数阶2答题纸
2013真题数二答案
2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设cos 1sin ()x x x α-=⋅,()2x πα<,当0x →时,()x α( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价的无穷小 (D )与x 是等价无穷小 【答案】(C )【考点】同阶无穷小 【难易度】★★【详解】解析:cos 1sin ()x x x α-=⋅Q ,21cos 12x x --: 21sin ()2x x x α∴⋅-:,即1sin ()2x x α-:∴当0x →时,()0x α→,sin ()()x x αα:1()2x x α∴-:,即()x α与x 同阶但不等价的无穷小,故选(C ).2、已知()y f x =由方程cos()ln 1xy y x -+=确定,则2lim [()1]n n f n→∞-=( )(A )2 (B )1 (C )-1 (D )-2 【答案】(A )【考点】导数的概念;隐函数的导数 【难易度】★★【详解】解析:当0x =时,1y =.002()12(2)1(2)(0)lim [()1]lim lim 2lim 2(0)12n n x x f f x f x f n n f f n x xn→∞→∞→→---'-==== 方程cos()ln 1xy y x -+=两边同时对x 求导,得1sin()()10xy y xy y y''-++⋅-= 将0x =,1y =代入计算,得 (0)(0)1y f ''== 所以,2lim [()1]2n n f n→∞-=,选(A ).3、设sin [0,)()2[,2]x f x πππ⎧=⎨⎩,0()()x F x f t dt =⎰,则( )(A )x π=为()F x 的跳跃间断点 (B )x π=为()F x 的可去间断点 (C )()F x 在x π=处连续不可导 (D )()F x 在x π=处可导【答案】(C )【考点】初等函数的连续性;导数的概念 【难易度】★★【详解】解析:202(0)sin sin sin 2F tdt tdt tdt πππππ-==+=⎰⎰⎰Q ,(0)2F π+=,(0)(0)F F ππ∴-=+,()F x 在x π=处连续.()()()lim 0xx f t dt f t dtF x ππππ--→-'==-⎰⎰Q ,0()()()lim 2xx f t dt f t dtF x ππππ++→-'==-⎰⎰,()()F F ππ-+''≠,故()F x 在x π=处不可导.选(C ).4、设函数1111(1)()1ln x e x f x x e x xαα-+⎧<<⎪-⎪=⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<<【答案】(D )【考点】无穷限的反常积分 【难易度】★★★ 【详解】解析:11()()()e ef x dx f x dx f x dx +∞+∞=+⎰⎰⎰由1()f x dx +∞⎰收敛可知,1()ef x dx ⎰与()ef x dx +∞⎰均收敛.1111()(1)eef x dx dx x α-=-⎰⎰,1x =是瑕点,因为111(1)e dx x α--⎰收敛,所以112αα-<⇒< 111()(ln )ln eeef x dx dx x x x ααα+∞+∞+∞-+==-⎰⎰,要使其收敛,则0α>所以,02α<<,选D.5、设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- 【答案】(A )【考点】多元函数的偏导数 【难易度】★★【详解】解析:22()()z y y f xy f xy x x x ∂'=-+∂,1()()z f xy yf xy y x ∂'=+∂ 221[()()][()()]x z z x y y f xy f xy f xy yf xy y x y y x x x∂∂''∴+=-+++∂∂ 11()()()()2()f xy yf xy f xy yf xy yf xy x x'''=-+++=,故选(A ).6、设k D 是圆域{}22(,)1D x y x y =+≤位于第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > 【答案】(B )【考点】二重积分的性质;二重积分的计算 【难易度】★★【详解】解析:根据对称性可知,130I I ==.22()0D I y x dxdy =->⎰⎰(Q 0y x ->),44()0D I y x dxdy =-<⎰⎰(Q 0y x -<) 因此,选B.7、设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价 【答案】(B )【考点】等价向量组 【难易度】★★【详解】解析:将矩阵A 、C 按列分块,1(,,)n A αα=L ,1(,,)n C γγ=L由于AB C =,故111111(,,)(,,)n n n n nn b b b b ααγγ⎛⎫⎪=⎪ ⎪⎝⎭L L M M L L 即1111111,,n n n n nn n b b b b γααγαα=++=++L L L 即C 的列向量组可由A 的列向量组线性表示.由于B 可逆,故1A CB -=,A 的列向量组可由C 的列向量组线性表示,故选(B ).8、矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件是( )(A )0,2a b == (B )0,a b =为任意常数 (C )2,0a b == (D )2,a b = 为任意常数【答案】(B )【考点】矩阵可相似对角化的充分必要条件 【难易度】★★【详解】解析:题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由20000000b ⎛⎫ ⎪ ⎪⎪⎝⎭的特征值为2,b ,0可知,矩阵1111a A a b a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值也是2,b ,0.因此,22111122022401120a a E A ab a b a a a aa-----=---=---=-=---0a ⇒= 将0a =代入可知,矩阵10100101A b ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值为2,b ,0.此时,两矩阵相似,与b 的取值无关,故选(B ).二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、10ln(1)lim(2)x x x x→+-= . 【答案】12e【考点】两个重要极限 【难易度】★★ 【详解】解析:011ln(1)1ln(1)1ln(1)1ln(1)1(1)(1)lim (1)000ln(1)ln(1)lim(2)lim[1(1)]lim x x x x x xx x xx xxxx x x x x eex x→++++-⋅-⋅-⋅-→→→++-=+-==其中,20000111ln(1)ln(1)11lim(1)lim lim lim 22(1)2x x x x x x x x x x x x x x x →→→→-+-++⋅-====+故原式=12e10、设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .【考点】反函数的求导法则;积分上限的函数及其导数 【难易度】★★【详解】解析:由题意可知,(1)0f -=1()y x dy dx dx dxf x dx dy dy dy==-'==⇒=⇒==.11、设封闭曲线L 的极坐标方程方程为cos3()66r ππθθ=-≤≤,则L 所围平面图形的面积是 . 【答案】12π 【考点】定积分的几何应用—平面图形的面积 【难易度】★★ 【详解】解析: 面积622666000611cos 61sin 6()cos 3()222612S r d d d πππππθθπθθθθθθ-+====+=⎰⎰⎰12、曲线arctan ,ln x t y =⎧⎪⎨=⎪⎩1t =点处的法线方程为 .【答案】ln 204y x π+--=【考点】由参数方程所确定的函数的导数【难易度】★★★【详解】解析:由题意可知,12//1dy dy dt t dx dx dtt-===+,故11t dy dx ==曲线对应于1t =点处的法线斜率为111k -==-. 当1t =时,4x π=,ln 2y =.法线方程为ln 2()4y x π-=--,即ln 204y x π+--=.13、已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件00x y ==,01x y ='=的解为y = . 【答案】32xx x y ee xe =--【考点】简单的二阶常系数非齐次线性微分方程 【难易度】★★【详解】解析:312x xy y e e -=-,23x y y e -=是对应齐次微分方程的解.由分析知,*2xy xe =-是非齐次微分方程的特解. 故原方程的通解为3212()xx x x y C ee C e xe =-+-,12,C C 为任意常数.由00x y ==,01x y ='=可得 11C =,20C =. 通解为32xx x y ee xe =--.14、设()ij A a =是3阶非零矩阵,A 为A 的行列式,ij A 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则A = .【答案】-1【考点】伴随矩阵 【难易度】★★★【详解】解析:**0T Tij ij ij ij a A A a A A AA AA A E +=⇒=-⇒=-⇒=-= 等式两边取行列式得230A A A -=⇒=或1A =- 当0A =时,00TAA A -=⇒=(与已知矛盾) 所以1A =-.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 和a 的值. 【考点】等价无穷小;洛必达法则 【难易度】★★★【详解】解析:00cos6cos 4cos 2111cos cos 2cos34lim lim n n x x x x x x x x ax ax→→+++--⋅⋅= 1003cos6cos 4cos 26sin 64sin 42sin 2lim lim 44n n x x x x x x x xax anx-→→---++== 2036cos 616cos 44cos 2lim4(1)n x x x xan n x -→++=-故20n -=,即2n =时,上式极限存在. 当2n =时,由题意得001cos cos 2cos336cos616cos 44cos 236164limlim 188n x x x x x x x x ax a a→→-⋅⋅++++==== 7a ⇒= 2,7n a ∴==16、(本题满分10分)设D 是由曲线13y x =,直线x a =(0)a >及x 轴所围成的平面图形,x V ,y V 分别是D 绕x 轴,y 轴旋转一周所得旋转体的体积,若10y x V V =,求a 的值. 【考点】旋转体的体积 【难易度】★★【详解】解析:根据题意,15523330033()55a ax V x dx xa πππ===⎰ 177333066277aay V x x dx x a πππ=⋅==⎰.因10y x V V =,故7533631075a a a ππ=⨯⇒=17、(本题满分10分)设平面区域D 由直线3x y =,3y x =,8x y +=围成,求2Dx dxdy ⎰⎰【考点】利用直角坐标计算二重积分 【难易度】★★【详解】解析:根据题意 3286y x x x y y ==⎧⎧⇒⎨⎨+==⎩⎩,16328x y x y x y ⎧==⎧⎪⇒⎨⎨=⎩⎪+=⎩故2368222233xxx xDx dxdy dx x dy dx x dy -=+⎰⎰⎰⎰⎰⎰264340228132416()12833333x x x =+-=+=18、(本题满分10分)设奇函数()f x 在[1,1]-上具有二阶导数,且(1)1f =,证明: (Ⅰ)存在(0,1)ξ∈,使得()1f ξ'=; (Ⅱ)存在(1,1)η∈-,使得()()1f f ηη'''+=. 【考点】罗尔定理 【难易度】★★★【详解】解析:(Ⅰ)由于()f x 在[1,1]-上为奇函数,故(0)0f =令()()F x f x x =-,则()F x 在[0,1]上连续,在(0,1)上可导,且(1)(1)10F f =-=,(0)(0)00F f =-=.由罗尔定理,存在(0,1)ξ∈,使得()0F ξ'=,即()1f ξ'=.(Ⅱ)考虑()()1(()())(())xxxxf x f x e f x f x e e f x e ''''''''+=⇔+=⇔=[()]0x x e f x e ''⇔-=令()()xxg x e f x e '=-,由于()f x 是奇函数,所以()f x '是偶函数,由(Ⅰ)的结论可知,()()1f f ξξ''=-=,()()0g g ξξ⇒=-=.由罗尔定理可知,存在(1,1)η∈-,使得()0g η'=,即()()1f f ηη'''+=.19、(本题满分10分)求曲线331(0,0)x xy y x y -+=≥≥上的点到坐标原点的最长距离和最短距离. 【考点】拉格朗日乘数法 【难易度】★★★【详解】解析:设(,)M x y为曲线上一点,该点到坐标原点的距离为d =构造拉格朗日函数 2233(1)F x y x xy y λ=++-+-由22332(3)02(3)010x y F x x y F y y x F x xy y λλλ'⎧=+-=⎪'=+-=⎨⎪'=-+-=⎩ 得 11x y =⎧⎨=⎩点(1,1)到原点的距离为d ==,然后考虑边界点,即(1,0),(0,1),它们到原点的距离都是1.,最短距离为1. 20、(本题满分11分) 设函数1()ln f x x x=+(Ⅰ)求()f x 的最小值; (Ⅱ)设数列{}n x 满足11ln 1n n x x ++<,证明lim n n x →∞存在,并求此极限.【考点】函数的极值;单调有界准则【难易度】★★★【详解】解析:(Ⅰ)由题意,1()ln f x x x =+,0x >22111()x f x x x x-'⇒=-= 令()0f x '=,得唯一驻点1x =当01x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是()f x 的极小值点,即最小值点,最小值为(1)1f =. (Ⅱ)由(Ⅰ)知1ln 1n n x x +≥,又由已知11ln 1n n x x ++<,可知111n n x x +>,即1n n x x +> 故数列{}n x 单调递增.又由11ln 1n n x x ++<,故ln 10n n x x e <⇒<<,所以数列{}n x 有上界. 所以lim n n x →∞存在,设为A.在11ln 1n n x x ++<两边取极限得 1ln 1A A +≤ 在1ln 1n n x x +≥两边取极限得 1ln 1A A+≥ 所以1ln 11A A A+=⇒=即lim 1n n x →∞=.21、(本题满分11分) 设曲线L 的方程为211ln (1)42y x x x e =-≤≤满足 (Ⅰ)求L 的弧长;(Ⅱ)设D 是由曲线L ,直线1x =,x e =及x 轴所围平面图形,求D 的形心的横坐标. 【考点】定积分的几何应用—平面曲线的弧长;定积分的物理应用—形心 【难易度】★★★ 【详解】解析:(Ⅰ)设弧长为S ,由弧长的计算公式,得1111S ====⎰⎰⎰⎰221111111()(ln )22424eee x dx x x x +=+=+=⎰ (Ⅱ)由形心的计算公式,得22111ln 242100111ln 24210011(ln )4211(ln )42ex x D ex x D xdxdyx x x dx dx xdy x dxdy x x dx dx dy ---===-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 422423311111()3(23)16164221114(7)12122e e e e e e e ---+--==---. 22、(本题满分11分)设110a A ⎛⎫=⎪⎝⎭,011B b ⎛⎫= ⎪⎝⎭,当,a b 为何值时,存在矩阵C 使得AC CA B -=,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】解析:由题意可知矩阵C 为2阶矩阵,故可设1234x x C x x ⎛⎫=⎪⎝⎭.由AC CA B -=可得 12123434101011011x x x x a x x x x b b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 整理后可得方程组2312413423011x ax ax a ax x x x x ax b-+=⎧⎪-++=⎪⎨--=⎪⎪-=⎩ ① 由于矩阵C 存在,故方程组①有解.对①的增广矩阵进行初等行变换:01001011110111101010001001011101010000101000a a a a aa a a ab b b -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---++⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组有解,故10a +=,0b =,即1a =-,0b =.当1a =-,0b =时,增广矩阵变为10111011000000000000--⎛⎫⎪⎪⎪⎪⎝⎭34,x x 为自由变量,令341,0x x ==,代入相应齐次方程组,得211,1x x =-=令340,1x x ==,代入相应齐次方程组,得210,1x x ==故1(1,1,1,0)T ξ=-,2(1,0,0,1)T ξ=,令340,0x x ==,得特解(1,0,0,0)Tη= 方程组的通解为112212112(1,,,)Tx k k k k k k k ξξη=++=++-(12,k k 为任意常数)所以121121k k k C k k ++-⎛⎫=⎪⎝⎭.23、(本题满分11分)设二次型2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫ ⎪= ⎪ ⎪⎝⎭(Ⅰ)证明二次型f 对应的矩阵为2T Tααββ+;(Ⅱ)若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩 【难易度】★★★ 【详解】解析:(Ⅰ)证明:2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++1111123212321232123233332(,,)(,,)(,,)(,,)a x b x x x x a a a a x x x x b b b b x a x b x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112323(,,)(2)T T T x x x x x x Ax x ααββ⎛⎫⎪=+= ⎪ ⎪⎝⎭,其中2T T A ααββ=+所以二次型f 对应的矩阵为2TTααββ+. (Ⅱ)由于,αβ正交,故0TT αβαβ== 因,αβ均为单位向量,故1α==,即1T αα=.同理1T ββ=2(2)22T T T T T T A A ααββαααββααααββαα=+⇒=+=+=由于0α≠,故A 有特征值12λ=.(2)T T A βααββββ=+=,由于0β≠,故A 有特征值21λ=又因为()(2)(2)()()()1123T T T T T Tr A r r r r r ααββααββααββ=+≤+=+=+=<, 所以0A =,故30λ=.三阶矩阵A 的特征值为2,1,0.因此,f 在正交变换下的标准形为22122y y +.。
2023年考研数学二真题及答案-完整版
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlim ln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小 【答案】B. 【解析】在0,2π⎛⎫ ⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444n nn n nn n n y y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭L , 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C.6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( ) A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2- D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)a a a ax f a x x x x x aa +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e x f x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1)B.[1,)+∞C.[1,2)D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e x f x x x a '=++有两个相等的实根或者没有实根,2()(42)e x f x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A O A BD.****|||⎛⎫- ⎪⎝⎭A B A B O B |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B. 9.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫ ⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上. 11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=+13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--, 则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积.【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x在[,]a a-上有二阶连续导数.(1)证明:若(0)0f=,存在(,)a aξ∈-,使得21()[()()]f f a f aaξ''=+-;(2)若()f x在(,)a a-上存在极值,证明:存在(,)a aη∈-,使得21|()||()()|2f f a f aaη''≥--.【证明】(1)将()f x在x=处展开为22()()()(0)(0)(0)2!2!f x f xf x f f x f xδδ''''''=++=+,其中δ介于0与x之间.分别令x a=-和x a=,则21()()(0)()2!f af a f aξ'''-=-+,1aξ-<<,22()()(0)()2!f af a f aξ'''=+,20aξ<<,两式相加可得212()()()()2f ff a f a aξξ''''+-+=,又函数()f x在[,]a a-上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a aξξ⊂-,使得12()()()2f ffξξξ''''+=,即21()[()()]f f a f aaξ=-+.(2)设()f x在x处取得极值,则()0f x'=.将()f x在x处展开为22000000()()()() ()()()()()2!2!f x x f x xf x f x f x x x f xδδ''''--'=+-+=+,其中δ介于0x与x之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫⎪==- ⎪⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。
考研各科目示范答题卡考研数学(二)模拟卷--答题纸
(19)
(21) (20)
第5页 共8页
第6页 共8页
(22)
(23)
8页
(16)
(18)
(17)
第3页 共8页
第4页 共8页
姓名 __________ __
招生单位______________
招生单位代码 _____________
准考证号_________________
××××××××××××××××××××××××××密 封 线 内 不 要 答 题××××××××××××××××××××××× ×××××
考研数学二模拟卷数学答题纸三解答题15一选择题二填空题号证19考准210311412题513答码代要614位单不生7招内线8封密位单生招名姓12第页共8页第页共8页16181734第页共8页第页共8页19号证考准题答码21代要位单不生招内线封密20位单生招名姓56第页共8页第页共8页222378第页共8页第页共8页
二、填空题 (9)_________ (10)_________ (11)_________ (12)_________ (13)__________ (14)__________
三、解答题 (15)
招生单位代码 _____________
招生单位______________
姓名 __________ __
××××××××××××××××××××××××××密 封 线 内 不 要 答 题××××××××××××××××××××××××× ×××
准考证号_________________
考研数学(二)模拟卷
数学Ⅱ 答题纸
一、选择题 (1)_________ (2)_________ (3)_________ (4)_________ (5)_________ (6)_________ (7)_________ (8)_________
考研数学二真题及解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则() (A)12ab =(B)12ab =-(C)0ab = (D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a ++→→-==Q 在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则() 【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx x dx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则()()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D. (4)微分方程的特解可设为(A )22(cos 2sin 2)x x Ae e B x C x ++(B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)x x Ae xe B x C x ++(D )22(cos 2sin 2)x x Axe e B x C x ++ 【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±故特解为:***2212(cos 2sin 2),x x y y y Ae xe B x C x =+=++选C. (5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则() (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为0120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+ 【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
考研真题《数学二》2023年考试真题与参考答案
考研真题:2023年《数学二》考试真题与参考答案一、选择题1〜10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1-*="+[)的斜渐近线为()A.》=x+e Q.y=x-\~-,eC J=x D.*=x-L.e答案:B"+L],则答案解析:由已知y^xlnhm—=hmm e+ X X-k —]=lne=l, x-ljlimy-x=lim xln|e+^—XToo XToo =lim x In X—00=lim x InX—00fe+^-lne=lim x In1+ 'Too1e(x-l)_X=lim」l1e(x-1)e所以斜渐近线为—4.故选B.,102.函数/(%)=UW的一个原函数为()・|^(x+l)cosx,x>0A.心=^/1+x2-x)x<0 (x+l)cosx-sin x,x>0 InB.心=In^/1+x2-x^-l,x<0 (x+l)cosx-sinx,x>0C.心=In+必_x)(x+l)sinx+cosx9x>0x<0D.心=In^/1+x2+1,x V0 (x+l)sinx+cosx,x>0答案:D答案解析:由已知lim/(x)=lim/(x)=/(O)=l,即/(x)连续.x—>0+xt O所以歹⑴在x=O处连续且可导,排除A, C.又x>0时,[(x+l)cosx-sinx]r=cosx-(x+l)sinx-cosx=-(x+l)sinx,排除B.故选D.3.设数列{》〃},{*〃}满足,^n+i=sin x n,y n+i=—y n,当〃t oo时().A.x〃是灯的高阶无穷小B.儿是%的高阶无穷小C・x〃是儿的等价无穷小 D.x〃是儿的同阶但非等价无穷小答案:B答案解析:在[yl中,sinx>—x,从而Xk2J71n+12=sin%>f.又片+i7112儿从而1以+i<,以=兀以<.£匕4%71所以=0.故选B.I00”4.若y,r+ay f+by-。
2020全国硕士研究生入学统一考试数学(二)真题及答案解析
kx
x1x
lim
x
1
x
x
1 e
x
lim
x
x
1
1 1
x
x
1
e
令t
1 lim
x t0
1
e 1t t
1
et 1 t t
1 e2
1ln(1t )
et lim
t 0
t
e
1 lim
e t0
1ln(1t )1
et
1
t
1 lim
1ln(1t )1 t
1 lim ln(1 t) t
.
答案: 1 ga3 3
【解析】 F
a
2 g(a y) ydy 2 g
a (ay y2 )dy 2 g(1 a3 1 a3) 1 ga3
0
0
23 3
13.设 y yx满足 y 2y y 0,
且
y0
0
,
y0
1
,则
0
yx
dx
.
答案:1
【解析】 y 2y y 0, 所以特解方程: 2 +2+1=0,(+1)2 =0 1=2 =-1; y通 =(C1 C2x)ex ; y通' ex (C2 C1 C2x) ;又 y(0) 0,y' (0) 1 ;
三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答. 题.纸.指定位置上.
15.(本题满分 10 分).
求曲线
y
x1 x
1 xx
x
0 的斜渐近线。
x1 x
【解析】:斜率 k
lim x
2006考研数二真题及解析
2006年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2) 设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(3) 广义积分22(1)xdxx +∞=+⎰(4) 微分方程(1)y x y x-'=的通解是(5) 设函数()y y x =由方程1yy xe =-确定,则0x dy dx==(6) 设2112A ⎛⎫=⎪- ⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>为自变量x 在点0x 处的增量,y 与dy 分别为()f x 在点0x 处对应增量与微分,若0x >,则( ) (A)0dy y << (B)0y dy <<(C)0y dy <<(D)0dy y <<(8) 设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt ⎰是( )(A)连续的奇函数 (B)连续的偶函数(C)在0x =间断的奇函数(D)在0x =间断的偶函数(9) 设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则(1)g 等于( )(A)ln 31-(B)ln 31--(C)ln 21--(D)ln 21-(10) 函数212x x x y c e c e xe -=++满足的一个微分方程是( ) (A)23xy y y xe '''--= (B)23xy y y e '''--=(C)23x y y y xe '''+-=(D)23xy y y e '''+-=(11) 设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)(,)xf x y dy ⎰(B)(,)f x y dy ⎰(C)(,)yf x y dx ⎰(D)(,)f x y dx ⎰(12) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( )(A)若0000(,)0,(,)0x y f x y f x y ''==则 (B)若0000(,)0,(,)0x y f x y f x y ''=≠则(C)若0000(,)0,(,)0x y f x y f x y ''≠=则 (D)若0000(,)0,(,)0x y f x y f x y ''≠≠则(13) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D)若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(14) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎝⎭,则( )(A)1.C P AP -=(B)1.C PAP -= (C).TC P AP =(D).TC PAP =三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定常数,,A B C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求arcsin xxe dx e ⎰ (17)(本题满分10分)设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (18)(本题满分12分)设数列{}n x 满足10x π<<,1sin (1,2,)n n x x n +==(I) 证明lim n n x →∞存在,并求该极限;(II) 计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. (20)(本题满分12分)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂(I)验证()()0f u f u u'''+=; (II)若(1)0,(1)1f f '==, 求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0),4x t t y t t⎧=+≥ ⎨=-⎩(I) 讨论L 的凹凸性;(II) 过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III) 求此切线与L (对应0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分)已知非齐次线性方程组1234123412341,4351,31x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(I) 证明此方程组系数矩阵A 的秩()2r A =; (Ⅱ) 求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量;(II) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.2006年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】15y =【详解】 由水平渐近线的定义及无穷小量的性质----“无穷小量与有界函数的乘积是无穷小量”可知4sin lim lim 52cos x x x x y x x →∞→∞+=-4sin 1lim2cos 5x xx x x→∞+=-10lim 50x →∞+=-15= 0x →时1x为无穷小量,sin x ,cos x 均为有界量. 故,15y =是水平渐近线.(2)【答案】13【详解】按连续性定义,极限值等于函数值,故lim ()x f x →203sin limx x t x →=⎰220sin()lim 3x x x →洛220lim 3x x x→=13= 注:00型未定式,可以采用洛必达法则;等价无穷小量的替换22sin x x(3)【答案】12【详解】222222001111(1)2(1)212xdx dx x x x +∞+∞+∞==-⋅=+++⎰⎰(4) 【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dx y x=-⎰⎰⎰ ⇒ln ln y x x c =-+ ⇒ln ln y x x ce e -+= ⇒xy Cxe -=(5)【答案】e -【详解】题目考察由方程确定的隐函数在某一点处的导数.在原方程中令0(0)1x y =⇒= .将方程两边对x 求导得y y y e xe y ''=--,令0x =得(0)y e '=-(6) 【答案】 2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=, 两边取行列式, 得()244B A E E E -=== 其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦, 222E 4E == 因此,2422E B A E===-.二、选择题.(7)【答案】A 【详解】方法1: 图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''> 则()f x 是凹函数,又0x >,画2()f x x =的图形yy结合图形分析,就可以明显得出结论:0dy y <<. 方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--(前两项用拉氏定理)0()()f x f x x ξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'', 其中000,x x x x ξηξ<<+<<由于()0f x ''>,从而0y dy ->. 又由于0()0dy f x x '=>,故选[]A 方法3: 用拉格朗日余项一阶泰勒公式. 泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+,其中(1)00()()(1)!n nn fx R x x n +=-+. 此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆> 又由0()0dy f x x '=∆>,选()A .(8)【答案】(B ) 【详解】方法1:赋值法特殊选取1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,满足所有条件,则0,0(),0x x x f t dt x x x ≥⎧==⎨-<⎩⎰ . 它是连续的偶函数. 因此,选(B )方法2:显然()f x 在任意区间[],a b 上可积,于是0()()xF x f t dt =⎰记处处连续,又()()()()()s txxxF x f t dt f t dt f s ds F x =----==--==⎰⎰⎰即()F x 为偶函数 . 选 (B ) .(9)【答案】(C )【详解】利用复合函数求导法1()()g x h x e +=两边对x 求导⇒1()()()g x h x g x e +''=将1x =代入上式,⇒1(1)12g e+=⇒1(1)ln 1ln 212g =-=--. 故选(C ).(10)【答案】(C )【详解】题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为212x x x y c e c e xe -=++是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=,对应的齐次微分方程为-20y y y '''+=所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解x y xe *=代入方程左边,计算得()()-23x y y y e ***'''+=,故选(D ). (11) 【答案】()C【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤ ,04πθ≤≤. 题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意 y x = 与 221x y += 在第一象限的交点是22(,),于是:02D y y x ≤≤≤≤所以,原式0(,)yf x y dx =. 因此选 ()C(12) 【答案】D 【详解】方法1: 化条件极值问题为一元函数极值问题。
2012年数二模拟5答题纸
您所下载的资料来源于 考研资料下载中心 姓名 准考证号 报考学校数二答题纸一、 选择题:1~8小题,每小题4分,共32分二、 填空题:9-14小题,每小题4分,共24分(9) (10) (11)(12)(13) (14)三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分9分)求2limln(1)x x x x →+-(16) (本题满分10分)设()f x 为微分方程xy y '-=满足初始条件(1)0y =的解,求定积分1()f x dx ⎰.(17) (本题满分10分)设(,,)x z f x y x y =+,其中f 有二阶偏导数,求dz 和2zx y∂∂∂(18) (本题满分10分)求0π⎰(19) (本题满分10分)求)Dy d σ⎰⎰,其中D 是由圆224x y +=和22(1)1x y ++=所围成的平面区域.(20) (本题满分11分)设连接两点(0,1),(1,0)A B 的一条凸弧,(,)P x y 为凸弧AB 上的任意点.已知凸弧与弦AP 之间的面积为3x ,求此凸弧的方程.(21) (本题满分12分)已知函数(,)z f x y =的全微分22dz xdx ydy =-,并且(1,1)2f =.求(,)f x y 在椭圆域22{(,)1}4y D x y x =+≤上的最大值和最小值.(22) (本题满分11分)已知n 维向量12,,n ααα 中,前1n -个向量线性相关,后1n -个向量线性无关,又12n βααα=+++ ,矩阵12[,,,]n A ααα= 是n 阶矩阵,证明方程组Ax β=必有无穷多解,且其任一解12(,,)T n a a a 中必有1n a =.(23) (本题满分11分)设二次型222123122313222f x x x ax x x x x x β=+++++经正交变换x Qy =,化成22232f y y =+,试求常数,αβ.。
2024年考研数学二真题及答案解析参考
2024年全国硕士研究生入学统一考试数学(二)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)函数)2)(1(1)(--=x x xx f 的第一类间断点的个数是()(A)3(B)2(C)1(D)0【答案】(C)【解析】无定义的点为1,2,0e xx x x =--→)2)(1(11lim ,+∞=--→-)2)(1(12lim x x x x,+∞=--→+)2)(1(1lim x x x x,所以第一类间断点的个数是1个,故选C.(2)设函数)(x f y =由参数方程⎪⎩⎪⎨⎧=+=231t ey tx 确定,则=-++∞→)]2()22([lim f x f x x ()(A)e 2(B)34e (C)32e (D)3e【答案】(B )【解析】容易看出函数)(x f 可导,且232)(2t t e dtdx dt dyx f t ==',当1,2==t x 时,e t te f t t 3232)2(122=='=,所以e f xf x f f x f x x x 34)2(22)2(22lim 2)2(22lim ='=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++∞→+∞→,故选B(3)设函数⎰⎰==xxdt t f x g dt t x f 03sin 0)()(,sin )(,则()(A))(x f 是奇函数,)(x g 是奇函数(B))(x f 是奇函数,)(x g 是偶函数(C))(x f 是偶函数,)(x g 是偶函数(D))(x f 是偶函数,)(x g 是奇函数【答案】(D )【解析】令⎰=xdt t x h 03sin )(,此时)(x h 是一个偶函数,所以,)(sin )(x h x f =为偶函数,从而)(x g 为奇函数,故选D.(4)已知数列{})0(≠n n a a ,若{}n a 发散,则()(A )⎭⎬⎫⎩⎨⎧+n n a a 1发散(B )⎭⎫⎩⎨⎧-n n a a 1发散(C )⎭⎬⎫⎩⎨⎧+n na a e e1发散(D )⎭⎬⎫⎩⎨⎧-n n a a e e 1发散【答案】(D )【解析】对于A 选项,令251,2,21,2=+=⋅⋅⋅=n n n n a a u a ,所以⎭⎬⎫⎩⎨⎧+n n a a 1收敛;对于B 选项,令11--=n n a )(,此时01=-=n n n a a u ,所以⎭⎬⎫⎩⎨⎧-n n a a 1收敛;对于C 选项,令11--+=+=-=e e e e u a n na a n n n ,)(收敛,故选D 。
2-附件二 本科通识选修课程 答题纸模板
文山学院 2015—2016学年第二学期通识选修课程人文社科类课程
《基础泰语》期末考试试卷A 答题纸
任课教师班级___________ 姓名______ 学号____________ 得分___ (说明:一级标题:(英语和越南语)采用罗马数字序号,Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ,进行编号(泰语采用泰语相对应的序号),并给出该题每小题分值,及总分分值。
泰语和越南语选修课程,一级题目要求双语言(外语+汉语,分值只用外语),泰语用Angsana New, 小二号,加粗,汉语用黑体,四号;英语和越南语用Times New Roman 四号,加粗。
二级标题右缩进4个字符,汉语用小四黑体;泰语用Angsana New, 三号,加粗;英语和越南语用Times New Roman小四斜体。
正文左对齐,汉语用宋体小四;泰语用Angsana New, 三号;英语和越南语用Times New Roman小四。
此说明,答题纸和评分标准通用。
)๑. จงเขียนค ำตอบลงในช่องว่ำงโดยใช้ภำษำจีน(ช่องละ1คะแนน 10 คะแนน)填空题
《基础泰语》试卷A 答题纸第1页共1页。
福建师范大学2024年2月课程考试《常微分方程》作业考核试题
《常微分方程》期末考试答题纸姓名: 专业: 学号: 学习中心:成绩:注意:全卷请在答题纸上作答,否则不得分!一、单项选择题1、6-=x y dydx ;将方程重写为:dy/dx = 6^(x-y)对方程两边取对数,得到:ln|dy/dx| = (x - y) ln6再对方程进行积分,得到:ln|y'| = (x - y) ln6 + C其中,y'表示y 关于x 的导数,C 为积分常数。
接下来需要解出y',对上式两边同时取指数,得到:|y'| = e^[(x - y) ln6 + C]由于y'必须为正数,所以可去绝对值,得到:y' = e^[(x - y) ln6 + C]进一步化简和移项,得到:dy/e^[(x - y) ln6] = dx对于等式左边,进行变量代换,令u = x - y ,则du/dx = 1 - dy/dx = 1 - 6^(x-y)由于dy/dx = 6^(x-y),所以可以将右边代入,得到:du/dx = 1 - dy/dx = 1 - y'将等式右边代入并移项,得到:dy/e^[uln6] + y'/e^[uln6] = 1再对等式两边进行积分,得到:∫[dy/e^[uln6]] + ∫[y'/e^[uln6]] = ∫dx对左边第一项进行换元,令t = e^[uln6] = 6^u ,则dt = 6^u du ,代入后得到:∫[1/t] dt = ln|t| + C1对左边第二项进行换元,令v = e^[uln6] = 6^u ,则dv = u' 6^u du ,代入后得到:∫[1/v]v dv = ∫u' 6^u du∫[1/v]v dv = ln|v| + C2由于v = e^[uln6],所以v = 6^u ,代入得到:∫[1/6^u] 6^u du = ∫u' 6^u du化简可得:∫[1/6^u] 6^u du = u + C3将上述结果代回原方程中,得到:ln|t| + C1 + ln|v| - C2 + C3 = x + C4化简可得:ln(tv) = x + C5由于t = 6^u ,v = 6^u ,所以tv = (6^u)^2 = 6^(2u)因此,可得到最终结果为:ln(6^(2u)) = x + C6化简得到:2u ln6 = x + C6即最终的解为:u = (x + C6) / (2ln6)由于u = x - y ,所以可得到y = x - (x + C6) / (2ln6) = (C6 - x) / (2ln6)因此,dy/dx=6^(x-y)的通解为:y = (C6 - x) / (2ln6),其中C6为任意常数。
2023考研数学二真题及解析答案
2023考研数学二真题及解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )e y x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex x x →∞=− 故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +<利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++− =+− ()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k−(D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。
2008考研数二真题及解析
1 6
。
第 5 页 共 12 页
【法
2】 lim sin x0
x
sin(sin x4
x)sin
x
lim
x0
sin x
x
sin
x
sin(sin sin3 x
x)
sin3 x3
x
lim sin
x0
x
sin(sin sin3 x
x) tsin x
lim t0
t
sin t t3
lim
t0
1
cos 3t 2
y
e
1 x
dx
xe
xe
1 x
dx
dx
C
x
xe x
1 x
dx
C
x(e x
C)
。
(11) 曲线 sin xy ln y x x 在点 0,1 处的切线方程为 .
【答案】 y x 1
y cos(xy) 1 1
【详解一】设 F(x, y) sin(xy) ln( y x) x ,则 dy Fx
1】 lim [sin x0
x
sin(sin x4
x)]sin
x
lim
x0
sin
x
sin(sin x3
x)
,
且 sin(sin x) sin x 1 sin3 x o(x3) , 6
所以,原
lim
x0
sin
x
sin
x
1 sin3 6 x3
x
o(
x3
)
lim
x0
1 6
sin3
x x3
o( x3 )
A 若xn 收敛,则 f (xn ) 收敛.
2022数学(二)试题及解析
2022年全国硕士研究生招生考试数学(二)(科目代码:302)考试时间:180分钟,试卷总分:150分考生注意事项1.答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
3.填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
4.考试结束,将答题卡和试题册按规定交回。
(以下信息考生必须认真填写)考生编号考生姓名一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当()()0,,x x x αβ→是非零无穷小量,给出以下四个命题.()()()()22,.x x x x αβαβ ①若则()()()()22.x x x x αβαβ ②若,则()()()()()(),.x x x x o x αβαβα-= ③若则()()()()()().x x o x x x αβααβ-= ④若,则所有真命题的序号:A. B. C. D.①③①④①③④②③④【答案】选C.【解析】①2200()()lim 1lim 1()()x x x x x x ααββ→→=⇒=,正确;③()()()()()0000()()()lim 1lim lim lim 110,()x x x x x x x x x x x x x αβααββααα→→→→-=⇒=-=-=正确④()()()()()()0000()()()lim0lim lim 0lim 1x x x x x x x x x x x x x αβαββαααα→→→→-=⇒-=⇒=,即()()x x αβ ,正确;而00()()(())limlim 1,()()x x x x o x x x αβαββ→→+==(),(),x x x x αβ==-取则②错误,故选C.2.22d d yy x =⎰⎰A.6B.13C.3D.23【答案】选D.【解析】()()()22201233221321d 211d 16112211.633xx y x xx x x -==⋅=++=⋅+=-=⎰⎰⎰⎰原式故选D.3.设函数()f x 在0x x =处有2阶导数,则A.当()f x 在0x 的某邻域内单调增加时,()00f x '>B.当()00f x '>时,()f x 在0x 的某邻域内单调增加C.当()f x 在0x 的某邻域内是凹函数时,()00f x ''>D.当()00f x ''>时,()f x 在0x 的某邻域内是凹函数【答案】B.【解析】由于()f x 在0x x =处有2阶导数,故()00lim ()0x x f x f x →''=>,()00,()ox U x f x δ'∈⇒>,()f x 在0x 的某邻域内单调增加,选择B4.设函数()f t 连续,令0(,)()()d x yF x y x y t f t t -=--⎰,则A.2222,F F F Fx y x y ∂∂∂∂==∂∂∂∂B.2222,F F F F x y x y ∂∂∂∂==-∂∂∂∂C.2222,F F F F x y x y ∂∂∂∂=-=∂∂∂∂D.2222,F F F F x y x y∂∂∂∂=-=-∂∂∂∂【答案】选C.【解析】0(,)()d ()d ()d x yx yx yF x y xf t t y f t t t f t t---=--⎰⎰⎰0()d ()()()()()d x y x y F f t t xf x y yf x y x y f x y f t tx --∂=+------=∂⎰⎰22()Ff x y x∂⇒=-∂00()()d ()()()()d x y x y Fxf x y f t t yf x y x y f x y f t ty--∂=---+-+--=-∂⎰⎰22()Ff x y y∂⇒=-∂,故F F x y ∂∂=-∂∂,故选C.5.设p 为常数,若反常积分()110ln d 1ppx x x x --⎰收敛,则p 的取值范围是()()()()A.1,1B.1,2C.,1D.,2---∞-∞【答案】选A.【解析】11211102ln d d d (1)(1)p pp p x x x x x x x x --+--⎰⎰原式为100120ln (1)lim lim ln (0)011d 1p px x p p x x x x x x x p x εεεε++-→→++-=⋅>=⇒<⎰收敛12111ln 1(1)lim 1 d 1,1(1)(1)p pp x pxx x x p x x ---→---=⇒>----⎰与同收敛故选A.ππ6.{},22A.lim cos(sin )limB.lim sin(cos )limC.lim cos(sin )lim sin limD.lim sin(cos )lim cos lim n n n n n n n n n n n n n n n n n n n n n n x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞→∞→∞→∞-≤≤已知数列则()当存在时,存在当存在时,存在当存在时,存在,但不一定存在当存在时,存在,但不一定存在【答案】选D 【解析】{}(1)4πnn n x x =-⋅⇒发散.()2cos sin cos,l 2im n n x →∞=()lim sin cos sin2n n x →∞=,lim sin (1π)4n n →∞⎛⎫-⋅ ⎪⎝⎭不存在,故选D.111123000123213132321ln(1)27.d ,d ,d .2(1cos )1cos 1sin A. B. C. D. x x x I x I x I x x x xI I I I I I I I I I I I +===+++<<<<<<<<⎰⎰⎰已知则【答案】选A 【解析】()ln(1)2xf x x =-+,111()0,(0,1)212(1)x f x x x x -'=-=<∈++(0)0f =12ln(1),.2xx I I ⇒≤+<现比较2I 和3I ,即比较2ln(1)22(1cos )1sin x xx x+++与22223cossin ,(0,1)222cos cos sin 2224cos 1sin 22(1cos )1sin 112(1cos )1sin 2ln(1)2(0,1).x xx x x x xxx x x xx x x I I >∈⎛⎫⎛⎫⇒>+ ⎪ ⎪⎝⎭⎝⎭⇒>++>+<+++<∈<即而则故选A.8.设A 为3阶矩阵,100010,000⎛⎫ ⎪=- ⎪ ⎪⎝⎭Λ则A 的特征值为1,1-,0的充分必要条件是A.存在可逆矩阵P,Q ,使得=A P Q ΛB.存在可逆矩阵P ,使得-1=A P P ΛC.存在正交矩阵Q ,使得-1=A Q Q ΛD.存在可逆矩阵P ,使得T=A P P Λ【答案】选B【解析】根据相似对角化定义,B 选项可以直接推出A 的特征值为1,1-,0,又若A 的特征值为1,1-,0,互不相同,则A 一定可相似对角化,可推出B.故选B.9.设矩阵2211111,2,14a a b b b ⎧⎫⎧⎫⎪⎪⎪⎪=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭A =则线性方程组x =b A 解的情况为A.无解B.有解C.有无穷多解或无解D.有唯一解或无解【答案】选D【解析】22111(,)1214b A b a a b b ⎛⎫⎪= ⎪ ⎪⎝⎭()()()22111||1111A a a b a b a b b ==---()||0(,)3A r A r A b ≠⇒==,有唯一解()||0(,)A r A r A b =⇒≠无解,故选D.10.设123421111,,1,,11λααλααλλλ⎧⎫⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪====⎨⎬⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭⎩⎭若向量组123124,,,,αααααα与等价,则λ的取值范围是{}{}{}{}A.0,1B.,2C.,1,2D.,1λλλλλλλλλλ∈≠-∈≠-≠-∈≠-R R R 【答案】选C 【解析】()222111111011110(2)(1)0()111λλλλλλλλλλλλλλλ⎛⎫⎛⎫ ⎪ ⎪⇒--- ⎪ ⎪ ⎪ ⎪ ⎪-+-+-⎝⎭⎝⎭()()()12312412341,,,,,,, 1 r r r λαααααααααα=⇒===,等价()()()12312412340 ,,,,,,, 3 r r r λαααααααααα=⇒===,等价()()1231241 ,,3,, 2 r r λαααααα=-⇒==,,不等价()()1231242 ,,2,, 3 r r λαααααα=-⇒==,,不等价其他时,()()()1231241234,,,,,,, 3 r r r αααααααααα===,等价故{,1,2}λλλλ∈≠-≠-∣R ,故选C.二、填空题(11-16小题,每小题5分,共30分)11.cot 01e lim 2xx x →⎛⎫+= ⎪⎝⎭.【答案】12e【解析】cos sin 0000cos 1e cot sin 200cos 1e cos (e 1)lim1limsin 22sin (e 1)1lim lim22212ln 1e 1e lim lim lim 22e eeeeeexx x x x x x x x x x xx x xx x x x x x xxx x→→→→⎛⎫+⎪ ⎪⎝⎭→→→⎛⎫+-- ⎪⎪⎝⎭-⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭====== 原式12.已知函数()y y x =由方程233x xy y ++=确定,则(1)y ''=.【答案】3132-【解析】223230()13,131,14x xy y y y x x xy y y x y y ''+++⋅==++=='===-①将代入得将代入,得对①两边求导:22630,31,1,,431(1)32++y xy y y y y y y y x y y ''''''''++⋅⋅+⋅='===-''=-代入解得13.1223d 1x x x x +=-+⎰.【答案】83π9【解析】()()1122001122200112200122023214d d 1114d 1d 111ln 14d 1114d 21322π.932x x x x x x x x x x x x x x x x x xx x x x +-+=-+-+=-++-+-+=-++-+⎛⎫=- ⎪⎝⎭⎛⎛⎫-+⎪⎝⎭⎝⎭==⎰⎰⎰⎰⎰⎰14.250,y y y ''''''-+=通解()y x =.【答案】123e (cos 2sin 2)xC C x C x ++【解析】特征方程为32250r r r -+=,分解因式,则2(25)0r r r -+=,得12,30,12r r i ==±,则通解为123e (cos 2sin 2)x y C C x C x =++.15.已知曲线L 的极坐标方程为sin 303r θθπ⎛⎫=≤≤ ⎪⎝⎭,则L 围成有界区域的面积为.【答案】π12【解析】ππ2330π20211sin 3sin 3d32611π1πsin d 2662212S d u u θθθθ====⨯⨯⨯=⎰⎰⎰16.设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵211110100--⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦,则1-A 的迹()1tr -=A .【答案】1-【解析】100100211001110110010001100--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭A ()11100211100=001110110010100001211100111100110100110001010010001; 1.111tr ----⎛⎫⎛⎫⎛⎫⎪⎪⎪- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪=-=- ⎪ ⎪--⎝⎭A A A 三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知函数()f x 在1x =处可导,且()()222e 31sin lim2,x x f f x x →-+=求(1).f '【解析】()()222e 31sin lim2→-+=x x f f x x 由题意,得:()()220lim e 31sin 0(1)0x x f f x f →⎡⎤-+=⇒=⎣⎦()()()()2222222022220e 31sin e (1)e 1limlim e 11sin (1)sin 3lim sin (1)3(1)2(1)1x x x x x x x f f x f f x x f x f x x x f f f →→→-+--=⋅-+--⋅''=-='⇒=-18.(本题满分12分)设函数()y x 是微分方程242ln 1,xy y x '-=-满足条件1(1)=4y 的解,求曲线()()1e y y x x =≤≤的弧长.【解析】22d d 2322ln 1e e d 22ln 1d 21ln 2x xx x x y x C x x x x C x x Cx -⎡⎤-⎰⎰=+⎢⎥⎣⎦-⎡⎤=+⎢⎥⎣⎦=-+⎰⎰代入1=x ,得:14C =,所以:211ln 24=-+y x x .则:1e 1211d 2211e 44s x x x x =⎛⎫=+ ⎪⎝⎭=+⎰⎰19.(本题满分12分)已知平面区域{}(,)|22D x y y x y =-≤≤≤≤,计算y x y x y x I Dd d )(222⎰⎰+-=.【解析】已知平面区域{}(,)|22D x y y x y =-≤≤≤≤,计算222()d d Dx y I x y x y -=+⎰⎰.222222222d 21d 2d d D D D Dx xy y I x y xy x y xyx y σσσσ-+=+⎛⎫=- ⎪+⎝⎭=-+⎰⎰⎰⎰⎰⎰⎰⎰补线2+=x y (图中虚线),根据对称性2222220sin cos 2202202d d 2d 2cos sin d 424cos sin d (sin cos )2sin 222sin 2d d 1sin 22222 2.DD xyx yr rθθσσθθθθθθθθθθθθθπ+πππ=-+=π+-⎛⎫=π+-- ⎪+⎝⎭=π+-++=π+-+π-=π-⎰⎰⎰⎰⎰⎰⎰⎰⎰20.(本题满分12分)已知可微函数(,)f u v 满足()()(,)(,)2e ,u vf u v f u v u v u v -+∂∂-=-∂∂且2(,0)e u f u u -=.(1)记(,)(,)g x y f x y x =-,求(,)g x y x∂∂;(2)求(,)f u v 的表达式和极值.【解析】(1)(,)2()e 2(2)e u v yyg x y f f xx y x x y --∂''=-∂=-+=-(2)2()(,)2(2)e d 2e 2e ()(,)2()e ()(,)(,)2e ()y y y y u v g x y x y xx xy y f x y x x x y y f x y x f u v uv u v ϕϕϕ-----+=-=-+=-=-+=-=-++⎰代入0v =,得2()euu u ϕ-=,有:()()2()22()(,)2e ()e e u v u v u v f u v uv u v u v -+-+-+=-++=+()()()22()()22()2e e 2e e u v u v u u v u v v f u u v f v u v -+-+-+-+'=-+'=-+22222020⎧--=⇒=⎨--=⎩u u v u v v u v 代回有:(1)0-=u u 得:0==u v 或 1==u v ()()()()()()()()22()22()()()22()22()22()2e 2e 2e e 24e 2e 2e e 22e 24e u v u v u v u v uuu v u v u v u v u v u v vvA f u u u v u u vB u v u v u v u vC f v v u -+-+-+-+-+-+-+-+-+-+''==--++=-++=--++=+--''==-++代入坐标有:()()()()()()20,021,100,001,12e 0,021,10-====-==A A B B C C 对于()0,0点,有240,0AC B A -=>>,这一点取得极小值0,对于()1,1点,有20AC B -<,不是极值.21.(本题满分12分)设函数()f x 在∞+∞(-,)内具有2阶连续导数,证明:()0f x ''≥的充分必要条件是对不同的实数,a b ,1(()d .2baa b f f x x b a +≤-⎰【解析】证明:由泰勒公式:()21()()()()()22222a b a b a b a b f x f f x f x ξ++++'''=+-+-,ξ介于x 与2a b +之间()()221()d (()((d 222221()()d 222ξξ++++⎡⎤'''=+-+-⎢⎥⎣⎦++⎡⎤''=-+-⎢⎥⎣⎦⎰⎰⎰bb aa b a a b a b a b a b f x x f f x f x xa b a b f b a f x x必要性:若()0f x ≥'',则()0f ξ≥'',有()1d 2()+⎛⎫≤⎪-⎝⎭⎰b aa b f f x x b a 充分性:若存在0x 使得0()0f x ''<,因为()f x 有二阶连续导数,故存在0δ>使得()f x ''在[]00,x x δδ-+内恒小于零,记00,a x b x δδ=-=+,此时:()21()d ()()()d ()()2222ξ+++⎡⎤''=-+-<-⎢⎥⎣⎦⎰⎰bb aa ab a b a bf x x f b a f x x f b a 矛盾,故()0f x ≥''.综上,充分性必要性均得证.22.(本题满分12分)已知二次型22212312313(,,)3432f x x x x x x x x =+++.(1)求正交变换x =Qy 将123(,,)f x x x 化为标准形;(2)证明()Tmin2f 0x x x x≠=.【解析】(1)已知:301040103⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A()()222(30104010331(4)134)691(4)68(2)(4)λλλλλλλλλλλλλλλ=----=-----==--+---+---=-E A 2 λ=时,1011012020010101000--⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭E A ,解得:3101-⎛⎫ ⎪= ⎪ ⎪⎝⎭α;4λ=时,1014000000-⎛⎫ ⎪-= ⎪ ⎪⎝⎭E A ,解得:121,01100⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα;已正交,直接单位化:3211232301,00,0⎛ ⎛⎫⎪===== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭=ααααββαβ令:01000⎛ = ⎪ ⎪ ⎪ ⎪⎝⎭Q 得标准型:222123442=++f y y y (2)证明:因为Q 可逆:T T T002221232220123minmin()min 442min x y y y fffy y y y y y ≠≠≠≠==++=++x x y yy yQ Q 2222221231232222221231234422222++++=++++y y y y y y y y y y y y 令:21222301y y y ⎧=⎪=⎨⎪=⎩得:2=f 故最小值为2.。
2020年考研数学二试题及答案
全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果 (1)()limx f x x→∞不存在; (2)()limx f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x xy x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C.(2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlim x x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分也非必要条件 【答案】B【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dx y dxdy -=⎰⎰( )(A )π(B )2(C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d ydx== .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
数学二真题答案解析
数学二真题答案解析DOCUment number [SA80SAB-SAA9SYT-SAATC-SA6UT-2014年全国硕士研究生入学统一考试数学二试题一・选择题:1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)当X→O+时,若InΛ(1+2X), (I-COSXr均是比X高阶的无穷小,则&的取值范)(A)(2,+s) (B) (1,2) (C) (-J)2(D) (0,1)2(2)下列曲线中有渐近线的是()(A)y = x + Sin X(B)y = X2 + Sin X(C) y = x +sin—(D) y = x2 + sin —X X⑶ 设函数/3具有2阶导数,g(x) = /(0)(l-x) + ∕(l)Λ-,则在区间[0,1]上( )(A)当∕,(Λ-) ≥ 0 时,/(x) ≥ g(x)(B)当f,(x) ≥ 0 时,/W ≤ g(χ)(C)当∕ff(Λ-) ≥0 时,f(x)≥g(x)(D)当/"(X)AO 时,/W ≤ g(x)牙=f' + 7(4)曲线?上对应于的点处的曲率半径是y = Γ+4t + ∖(D)5√10(5) 设函数 f(x) = arctan X ,若 f(x) = xf ∖ξ),贝IJIim≥τ =t →0Jr( )(A)I (B) -(C)-32(D)I3(6) 设函数U(X i y)在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满 足Jk≠0及空+≤⅛=0,则6x ∂y∂x 2 ∂y 2( )(A) “(X, y)的最大值和最小值都在D 的边界上取得 (B) “(X, y)的最大值和最小值都在D 的内部上取得(C) u(x,y }的最大值在D 的内部取得,最小值在D 的边界上取得 (D) ∕√x θ')的最小值在D 的内部取得,最大值在D 的边界上取得b _0 _Cl(C) 1O√1O0 U b ,、/m «00⑺仃列式OCdCOO( )(B)Od —be)2(C)a2d2-b2c2(D) b2c2 -Crd l(8)设αp α2,α3均为3维向量,贝IJ 对任意常数A√ ,向量组α∣ +ka 3,a 2 +化线性无关 是向量组冬,冬,勺线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件(C)充分必要条件(D)既非充分也非必要条件二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (⑼ ∫' —一ςdx = ------------ •JY X" +2x+5(10) 设/3是周期为4的可导奇函数,且∕,(x) = 2(x-l), "[0,2],则/(7) =(Il)设Z = Z(x,刃是由方程e 2γ +x+ y 2 +z=-确定的函数,则衣I I = ______________________4 (12) 曲线r = r(θ)的极坐标方程是一&,则厶在点(r,^) = (-,-)处的切线的直角坐2 2标方程是 ___________ .(13) 一根长为1的细棒位于X 轴的区间[0,1] ±,若其线密度P (Λ-) = -√+2X +1,则该细棒的质心坐标丘= ___________ .(14) 设二次型/(Λ1,X 2,X J ) = X 12 -X 22 +2ax y x 3 +4x 2x 3的负惯性指数为1,则Q 的取值范围为 _______ 三.解答题:15〜23小题,共94分•请将解答写在答题纸指定位置上•解答应写出文 字说明.证明过程或演算步骤・(15) (本题满分10分)(16) (本题满分10分)已知函数y = y(x)满足微分方程x 2+ ∕y = l -y,且y(2) = 0,求y(x)的极大值 与极小 值.求极限IimΛ→÷∞(17) (本题满分10分)XSin ∖πJx 2 + y 2)设平面区域 D = {(")∣1 ≤x 2 + y 2≤^x≥O.y≥θ}Λ∖n ∫∫ ----- —dxdy.D(18) (本题满分10分)设函数加具有二阶连续导数,—(CZ 满足务务(4十仏用, 若/(O) = OJ (O) = O,求/(M)的表达式.(19) (本题满分10分)设函数/(Xxg(X)的区间[a,b]±连续,且/(x)单调增加,OSg(X)≤1.证明:(I) 0 ≤ [ g ⑴df ≤ X -a,X ∈ [a,b]f(H) J :吐/(x)dx≤∫^ f(x)g(x)√Λ-•(20) (本號满分11分) βY设函数/(X) = -——.X∈[OJ1,定义函数列Z(X) =/(χ)J(χ) = ∕(∕;(X)),…,l + xf n W = /(Λ-ι(X))‘…,记S”是由曲线y =九(X),直线%=1及兀轴所围成平面图形的 面积,求极限UmnS n ・∕r→χ(21) (本题满分11分)已知函数f(x.y)满足生= 2(y + l),且/(y,y) = (y+ 1)?-(2-y)Iny,求曲线 f(χ.y) = 0所围成的图形绕直线y = -1旋转所成的旋转体的体积.(22) (本题满分11分);1 -2 3 -4"设矩阵A= Ol-IlJ 2 0 —3,(I) 求方程组Ax=O 的一个基础解系; (II) 求满足AB = E 的所有矩阵. (23) (本题满分11分)x+ V E 为三阶单位矩阵.2014年全国硕士研究生入学统一考试数学二试题答案一. 选择题:1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个 选项符合题目要求的,请将所选项前的字母填在窖题纸指定位置上.丄(1)当Λ→0+时,若Ina(I+ 2x), (I-COSX)Q,均是比X 高阶的无穷小,则&的取值范围 是证明〃阶矩阵.(D) (0,1)【答案】B【解析】由定义 IiIn In -(I -IV) = Iim= Iim2ΛX Λ^, = 0 Λ→O X .V→O X Λ→O所以a-∖>0,故a>∖.2 丄 W ?当x→0+时,(I-COSx)α -—是比X 的高阶无穷小,所以一-1 >0 ,即a <2. 2 了 a 故选B(2) 下列曲线中有渐近线的是()(A) y = x + Sin X (B) y = X 2+ Sin X (C) y = x +sin —(D) y = x 2+ sin —XX【答案】C・1 ・1 x + sin — Sln-【解析】关于C 选项:Iim ----- = Iiml+ Iim ----- = 1 + 0 = 1・X→∞ X X→∞ X→∞ Xlim[x + sin--x] = IimSin 丄=O ,所以y = x + sin 丄存在斜渐近线y = X ・λ→oc X TTOC X ' X故选C(3) 设函数/(x)具有2阶导数,g(x) = /(OXI-X) +/(l)x ,则在区间[0,1]上( )(A)当 rω≥o 时,f(x)≥ g(x) f(x)≤g(x) (C)当 rω ≥ O 时,f (X) ≥ g(x) /W ≤ g(χ)【答案】D⑷(2,+s)⑻(1,2)(C) (PI)⑻当f(χ)no 时,(D)当 f r (x)≥0 时,【解析】令 F(X) = g(x)- f(x) = /(0)(l -X) + /(l)x-/(x),则F(O) = F(I) = 0,F f (X) = -/(0) + /(1) - f ,(x), F ∖x)= 一厂(X).若 f ∖x)≥Q 9 则 F ∖x) ≤0 , F(x)在[0,1]上为凸的.又F(O) = F (1) = 0,所以当xe [0,1]时,F(x)≥0,从而g(x)≥f(x). 故选D.X = f' + 7(4)曲线 ? 上对应于f = l 的点处的曲率半径是y =广 +4/ + 1( )(A)迥(B)迥(C) 10√1050100(D)5√10【答案】C 【解析】Iy MI Ik = —L__ = -------- ,Λ∕^ = - = 10√10(l + y 爭(1 + 疔 k故选CΛ2(5) 设函数 /(x) = arctanX ,若 f(x) = xf ∖ξ) > 贝IJIimT =.v→0 V -Jv 2r+ 4 dx z "1It(-1 d 2ydx 2=^=It3(D)-3【答案】D【解析】因为S = f(g) = 丄,所以=Xl + g-f(x)I__!_ Ii m t = Iim= Ii m v 7arctan γ = Ii m 1t χ2= 1χ→υjr x →0 X^f(X) r →0 arctan X ∙V →Υ3Λ'3故选D.(6) 设函数M (X,y)在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满口 C T7 6% ∂1U C m .∣ 足——≠0½-+ —= 0,贝IJ ∂x ∂y ∂x^ ∂y^ ( )(A) U(X y y)的最大值和最小值都在D 的边界上取得 (B) H(Xoo 的最大值和最小值都在D 的内部上取得(C) ∕√x,y)的最大值在D 的内部取得,最小值在D 的边界上取得 (D) I t ^y)的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记4 =變』=工(?=字宀0,必相反数∂x~ ∂xcfy oy'则△:=ACB2 V 0,所以“(x,y)在D 内无极值,则极值在边界处取得.abθOOb _ c d O 一(C)I(A)I 故选A O(7)行列式秩Ood(D) b 1c 2 -a 1d 2【答案】B【解析】山行列式的展开定理展开第一列=-ad (ad _ be) + bc(ad _ be)⑻ 设6∕1√∕2√∕3均为三维向量,则对任意常数匕/,向量组5+g,6+g 线性无关是 向量组线性无关的(A)必要非充分条件(C)充分必要条件 非必要条件 【答案】ArI 0、【解析】(Cr l +ka 3 a 2 +∕α3) = (αl a 2 a 3) 0 1T<=)i^A = (a l +ka y α2+∕αλ), B = ((Z l a 1 α5), C = 0性无关,则 r(A) = r(BC) = r(C) = 2 ,故 cη +ka 3.a 2 +/磅线性无关•=>)举反例・令a 3=09贝!∣QιS 线性无关,但此时a l ,a 2,a 3却线性相关.综上所述,对任意常数RJ T 向量a 】 +ka 3.a 2+la 3线性无关是向量αr α2,α3线性(A) (Ud-be)2(B) —(ad -he)2 (C) a 2d 2 -b 2c 2Oab «00 OCd COOhdO-CO(B)充分非必要条件(D)既非充分也0、1・若a^a 1.a y 线无关的必要非充分条件.故选A二、填空题:9~14小题,每小题4分,共24分.请将答案写在客题纸指定位置上. ⑼ J*—~; dx = ---------------------- ■J-3c JT +2x + 53【答案】-∕r8【解析】r 11. f 11I1X +1- ------ ax = -------- : -- dx = - arctan ----JYx+2x + 5 J -X(X+ 1/+422(10)设/(x)是周期为4的可导奇函数,且∕f (x)=2(X-IX x∈[0,2],则/(7) =【答案】1【解析】/(x) = 2(x-l), xe[0,2]且为偶函数Jll l J / (x) = 2(-V-1), x∈[-2,θ]又/(A) = -X 2-2A -÷C 且为奇函数,故C=O.,./(X) = -X 2 — 2x, X ∈ [—2,0]XVy(X)的周期为 4, .∙.∕(7) = ∕(-l) = l仃1)设Z = z(x,y)是由方程严+x+ y 2 +z = -确定的函数,4【答案】一*("x + √y)【解析】对严+x+y^+z = L 方程两边同时对A , y 求偏导1 π2 4~ I 23 =_兀 842>z C 比(6ZCC・2 y 卜1H --- = O'∂x ∂x eυτ(2z + 2y-) + 2v + -= O• ∂y ・∂ySx=l σ = l w ,z=o 故条強一 2> ⅛气如(-l)φ' = -l(6∆∙ + CIy)厶乙 乙(12) ____________ 曲线即S”的极坐标方程是十,贝忆在点Z)=(玮)处的切线的直角坐 标方程是 ________ . 【答案】÷fX = ∕∙ cos8 = &cos& y = FsinB =Osine于是WH 雪),对应于(心十勻,(Iy 切线斜率© =庞=OcTsinGdx dx cos G-Gsin 8~dθ所以切线方程为y-- = --(x-O)2 Tr 即 y=- —X + —7T 2(13) 一根长为1的细棒位于X 轴的区间[0,1] ±,若其线密度P (Λ-) = -√+2Λ+1,则该细棒的质心坐标丘= ___________ . 【答案】—20【解析】质心横坐标-]± 加A)必故衣昙 【解析】山直角坐标和极坐标的关系O.-∫' P £' (-x 2 + 2x +1) (IX =-XJ : XP (X)JX=jθ x (-x 2 + 2x +1) 〃X = U∙∙-=⅞⅛(13)设二次型/(x p X 2,X 3) = X 12 -+-^3 + 4X 2X 3的负惯性指数是1,则d 的取值范围 __________ . 【答案】[-2,2]【解析】配方法:/(X PX 2,X 3) = (X I+ Cix 3Y 一/x ; -(x 2-2x^y +4xj由于二次型负惯性指数为1,所以4-√≥0,故-2≤6∕≤2.三、解答题:15〜23小题,共94分•请将解答写在答题纸指定位置上•解答应写出文 字说明.证明过程或演算步骤・ (15) (本题满分10分)J : t 2e 7-l -/ Ch 求极限Ii m 「I 丿v→÷∞I I1 IJrIn 1 + -X )=lim[x 2(e r -l)-x].V→-HX(16) (本题满分10分)已知函数y = y(x)满足微分方程√ + ∕y = l -/,且y(2) = 0,求y(x)的极大值1 =5"3f X 4 2 3— _ + _ 1、 对-L- ________ - I - Λ4 32丿【解析]Ii Jbej)「x 2ln(l + -) X .v→*∞dr —=Iim.v→÷xdrX -> —+ JT + JV3)11 12=Iim —=—・W 2t 2与极小值.【解析】由√ + y2y = ι-y^得(r +i)y = ι-√ ..............................................此时上面方程为变量可分离方程,解的通解为-y^ + y = x--x3 +c3“ 32由y(2) =0得C =—乂由①可得/(A) =⅛-当y∖x) = O时,x = ±l,且有:x<-h∕(x)<O-l<x< l,∕(x)>0x>l,>z(x)<0所以y(x)在JV = _1处取得极小值,在X = 1处取得极大值X-I) = O,MD = I 即:y(χ)的极大值为1,极小值为0.(17)(本题满分10分)【解析】D关于y = χ对称,满足轮换对称性,则:『sin(切7)艸=『血(尺7)处.JJ Y 4- V JJ K4- V=—( -- )[rd COS πr4龙J∣=一一2 + 1一一sin πr If4∣. π ”」=_3(18) (本题满分10分)设函数/(")具有二阶连续导数,Z = f (e'cosy)满足⅛ + ⅛ = (4z + e v COS y)e 2x , ∂x^ 若/(0) = OJ (O) = O,求/3)的表达式.【解析】由 Z = f(e x COS y}, ? = f ∖e x COS y)・ e x ' Z OX=f f,(e xCOS y)・ e xCOS y ・ e xCOS y + f f(e xCOS y)心 COS y=J n ie X COS y)・(YX Sin y)・(YX Sin y) + f f (e x COS y) ∙(-e x COS y)由 ≤4 + ≤≡ = (4z + ^cosy)e 2v ,代入得,ox" ∂y^ V 7∕*(e tCOS y ) ∙ e lx = [4/ (e x COS y ) + e x COS y]e 2x即f(e x COS y )—4/(e x COS y) = e x COS y ,令 QCOSy=/,得 ∕ff (r)-4∕(r) = / 特征方程Z 2-4 = 0,2 = ±2得齐次方程通解+c 2^2z设特解y=at + b f 代入方程得a = --i b = 0,特解y=--t4 4则原方程通解为y=∕(f) = c l e 2t+c 2e-2,-γ1 Γ—COS πrCOS πrdrCOS y,— = f ,(e x COSy)∙(-e xSin y} ・ 6y、 r 7∂2z(19) (本题满分10分)设函数f(x ∖g(x)在区间归上]上连续,且/(x)单调增加,OSg(X)Sl,证明:(I)0≤ f g(t)dt ≤x -a.x^[a,b},Jrt (II) JJ +L/(X) dx≤∫"/(Λ-) g(Λ-)6∕x •【解析】(I)曲积分中值定理∫∖(r)√r = g(ξ)(x -a),ξ e[a,x]∙.∙0≤g(x)≤l, ∙∙.O≤gg)(-α)≤(xT) ∙∙∙O≤[g(f)∕<(x -α) (II)直接IIIO≤^(x)≤l,得到OS J'g(∕)d∕ ≤ ∫ k∕r=(x -w)(II)令 F(W) = ∫ /(x)(X)dx-广L'"M f (X yfdX Fm")g(")-∕(α + [g(∕)∕)∙g(") = g(") /(")-+由(I)知 OSJ g(t)dt ≤(u -a) :.a ≤a + g(t)dt ≤u乂由于/(x)单增,所以/(“) —/(α + [g(f)∕)≥O ・・・F (W) ≥ O, A F(W)单调不减,・・・F(M) ≥ F (a) = O取M=/?,得F(Z7)≥0,即(II)成立.(20) (本题满分11分)设函数/(X) = -,xe[0,ll,定义函数列由 /(O) = OJ (O) = O,1--U则161 + x/1 (兀)=∕W√2(x) = /(/1 W)√∙∙>f n M= /(Λ-1 (功,…,记S ZI是由曲线y = f n(X),直线x = l及X轴所围成平面图形的面积,求极限Iiln∕r→ocX Y【解析】∕1(x) = ~√2W=T-Ξ-√3C V)=1 1∙∙s,严j>QM=[岛/=1 fι 1 rι 1 1 1=—IiZV—— -------dx =----- In(l + ∕7x)H JO H JO 1 + HX Il 1Γ=—-"vln(l + n)n Jr:.Iim nS ll = 1 -Iim In(I + Zr) = I-Iim j n(I~^V) = I-Iim丄=I-O = I∕z→χ *n→∞ IJ x→∞ X.v→χ ↑ + X(21)(本题满分11分)已知函数/(x,y)满足—= 2(y + l),且/(y,y) = (y+ 1)2-(2-y)ln ” 求曲线6/Uy) = 0所围成的图形绕直线y = -l旋转所成的旋转体的体积.【解析】因为—= 2(y + l),所以/(K y) = y2 + 2y + φ(x∖其中φ(x)为待定函数. 勿又因为/(y,y) = (y+l)2-(2-y)ln y,则^y) = I-(2-y)lny,从而f(x y y) = y2 +2y + ∖-(2-x)∖nx = (y+ 1)2 -(2-x)∖nx.令/(x,y) = 0,可得(y + lF =(2-%)lnx,当y = -l时,x = l或x = 2,从而所求的体积为V =穴[(y + l) = ^r J1(2-x)∖nxdxU ∖+nχ(22) (本题满分11分)U 2 O 一3丿(I) 求方程组AV = O 的一个基础解系; (II) 求满足AB = E 的所有矩阵B •【解析】T -2 3 -4 1 0 0、rI -2 3 -4 10 0、(AlE) = 0 1 -11 01 0 → 0 1 -11 01 0J 20 一3 0 0 1丿4 一31 -1 0 b5-23-410 (T"100126 -Γ→ Ol-IIO 1→ 0 10-2-1-31,001-3-1^1;、0 0 1-3-1-41丿⑴Av = O 的基础解系为g = (-l,2,3,l)'(ID q =(IQO)' ® =(0丄0)'Ar = ©的通解为 x = £g + (2,_l,_Ie)' =(2_你_1 + 2 心 _1 + 3化&)‘Ax = e 2 的通解为X = hg + (6,-3,r,0)' =(6-込,一3 + 2 Jr+ 3S 他)'∕U = y 的通解为X =心疳+ (TJ 丄0)' =(_1_人,1 + 2&,1 + 3他B = f2-k x —1 + 2& —1 + 6-匕-3÷2Z C 2 一4 + 3-7、 1 + 2他 1 + 3/(^1Λ2Λ3为任意常数)& k 2他)(23)(本题满分11分)<1 1 ...1「rO 01 1 ・・0 02证明〃阶矩阵 • • • • 与 • • •• 相似.,1 1…1丿\0・・• 0—=π In x(2x-才)-龙( 2^ir1 -2设矩阵A= O 1 E 为三阶单位矩阵.= π2∖n2-π(2x -^-)∖~-1 1■1), B= 2 (O O【解析】已知A= : (1■J>则A的特征值为一0 5-1重)・A属于λ = n的特征向量为(1丄…,I)? ;F(A) = I,故AX = O基础解系有力-1个线性无关的解向量,即A属于/1 = 0有川-1个线性无关的特征向量;故A相似于对角阵A=■< 0>B的特征值为“,0(π-l重),同理B属于2 = 0有“-1个线性无关的特征向量,故B相似于对角阵A.由相似关系的传递性,A相似于B .。