新北师大版七年级数学下第四章《变量之间的关系》单元知识总结
北师大版七年级数学下册变量之间的关系专题复习
变量之间的关系一、 基础知识回顾:1、表示两个变量之间关系的方法有( )、( )、( ). 2.图象法表示两个变量之间关系的特点是( )3.用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示( ),用竖直方向的数轴(纵轴)上的点表示( ).专题一、速度随时间的变化1、 汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。
( ) (2)在某段时间里,汽车速度始终保持不变。
( ) (3)在某段时间里,汽车速度越来越快。
( ) (4)在某段时间里,汽车速度越来越慢。
( )2、描述一名跳水运动员从起跳到落水这一运动过程中,速度v 与时间t 之间关系的图象大致是( )3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图6—41中,符合上述情况的是 ( )4、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6—43哪幅图象可近似描述上面情况 ( )5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )VOVt时间速度 Ao速度D速度时间C速度 时间Boo6、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步所用的时间t (分)之间的关系,依据图象下面描述符合小红散步情景的是( ) A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C.从家里出发,一直散步(没有停留),然后回家了 D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.7、A 、B 两地相距500千米,一辆汽车以50千米/时的速度由A 地驶向B 地.汽车距B 地的距离y(千米)与行驶时间t(之间)的关系式为 .在这个变化过程中,自变量是 ,因变量是 .⑴时间从0时变化到24时,超警戒水位从 上升到 ; ⑵借助表格可知,时间从 到 水位上升最快 某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时) 之间的关系如图,请根据图像填空: ⑴机动车辆行驶了 小时后加油.⑻中途加油 升.⑵加油后油箱中的油最多可行驶 小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中 的油能否使机动车到达目的地?答:。
北师大版《数学》(七年级下册)知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
北师大版七下册数学4.2《用关系式表示的变量间关系》知识点精讲
知识点总结在三种表示两个变量之间的关系的方法中,用关系式法表示两个变量之间的关系,难度不大,但却是最重要的内容,初中函数中的一次函数、反比例函数及二次函数的表达式或解析式,就是两个变量间的关系式,理解与掌握好用关系法表示两个变量间的关系,是学好初中函数知识的基础。
由于之后会学习用:“待定系数法”来求函数表达式,所以这章的“关系式法”,我们掌握的侧重点在于:理解,通过理解两个变量之间的等量关系式,来求解两个变量间的关系,所以,在解题方法上,重点是找两个变量间的等量关系式。
知识点1 探索数学问题中的变量间关系1.若一辆汽车以50千米/时的速度勾速行驶,行驶的路程为s(千米).行驶的时间为t(时),则用t表示s的关系式为(B)A.S=50+50tB.s=50tC.s=50-50tD.以上都不对2 一名者师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元设门票的总费用为y元,则y与x的关系式为(A)A y=10x+30 B. y=40xC. y=10+30xD.y=20x3.其商场自行本存放处每周的存车量为5000辆次,其中变速车存车费是每辆次1元,普通车存车费是每辆一次0.5元若管通车存车量为z辆次。
存车的总收入为y元,则y与z之间的关系式是(C)A. y=0.5x+5000B.y=0.5x+2500C.y=-0 5x+5000D. y=-05x+25004.一根弹簧长8 am.它所挂物体的质量不能超过5 kg.并且所挂的物体每增加1 kg,弹簧就伸长0.5cm则挂上物体后弹菁的长度(Cca)与所挂物体的质量x(kg)(0<x <5)之间的关系式为(D)A. y=0.5(x+8)B. y=0.5x-8C.y=-0.5(x-8)D. y=0.5x+85. 变量x与y之间的关系是y--x-3. 当自变量x=2时,因变量y的值是(B)A.-2B.-1C.1D.26.某山区的气象资料表明,从地面到高空11 km之间,气温随高度的升高面下降,每升高1 k2.气温下降6C若制定某天当地地面气温是24 C,设该地区离地面hkm(0<hKS11)处的气湿为t C,试写出t与h之间的关系式为t=24一6h。
北师大版七年级数学下册知识点总结
第一章 整式运算知识点(一)概念应用1、单项式和多项式统称为整式。
单项式:表示数与字母的积的代数式。
另外规定单独的一个数或字母也是单项式。
单项式有三种:单独的字母(a,-w 等);单独的数字(125,,3.25,-14562等);数字与字母乘积的一般形式(-2s,πx 5)。
2、 单项式的系数是指数字部分,注意系数包括前面的符号如2a 的系数是2 (注意系数部分应包含∏π,因为∏是常数);单项式的次数是它所有字母的指数和(记住不包括数字和∏π的指数)3、多项式:几个单项式的和叫做多项式。
每一个单项式叫做多项式的项,注意项包括前面的符号。
4、多项式的特殊形式:½(a+b)等。
5、 一个多项式次数最高的项的次数叫做这个多项式的次数。
其中不含字母的项叫做常数项。
6、单独的一个非零数的次数是0。
知识点(二)公式应用1 、n m n m a a a +=⋅ (m,n 都是正整数)如523b b b -=⋅-。
拓展运用n m n m a a a ⋅=+ 如已知m a =2, n a =8,求n m a +。
解:n m n m a a a ⋅=+=2×8=16. 2 、mn n m a a =)( (m,n 都是正整数) 如12436243622)()(2a a a a a =-=-⨯⨯拓展应用m n n m mn a a a )()(==。
若2=n a ,则42)(222===n n a a 。
3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。
4、n m n m a a a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。
拓展应用n m n m a a a ÷=- 如若9=m a ,3=n a ,则339=÷=÷=-n m n m a a a 。
5、)0(10≠=a a ;0(1≠=-a aa p p ,是正整数)。
北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件
2. 3. 4.
5.
【例题】将一个长为20cm,宽为10cm的长方形
的四个角,分别剪去大小相等的正方形,若被
剪去正方形的边长为 x cm , 阴影部分的面积为
y(cm2)
2 y =200 4 x ,则 y 与 x 的关系式是 .
【练习1】
1.圆柱的底面直径是6cm,当圆柱的高 h (cm) 由大到小变化时,圆柱的体积V(cm3)随之发生变 化,则V与h之间的关系式是___________ V 9πh 2.圆锥的高为 4,底面半径为 r 那么圆锥的体积 V 可以表示为
2.
3.
在变化过程中,若有两个变量x 和y, 其中y随着x 的变化而发生 变化,我们就把x叫自变量,y 叫因变量。
自变量
主动变化的量
变 量
因变量
被动变化的量
1.自变量是在一定范围内主动变化的量。
2.因变量是随自变量变化而变化的量。
3.表格可以表示因变量随自变量变化而变化的情 况,还能帮助我们对变化趋势进行初步的预测。
y = 3x
系数为1
因变量 含自变量代数式
原料
工厂
自变量的取值要符合实际
●当底边长从12cm变化到3cm时,
2变化到____cm 36 9 2 三角形的面积从______cm
产品
1.
用关系式表示两个变量之间的关系
关系式:这里指通过自变量计算对应的因变 量的一个“公式”y=f(x).其中y表示因变量; f表示计算规则;x表示自变量。 关系式是表示变量之间的关系的另一种方法。 关系式的用途:变量互求;分类讨论-----列关系式:把变量和常量都当做已知量,找 等量关系,列方程,变为y=f(x)的形式。 优缺点:优点:全面准确反映两个变量之间 的关系;缺点:需要计算,不形象不直观。
北师大版七年级下册:《第四章 变量之间的关系》回顾与思考
第四章变量之间的关系第4章知识整合与解题指导一、知识导航1、主要概念:变量是;自变量是;因变量是。
2、变量之间关系的三种表示方法:。
其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把的值找到,查询方便;但是欠,不能反映变化的全貌,不易看出变量间的对应规律。
关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。
图像:形象直观。
可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。
3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。
二、学习导航1、有关概念应用例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?①用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;②正方形边长是3,若边长增加x,则面积增加为y.2、利用表格寻找变化规律例2研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:施肥量0 34 67 101 135 202 259 336 404 471 (千克/公顷)土豆产量15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75(吨/公顷)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:时间/秒0 1 2 3 4 5 6 7 8 9 10速度/米/秒0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9①上表反映了哪两个变量之间的关系?哪个是因变量?②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加最大?④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?3、用关系式表示两变量的关系例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a 的关系。
(完整版)北师大版七年级数学下册变量之间的关系知识点汇总
(完整版)北师大版七年级数学下册变量之间的关系知识点汇总北师大版七年级数学下册《变量之间的关系》知识点汇总北师大版七年级数学下册《变量之间的关系》知识点汇总一、变量、自变量、因变量、常量变量:在某一变化过程中,不断变化的量叫做变量。
自变量、因变量:如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“依赖于”自变量的改变。
常量:一个变化过程中数值始终保持不变的量叫做常量.二、函数的三种表示方法:(一)列表法(用表格)采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
(二)解析法(关系式)关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
(完整版)北师大版七年级下册数学各章知识点总结(最新整理)
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)ppa aa -=≠p 是正整数。
七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级下册数学知识点总结
北师大版七年级下册数学知识点总结第一章:整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方与积的乘方。
- 幂的乘方:(a^m)^n=a^mn(m,n都是正整数)。
例如(3^2)^3=3^2×3=3^6。
- 积的乘方:(ab)^n=a^nb^n(n是正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
3. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。
例如3^5÷3^2=3^5 - 2=3^3。
- 零指数幂:a^0=1(a≠0)。
例如5^0=1。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如2x^2·3x^3=(2×3)(x^2·x^3) = 6x^5。
- 单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
例如a(b + c)=ab+ac。
- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如(a + b)(c + d)=ac+ad+bc+bd。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
6. 完全平方公式。
- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。
新北师大版数学七年级下册第四章《变量之间的关系》复习课件
(3)请你列出果子落下的高度h(米)与
初时中数间学课件t(秒)之间的式 .
.
3.某种油箱容量为60升的汽车,加满汽油后, 汽车行驶时油箱的油量Q(升)随汽车行驶时间 t(时)变化的关系式如下:Q=60-6t (1) 请完成下表
汽车行驶时间 0
1
2.5
4
t/小时
油箱的油量Q/ 60
(升2)汽车行驶5小时后,油箱中油量是 升?
初中数学课件
例题4:一辆汽车以每小时50千米的速度 行驶了t小时,行驶的路程为s千米. (1)这个情境中,有哪些变量?其中自变
量是什么?因变量是什么? (2)你能用哪种方式表示路程与时间之
间的关系?具体做一做 。
(3)该汽车行驶2.5小时的路程是多少千 米?
(4)一段公路全长350千米,这辆汽车 行驶完全程需要多少小时?
初中数学课件
例5.分析下面反映变量之间关系的 图像,想象一个适合它的实际情境.
((14))可可以以把把x和x和y分y分别别代代表表时时间间和和距高离度,,那那 ((么2么3))这可这可个以个以图把图把可x就x和和以可yy描分以分述别描别为代述代:表为表小时:时华间一间骑和架和车速飞蓄从度机水学,从量校那一, 回定么那家的这么,飞个这一行图个段高可图时度以可间慢描以后慢述描,下为述停降:为下一一:来个辆一修高汽个车度车水,,,池然然减先后后速放 又在行水开这驶,始一一一往高段段家度时时走飞间间,行后后直了,,到一匀停回段速止家时行,;间驶随后了后,一,快段又到时接机间着, 初中数场学然放课件时后水,逐直开渐到始减放降速完落,. ,到最了后目降的落地在停机下场来..
初中数学课件
2.果子成熟从树上落到地面,它落下 的高度与经过的时间有如下的关系:
完整版北师大版七年级数学下册变量之间的关系知识点汇总
完整版北师大版七年级数学下册变量之间的关系知识点汇总在数学学习中,变量是一个非常重要的概念。
变量之间的关系更是数学中的基础知识之一。
本文将对北师大版七年级数学下册关于变量之间的关系的知识点进行汇总和总结。
一、平方和平方根的关系在数学中,平方和平方根是常见的两个概念。
平方是指一个数与自己相乘的运算,可以用 x²表示。
而平方根则是指一个数的平方的逆运算,用√x 表示。
对于两个正数 a 和 b,它们满足以下关系:a² + b² = (a + b)² - 2ab√(a + b) = √a + √b二、正比例和反比例的关系正比例和反比例是描述两个变量之间关系的常用术语。
正比例是指当一个变量增大时,另一个变量也相应增大的关系。
而反比例则是指当一个变量增大时,另一个变量相应减小的关系。
在数学中,可用如下公式表示:正比例关系:y = kx (k为常数,y和x为变量)反比例关系:y = k/x (k为常数,y和x为变量)三、函数的关系函数是描述两个变量之间关系的数学工具,它描述了每个自变量(输入)对应唯一的因变量(输出)的关系。
函数可以用一个公式表示,形如 y = f(x)。
其中 x 是自变量,y 是因变量,f(x) 是函数关系。
函数也可以用函数图像表示,这样更直观地反映了变量之间的关系。
四、等式的关系等式是指两个表达式通过等号连接的关系。
等式表示两个值相等,可用 x = y 表示。
在等式中,可以进行加减乘除等运算,从而实现变量之间的关系。
五、不等式的关系不等式是指两个表达式通过不等号连接的关系。
不等式描述了大小关系,可用 x < y、x > y、x ≤ y、x ≥ y 等形式表示。
不等式表示一组值的范围,更适用于解决实际问题中变量之间的关系。
六、递推关系递推关系是指通过已知的一些值,推导出其他值的关系。
递推关系中通常会涉及到一个初始值和一个递推公式。
通过递推公式,可以计算出后续的值,从而揭示变量之间的关系。
北师大版数学七年级初一下知识点总结归纳
欢迎阅读页脚内容七年级下第一章 整式的乘除(大约15课时?) 一、单项式、单项式的次数只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这(1幂乘,(0a ≠()m a a =方:(ab 逆用,n a 负指 数幂:反)1法则:2、(m a b +法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:()()m n a b m a m b ++=++ na nb +。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:()a b c m a m b ++÷=÷+÷ m c m +÷。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
三、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+公式特点:有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同。
2、完全平方公式: 222()2a b a ab b ±=±+ 首平方,尾平方,2倍首尾放中央。
逆用:2222()a ab b a b ±+=±。
完全平方公式变形(知二求一): 2),n x有公共并且并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
3)、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
2、平行线的判定: 1)、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
北师大数学七年级下册第四章-变量之间的关系
第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。
新北师大版数学七年级下,变量之间的关系
新北师大版七年级数学下第四单元变量之间的关系用表格表示的变量间关系常量:在一个变化过程中数值可以保持不变的量叫做常量变量:在一个变化过程中数值可以取不同数值的量叫做变量.自变量:如果一个量随着另外一个量的变化而变化,那么把这个量叫做自变量,因变量:另一个量叫做因变量自变量和因变量的区别与联系联系:两个都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以相互转化,比如路程一定,时间随速度的变化而变化,这时速度为自变量,时间为因变量;而当速度一定时,路程随时间的变化而变化,知识时间是自变量,路程是因变量。
区别:因变量随自变量的变化而变化练习题:判断下列哪些是自变量,哪些是因变量(根据变化中的主动性和被动性来区分)1、圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()是自变量,()是因变量2、小明给北京的爷爷打电话时,电话费随时间的变化而变化,这个过程中()是自变量,()是因变量3、一杯开水10分钟后冷却下来,在这个变化过程中,自变量是_________,因变量是________。
表格法表示变量的常见应用题型1、果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果果子经过2秒落到地上,那么请估计这果子开始落下时离地面的高度是多少米?2、在课堂45分钟内,什么时候学生的接受能力最强?心理学家发现,学生对概念的接受能力与老师提出概念所在的时间(单位:分钟)之间,有如下关系:时间(分钟) 0 2 10 12 13 14 16 24 26接受能力43 47.8 59 59.8 59.9 59.8 59 47.8 43(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2) 根据表中的数据,你认为老师在第_________分钟提出概念比较适宜?说说你的理由。
北师大版数学七年级下册知识点总结
第一章:整式的运算单项式式多项式同底数幂的乘法a m﹒a n=a m+n a m+n = a m﹒a n幂的乘方(a m)n =a mn积的乘方(ab)n=a n b n a n b n =(ab)n同底数幂的除法a m÷a n=a m-n(a≠0)零指数幂a0=1(a≠0)负指数幂1(0)ppaa a-=≠整式的加减单项式与单项式相乘单项式与多项式相乘m(a+b+c)=ma+mb+mc。
整式的乘法多项式与多项式相乘(m+n)(a+b)=ma+mb+na+nb平方差公式(a+b)(a-b)=a2-b2 a2-b2=(a+b)(a-b) 完全平方公式222222()2,()2,a b a ab b a b a ab b+=++-=-+单项式除以单项式整式的除法多项式除以单项式第二章平行线与相交线余角:两个角的和是直角余角补角补角:两个角的和是平角角两线相交对顶角:对顶角相等同位角F三线八角内错角Z同旁内角U平行线的判定:同位角相等,两直线平行内错角相等,两直线平行平行线同旁内角互补,两直线平行平行线的性质 : 两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
尺规作图熟练掌握以下作图语言:(1)作射线××;(2)在射线上截取××=××;(3)在射线××上依次截取××=××=××;(4)以点×为圆心,××为半径画弧,交××于点×;(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;(6)过点×和点×画直线××(或画射线××);(7)在∠×××的外部(或内部)画∠×××=∠×××;第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象第四章 三角形三角形三边关系:三角形 三角形任意两边之和大于第三边,任意两边之差小于第三边三角形内角和定理:三角形的三个内角的和等于1800角平分线三条重要线段 中线高线三角形全等图形的概念:能够重合的两个三角形是全等三角形,用符号“≌”全等三角形 全等三角形的性质: 全等三角形的对应边、对应角相等全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量之间的关系单元知识总结及典型例题1.在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹(2)当所挂重物为4kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?分析 抓住表格中的对应数据,找出变量之间的规律.解 (1)弹簧长度y,物体重量x 是变量,物体重量是自变量,弹簧长度是因变量;(2)当所挂重物为4kg 时,弹簧长度为28cm ,不挂重物时弹簧长度为20cm ;(3)当所挂重物为6kg 时,弹簧长度为32cm .2.如图6—1所示,梯形上底的长是x ,下底的长是15,高是8.(1)梯形面积y 与上底长x 之间的关系式是什么?(2)用表格表示当x 从10变到20时(每次增加1),y 的相应值;(3)当x 每增加1时,y 如何变化?说说你的理由;(4)当x=0时,y 等于什么?此时它表示的是什么?分析 (1)根据梯形面积公式可推出y 与x 的关系式;(2)通过计算列表说明;(3)由表格中的数据可以观察出;(4)当上底为零时(即成为一个点),成为三角形.解 (1)()81521⨯+=x y , 即y=4x+60;(4)当x=0时,y=60,此时梯形成为了三角形.3.地壳的厚度约为8到40km .在地表以下不太深的地方,温度可按y=35x+t 计算,其中x 是深度(km),t 是地球表面温度(℃),y 是所达深度的温度(℃).(1)在这个变化过程中,自变量、因变量各是什么?(2)分别计算当x 为lkm ,5km ,10km,20km 时地壳的温度(地表温度为2℃).解 (1)自变量是深度,因变量是温度;(2)当x=1km 时,y=35x+t=35x ×1+2=37(℃);当x=5km 时,y=35x+t=35×5+2=177(℃);当x=10km 时,y=35x+t=35×10+2=352(℃);当x=20km 时,y=35x+t=35×20+2=702(℃).说明 初步体会自变量和因变量的数值对应关系,能由自变量的值求得因变量的值. 题型发散发散1 选择题 把正确答案的代号填入题中的括号内.(1)下面的图表列出了—项试验的统计数据,表示将皮球从高处d 落下时,弹跳高度b d 50 80 100 150b 25 40 50 75(A)2d b = (B)b=2d (C)2b = (D)b=d+25 (2)某地一天的气温随时间的变化如图6—2,根据图象可知:在这一天中最高气温与达到最高气温的时刻分别是 ( )(A)14℃;12h (B)4℃;2h (C)12℃;14h (D)2℃;4h解 (1)用验证法.当d=50时,252502===db ;当d=80时,402802===d b ;当d=100时,5021002===d b ;当d=150时,7521502===d b .因上述数字完全与表格中的数字符合.故本题应选(C).(2)用直接法.由图6—2知一天达到最高气温12℃的时间是14时.故本题应选(C).发散2 填空题如图6—3,△ABC 是等腰三角形,周长是60cm ,腰为xcm ,底为ycm .(1)写出用含x 的关系式来表示y ;(2)当腰由20cm 变化到25cm 时,底边长由_______cm 变化到________cm ;(3)腰为20cm时,是什么形状的三角形?若腰为30cm时,行吗?分析三角形的周长是三条边长的和.解: (1)y=60-2x;(2)底边由20cm变化到10cm;(3)当腰为20cm时,是等边三角形,若腰为30cm,则无法形成三角形.纵横发散发散1南京市在某一天的地表气温是38℃,据测量每升高1km,气温下降6℃,那么在hkm的高空,温度t是多少?并计算当h的值是6km、10km、12km时的气温.讨论一下民用飞机在一万米高空飞行时,机舱为什么要与机外空气隔绝?分析用含h的代数式来表示气温.解: t=38-6h.当h=6时,t=2℃;当h=10时,t=-22℃;当h=12时,t=-34℃.原因有很多,其中一点是机舱外温度非常低.发散2婴儿在6个月、一周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍.(1)上述哪些量在发生变化?自变量和因变量各是什么?(2)某婴儿在出生时的体重是3.5kg,请把他在发育过程中的体重情况填入化的?解: (1)年龄和体重都在变化;年龄是自变量,体重是因变量;转化发散发散1 图6—4是某地一天的气温随时间变化的图象.根据图象回答,在这一天中:(1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少?(2)20时的气温是多少?(3)什么时间的气温为6℃?(4)哪段时间内气温不断下降?(5)哪段时间内气温持续不变?解: (1)凌晨4时,气温最低,气温是-4℃;16时气温最高,气温是10℃;(2)20时的气温是8℃;(3)10时和22时的气温都是6℃;(4)0时到4时和16时到24时这两段时间内气温不断下降;(5)12时到14时这两个小时内气温保持8℃的温度不变.解法指导 (1)气温最低、最高反映在图象上就是找最低点和最高点;(2)20时的气温是多少,实质上是求当t=20时,T=?(3)什么时间的气温为6℃,实质上是求当T=6℃时,t=?直线T=6与图象交于两点,因此t=10或t=22;(4)图中共有两段时间气温不断下降,不可遗漏;(5)气温保持不变,指的是T 值保持不变,图中只有t 在12h 到14h 这两个小时满足条件.发散2 为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过36m 时,水费按每立方米a 元收费;超过36m 时,不超过的部分每立方米仍按a 元收费,超过的设某户该月用水量为x m ,应交水费为y(元).(1)求a 、c 的值,并写出用水不超过36m 和超过36m 时,y 与x 之间的关系式;(2)若该户5月份的用水量为38m ,求该户5月份的水费是多少元?解: (1)依题意,有:当x ≤6时,y=ax ;当x>6时,y=6a+c(x-6). 由已知,得⎩⎨⎧+==ca a 362755.7解得⎩⎨⎧==65.1c a y=1.5x(x ≤6),y=9+6(x-6)=6x-27(x>6).(2)将x=8代人y=6x-27(x>6),y=6×8-27=21(元).答:该户5月份的水费是21元.发散3 如图6—5所示的曲线表示某人骑一辆自行车时离家的距离与时间的关系.骑车者九点离开家,十五点回家.根据这个曲线图,回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00到10:00和10:00到10:30的平均速度是多少?(6)他在何时至何时停止前进并休息用午餐?(7)他在停止前进后返回,骑了多少千米?返回时的平均速度是多少?解 (1)到达离家最远的地方的时间是12时,离家30km ;(2)10.5时开始第一次休息,休息了0.5h ;(3)第一次休息时离家17.5km ;(4)11:00到12:00,他骑了12.5km ;(5)9:00到10:00的平均速度是lOkm /h ,10:00到10:30的平均速度是15km/h;(6)从12:00到13:00间停止前进,并休息用午餐较为符合实际情况;(7)他在停止前进后返回,骑了30km ,共用了2h ,故返回时的平均速度是15km/h.知识整合网络【学习方法指导】量与量之间存在着相互影响的关系,本章通过丰富的现实情境引入变量对变量之间关系的讨论,使学生体验探索和表示变量之间关系的过程,获得对表格、关系式、图象等多种方法的认识,能读懂表格、关系式、图象所表示的信息,能用自己的语的描述表格、关系式和图象所表示的关系,并能预测.关系式是表示变量之间关系的另一种方法.利用关系式,可以依据任何一个自变量的值求出相应的因变量的值.也可以依据因变量的值求出相应的自变量的值.由学习常量问题转入学习变量问题,这是数学思维的一种跃升,引导我们前进的是一种崭新的思维方式.【中考信息传递】近年来全国各省、市中考题中涉及本章内容的题型多为选择题、填空题,也有部分的应用题及因变量关于自变量的关系式的中档题,应该充分重视.【中考名题赏析】题型发散发散1填空题(1)观察下列图形(图6—24),若第①个图形中阴影部分的面积为1,第②个图形中阴影部分的面积为43,第③个图形中阴影部分的面积为169,第④个图形中阴影部分的面积为6427,…则第n 个图形中阴影部分的面积为________(用字母n 表示) (2002年潍坊市中考试题)解 因为第1块图形的面积为1, 第2块图形的面积为434312=⎪⎭⎫ ⎝⎛-; 第3块图形的面积为1694313=⎪⎭⎫ ⎝⎛-; 第4块图形的面积为64274314=⎪⎭⎫ ⎝⎛-; 第n 块图形的面积为143-⎪⎭⎫ ⎝⎛n .(2)如图6—25,观察下列三角形图案,每行圆点的个数有什么规律?设每个三角形有n 行,用n 的代数式表示这两个三角形图案中圆点的总数,为________(2002年广西壮族自治区中考试题)解 第1行圆点个数为1+n ,第2行圆点个数为2+(n-1)=1+n ,第3行圆点个数为3+(n-2)=1+n ,第n 行圆点的个数为n+1.以上共有n 行,故这两个三角形图案中圆点的总数为n(n+1)个.发散2解答题如图6—26表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80km .请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x 的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.解 (1)由图可以看出:自行车出发较早,早3h ;摩托车到达乙地较早,早3h .(2)对自行车而言:行驶的距离是80km ,耗时8h ,所以其速度是:80÷8=10(km /h);对摩托车而言:行驶的距离是80km,耗时2h,所以其速度是:80÷2=40(km /h).(3)设表示自行车行驶过程的函数解析式为:y=kx ,∵x=8时,y=80,∴80=8k ,解得k=10,∴表示自行车行驶过程的函数解析式为y=10x ;设表示摩托车行驶过程的函数解析式为y=ax+b ,∵x=3时,y=0,而且x=5时,y=80;∴⎩⎨⎧+=+=b a b a 58030,解得⎩⎨⎧-==12040b a ∴表示摩托车行驶过程的函数解析式为y=40x-120.(4)在3<x<5时间段内两车均行驶在途中.①自行车在摩托车前面:10x>40x-120,②两车相遇:10x=40x-120,③自行车在摩托车后面:10x<40x-120.。