五、小结
一、定义
y′′ + py′ + qy = 0
二阶常系数齐次线性方程
y′′ + py′ + qy = f (x) 二阶常系数非齐次线性方程
1
′ ′ 代入原方程并化简, 将 y2 ,y2 ,y2′ 代入原方程并化简,
u′′ + ( 2r1 + p )u′ + ( r + pr1 + q )u = 0,
2 1
知 u′′ = 0,
得齐次方程的通解为
则 y2 = xe r x , 取 u( x) = x, rx rx 1 y = C1e + C2 xe 1
y′′ + py′ + qy = 0
特征根的情况
r 2 + pr + q = 0
通解的表达式
≠ r2 实根 r1 = r2 复根 r = α ± iβ 1, 2
实根 r
1
y = C1e + C 2 e y = (C1 + C 2 x )e r x y = eαx (C1 cos βx + C 2 sin βx )
1
=(C1 + C2 x)er1x;
有两个不相等的实根 (∆ > 0)
r1 = − p+ p 2 − 4q , 2 r2 = − p− p 2 − 4q , 2
两个线性无关的特解
y1 = e ,
r1 x
y2 = e ,
r2 x

二阶常系数齐次线性微分方程.

二阶常系数齐次线性微分方程.
2
设r1, r2是特征方程的两个根. 2 (1) 当 p 4 q 0 时, 方程有两个相异实根 则微分方程有两个线性无关的特解: 因此方程的通解为 y C1 e
2
r1 x
C2 e
r2 x
(2) 当 p 4 q 0 时, 特征方程有两相等实根
则微分方程有一个特解
设另一特解为
成立, 则称函数y1(x) 与y2(x) 在该区间内线 性相关, 否则称y1(x)与y2(x)线性无关.
思考:
中有一个恒为0, 则 必线性 相关
定理. (二阶齐次线性方程通解的结构) 是二阶线性齐次方程的两个 线性无关的特解, 则 y C1 y1 ( x ) C 2 y2 ( x ) 数) 是该方程的通解. 有特解 例如, 方程
利用解的叠加原理, 得原方程线性无关特解:
y1 ( y1 y2 ) e
1 2
x
cos x
y2 ( y1 y2 ) e
1 2i
x
sin x
因此原方程的通解为
ye
x
(C1 cos x C 2 sin x )
求y+py+qy=0的通解的步骤:
(1) 写出微分方程的特征方程r2+pr+q=0 (2) 求出特征方程的两个根r1, r2
x
容易验证: y1 ( x) e , y2 ( x) 2e 都是它的解. 由2 y2 ( x) C1e 2C2e
x
x
(C1 2C2 )e Ce x
x
也是它的解. 但这个解中只含有一个任意常 数C, 显然它不是所给方程的通解.
问题: 方程的两个特解 y1(x), y2(x) 满足 什么条件时, y C1 y1 ( x) C2 y2 ( x) 才是方程 的通解? 由例7-12的分析可知, 如果方程的两个 特解y1(x), y2(x)之间不是常数倍的关系, 那 么它们线性组合得到的解

4.6 二阶常系数齐次线性微分方程

4.6 二阶常系数齐次线性微分方程

r1
(二重根) 二重根), 则通解为
r1,2 = α ± iβ ,
则通解为
③根据特征方程的两个根的不同形式,按照下列规则写 出微分方程的通解:
y=e
αx
( C1 cos β x + C2 sin β x ) .
3
例1 求解微分方程 解 特征方程为
y′′ + y′ − 6 y = 0.
例2 求解微分方程 y′′ + 4 y′ + 4 y 解 特征方程为
x
x x 容易验证 y1 =e 和 y2 = 2e
都是方程的解. 但函数
探索一下原因:
x
y = C1e + C2 2e ,
虽是该方程的解, 虽是该方程的解,却不是通解。 却不是通解。因为上面的函数中 虽形式上包含两个任意常数, 虽形式上包含两个任意常数,而由于
函数
ex

2e x 是成比例的, 因此它们的线性组合

y = ( C1 + C2 x ) er1x .
u′′ + ( 2r1 + p ) u′ + ( r12 + pr1 + q ) u = 0.
r12 + pr1 + q = 0, 且 2 r1 + p = 0,
因r 是特征方程的二重根,故 1 是特征方程的二重根,
㈢ p − 4q < 0. 特征方程有一对共轭复根 特征方程有一对共轭复根 r 1 , r2 ,
αx
( cos β x + i sin β x ) , ( cos β x − i sin β x ) .
y = eα x ( C1 cos β x + C2 sin β x ) .

二阶常系数线性齐次微分方程

二阶常系数线性齐次微分方程

二阶常系数线性齐次微分方程二阶常系数线性齐次微分方程,又称二阶次线性常系统,是数学分析和积分变换中重要的问题,在系统控制、信号处理和信号检测中也得到广泛应用。

一. 二阶常系数线性齐次微分方程的概念1、定义:二阶常系数线性齐次微分方程是指有形式U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,其中,p和q为常数,U是未知函数。

2、求解:若对未知函数U,有形如U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,则求解之所有实根解形式有:U(t)=C1eλ1t+C2eλ2t,其中,C1,C2为常数,λ1,λ2为方程的根,则得到方程:λ2+pλ+q=0。

二. 二阶常系数线性齐次微分方程的特点1、齐次:二阶常系数线性齐次微分方程是等号右边完全为零的一次方程的特殊形式,其解实际上也就是方程的根,二阶齐次方程的解可以通过求根公式求出。

2、常系数:二阶常系数线性齐次微分方程所有项都是常系数,不会改变,所以可以用公式进行解法简化,使用求根公式求出二阶常系数线性齐次微分方程的实根解,比一般的常系数线性非齐次微分方程的解法要简单得多;3、线性:二阶常系数线性齐次微分方程里面的未知函数和其倒数的次数有明确的关系,所以它是线性的;4、微分:二阶常系数线性齐次微分方程里面的未知函数不仅要满足一次微分方程,而且要满足特定的二次微分方程;三. 二阶常系数线性齐次微分方程的应用1、系统控制:二阶常系数线性齐次微分方程可以用来描述内外环回路的联系,可以用来优化被控系统的输出;2、信号处理:二阶常系数线性齐次微分方程可以用来对信号进行插值、滤波、离散傅里叶变换等处理;3、信号检测:二阶常系数线性齐次微分方程可以用来检测周期性变化或者噪声等不平凡现象,从而处理信号。

四. 二阶常系数线性齐次微分方程的扩展1、非齐次:不论是一阶常系数线性非齐次微分方程还是二阶非齐次微分方程,都可以通过常系数变换将其转化为齐次方程;2、常数变量:在适当的条件下,可以将二阶常系数线性齐次微分方程中的未知函数转化成一、二阶常数变量方程组;3、转化:二阶常系数线性齐次微分方程可以用Laplace变换、线性变换和积分变换等转化手段将其转化为容易求解的形式;4、衍生:可以从二阶常系数线性齐次微分方程发展出求解波。

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程

第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程
y C1y1(x) C2 y2 (x) (C1,C2为任意常数)
就必定是方程的通解.
定义 设y1(x) 与y2(x)是定义在某区间 内的两个函数, 如果存在不为零的常数k
(或存在不全为零的常数k1, k2), 使得对于 该区间内的一切x, 有
y2(x) k y1 ( x)
(或k1y1(x) k2 y2 (x) 0)
定理.(叠加原理) 若函数 y1( x), y2( x) 是方程
y P( x) y Q( x) y 0
的两个解, 则 y C1 y1( x) C2 y2( x)也是该方程 的解.
证:将 y C1 y1( x) C2 y2( x) 代入方程左边, 得
[C1 y1 C2 y2 ] P( x)[C1 y1 C2 y2 ]
成立, 则称函数y1(x) 与y2(x) 在该区间内线
性相关, 否则称y1(x)与y2(x)线性无关.
思考:
中有一个恒为0, 则
必线性相关
定理. (二阶齐次线性方程通解的结构) 是二阶线性齐次方程的两个
线性无关的特解, 则 y C1 y1( x) C2 y2( x)
数) 是该方程的通解.
例于书上, 1(5), 2(5)交作业.
(2) 当 p2 4q 0 时, 特征方程有两相等实根 则微分方程有一个特解
设另一特解为 , ( u(x) 待定).
代入原微分方程 y py qy 0得:
er1 x [( u 2r1u r12u ) p(u r1u )q u 0
u ( 2r1 p )u ( r12 p r1 q )u 0
(3) 根据特征方程根的不同情况, 写出微分方 程的通解.

二阶微分方程解法(参考模板)

二阶微分方程解法(参考模板)

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法 教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y+py +qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx满足二阶常系数齐次线性微分方程, 为此将y =e rx代入方程 y +py +qy =0得(r 2+pr +q )e rx=0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y+py +qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又xr r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y xr xr ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时, 函数y =e(a +ib )x、y =e(a ib )x是微分方程的两个线性无关的复数形式的解. 函数y =e axcos bx 、y =e axsin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e(a +ib )x和y 2e(a ib )x都是方程的解 而由欧拉公式 得y 1e (a +ib )x e x (cos x i sin x )y 2e(aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e ax cos bx 、y 2=e axsin bx 也是方程解.可以验证, y 1=e ax cos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax(C 1cos bx +C 2sin bx ). 求二阶常系数齐次线性微分方程y +py +qy =0的通解的步骤为:第一步 写出微分方程的特征方程 r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y -3y =0的通解.解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r 1)(r 3)0其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x+C 2e 3x.例2 求方程y+2y+y=0满足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0, 即(r1)20其根r1=r2=1是两个相等的实根, 因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x.将上式对x求导, 得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程: 方程y(n) +p1y(n-1)+p2 y(n-2) + + p n-1y+p n y=0,称为n阶常系数齐次线性微分方程, 其中p1, p2 , , p n-1, p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 + + p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 + + p n-1D+p n)y=0或L(D)y0注 D叫做微分算子D0y y D y y D2y y D3y y D n y y(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 + + p n-1r+p n)e rx=L(r)e rx因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 + + p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应: 单实根r 对应于一项: Ce rx;一对单复根r 1, 2=a ib 对应于两项: e ax(C 1cos bx +C 2sin bx );k 重实根r 对应于k 项: e rx (C 1+C 2x + +C k x k -1); 一对k 重复根r 1, 2=a ib 对应于2k 项:e ax[(C 1+C 2x + +C k x k -1)cos bx +( D 1+D 2x + +D k x k -1)sin bx ]. 例4 求方程y (4)-2y +5y=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x(C 3cos2x +C 4sin2x ). 例5 求方程y (4)+b 4y =0的通解, 其中b 0.解 这里的特征方程为 r 4+b 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e lx型当f (x )=P m (x )e lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e lx , 将其代入方程, 得等式 Q(x )+(2l +p )Q(x )+(l 2+pl +q )Q (x )=P m (x ).(1)如果l 不是特征方程r 2+pr +q =0 的根, 则l 2+pl +q 0. 要使上式成立, Q (x )应设为m 次多项式:Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=x2Q m(x)e lx.综上所述, 我们有如下结论: 如果f(x)=P m(x)e lx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=x k Q m(x)e lx的特解, 其中Q m(x)是与P m(x)同次的多项式, 而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程, 且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1, l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1.把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得⎩⎨⎧=--=-13233100b b b -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y-5y +6y =xe 2x的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e lx型(其中P m (x )=x , l =2). 与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得 ⎩⎨⎧=-=-0212100b b b -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=. 提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e 2x[2b 0x +2b 0b 1]e 2x方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]]2)(2)([ ie e x P e e x P e x i x i nx i xi l x ωωωωλ---++=x i nl x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y+py+qy =P (x )e(l +iw )x的特解为y 1*=x k Q m (x )e(l +iw )x,则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按l iw 不是特征方程的根或是特征方程的根依次取0或1. 于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e lx[R(1)m(x )cos wx +R(2)m(x )sin wx ].综上所述, 我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ], 则二阶常系数非齐次线性微分方程y+py +qy =f (x )的特解可设为y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R(1)m(x )、R(2)m(x )是m 次多项式, m =max{l , n }, 而k 按l +i w (或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e lx[P l (x )cos wx +P n (x )sin wx ]型(其中l =0, w =2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x(2cx +a2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x(4ax4b4c )cos2x(4cx 4a 4d )sin2xy *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a , b =0, c =0, 94=d .(注:文档可能无法思考全面,请浏览后下载,供参考。

二阶常系数线性微分方程

二阶常系数线性微分方程
3. f ( x) A1 cos x A2 sin x
下面考察二阶常系数非齐次线性微分方程解的结构
y ay by f ( x)
(9 30)
y ay by 0
(9 25)
定理9.2 如果 y( x) 是方程 ( 9 30) 的一个特解, Y 是
方程 ( 9 30) 对应齐次方程( 9 25) 的通解, 则方程
形如
y ay by 0
(9 25)
称为二阶常系数齐次线性微分方程, 其中a , b 为已知常数.
定义9.4 设 y1( x), y2( x)为定义在 (a,b)内的两个函 数. 如果存在非零常数k , 使得 y1( x) ky2( x), 则称 y1( x), y2( x) 线性相关, 如果对于任意常数k , y1( x) ky2( x), 则称 y1( x), y2( x) 线性无关.
故方程的通解为
将 y ex 求导, 得
y ex , y 2ex ,
把 y, y, y 代入齐次线性微分方程中,
(2 a b)ex 0
由于 ex 0,
所以
2 a b 0
(9 27)
只要 是上方程的根,y ex 就是微分方程的解.
方程 2 a b 0 称为齐次线性微分方程的特征方程.
(9 30) 的通解为
y(x) Y y(x)
(9 31)
y ay by 0的通解
y ay by f ( x)的一个特解
归纳
对线性方程组Ax = b,它的通解:
x k11 k22 knr nr
齐次方程通解
非齐次方程特解
对一阶线性微分方程y P( x) y Q( x),它的通解:
特征方程的根为
1,2 a

大学数学_6_6 二阶常系数齐次线性微分方程

大学数学_6_6 二阶常系数齐次线性微分方程

当系数 P( x), Q( x) 分别为常数 p , q 时,方程 y py qy 0 (3) 称为二阶常系数齐次线性微分方程. 类似的,方程 y py qy f ( x) ( f ( x) 0) (4) 称为二阶常系数非齐次线性微分方程. 为了求解二阶常系数齐次线性微分方程, 我们先对二 阶齐次线性微分方程解的性质和通解结构作一些讨论.
1 x
1 x
1 x
所以 y2 e 2 x , y3 e1 x 也是原微分方程的解.
由定理 1 可得,C1 y1 C2 y2 (C1 , C2 是任意常数)是原 方程的解.又因两个任意常数C1 , C2 不可能合并为一个任意 常 数 , 而 所 给 方 程 是 二 阶 的 , 因 此 C1 y1 C2 y2 是 y y 2 y 0 的通解. 而 C1 y1 C3 y3 e x (C1 C3e) Cy1 ( 其中C C1 C3e) 实 质上只含有一个任意常数 , 故C1 y1 C3 y3 是原微分方程的 解,但不是原微分方程的通解. y1 e x 由例 1 可见, 2 x e 3 x 常数 (称 y1 e x , y2 e 2 x y2 e 是线性无关的) ,所以 C1 y1 C2 y2 是 y y 2 y 0 的通解. y3 e1 x 而 x e 常数(称 y1 e x , y3 e1 x 是线性相关的) , y1 e 这就使得 C1 y1 C3 y3 中的常数可以合并成一个常数,从而 它不能构成原方程的通解.
ds 满足初始条件 s t 0 1, t 0 3 的特解. dt 2 2 解 特征方程 4r 4r 1 0 ,即 2r 1 0 , 1 特征根为 r1 r2 ,因此,所给方程的通解为 2

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程

因r 是特征方程(2)的二重根 故 1 是特征方程( )的二重根,
r + pr + q = 0, 且 2r + p = 0, 1 1
2 1
′ 于是有 u′ = 0. 故取
即得方程( ) u = x, 即得方程(1)的另一根 rx y2 = xe .
1
从而得到方程( ) 从而得到方程(1)的通解为
y = ( C1 + C2 x) e .
y = (C1 + C 2 x )e 2 x . 故所求通解为
内容小结
y′′ + p y′ + q y = 0 ( p, q 为 数) 常 特征根: 特征根 r1 , r2
(1) 当 r1 ≠ r2 时, 通解为 y = C1 e
r1 x
+ C2 e
r2 x
(2) 当 r1 = r2 时, 通解为 y = (C1 + C 2 x ) e (3) 当 r1,2 = α ± β i 时, 通解为
y = C1 y1 + C2 y2
也是方程( )的解. 也是方程(1)的解
是方程( )的解, 证 因 y1, y2 是方程(1)的解 即有 及 从而
′′ ′ y1 + py1 + qy1 = 0,
′′ ′ y2 + py2 + qy2 = 0,
( C1 y1 + C2 y2 )′′ + p( C1 y1 + C2 y2 )′ + q( C1 y1 + C2 y2 )
为此令 y2 = u( x) er1x , 对 y2 求导得
( u′′ + 2ru′ + r2u) + p( u′ + ru) + qu = 0, e 1 1 1 即 u′′ + ( 2r + p) u′ + ( r2 + pr + q) u = 0. 1 1 1

高等数学-十九 二阶线性常系数齐次微分方程

高等数学-十九  二阶线性常系数齐次微分方程

y1 y2
若 y 1 , y 2 不是线性无关 即
常数
y1 y2
k
(常数)
yC1y1C2y2 C1ky2C2y2 (C1kC2)y2 C y 2
这样 yC1y1C2y2 只含有一个任意常数,
就不是方程(1)的通解。
定理3 若 y 是二阶线性非齐次方程(2)的特解,
y 是方程(2)所对应的齐次方程的通解,则
是该方程的两个解,
因为
y1 ex y 2 xex
1 x
即 y 1 , y 2 线性无关,根据定理2知,
yc1ex c2xex 是该方程的通解。
例2 验证
yx3ex 是 y2yy2xex 3
的一个特解.并根据例1的结果求其通解.
验证 y 1 (3x2ex x3ex) ex (x2 1 x3)
ex(cosxisinx)
y1
1 2
( y1
y2 )
1[ex(cosxisinx)]
2
ex(cosxisinx)]ex cosx
y2
1 2i
(
y1
y2 )
1[ex(cosxisinx)]
2i
1ex(cosxisinx)] ex sinx
2i
y c 1 e xc o sx c 2 e xsinx
1 2
b 2a
(2a1b0) y1 e1x
还要找一 个与 y 1 线性无关的另一 个解 y 2

y2 y1
u(x)
y 2 u(x) y1 u(x)e1x
y 2 u(x)e1xu(x)1e1xe1x[u(x)u(x)1]
y 2 1e1x[u(x)u(x)1]e1x[u(x)1u(x)]

经济应用数学-5.2 二阶常系数线性齐次微分方程

经济应用数学-5.2 二阶常系数线性齐次微分方程

把初始条件代人得 C1 4, C2 2
因此所求特解为 y (4 2t)et .
10
首页
返回
结束
上页
下页

经济应用数学
例 2.4 求微分方程 y"2y'5y 0.的通解
解 所给微分方程的特征方程为
r2 2r 5 0
特征根为
r1 1 2i, r2 1 2i
因此所求通解为
y e x (C1 cos 2x C2 sin 2x)
经济应用数学
5.2 二阶常系数齐次线性微分方程
一、二阶常系数线性齐次微分方程 二、二阶常系数线性非齐次微分方程
1
首页
返回
结束
上页
下页

第5章 常微分方程
经济应用数学
5.1 一阶线性微分方程 5.2 二阶常系数齐次线性微分方程 5.3 微分方程的简单应用举例
2
首页
返回
结束
上页
下页

经济应用数学
一、 二阶常系数线性齐次微分方程
其中 是常数, Pm(x) 为 m次多项式:
Pm (x) ax xm a1xm1 am1x am 方程 y py qy f (x) 有形如
y xkQm (x)ex 的特解.
14
首页
返回
结束
上页
下页

说明:
经济应用数学
1、 Qm (x)是与 Pm (x) 同次的多项式
如 P2(x) x2, 则 Q2(x) ax2 bx c
方程(2)的两个根 1, 2
p p2 4q
1,2
2
(3)的特征方程。 (4)的特征根
7
首页
返回
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yex(C1cosxC2sinx)
例 3 求微分方程y4y8y 0的通解 解 微分方程的特征方程为
r24r80 特征方程的根为r122i r222i 是一对共轭复根 因此微分方程的通解为ye2x(C1cos2xC2sin2x)
通解形式 下页
练 习 巩 固
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2 有一对共轭复根 r1, 2i
例2 求方程y2yy0的通解

y C1er1 x C2er2 x rx y C1 C2 x e
yex(C1cosxC2sinx)
微分方程的特征方程为
r22r10 即(r1)20 特征方程有两个相等的实根r1r21 因此微分方程的通解为yC1ex C2xex
1
2
1 x 1 (arctan x) , 2 1 x (15)
,
1 (arc cot x) . 2 (16) 1 x
1 a 0且a 1 xlna 1 , (14) (arccosx) 2 1 x
二阶线性微分方程解的结构定理
• 如果y1、y2是二阶线性微分方程的两个线性 无关的解 那么yC1y1C2y2就是微分方程的 通解
思考
思考题:通解为 y C1e x C2e2 x 的二阶线性常系数微分方程是
r1 x
r1 x
y ( C1 C 2 x ) e
(3) 当
p 4 q 0 时, 方程有一对共轭复根
2
这时原方程有两个复数解:
( i ) x
x
e (cos x i sin x ) y1 e ( i ) x x y2 e e (cos x i sin x )
有两个不相等的实根 r1、r2
有两个相等的实根 r1r2 有一对共轭复根 r1, 2i
y C1er1x C2er2 x
y C1 C2 x e
rx
yex(C1cosxC2sinx)
下页
特征方程的根与通解的关系 方程r2prq0的根的情况 方程ypyqy0的通解
x
2 (tanx) = sec x (5)
2
x
(7) (secx) = secxtanx
x x (e ) =e (9)
-csc xcotx
) =a x ln a a 0且a 1
1 x (arcsin x) (13) (lnx) = (11)
(log a x) = (12)
3、二阶线性微分方程解的结构定理
求解下列一元二次方程
x x2 0
2
x 2x 1 0
2
x
2
解答 6 x 13 0
基本初等函数导数公式
(1) c 0 (c为任意常数)
'
(2) x
x
1
(3) (sin
x) = cos x
(4) (cos x) = -sin x (6) (cotx) = -csc (8) (cscx) = (10) (a
下页
特征方程的根与通解的关系 方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2 有一对共轭复根 r1, 2i

y C1er1 x C2er2 x y C1 C2 x erx
yex(C1cosxC2sinx)
特征方程的求根公式为
r1,2
p
p 4q 2
2
二阶齐次线性方程通解的求法 分析 考虑到当y, y, y为同类函数时 有可能使ypyqy 恒等于零 而函数erx具 有这种性质 所以猜想erx是方程的解 将yerx代入方程ypyqy0得 (r2prq)erx0 由此可见 只要r满足代数方程r2prq0 函数yerx 就是微分方程的解
求下列微分方程的通解
y 2 y 3 y 0 y 6 y 9 y 0
y 2 y 5 y 0
总结反馈
1. 你学习了哪些内容?
2. 你会解决哪些新问题?
3. 在学习方法上你有哪些体会?
布置作业
继续探究
阅 读 教材章节13.5
书写
P288 习题13-5
即y(C1C2x)ex
下页
特征方程的根与通解的关系 方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2 有一对共轭复根 r1, 2i

y C1er1 x C2er2 x
y C1 C2 x erx
概念学习
方程
y py qy f ( x)
为二阶线性 常系数微分 方程
p, q是常数, f(x)称为自由项.
若f ( x) 0
y py qy 0
为二阶线性 常系数齐次 微分方程
特征方程及其根
r2prq0叫做微分方程ypyqy0的特征方程.
设r1, r2是特征方程的两个根. 2 (1) 当 p 4 q 0 时, 方程有两个相异实根 则微分方程有两个线性无关的特解: 因此方程的通解为 y C1 e
(2) 当
r1 x
C2 e
r2 x
p 4 q 0 时, 特征方程有两相等实根
2
则微分方程有一个特解
设另一特解为
, ( u(x) 待定). 代入原微分方程 y py qy 0
二阶线性常系数齐次微分方程
任 务 要 点
• 1、二阶线性常系数齐次微分 方程 • 2、微分方程的特征方程
• 3、二阶线性常系数齐次微分 方程通解的求解步骤
教学过程课前 准备概念 学习知识 推导结论 形成
巩固 练习
小组 成果 展示
课后 作业
课前准备
1、一元二次方程的求解
2、基本初等函数的导数公式
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2 有一对共轭复根 r1, 2i
求ypyqy0的通解的步骤
y C1er1 x C2er2 x
yex(C1cosxC2sinx)
y C1 C2 x e
rx
•第一步 写出微分方程的特征方程 r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
r1 x
2
得:
e [ ( u 2 r1u r1 u ) p( u r1u ) q u 0
2
u ( 2 r1 p ) u ( r1 p r1 q ) u 0
是特征方程的重根
取u=x, 得 y2
u 0
x e , 因此原方程的通解为
例1 求微分方程yy2y0的通解 微分方程的特征方程为
r2r20 即(r1)(r2)0 特征方程有两个不相等的实根r11 r22 因此微分方程的通解为yC1exC2e2x
下页
特征方程的根与通解的关系 方程r2prq0的根的情况
方程ypyqy0的通解
利用解的叠加原理, 得原方程线性无关特解:
y1 ( y1 y2 ) e
1 2
x
cos x
y2 ( y1 y2 ) e
1 2i
x
sin x
因此原方程的通解为
ye
x
(C1 cos x C 2 sin x )
特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
相关文档
最新文档