2019年七年级数学期中试卷

合集下载

2019学年安徽省芜湖市七年级下学期期中教学质量评估数学试卷【含答案及解析】

2019学年安徽省芜湖市七年级下学期期中教学质量评估数学试卷【含答案及解析】

2019学年安徽省芜湖市七年级下学期期中教学质量评估数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 在实数3.14159,,,π,0中,无理数有()A. 1个B. 2个C. 3个D. 4个二、选择题2. 的算术平方根是()A.4和﹣4 B.2和﹣2 C.4 D.2三、单选题3. 如图,∠1和∠2不是同位角的是( )A. B. C. D.四、选择题4. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条 B.3条 C.4条 D.5条五、单选题5. 如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,则∠AOF的度数为( )A. 120°B. 125°C. 130°D. 135°6. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原方向上平行前进,两次拐弯的角度是( )A. 第一次右拐50°,第二次左拐130°B. 第一次左拐50°,第二次左拐130°C. 第一次右拐50°,第二次右拐50°D. 第一次左拐50°,第二次右拐50°7. 若∠α与∠β的两边分别平行,且∠α=(x﹣10)°,∠β=(2x+25)°,则∠α的度数为( )A. 55°B. 45°C. 45°或55°D. 55°或65°8. 已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为( )A. 1B. ﹣1C. ﹣3D. 39. 已知实数a满足|2000﹣a|+=a,那么a﹣20002的值是( )A. 1999B. 2000C. 2001D. 200210. 对点P(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y),且规定Pn(Pn+1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2),则P2016(0,﹣2)=( )A. (0,21008)B. (0,﹣21008)C. (0,21009)D. (0,﹣21009)六、填空题11. 已知=18.044,那么±=_______.12. 若a,b为实数,且b=+4,则a+b的值为_______.13. 已知5+的小数部分为a,5﹣的小数部分为b,则(a+b)2017=_______.14. 如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=_______.15. 下面是一个以某种规律排列的数阵:根据数阵的规律,第n(n是整数)行从左到右数第(n+1)个数是_______.16. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的坐标为_______.七、解答题17. 求符合下列各条件中的x的值.(x﹣4)2=4 ⑵(x+3)3﹣9=0.18. 计算:﹣12﹣(﹣2)3×﹣×|﹣|+2÷()2.19. 如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.20. 已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.⑴写出A′、B′、C′的坐标;⑵求出△ABC的面积;⑶点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.21. 若+(1﹣y)2=0.⑴求x,y的值;⑵求+++…+的值.22. 有一个数值转换器.原理如图.⑴当输入的x为16时.输出的y是多少?⑵是否存在输入有效的x值后,始终输不出y值?如果存在.请写出所有满足要求的x的值;如果不存在,请说明理由;⑶小明输入数据,在转换器运行程序时,屏幕显示“该操作无法运行”,请你推算输入的数据可能是什么情况?⑷若输出的y是,试判断输入的x值是否唯一?若不唯一,请写出其中的两个.23. 小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…An,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…Bn,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…Cn,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…Dn,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:⑴请分别写出下列点的坐标:A3_______,B3_______,C3_______,D3_______;⑵请分别写出下列点的坐标:An_______,Bn_______,Cn_______,Dn_______;⑶请求出四边形A5B5C5D5的面积.24. 长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN立即回转,灯B射线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°⑴求a、b的值;⑵若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?⑶如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共28.0分)1.下列哪个图形是由如图平移得到的()A. B. C. D.2.下列命题中,是真命题的是()A. 同位角相等B. 有且只有一条直线与已知直线垂直C. 相等的角是对顶角D. 邻补角一定互补3.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个4.在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A. B. C. D.6.下列各式正确的是()A. B. C. D.7.若方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,则a的值是()A. B. C. 1 D. 28.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.9.下列方程组中,是二元一次方程组的有()①②③④⑤⑥A. ①③⑤B. ①③④C. ①②③D. ③④10.介于()之间.A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间11.如图,a1∥a2,∠1=56°,则∠2的度数是()A.B.C.D.12.如图,把一块直角三角形的直角顶点放在直尺的一边上,如果∠1=67°,那么∠2等于()A.B.C.D.13.如图,AB∥CD,PF⊥CD于F,∠AEP=40°,则∠EPF的度数是()A.B.C.D.14.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 22cmB. 20cmC. 18cmD. 16cm二、填空题(本大题共6小题,共18.0分)15.把命题“邻补角互补”写成如果…那么…的形式为______,它是一个______(填“真”或“假”)命题.16.到原点距离等于的数是______,的相反数是______,它的绝对值是______.17.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为______.18.一个数的平方根是a+4和2a+5,则a=______,这个正数是______.19.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.20.我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[-0.56]=-1,则按这个规律[-]=______.三、计算题(本大题共2小题,共26.0分)21.计算:(1)(2)(3)4y2-36=0(4)+-()222.化简.(1)=______,=______,=______,=______.(2)=______,=______.=______,=______.(3)根据以上信息,观察a,b所在位置,完成化简.+-四、解答题(本大题共4小题,共28.0分)23.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容.解:∵∠1+∠2=180°,(已知)∠1=∠4,(______)∴∠2+______=180°∴EH∥AB.(______)∴∠B=∠EHC.(______)∵∠3=∠B,(已知)∴∠3=∠EHC.(______)∴DE∥BC.(______)24.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.25.在平面直角坐标系中,线段AB的两端点的坐标分别为A(-1,3),B(-3,1),将线段AB向下平移2个单位,再向右平移4个单位得线段CD(A与D对应,B与C对应).(1)画出线段AB与线段CD,并求点C、点D的坐标.(2)求四边形ABCD的面积26.(1)将直角三角形ACB按如图①放置,使得坐标原点与点C重合,已知A(a,3)B(b,-3),且a+b=8,求三角形ACB的面积.(2)将直角三角形ACB按如图②方式放置,使得点O在边AC上,D是y轴上一点,过D作DF‖x轴,交AB于点F,AB交x轴于G点,BC交DF于E点,若∠AOG=50°,求∠BEF的度数.(CM平行于x轴)(3)将直角三角形ACB按照如图③方式放置,使得∠C在x轴与DF之间,N为AC边上一点,且∠NEC+∠CEF=180°,写出∠NEF与∠AOG之间的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】解:A、图形属于旋转得到,故错误;B、图形属于旋转得到,故错误;C、图形的形状和大小没的变化,符合平移性质,故正确;D、图形属于旋转得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.【答案】D【解析】解:A、只有两直线平行同位角才相等,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线垂直,故错误,是假命题;C、相等的角是对顶角,错误,是假命题;D、邻补角一定互补,正确,是真命题,故选:D.利用平行线的性质、对顶角的性质及邻补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及邻补角的定义等知识,难度不大.3.【答案】A【解析】解:无理数有,,共2个.故选:A.根据无理数的定义选出即可.本题考查了对无理数的应用,注意:无理数是指无限不循环小数.4.【答案】B【解析】解:因为点P(-1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.【答案】A【解析】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为-3,∴点P的坐标是(-3,4).故选:A.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.【答案】D【解析】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.根据平方根、算术平方根、立方根,即可解答.本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.7.【答案】B【解析】解:∵方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,∴a-2≠0且|a|-1=1,解得:a=-2,故选:B.根据二元一次方程的定义得出a-2≠0且|a|-1=1,求出即可.本题考查了二元一次方程的定义,能根据二元一次方程的定义得出a-2≠0且|a|-1=1是解此题的关键.8.【答案】C【解析】解:∠1与∠2是对顶角的是C,故选:C.根据对顶角的定义进行选择即可.本题考查了对顶角,掌握对顶角的定义是解题的关键.9.【答案】D【解析】解:①中有3个未知数x,y,z.不符合二元一次方程组的定义,故错误;②、⑥中未知数项的最高次数是2,不符合二元一次方程组的定义,故错误;③、④符合二元一次方程组的定义,故正确;⑤,此方程组中第二个方程不是整式方程,不符合二元一次方程组的定义,故错误;故选:D.分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.10.【答案】B【解析】解:∵<<,∴3<<4,故选:B.求出的范围即可.本题考查了估算无理数的大小的应用,关键是确定的范围.11.【答案】B【解析】解:∵a1∥a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°-56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.12.【答案】B【解析】解:如图,∵直尺两边平行,∠1=67°,∴∠3=∠1=67°,∴∠2=90°-∠3=90°-67°=23°.故选:B.先根据两直线平行,同位角相等求出∠1的同位角,再根据直角为90°列式进行计算即可得解.本题主要利用了两直线平行,同位角相等的性质,熟记性质是解题的关键.13.【答案】B【解析】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°.∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90°,∴∠EPF=∠EPN+∠NPF=40°+90°=130°.故选:B.如图,过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.14.【答案】B【解析】解:∵将三角形ABC沿BC方向平移2cm得到三角形DEF,∴AD=CF=2cm,∵三角形ABC的周长为16cm,∴AB+BC+AC=AB+BC+DF=16cm,∴四边形ABFD的周长为:16+2+2=20(cm).故选:B.利用平移的性质得出AD=CF=2cm,AC=DF,进而求出答案.此题主要考查了平移的性质,正确利用平移的性质得出对应线段是解题关键.15.【答案】如果两个角是邻补角,那么这两个角互补;真【解析】解:命题“邻补角互补”写成如果…那么…的形式为:如果两个角是邻补角,那么这两个角互补,它是一个真命题,故答案为:如果两个角是邻补角,那么这两个角互补;真.根据命题的概念、邻补角的概念解答.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.【答案】;-;【解析】解:到原点距离等于的数是,的相反数是-,它的绝对值是,故答案为:,-,.根据绝对值的意义,相反数的意义,可得答案.本题考查了实数的性质,利用绝对值的意义,相反数的意义是解题关键.17.【答案】(4,3)【解析】解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),故答案为:(4,3).根据坐标的平移规律:左减右加、下减上加可得.本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.18.【答案】-3;1【解析】解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=-3,∴这个数的平方根是±1,这个数是1,故答案为-3,1.根据平方根的定义构建方程即可解决问题.本题考查平方根的定义、一元一次方程等知识,解题的关键是记住平方根的定义,学会构建方程解决问题.19.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短【解析】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.20.【答案】-4【解析】解:∵2<<3,∴-4<--1<-3,∴[-]=-4.故答案为:-4.直接利用的取值范围得出-4<--1<-3,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.21.【答案】解:(1)①②,由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入③,得:y=4,所以方程组的解为;(2)原方程组整理可得:①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为;(3)∵4y2-36=0,∴4y2=36,则y2=9,∴y=±3;(4)原式=-2-=-1.【解析】(1)利用代入消元法求解可得;(2)方程组整理为一般式后,利用加减消元法求解可得;(3)利用平方根的定义求解可得;(4)根据实数的混合运算顺序和运算法则计算可得.此题考查了解二元一次方程组和实数的混合运算,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】2;2;0;|a|;3;-3;0;a【解析】解:(1)=2,=2,=0,=|a|,故答案为:2、2、0、|a|;(2)=3,=-3.=0,=a,故答案为:3、-3、0、a;(3)由图可得,a<0<b,|a|<|b|,∴=b+b-a-(a-b)=b+b-a+b=3b-a.(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.本题考查立方根、算术平方根、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】对顶角相等∠4 同旁内角互补,两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等,同旁内角互补,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.【答案】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°【解析】根据平行线的性质与判定即可求出答案本题考查平行线的性质,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.25.【答案】解:(1)如图所示:点C的坐标为(3,1),点D的坐标为(1,-1);(2)四边形ABCD的面积=.【解析】(1)利用平移的性质得出对应点位置进而得出答案.(2)利用面积公式解答即可.此题主要考查了平移变换,正确根据题意得出的对应点位置是解题关键.26.【答案】解:(1)如图①中,过点A作AM⊥y轴于M,过点B作BN⊥y轴于N.∵A(a,3),B(b,-3),∴AM=a,OM=3,BN=b,ON=3,∴MN=3+3=6,△ABC的面积=(a+b)×6-×3a-×3b,=(a+b),∵a+b-8=0,∴a+b=8∴△ABC的面积=×8=12;(2)如图②中,作CM∥OG.∵∠AOG=50°,CM∥OG,∴∠ACM=50°,∵∠ACB=90°∴∠BCM=40°,∵DF∥OG,∴DF∥CM,∴∠BEF=∠BCM=40(3)如图③中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°-∠CED),∵∠CED=∠COD=90°-∠AOG,∴∠AOG=90°-CED,∴∠NEF=2∠AOG.【解析】(1)过点A作AM⊥y轴于M,过点B作BN⊥y轴于N,根据△ABC的面积等于梯形AMNB的面积减去两个直角三角形的面积列式计算即可得解;(2)如图②中,作CM∥OG.利用平行线的性质即可解决问题;(3))首先证明∠NEC=∠CED,由∠NEF=2(90°-∠CED),∠CED=∠COD=90°-∠AOG,推出∠AOG=90°-CED,即可推出∠NEF=2∠AOG;本题考查三角形综合题、直角三角形的性质、平行线的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线,利用平行线的性质解决问题,属于中考压轴题.。

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。

2019年下学期 初一数学第二学期期中检测(带答案)

2019年下学期 初一数学第二学期期中检测(带答案)

初一数学第二学期期中检测一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.∠2+∠3=180°2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5 B.6 C.9 D.133.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x64.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.86.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=.11.若3x=24,3y=6,则3x﹣y的值为.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年岁.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.21.(8分)解方程组:(1)(2)22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t=秒.2017-2018学年江苏省无锡市惠山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b,故A选项正确;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b,故B选项正确;C、∵∠1=∠4,∠3+∠4=180°,∴∠3+∠1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b,故D选项正确.故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5 B.6 C.9 D.13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:9﹣3=6,而小于:3+9=12.则此三角形的第三边可能是:9.故选:C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.3.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减分别计算.【解答】解:A、x2+x2=2x2,故A选项错误;B、x2•x3=x5,故B选项错误;C、(2x3)2=4x6,故C选项错误;D、(﹣x)8÷x2=x6,故D选项正确;故选:D.【点评】此题主要考查了合并同类项,同底数幂的乘法,积的乘方,同底数幂的除法,关键是掌握计算法则.4.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=340,4(x+y+z)=340,x+y+z=85.即购甲、乙、丙三种商品各一件共需85元钱.故选:C.【点评】本题考查了三元一次方程组的应用,解题时认真审题,弄清题意,再列方程组解答,此题难度不大,考查方程思想.8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y 的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为7.6×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8,故答案为:7.6×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=﹣2 .【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0.【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.若3x=24,3y=6,则3x﹣y的值为 4 .【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵3x=24,3y=6,∴3x﹣y=3x÷3y=24÷6=4.故答案为:4.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=5或﹣7 .【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±3)2=x2±6x+9,∴﹣(m+1)=±6解得:m=5或﹣7故答案为:5或﹣7;【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=30°.【分析】先根据三角形内角和等于180°求出∠B+∠A的度数,然后与∠B﹣∠A=40°两式相加即可求出∠A.【解答】解:∵∠C=80°,∴∠B+∠A=180°﹣80°=100°①,∵∠B﹣∠A=40°②,∴①﹣②得,2∠A=140°,解得∠A=30°.故答案为:30°.【点评】本题考查了三角形的内角和定理与加减消元法,先求出∠B+∠C的度数是解题的关键.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n= 3 .【分析】把m﹣n=﹣1看作一个整体,代入代数式(m﹣n)2﹣2m+2n求得数值即可.【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.【点评】此题考查代数式求值,注意整体代入求得问题.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.【分析】先根据绝对值与平方的非负性,求出x与y的值,然后代入求值即可.【解答】解:∵(2x﹣y+7)2+|x+y﹣1|=0,∴,解得,∴y x=3﹣2=.故答案为:.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年31 岁.【分析】设教师今年x岁,学生今年y岁,根据“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设教师今年x岁,学生今年y岁,根据题意得:,解得:.故答案为:31.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.【点评】本题考查了完全平方公式几何意义的理解,利用完全平方公式分解因式后即可得出大正方形的边长.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是20°.【分析】先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.【解答】解:∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=120.解得a=20.即∠DEF=20°,故答案为:20°.【点评】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)【分析】(1)先计算零指数幂、负整数指数幂和乘方,再计算加减可得;(2)先计算乘方,再计算乘法,最后合并同类项即可得;(3)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(4)先根据多项式乘多项式、单项式乘多项式法则计算,再合并同类项即可得.【解答】解:(1)原式=1+4﹣8=﹣3;(2)原式=9a12﹣2a12﹣8a9=7a12﹣8a9;(3)原式=x2+2x+1﹣(1﹣4x2)=x2+2x+1﹣1+4x2=5x2+2x;(4)原式=x2﹣3x+2x﹣6﹣x2﹣x=﹣2x﹣6.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握实数和整式的混合运算顺序和运算法则.20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式4,再对余下的多项式利用平方差公式继续分解;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解.【解答】解:(1)4a2﹣16,=4(a2﹣4),=4(a+2)(a﹣2);(2)(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x),=(x﹣2)2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.(8分)解方程组:(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:﹣6y+4y=6,解得:y=﹣3,将y=﹣3代入①,得:x=6,则方程组的解为;(2),①+②×2,得:4x=16,解得:x=4,将x=4代入②,得:2+y=6,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).【分析】(1)将x+y、xy的值代入x2y+xy2=xy(x+y)计算可得;(2)将原式变形为(xy)2﹣(x+y)2+2xy+1,再把x+y、xy的值代入计算可得.【解答】解:(1)当x+y=4、xy=1时,x2y+xy2=xy(x+y)=1×4=4;(2)当x+y=4、xy=1时,原式=x2y2﹣x2﹣y2+1=x2y2﹣(x2+y2)+1=(xy)2﹣(x+y)2+2xy+1=1﹣16+2+1=﹣12.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握多项式乘多项式运算法则、因式分解及完全平方公式.23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是平行且相等;(3)求△DEF的面积.【分析】(1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.【解答】解:(1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,故答案为:平行且相等;(3)S△DEF=3×3﹣×2×3﹣×1×2﹣×1×3=.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【解答】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点评】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10﹣x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【解答】解:(1)根据题意得:,解得:.(2)设A型车购买x台,则B型车购买(10﹣x)台,根据题意得:2.4x+2(10﹣x)=22.4,解得:x=6,∴10﹣x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A、B型车价格间的关系列出关于a、b的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量列出关于x的一元一次方程.26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t=20或110 秒.【分析】(1)依据题意得出∠1+∠5=∠2+∠6,即可得到a∥b;(2)分两种情况讨论:当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,分别依据角的和差关系进行计算即可.【解答】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b;(2)如图,当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,∵∠CAG+∠ACG=90°,∴30°+t°+100°﹣3t°=90°,解得t=20;如图,当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,∵∠BAE=∠ACH+∠AHC,∴30°+t°=3t°﹣180°﹣100°+90°,解得t=110,综上所述,当直线CD与直线AB互相垂直时t的值为20或110.故答案为:20或110.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题有很多的同学会觉得数学很难,所以大家要多多学习一下数学哦,下面小编就给大家整理一下七年级数学,希望大家来阅读哦有关七年级数学上期中试题一、选择题(每题3分,共10小题)1.-(-2)等于( )A.-2B.2C.D.22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元3.已知a、b在数轴上的位置如图所示,那么下面结论正确的是( )A.a-b<0B.a+b>0C.ab<0D.>04.若数轴上表示-2和3的两点分别是点A和B,则点A和点B之间的距离是( )A.-5B.-1C.1D.55.计算(-)÷(-7)的结果为( )A.1B.-1C.D.-6.一次数学达标检测的成绩以80分为标准成绩,“奋斗”小组4名学生的成绩与标准成绩的差如下: -7分、-6分、+9分、+2分,他们的平均成绩为( )A.78分B.82分C.80.5分D.79.5分7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a, b, c三个数的和为( )A.-1B.0C.1D.不存在8.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=-1;③若a2=b2,则a=b;④若a<0, b<0,则|ab-a|=ab-a.其中正确的个数有( )A.1个B.2个C.3个D.4个9.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2012次后,点B( )A.不对应任何数B.对应的数是2010C.对应的数是2011D.对应的数是201210.已知a,b,c为非零的实数,则+++的可能值的个数为( )A.4B.5C.6D.7二、填空题(每题3分,共6小题)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为℃.12.若a-3=0,则a的相反数是 .13.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是 .14.若|x|+3=|x-3|,则x的取值范围是 .15.规定图形表示运算a-b+c,图形表示运算x+z-γ-w.则 += (直接写出答案) .16.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a-b|+|b-c|+|c-d|+|d-a|取得最大值时,这个四位数的最小值是 .三、解答题(共8小题)17.(12分)计算题(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)(3)[45-(-+)×36]÷5 (4)99×(-36)18.(6分)把下列各数填入它所属的集合内:5.2,0,,,+(-4),-2,-(-3),0.2555,-0.0300003(1)分数集合:{ }(2)非负整数集合: { }(3)有理数集合: { }19.(8分)在数轴上表示下列各数: 0,-1.6,,-6,+5,,并用“<”号连接.20.(8分)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期 1日 2日 3日 4日 5日 6日 7日人数变化/万人 +0.5 +0.7 +0.8 -0.4 -0.6 +0.2 -0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?21.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、C.(1)填空: a-b 0,a+c 0,b-c 0.(用<或>或=号填空)(2)化简: |a-b|-|a+c|+|b-c|22.(8分)已知|x|=3,|y|=7.(1)若x23.(10分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,(1) |5-(-2)|= .(2)同理|x+5|+|x-2|表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你求出所有符合条件的整数x,使得|x+5|+|x-2|=7.(3)由以上探索猜想对于任何有理数x,|x+6|+|x-3|是否有最小值?如果有,写出最小值;如果没有,说明理由.24.(12分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2 (单位长度),慢车长CD=4 (单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C 在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC 相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.七年级数学上期中考试试卷阅读一、选择题(本题共10个小题,每小题3分,共30分)1.下列计算正确的是( )A.=6B.-=-16C.-8-8=0D.-5-2=-32.室内温度是15℃,室外温度是-3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为( )A.15+(-3)B.15-(-3)C.-3+15D.-3-153.若a+3=0,则a的相反数是( )A.3B.C.-D.-34.下列说法中正确的是( )A.整数只包括正整数和负整数B.0既是正数也是负数C.没有最小的有理数D.-1是最大的负有理数5在代数式,,0,-5,x-y,中,单项式有( )A.2个B.3个C.4个D.5个6.一个多项式与-2x+1的和是3x-2,则这个多项式为( )A.-5x+3B.-+x-1C.-+5x-3D.-5x-137.枝江市2015年公共财政收入约为31.68亿元,对这个近似数而言,下列说法正确的是( )A.精确到亿位B.精确到百分位C.精确到百万位D.精确到千万位8.如图,A、B两点在数轴上表示的数分别是a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>09.将正整数依次按如表规律排成4列,根据表中的排列规律,数2018应在( )第1列第2列第3列第4列第1行 1 2 3第2行 6 5 4第3行 7 8 9第4行 12 11 10A.第673行第1列;B.第672行第3列;C.第672行第2列;D.第673行第2列10.已知a,b,c为有理数,且a+b+c=0,a≥-b>lcl,则a,b,c三个数的符号是( )A.a>0,b<0,c<0B.a>0,b<0,c>0C.a<0,b>0,c≥0D.a>0,b<0,c≤0第二部分非选择题(共120分)二、填空题(每小题3分,共18分)11比较大小- 。

2019年春季学期七年级下册 期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册 期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共42.0分)1.如图,∠1和∠2是对顶角的是()A. B.C. D.2.若点A(m,n)在第二象限,那么点B(-m,|n|)在()A. 第一象限B. 第二象限;C. 第三象限D. 第四象限3.实数,-,0.1010010001,,π,中,无理数的个数是()A. 1B. 2C. 3D. 44.下列选项中能由左图平移得到的是()A. B. C. D.5.如图.已知AB∥CD,∠1=70°,则∠2的度数是()A.B.C.D. 1106.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(3,-1),点B的对应点为B′(4,0),则点B的坐标为()A. B. C. D.7.下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是8.点(x,x-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A. B. C. D.10.如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.B.C.D.11.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间12.若=0.716,=1.542,则=()A. B. C. D.13.若+(y+2)2=0,则(x+y)2017=()A. B. 1 C. D.14.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A. B. C. D.二、填空题(本大题共5小题,共15.0分)15.如果a是的整数部分,b是的小数部分,则a-b=______.16.如图,若EF∥BC,DE∥AB,∠FED=40°,则∠B=______.17.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是______.18.把“同角的余角相等”写成“如果…,那么…”的形式为______.19.如图,已知A1(1,0),A2(1,-1),A3(-1,-1),A4(-1,1),A5(2,1),…,则点A2010的坐标是______.三、计算题(本大题共1小题,共11.0分)20.计算和化简:(1)计算:+-|1-|;(2)已知a、b、c为实数,且它们在数轴上的对应点的位置如图所示,化简:2+|b+c|--2|a|四、解答题(本大题共5小题,共52.0分)21.填写推理理由:如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2______∵∠1=∠2,∴∠DCB=∠1.______∴GD∥CB______.∴∠3=∠ACB______.22.如图,在平面直角坐标系中有三个点A(-3,2)、B(-5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,同时点D在y轴上,直接写出D点的坐标;(3)求四边形ACC1A1的面积.23.(1)计算填空:=______,=______,=______,=______(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:24.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.25.阅读并补充下面推理过程:(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,所以∠B=______,∠C=______.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.Ⅰ.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为______°.Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED 的度数为______°.(用含n的代数式表示)答案和解析1.【答案】B【解析】解:A、不是对顶角,故本选项错误;B、是对顶角,故本选项正确;C、不是对顶角,故本选项错误;D、不是对顶角,故本选项错误.故选:B.根据对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,对各选项分析判断即可得解.本题考查了对顶角,邻补角,熟练掌握对顶角的定义是解题的关键.2.【答案】A【解析】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴-m>0,|n|>0,∴点B在第一象限.根据各象限内点的坐标的特点,由点A(m,n)在第二象限,得m<0,n>0,所以-m>0,|n|>0,从而确定点B的位置.熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).3.【答案】C【解析】解:无理数有:,,π共3个.故选:C.[分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】C【解析】解:能由左图平移得到的是:选项C.故选:C.根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.【答案】D【解析】解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选:D.由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.此题考查了平行线的性质.注意数形结合思想的应用.6.【答案】D【解析】解:∵点A(-2,1)的对应点为A′(3,-1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(-1,2).故选:D.利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.7.【答案】B【解析】解:A、负数没有平方根,故选项A错误;B、(-3)2=9,9的算术平方根是3,故选项B正确;C、(-2)2=4的平方根是±2,故选项C错误;D、8的平方根是±2,故选项D错误.故选:B.A、B、C、D都根据平方根的定义即可判定.本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a 的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.8.【答案】B【解析】解:A、x>1时点在第一象限,故A正确;B、x<0时,x-1<-1,故B错误;C、x<0时,x-1<-1,故C正确;D、0<x<1时,故D正确;故选:B.根据第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】C【解析】解:建立平面直角坐标系如图所示,将(1,6).故选C.以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.10.【答案】C【解析】解:∵AB∥CD,CD∥EF.∴∠BCD=∠1,∠ECD=180°-∠2.∴∠BCE=180°-∠2+∠1.故选:C.本题主要利用两直线平行,内错角相等和同旁内角互补作答.本题运用了两次平行线的性质,找到了角之间的关系.11.【答案】C【解析】解:∵<<,∴的值在4和5之间.故选:C.直接利用二次根式的性质得出的取值范围.此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.12.【答案】B【解析】解:∵=0.176,=1.542,∴=7.16,故选:B.根据立方根定义,即可解答.本题考查了立方根,解决本题的关键是熟记立方根的定义.13.【答案】A【解析】解:根据题意得x-1=0,y+2=0,解得x=1,y=-2,则原式=(-1)2017=-1.故选:A.根据非负数的性质列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.14.【答案】B【解析】解:根据定义,f(2,-3)=(-2,-3),所以,g(f(2,-3))=g(-2,-3)=(-2,3).故选:B.根据新定义先求出f(2,-3),然后根据g的定义解答即可.本题考查了点的坐标,读懂题目信息,掌握新定义的运算规则是解题的关键.15.【答案】【解析】解:<=4,∴a=3,b=-3,∴a-b=6-.故填6-.<可得a=3,由此可得出答案.本题考查估算无理数的知识,解决本题的关键是找到和相近的能开方的数.16.【答案】40°【解析】解:∵EF∥BC,DE∥AB,∴四边形BDEF为平行四边形,∵∠FED=40°,∴∠B=∠FED=40°.故答案为:40°.根据EF∥BC,DE∥AB,可得四边形BDEF为平行四边形,然后根据平行四边形的性质:对角相等,可得出∠B=∠FED=40°.本题考查了平行线的性质,解答本题的关键是根据直线平行判断四边形BDEF为平行四边形,然后根据平行四边形的性质求出∠B的度数.17.【答案】(-3,2)【解析】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故答案为:(-3,2).根据第二象限内点的坐标特征和点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,是基础题,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.18.【答案】如果两个角是同一个角的余角,那么这两个角相等【解析】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”.命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.19.【答案】(503,-503)【解析】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2010÷4=502…2;∴A2010的坐标在第四象限,横坐标为(2010-2)÷4+1=503;纵坐标为-503,∴点A2010的坐标是(503,-503).故答案为:(503,-503).经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1.本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.20.【答案】解:(1)原式=4-3-(-1)=1-+1=2-;(2)由数轴知a<b<0<c,且|b|<|c|,∴b-a>0,b+c>0,a-c<0,则原式=2|b-a|+b+c-|a-c|+2a=2(b-a)+b+c-(c-a)+2a=2b-2a+b+c-c+a+2a=3b+a.【解析】(1)先计算算术平方根、立方根,取绝对值符号,再去括号,继而计算加减可得;(2)先根据数轴得出b-a>0,b+c>0,a-c<0,再利用二次根式的性质和绝对值的性质化简可得.本题主要考查实数的运算及实数与数轴,解题的关键是掌握算术平方根、立方根的定义、二次根式的性质和绝对值的性质.21.【答案】两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等【解析】证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等),∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).故答案为两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD∥CB,最后根据两直线平行,同位角相等,所以∠3=∠ACB.本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.22.【答案】解:(1)如图,△A1B1C1即为所求,A1(3,4)、C1(4,2).(2)如图,D(0,1);(3)S四边形=4×7-2××6×2-2××1×2=14.ACC1A1答:四边形ACC1A1的面积为14.【解析】(1)根据点P坐标的变化即可得出△ABC平移的方向和距离,画出△A1B1C1,并写出点A1、C1的坐标即可;(2)根据平行四边形的对边互相平行且相等即可得出结论;(3)用长方形的面积减去4个直角三角形的面积即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【答案】4 0.8 3【解析】解:(1)=4,=0.8,=3,=;故答案为:4,0.8,3,;(2)不一定等于a,规律:=|a|;(3)=|π-3.15|=3.15-π.(1)依据被开方数即可计算得到结果;(2)根据计算结果,不一定等于a;(3)原式利用得出规律计算即可得到结果.此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.24.【答案】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴∠E=∠3,∴∠A=∠EBC=∠E.【解析】由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.25.【答案】∠EAB∠DAC65 215°-n【解析】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC,故答案为:∠EAB,∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)Ⅱ.如图2,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;Ⅱ.如图3,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.故答案为:215°-n.(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)Ⅰ.过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;Ⅱ.∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,进而可求∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,及作出(3)中的图形.。

2019-2020学年上海市浦东新区泾南中学七年级上学期期中数学试题(解析版)

2019-2020学年上海市浦东新区泾南中学七年级上学期期中数学试题(解析版)

2019学年浦东新区泾南中学七年级(上)数学期中试卷一、选择题1.下列各式从左到右的变形中,是分解因式的是()A.()()2122x x x x +-=--B.()222312x x x ++=++C.()222234129x y x xy y +=++D.()()2396312xy xy x x y y -+=--【答案】D 【解析】【分析】因式分解的定义,把整式和的形式化成整式乘积的形式叫做因式分解,根据定义逐个判断.【详解】A 选项,()()2122x x x x +-=--,不属于因式分解;B 选项,()222312x x x ++=++,不属于因式分解;C 选项,()222234129x y x xy y +=++,不属于因式分解;D 选项,()()2396312xy xy x x y y -+=--,属于因式分解.故选D.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义.2.下列去括号、添括号的结果中,正确的是()A.()22442442mn n m mn mn n m mn -+--=-+-+B.()()()53b 2325a b b b a -+-=-+--C.()()a b c d a c b d -+-+=--++D.()2233m n mn m n mn -+-+=-++【答案】A 【解析】【分析】利用去括号、添括号法则求解.注意括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【详解】解:A.选项,根据去括号法则,()22442442mn n m mn mn n m mn -+--=-+-+,正确;B 选项,根据添括号法则判断()()()53b 2325a b b b a -+-=-+--不正确;C 选项,根据添括号法则判断()()a b c d a c b d -+-+=--++不正确;D 选项,根据去括号法则判断()2233m n mn m n mn -+-+=-++不正确;故选A.【点睛】本题主要考查去括号和添括号法则,解决本题的关键是要熟练掌握去括号法则和添括号法则.3.下列计算正确的是()A.()33939a a = B.35268••2a a a a a +=C.235538a a a += D.()()2444x x x -=+-【答案】B 【解析】【分析】合并同类项法则,字母及指数不变,系数相加减;幂的乘方法则,底数不变,指数相乘;积的乘方法则,因数分别乘方再相乘;平方差公式,两数平方的差等于两数的和与两数的差的乘积;根据运算法则进行判断即可.【详解】A 选项,根据积的乘方和幂的乘方运算法则可得:()339327a a =,因此A 选项不正确;B 根据同底数幂的乘法法则可得:35268••2a a a a a +=,因此B 选项正确;C 根据合并同类项法则,判断235538a a a +=错误,因此C 选项不正确;D 根据平方差公式可得:()()2422x x x -=+-,因此D 选项不正确;故选B.【点睛】本题主要考查幂的运算法则和平方差公式,解决本题的关键是要熟练掌握幂的运算法则和平方差公式.4.下列二次三项式中,不能用完全平方公式来分解因式的是()A.20.25x x ++B.21449x x ++C.21336x x -+D.21025x x -+【答案】C【解析】【分析】完全平方公式的特征是,首平方,尾平方,中间首尾2倍积;根据完全平方公式的特征进行判断即可.【详解】A 选项,20.25x x ++符合完全平方公式特征,能用完全平方公式分解,不符合题意;B 选项,21449x x ++符合完全平方公式特征,能用完全平方公式分解,不符合题意;C 选项,21336x x -+不符合完全平方公式特征,不能用完全平方公式分解,符合题意;D 选项,21025x x -+符合完全平方公式特征,能用完全平方公式分解,不符合题意;故选C.【点睛】本题主要考查了运用公式法分解因式,解决本题的关键是要熟练掌握完全平方公式的特征.二、填空题5.代数式23x y -的系数是________,次数是_______.【答案】(1).-3(2).3【解析】【分析】单项式的系数是指字母前的数字因数;单项式的次数是指所含字母所有指数之和;根据单项式系数和次数的定义解答即可.【详解】代数式23x y -的系数是-3;次数是3.故答案为:-3;3.【点睛】本题主要考查单项式的系数和次数的定义,解决本题的关键是要熟练掌握单项式的系数和次数的定义.6.计算:22523a a a --=________.【答案】222a a -【解析】【分析】整式的加减法法则实质是合并同类项的过程,根据合并同类项的法则计算即可.【详解】22252322a a a a a --=-,故答案为:222a a -.【点睛】本题主要考查整式的减法法则,解决本题的关键是要熟练掌握整式减法法则.7.计算:22•xy y x =________.【答案】24x y 【解析】【分析】单项式乘以单项式法则,相同字母根据同底数幂的乘法法则进行计算即可.【详解】2224•xy y x x y =故答案为:24x y .【点睛】本题主要考查单项式乘以单项式的法则,解决本题的关键是要熟练掌握单项式乘以单项式的法则.8.计算:()243•x x =________.【答案】10x 【解析】【分析】先根据幂的乘方法则计算,再根据同底数幂乘法法则进行计算即可.【详解】()2434610•x x x x x == 故答案为:10x .【点睛】本题主要考查幂的乘方和同底数幂的乘法法则,解决本题的关键是要熟练掌握幂的乘方和同底数幂乘法法则.9.计算:()222xy --=_________.【答案】244x y -【解析】【分析】根据积的乘方法则计算,再去括号即可求解.【详解】()222424xy x y --=-,故答案为:244x y -.【点睛】本题主要考查积的乘方运算法则,解决本题的关键是要熟练掌握积的乘方运算法则.10.计算:()335x xy -= _________.【答案】2315x y -【解析】【分析】根据单项式乘以单项式的运算法则,数字与数字相乘做为积的因数,相同字母与相同字母相乘做为积的因式.【详解】()3233515x xyxy -=- ,故答案为:2315x y -.【点睛】本题主要考查单项式乘以单项式的运算法则,解决本题的关键是要熟练掌握单项式乘以单项式的法则.11.计算:()24231a a a -+-=_________.【答案】328124a a a --+【解析】【分析】根据单项式乘以多项式的法则,将单项式与多项式的每一项相乘,再把各项乘积求和.【详解】()23242318124a a a a a a -+-=--+,故答案为:328124a a a --+.【点睛】本题主要考查单项式乘以多项式的运算法则,解决本题的关键是要熟练掌握单项式乘以多项式的运算法则.12.计算:()()3x 2y 3x 2y ---=___________.【答案】224y 9x -【解析】【分析】利用平方差公式即可解答.【详解】()()3x 2y 3x 2y ---=224y 9x -故答案为224y 9x -【点睛】此题考查整式的加减,解题关键在于掌握平方差公式.13.分解因式:3221218a b a b -=_________.【答案】()2623a b a b -【解析】【分析】根据提公因式法,将公因式提出,把提出公因式的各项用括号括起来.【详解】()32221218623a b a b a b a b -=-,故答案为:()2623a b a b -.【点睛】本题主要考查提公因式法分解因式,解决本题的关键是要熟练掌握提公因式法.14.分解因式:244m m ++=___________.【答案】()22m +【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:244m m ++=()22m +,故答案为()22m +.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.15.分解因式:2432x x +-=_________.【答案】()()84x x +-【解析】【分析】根据十字相乘法进行因式分解即可.【详解】()()243284x x x x +-=+-,故答案为:()()84x x +-.【点睛】本题主要考查十字相乘法因式分解,解决本题的关键是要熟练掌握十字相乘法.16.分解因式:22xy x y +--=_________.【答案】()()12y x +-【解析】【分析】先分组分解,再利用提公因式法进行因式分解.【详解】()()()()()()222212112xy x y xy x y x y y y x +--=+-+=+-+=+-故答案为:()()12y x +-.【点睛】本题主要考查分组分解法和提公因式法,解决本题的关键是要熟练掌握分组分解法和提公因式法.17.计算:()471210105⎛⎫⨯⨯⨯ ⎪⎝⎭的值用科学计数法表示为_________.【答案】12410⨯.【解析】【分析】先根据幂的运算法则计算,再根据科学记数法的表现形式进行表示.【详解】()471112121010,5=0.410,410.⎛⎫⨯⨯⨯ ⎪⎝⎭⨯=⨯故答案为:12410⨯.【点睛】本题主要考查幂的运算和科学记数法表示形式,解决本题的关键是要熟练掌握幂的运算法则和科学记数法的表现形式.18.按照图(1)、(2)、(3)的方式分割三角形,所得三角形总个数分别是5个、9个、13个,照此规律分割下去,第n 个图中共有_________个三角形.【答案】(4n +1).【解析】【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题.【详解】解:由图可得,图(1)所得三角形总个数为:1+4=5;图(2)所得三角形总个数为:1+4×2=9;图(3)所得三角形总个数为:1+4×3=13;所以第n 个图中共有(4n +1)个三角形;故答案为:(4n +1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.三、计算题19.计算:()()352(2)3a a a -⋅-⋅-【答案】1024.a -【解析】【分析】根据幂的乘方运算法则和单项式乘以单项式的运算法则进行计算即可求解.【详解】解:原式=()()35283,a aa -⋅-⋅-=1024.a -【点睛】本题主要考查单项式乘以单项式的运算法则,解决本题的关键是要熟练掌握单项式乘以单项式的运算法则.20.计算:()21(1)(1)x x x -+-【答案】4221x x -+【解析】【分析】根据多项式乘以多项式的运算法则进行计算.【详解】()()()222421(1)(1),=11,21x x x x x x x -+---=-+【点睛】本题主要考查多项式乘以多项式的运算法则,解决本题的关键是要熟练掌握多项式乘以多项式的运算法则.21.计算:(32)(32)a b a b +--+【答案】22912 4.a b b -+-【解析】【分析】先根据平方差公式计算,再根据完全平方公式计算.【详解】()()()()222222(32)(32),3232,32,9124,912 4.a b a b a b a b a b a b b a b b +--+⎡⎤⎡⎤=+---⎣⎦⎣⎦=--=--+=-+-【点睛】本题主要考查平方差公式和完全平方公式,解决本题的关键是要熟练掌握平方差公式和完全平方公式.22.因式分解:3221218a a a -+.【答案】()223a a -【解析】【分析】先提公因式2a ,再用完全平方公式进一步分解.【详解】原式=()2269a a a -+=()223a a -.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.23.分解因式22222()4a b a b +-【答案】(a+b)2(a-b)2【解析】【分析】先利用平方差公式进行因式分解,然后再利用完全平方公式进行分解即可得.【详解】(a 2+b 2)2-4a 2b 2=[(a 2+b 2)+2ab][(a 2+b 2)-2ab]=(a+b)2(a-b)2.【点睛】本题考查了综合利用平方差公式与完全平方公式因式分解,熟练掌握平方差公式以及完全平方公式的结构特征是解题的关键.24.分解因式:()()21024x y x y ----【答案】()()212x y x y -+--【解析】【分析】根据把(x-y )看做整体,再利用十字相乘法进行因式分解即可.【详解】()()()()()()21024,212,212x y x y x y x y x y x y ----⎡⎤⎡⎤=-+--⎣⎦⎣⎦=-+--【点睛】本题主要考查十字相乘法分解因式,解决本题的关键是要熟练掌握十字相乘法因式分解.25.分解因式:2242x y xy +--【答案】()()22.x y x y -+--【解析】【分析】先分组,再根据完全平方公式和平方差公式进行分解因式.【详解】()()()22222242,24,2,22.x y xy x xy y x y x y x y +--=-+-=--=-+--【点睛】本题主要考查完全平方公式和平方差公式因式分解法,解决本题的关键是要熟练掌握完全平方公式和平方差公式.26.解不等式()()()()()x 1x 22x 32x 3x x 1-+--->-【答案】43x <【解析】【分析】先根据多项式乘以多项式以及多项式乘以单项式的运算法则计算,然后移项,再根据解一元一次不等式的步骤求解即可.【详解】解:原式整理得:222x 2x x 24x 2x 63x 3x 3x 0+---++--+>合并同类项得:3x 40-+>∴43x <故答案为43x <.【点睛】本题主要考查了解一元一次不等式,涉及了多项式与单项式的乘法,熟练掌握运算法则是解题的关键.27.先化简,再求值:(32)()(35)()x y x y x y x y -+-+-,其中x=2020,y=13【答案】220193;.3xy y -+-【解析】【分析】先根据多项式乘以多项式和整式减法法则进行化简,再代入数值计算即可.【详解】22222(32)()(35)(),33223355,3.x y x y x y x y x xy xy y x xy xy y xy y -+-+-=+---+-+=-+把x =2020,y =13代入上式可得,原式=2020133-+,=20193-.【点睛】本题主要考查整式化简求值,解决本题的关键是要熟练掌握整式乘法和减法法则.28.已知:(21)(2),26A x x A B x =+--=-,求B+A【答案】235x x-【解析】【分析】把(21)(2)A x x =+-整体代入到26A B x -=-式子中,根据整式加减乘法法则求出B,再代入B+A 计算.【详解】解:把(21)(2)A x x =+-整体代入到26A B x -=-式子中可得:()()21226x x B x +--=-,224226x x x B x -+--=-,224262x x x x B -+--+=,22442x x B -+=,2=22B x x -+,()()222212B A x x x x +=-+++-,=2222232x x x x -++--,=235x x -.【点睛】本题主要考查整式加减乘法法则,解决本题的关键是要熟练掌握整式加减乘法法则.。

七年级数学

七年级数学

2018—2019学年度第一学期期中考试试卷七年级数学一、选择题(每小题3分,共30分) 1. 3的倒数是( )A.31-B.3-C. 31D. 32. 某天的温度上升2-℃的意义是( )A.上升了2℃B.下降了2-℃C.下降了2℃D.现在温度是2-℃3.有理数()21-,()31-,21-, 1-,)1(--,1--中,等于1的有( )A.2个B.3个C.4个D.5个4. 我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米B .5.5×107千米C .5.5×103千米 D .0.55×108千米 5.下列计算正确的是( )A.277a a a =+B.235=-y yC.y x yx y x 22223=-D.ab b a 523=+6. 若单项式2423ab c -的系数、次数分别是m 、n ,则( )A.2,63m n ==B.2,63m n =-=C.2,73m n ==D. 2,73m n =-=7.有理数a ,b 在数轴上的位置如图所示,化简:a b -=( )A. a-bB. b-aC. a+bD.-a-b 8. 已知关于x 的多项式()52--+x m xm是二次三项式,则m 的值为( )A.2±B.-2C.3±D.39. 定义一种新运算“☆”,规定a ☆b b a ab -+=,如1☆3=1×3+1-3=1,则(-2☆5)☆6等于( ) A.-125 B.125 C.-120 D.12010.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报)111(+,第2位同学报)121(+,第3位同学报)131(+……,这样得到的20个数的积为( )A. 20B. 21C. 40D. 42二、填空题(每小题4分,共24分)11. 在数轴上,点A 到原点的距离等于3,点A 所表示的数是_________12. 在9,211,3.1,0,31,14--+-中,分数有____________非负数有___________13. 若|m -2|+|n +3|=0,则n m 的值是 14.若m 2-2m =1,则2m 2-4m +2018的值是__________15.如图,图①,图②,图③……是用围棋棋子摆成的一列具有一定规律的“山”字,则第n 个“山”字中的棋子个数是__________16. 给出如下结论:①倒数等于它本身的有理数只有1±;②当x =5,y =4时,代数式x 2-y 2的值为1;③20.3万精确到十分位;④如果b a =,那么a=b ; 其中错误的结论有 __________三、计算题(每小题4分,共16分)17.(1)()()14181420----+- (2)42221(10.5)()2(3)3⎡⎤---⨯÷---⎣⎦18.(1))2(2)35(b a b a a ---+ (2))135()2(322-+---a ab ab a四、解答题(19、23题每题8分,20题10分,21、22题每题12分,共50分) 19.在数轴上把下列各数表示出来,并用“<”号连接各数。

精编新版2019七年级下册数学期中模拟考试(含标准答案)

精编新版2019七年级下册数学期中模拟考试(含标准答案)

2019年七年级下册数学期中考试模拟试题一、选择题1. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( ) A .一个篮球场的周长 B .一张乒乓球台台面的周长 C .《中国日报》的一个版面的周长D .《数学》课本封面的周长答案:C2.如图,∠B=∠C ,BF=CD ,BD=CE ,则∠α 与∠A 的关系是( ) A .2∠α+∠A= 180° B .∠α+∠A= 180° C . ∠α+∠A= 90°D .2∠α+∠A= 90°答案:A3.下列字母中,不是轴对称图形的是 ( ) A .XB .YC .ZD .T答案:C4.如图,将平行四边形AEFG 变换到平行四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是( ) A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍答案:D5.如图,一块三边形绿化园地,三角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(阴影部分)的面积为( ) A .212R πB .2R πC .22R πD .不能确定解析:A 6.方程组⎩⎨⎧=-=+134723y x y x 的解是( )A . ⎩⎨⎧=-=31y x B .⎩⎨⎧-==13y x C .⎩⎨⎧-=-=13y x D .⎩⎨⎧-=-=31y x 答案:B7.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( ) A .m=1,n=3B .m=4 ,n=5C .m=2 ,n= —3D .m= —2 ,n=3答案:C8.已知2x y m =⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( )A .3B .3-C .113D .113-答案:B9.在等式(-a-b )( )=a 2-b 2中,括号里应填的多项式是( ) A .a-bB .a+bC .-a-bD .b-a答案:D10.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( ) A .4 种B . 6 种C . 10 种D . 12 种答案:B11. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形答案:B12.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( ) A .1个B .2个C .3个D .4个答案:B13.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断答案:B14.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm答案:D15.下列图案中是轴对称图形的是( )A.B.C. D.答案:D16.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是()A.4⨯米D.63.510-3.510-⨯米3.510-⨯米C.53.510⨯米B.4答案:B17.如图,从图(1)到图(2)的变换是()A.轴对称变换B.平移变换C.旋转变换D.相似变换答案:D18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带()A.①B.②C.③D.①和②答案:C19.计算3223-÷所得的结果是()[()]()x xB.-1 B.10x-C.0 D.12x-答案:A20.下列各图中,正确画出△ABC的AC边上的高的是()A.B.C.D.答案:C21.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定答案:C22.如图,将△ABC沿水平向右的方向平移,平移的距离为线段 CA的长,得到△EFA,若△ABC的面积为 3cm2,则四边形 BCEF的面积是()A.12cm2 B.10 cm2C.9 cm2D.8 cm2答案:C二、填空题23.有一个两位数,数字之和为 11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,则原两位数为 .解析:2924.从-2,-1,0中任意取两个数分别作为一个幂的指数和底数,那么其中计算结果最小的幂是 .解析:12-25.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后各花 800元购买该商品,两人所购的件数相差10件,则该商品原售价是上元.解析:1626.观察下列顺序排列的等式:11 13a=-,211 24a=-,311 35a=-,411 46a=-,….试猜想第n个等式(n为正整数): .解析:112 n n-+27.如图,将△ABC绕着点A 按逆时针方向旋转70°后与△ADE重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.解析:2528.请写出二元一次方程112x y-=的一组解 .解析:略29. 如图,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8 cm ,BD=7cm ,AD=3 cm ,则DC= cm.解析:530.数式x 2―4x ―2 的值为0,则x =___________.解析:-231.在如图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1. 解析:432.如图,在△ABC 中,∠BAC=45°,现将△ABC 绕点A 逆时针旋转30°至△ADE 的位置.则∠DAC= .解析:1533.长方形是轴对称图形,它有 条对称轴. 解析:234.如图,BD 是△ABC 的一条角平分线,AB =10,BC =8,且S △ABD =25,则△BCD 的面积是__________. 解析:2035.一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是 .解析:25三、解答题36.如图,在四边形ABCD 中,线段AC 与 BD 互相垂直平分,垂足为点 0. (1)四边形ABCD 是轴对称图形吗?如果是,它有几条对称轴?分别是什么? (2)图中有哪些相等的线段? (3)写出图中所有的等腰三角形.(4)判断点 0到∠ABC 两边的距离大小关系,你能得到关于等腰三角形的怎样的结论?请用一句话叙述出来.解析:37.(1)解方程1211x -=-. (2)利用(1)的结果,先化简代数式21(1)11xx x +÷--,再求值.解析:(1)满足方程1211x -=-的解是2x = (2)21(1)(1)(1)1213111x x x x x x x xx -++÷=⨯=+=+=--- 38.阅读:()()()()a b c d a c d b c d ac ad bc bd ++=+++=+++,反过来,就得到()()()()ac ad bc bd a c d b c d a b c d +++=+++=++.这样多项式 ac ad bc bd +++就变形成()()a b c d ++. 请你根据以上的材料把下列多项式分解因式:(1)2a ab ac bc -+-; (2)22x y ax ay -++解析:(1)()()a b a c -+ (2)()()x y x y a +-+ 39. 阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的一种方法:若0a b ->,则a b >; 0a b -=,则a b =;若0a b -<,则a b <. 例如:在比较21m +与2m 的大小时,小东同学的解法是:∵2222(1)110m m m m +-=+-=>,∴221m m +>.请你参考小东同学的解法,解决如下问题: (1)已知a ,b 为实数,且1ab =,设111111a b M N a b a b =+=+++++,,试比较M ,N 的大小;(2)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大5岁,爸爸 同事的年龄是小明年龄的 4倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?解析:(1)M=N (2)设小明的年龄x 岁,则254x x +-2(2)10x =-+>,∴小明称呼爸爸的这位同事为“叔叔” 40. 解下列方程组: (1)3213325x y x y +=⎧⎨-=⎩; (2)3262317x y x y -=⎧⎨+=⎩解析:(1) 32x y =⎧⎨=⎩ (2)43x y =⎧⎨=⎩41.发生在2008年 5 月 12 日 14时28分的汶川大地震在北川县唐家山形成了堰塞湖. 堰塞湖的险情十分严峻,威胁下游百万人生命的巨大危机.根据堰塞湖抢险指挥部的决定,将实施机械施工与人工爆破“双管齐下”的泄水方案.现在堰塞湖的水位已超过安全线,上游的河水仍以一个不变的速度流入堰塞湖. 抢险指 挥部决定炸开 10个流量相同的泄水通道.5月 26 日上午炸开了一个泄水通道,在 2小 时内水位继续上升了0.06米;下午再炸开了 2 个泄水通道后,在 2 小时内水位下降了 0.1米. 目前水位仍超过安全线 1.2米.(1)问:上游流人的河水每小时使水位上升多少米?一个泄水通道每小时使水位下降多 少米?(2)如果;第三次炸开 5个泄水通道,还需几小时水位才能降到安全线?解析:(1)上游流人的河水每小时使水位上升0.07米,一个泄水通道每小时使水位下降0.04米 (2)4.8小时42.如图,E 是BC 的中点,∠1=∠2,AE=DE . 求证:AB=DC .解析:证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE43.有8张卡片,每张卡片上分别写有不同的从1到8的一个自然数.从中任意抽出一张卡片,请计算下列事件发生的概率: (1)卡片上的数是偶数; (2)卡片上的数是3的倍数.解析:(1)21=P ;(2)41=P .44.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:(1(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).解析:(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7.45.如图,已知∠EFD=∠BCA ,BC=EF ,AF=DC.则AB=DE.请说明理由. (填空)解:∵AF=DC(已知) ∴AF+ =DC+ 即 在△ABC和△ 中 BC=EF( )∠ =∠( )∴△ABC≌△ ( ) ∴AB=DE( )解析:FC ,FC ,AC=DF ,DEF ,已知,DFE ,ACB ,已知,AC=DF ,DEF ,SAS , 全等三角形的对应边相等.46.如图是2002 年 8 月在北京召开的第 24 届国际数学家大会会标中的图案,其中四边形 ABCD 和 EFGH 都是正方形,试说明:△ABF ≌△DAE.解析:略47.如图,甲、乙两人蒙上眼睛投掷飞标.(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么? (2)利用图中所示,请你再设计一个公平的游戏.D解析:(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一)48.解方程:113 22xx x-=---解析:无解49.先化简2(21)(31)(31)5(1)x x x x x--+-+-,再选取一个你喜欢的数代替x求值.解析:92x-+;50.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.解析:4a=,5b=,2c=-。

2019年春季学期七年级下册期中教学质量检测数学试题(有答案与解析)

2019年春季学期七年级下册期中教学质量检测数学试题(有答案与解析)

2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(共6题,满分18分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠52.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a63.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.下列方程组中,属于二元一次方程组的是()A.B.C.D.5.如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm26.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°二、填空题(每小题3分,共30分)7.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.8.五边形的内角和为度.9.计算:已知a m=2,a n=3,则a m﹣n=.10.计算:已知:a+b=3,ab=1,则a2+b2=.11.在方程7x﹣2y=8中,用含x的代数式表示y为:y=.12.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.13.等腰三角形的两边长分别为3cm,6cm,则它的周长是cm.14.若代数式x2+mx+9(m为常数)是一个完全平方式,则m的值为.15.计算(x+a)(2x﹣1)的结果中不含关于字母x的一次项,则a=.16.如图,在△ABC中,E是BC上的一点,EC=3BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=16,则S1﹣S2=.三、解答题(本大题共10小题,102分)17.(10分)计算:(1)2﹣2×43﹣(﹣2)4.(2)2a3•(a2)3÷a18.(10分)把下列各式进行因式分解:(1)3x(a﹣b)﹣6y(b﹣a)(2)(x2+4)2﹣16x219.(8分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣20.(10分)解方程组(1)(2)21.(10分)如图,∠1=75°,∠A=60°,∠B=45°,∠2=∠3,FH⊥AB于H.(1)求证:DE∥BC;(2)CD与AB有什么位置关系?证明你的猜想.22.(8分)(1)比较a2+b2与2ab的大小(用“>”、“<”或“=”填空):①当a=3,b=2时,a2+b22ab,②当a=﹣1,b=﹣1时,a2+b22ab,③当a=1,b=﹣2是,a2+b22ab.(2)猜想a2+b2与2ab有怎样的大小关系?并证明你的结论.23.(10分)某种液体每升含有1012个细菌,某种杀菌剂1滴可以杀死109个此种有害细菌,现在将3L这种液体中的有害细菌杀死,要用这种杀菌剂多少滴?若10滴这种杀菌剂为10﹣3L,要用多少升?24.(12分)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A'B'C';(2)运用网格画出AB边上的高CD所在的直线,标出垂足D;(3)线段BB'与CC'的关系是;(4)如果△ABC是按照先向上4格,再向右5格的方式平移到A′,那么线段AC在运动过程中扫过的面积是.25.(12分)已知△ABC中,∠A=70°,∠ACB=30°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26.(12分)直角△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,若点P在线段AB上,且∠α=40°,则∠1+∠2=°;(2)如图2,若点P在边AB上运动,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(3)如图3,若点P运动到边AB的延长线上,则∠α、∠1、∠2之间的关系为:;(4)如图4,若点P运动到△ABC形外,则∠α、∠1、∠2之间的关系为:.期中数学试卷参考答案与试题解析一、选择题(共6题,满分18分)1.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解:∠1的同位角是∠5,故选:D.【点评】此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.【分析】A、原式不能合并;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.【分析】根据方程中含有两个未知数,且每个未知数的次数都是1,并且一共有两个方程,可得答案.【解答】解:A、是分式方程,故A错误;B、是二元二次方程组,故B错误;C、是二元二次方程组,故C错误;D、是二元一次方程组,故D正确;故选:D.【点评】本题考查了二元一次方程组,方程中含有两个未知数,且每个未知数的次数都是1,并且一共有两个方程.5.【分析】由于多边形的外角和为360°,则所有阴影的扇形的圆心角的和为360度,故阴影部分的面积=π×12=π.【解答】解:∵多边形的外角和为360°,=π×12=π(cm2).∴S A1+S A2+…+S An=S圆故选:A.【点评】本题考查了圆的面积公式的应用,多边形的外角和定理,比较简单.6.【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求结论.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣128°=52°①,在△BGC中,x+2y=180°﹣114°=66°②,解得:①+②:3x+3y=118°,∴∠A=180°﹣(3x+3y)=180°﹣118°=62°,故选:B.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每小题3分,共30分)7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】n边形内角和公式为(n﹣2)180°,把n=5代入可求五边形内角和.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9.【分析】根据同底数幂的除法,可得答案.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.10.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.11.【分析】把x看做已知数求出y即可.【解答】解:方程7x﹣2y=8,解得:y=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当y=1,x=15;y=2,x=10;y=3,x=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.13.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3,只能为6,然后即可求得等腰三角形的周长【解答】解:①6cm 为腰,3cm 为底,此时周长为6+6+3=15cm ;②6cm 为底,3cm 为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是15cm .故答案是:15.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【解答】解:∵代数式x 2+mx +9(m 为常数)是一个完全平方式,∴m =±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【分析】首先利用多项式的乘法法则计算:(x +a )(2x ﹣1),结果中不含关于字母x 的一次项,即一次项系数等于0,即可求得a 的值.【解答】解:(x +a )(2x ﹣1)=2x 2+2ax ﹣x ﹣a=x 2+(2a ﹣1)x ﹣a由题意得2a ﹣1=0则a =,故答案为:【点评】此题考查整式的化简求值,注意先化简,再进一步代入求得数值即可.16.【分析】直接利用三角形各边之间关系得出面积关系,进而得出答案.【解答】解:∵在△ABC 中,E 是BC 上的一点,EC =3BE ,∴S △ACE =3S △AEB =S △ACB =×16=12,∵点D 是AC 的中点,∴S △ABD =S △CBD =S △ACB =8,∵设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S =16,∴S1﹣S2=12﹣8=4.故答案为:4.【点评】此题主要考查了三角形的面积,正确得出各三角形面积与S之间关系是解题关键.三、解答题(本大题共10小题,102分)17.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值;(2)原式利用幂的乘方运算法则,以及同底数幂的乘除法则计算即可求出值.【解答】解:(1)原式=×64+1﹣16=16+1﹣16=1;(2)原式=2a3•a6÷a=2a8.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】(1)直接提取公因式3x(a﹣b),进而分解因式即可;(2)首先利用平方差公式分解因式,再结合完全平方公式分解因式.【解答】解:(1)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=﹣时,原式=4﹣=3.【点评】本题考查了整式的混合运算和求值,能根据整式的运算法则进行化简是解此题的关键.20.【分析】(1)利用加减消元法求解可得;(2)将方程组整理为一般式后利用加减消元法求解可得.【解答】解:(1),①×2,得:2x﹣4y=2 ③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60 ③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.21.【分析】(1)先根据三角形内角和定理计算出∠ACB=75°,则∠1=∠ACB,然后根据同位角相等,两直线平行可判断DE∥BC;(2)由DE∥BC,根据平行线的性质得∠2=∠BCD,而∠2=∠3,所以∠3=∠BCD,则可根据内错角相等,两直线平行得FH∥CD,由于FH⊥AB,根据平行线的性质得CD⊥AB.【解答】(1)证明:∵∠A+∠B+∠ACB=180°,∴∠ACB=180°﹣60°﹣45°=75°,而∠1=75°,∴∠1=∠ACB,∴DE∥BC;(2)CD⊥AB.理由如下:∵DE∥BC,∴∠2=∠BCD,∵∠2=∠3,∴∠3=∠BCD,∴FH∥CD,∵FH⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22.【分析】(1)①代入a,b的值,分别计算出a2+b2、2ab,即可解答;②代入a,b的值,分别计算出a2+b2、2ab,即可解答;③代入a,b的值,分别计算出a2+b2、2ab,即可解答;(2)将作差,即可比较大小.【解答】解:(1)①当a=3,b=2时,a2+b2=13,2ab=12,∴a2+b2>2ab;②当a=﹣1,b=﹣1时,a2+b2=2,2ab=2,∴a2+b2=2ab;③当a=1,b=2时,a2+b2=5,2ab=4,∴a2+b2>2ab;故答案为:①>,②=,③>;(2)∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.23.【分析】先求得3升含有细菌的个数3×1012个,再由题意得出杀死这些细菌所需杀毒剂的滴数为3×1012÷109,再用滴数除以每滴这种杀菌剂的升数即可3×1012÷10×10﹣3.【解答】解:根据题意知,要用这种杀菌剂3×1012÷109=3×103滴;需要3×103÷10×10﹣3=0.3升.【点评】本题主要考查同底数幂的除法及学生阅读理解题干的能力,是数学与生活相结合的好题.知识点:同底数幂的除法,底数不变指数相减.24.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格得出互相垂直的直线,进而得出答案;(3)利用平移的性质得出答案;(4)利用平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:EC⊥AB,则D点即为所求;(3)线段BB'与CC'的关系是:平行且相等;故答案为:平行且相等;(4)线段AC在运动过程中扫过的面积是:S平行四边形DCB″A″+S平行四边形A″B″C′A′=4×1+5×2=14.故答案为:14.【点评】此题主要考查了平移变换以及平行四边形的面积求法,正确掌握平移的性质是解题关键.25.【分析】(1)①根据三角形内角和定理可得出∠ABC的度数,由角平分线的性质可得出∠ABE =∠CBE=40°,再利用平行线的性质即可求出∠BEC的度数;②由邻补角互补可求出∠ACD的度数,由角平分线的性质可得出∠DCE的度数,再利用三角形外角的性质即可求出∠BEC的度数;(2)分CE⊥BC、CE⊥AC及CE⊥AB三种情况考虑,①当CE⊥BC时,∠DCE=90°,利用三角形外角的性质可求出∠BEC的度数;②当CE⊥AC时,∠ACE=90°,利用三角形内角和定理可求出∠BEC的度数;③当CE⊥AB时,延长CE交AB于点F,利用三角形内角和定理可求出∠BEF的度数,再根据邻补角互补即可求出∠BEC的度数.【解答】解:(1)①∵△ABC中,∠A=70°,∠ACB=30°,∴∠ABC=80°.∵BM平分∠ABC,∴∠ABE=∠CBE=∠ABC=40°.∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠ACB=30°,∴∠ACD=150°.∵CE平分∠ACD,∴∠DCE=∠ACD=75°,∴∠BEC=∠DCE﹣∠CBE=75°﹣40°=35°.(2)①当CE⊥BC时,∠DCE=90°,∴∠BEC=∠DCE﹣∠CBE=50°;②当CE⊥AC时,∠ACE=90°,∴∠BEC=180°﹣∠CBE﹣∠ACB﹣∠ACE=20°;③当CE⊥AB时,延长CE交AB于点F,如图2所示.∵∠BEF=180°﹣∠ABE﹣∠BFE=50°,∴∠BEC=180°﹣∠BEF=130°.综上所述:∠BEC的度数为50°、20°或130°.【点评】本题考查了三角形内角和定理、平行线的性质、角平分线、三角形外角的性质以及邻补角,解题的关键是:(1)①利用平行线的性质找出∠BEC=∠ABE;②利用三角形外角的性质找出∠BEC=∠DCE﹣∠CBE;(2)分CE⊥BC、CE⊥AC及CE⊥AB三种情况考虑.26.【分析】(1)如图1中,连接PC.由∠1=∠3+∠DPC,∠2=∠4+∠CPE,推出∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=∠α+90°=130°;(2)结论:∠1+∠2=90°+∠α.连接PC.由∠1=∠3+∠DPC,∠2=∠4+∠CPE,推出∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=90°+∠α;(3)如图3中,结论:∠1﹣∠2﹣∠α=90°.由∠1=∠3+∠C,∠3=∠α+∠2,推出∠1=∠α+∠2+90°,即∠1﹣∠2﹣∠α=90°;(4)如图4中,结论:∠2+∠α﹣∠1=90°.由∠1=∠α+∠3,∠3=90°﹣∠PEC,∠PEC=180°﹣∠2,推出∠1=∠α+90°﹣(180°﹣∠2),推出∠1=∠α﹣90°+∠2,可得∠2+∠α﹣∠1=90°.【解答】解:(1)如图1中,连接PC.∵∠1=∠3+∠DPC,∠2=∠4+∠CPE,∴∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=∠α+90°=130°,故答案为130;(2)如图2中,结论:∠1+∠2=90°+∠α.理由如下:连接PC.∵∠1=∠3+∠DPC,∠2=∠4+∠CPE,∴∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=90°+∠α;(3)如图3中,结论:∠1﹣∠2﹣∠α=90°.理由:∵∠1=∠3+∠C,∠3=∠α+∠2,∴∠1=∠α+∠2+90°,∴∠1﹣∠2﹣∠α=90°.故答案为∠1﹣∠2﹣∠α=90°;(4)如图4中,结论:∠2+∠α﹣∠1=90°.理由:∵∠1=∠α+∠3,∠3=90°﹣∠PEC,∠PEC=180°﹣∠2,∴∠1=∠α+90°﹣(180°﹣∠2),∴∠1=∠α﹣90°+∠2,∴∠2+∠α﹣∠1=90°.故答案为∠2+∠α﹣∠1=90°;【点评】本题考查三角形综合题、三角形的外角的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,灵活运用三角形的外角等于不相邻的两个内角之和解决问题,属于中考常考题型.。

2019年武汉市江岸区七年级(上)期中数学试卷

2019年武汉市江岸区七年级(上)期中数学试卷

2019年武汉市江岸区七年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在+4、、-3.14、0、0.5中,表示正分数的有()A.1个B.2个C.3个D.4个2.下列式子是单项式的是()A.1B.x+1C.D.3.下列式子是一元一次方程的是()A.x+1B.x+1=0C.1D.y=0 4.下列各题中同类项的是()A.2ab与a2b B.a2b与C.x与2x D.a2b3与4a3b25.若|a|=|b|,则()A.a=b B.a=-b C.a=±b D.±16.如果a+b>0,a>b,则a一定是()A.正数B.非正数C.负数D.非负数7.已知a=b,下列式子根据等式的性质变形不一定成立的是()A.2a=2b B.x+a=x+bC.D.8.如图,在大圆的直径上可以依次排列n个半径相等的圆,设大圆的周长为C1,设n个小圆的周长的和为C2,则C1与C2的数量关系正确的是()A.C1<C2B.C1=C2C.C1=nC2D.C1=n2C29.已知a、b、c都为整数,且满足|a-b|2019+|b-c|2020=1,则|a-b|+|b-c|-|a-c|的结果是()A.1B.2或1C.0D.1或010.下列说法正确的有()①|a-b|=a-b,则a≥b②数轴上到某点距离相等的两个点对应的数相等③abc<0,则④|a+b|=|a-b|,则b=0A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.单项式的系数为.12.武汉市2019年人口数约为10900000,把10900000用科学记数法表示为.13.已知关于x的方程(m2-4)x2-(m+2)x-3=0是一元一次方程,则m=.14.七年级1班有45名同学,其中男生人数比女生人数的2倍少6,设女生人数为x名,请列出正确的方程:.15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=.16.已知等式a(2x+1)=3x,无论x取何值等式都成立,则ab=.三、解答题(共8题,共72分)17.(8分)(1)-6(2)18.(10分)(1)化简:(x2+2xy-y2)-(x2-xy-y2)(2)化简求值:x-2(x)+(x),其中x=-2,y=3.19.(6分)解方程:2-x=2(x+1)-320.(8分)在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放10辆自行车,则还剩6辆自行车需要最后再摆;如果每人摆放12辆自行车,则有一名同学少摆放6辆自行车.请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?21.(8分)已知有理数a、b、c,且满足:a+c<0、b+c>0.①试化简:|a+c|+|b+c|-|a-b|;②有理数a、b、c在数轴分别上对应点A、B、C,若,相邻两点之间的距离为2,求(a+c)b.22.(10分)观察下面三行数:第一行:-2、4、-8、16、-32、64…第二行:1、7、-5、19、-29、67…第三行:5、-1、11、-13、35、-61…探索它们之间的关系,寻求规律解答下列问题:(1)直接写出第二行数的第8个数是;(2)直接写出第二行第n个数是,第三行第n个数是;(3)取每行的第n个数,请判断是否存在这样的3个数使它们的和为134,并说明理由.23.(10分)近期电影《少年的你》受到广大青少年的喜爱,某校七年级1班、2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n:购买张数1≤n≤5051≤n≤100n>100每张票的价格38元30元26元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有104人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3504元.(1)求两个班各有多少同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?24.(12分)知识准备:数轴上A、B两点对应的数分别为a、b,则A、B两点之间的距离表示为:AB=|a-b|.问题探究:数轴上A、B两点对应的数分别为a、b,且a、b、满足|b+2a|+(a-2)2=0.(1)直接写出:a=、b=;(2)在数轴上有一点P对应的数为x,请问:当点P到A、B两点的距离和为6时,x 满足什么条件?请利用数轴进行说明(此时P A+PB最小).拓展:当数轴上A、B、C三点对应的数分别为a=2、b=-4、c=8,在数轴上有一点P 对应的数为x,当x满足什么条件时,P A+PB+PC的值最小?应用:国庆期间汉口江滩武汉关至长江二桥之间是观看“70周年国庆灯光秀”的理想区域,武汉关与长江二桥相距约5公里.在国庆期间,为了服务广大市民,汉口江滩管理处在汉口江滩武汉关至长江二桥之间每隔1公里安排了便民服务小组(武汉关与长江二桥不安排),还需要设置一个便民服务物资站,请问便民服务物资站应该设置在什么地方,使它到各个便民服务小组的距离和最小,最小值是多少公里?便民服务物资站位置代表的数记作m利用图3直接给出结果:m满足的条件:,最小值为公里.。

2019年北京海淀清华附中上地学校初一(上)期中数学试卷(教师版)

2019年北京海淀清华附中上地学校初一(上)期中数学试卷(教师版)

2019北京海淀清华附中上地学校初一(上)期中数 学一、选择题(本题共30分,每小题3分)1.(3分)若30a +=,则a 的相反数是( )A .3B .13C .13−D .3−2.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4822亿元,用科学记数法表示4822亿正确的是( )A .8482210⨯B .114.82210⨯C .1048.2210⨯D .120.482210⨯3.(3分)下列选项中,与22x y 是同类项的是( )A .22y xB .222x yC .2xyD .23yx4.(3分)下列运算结果正确的是( )A .55x x −=B .235224x x x +=C .43b b b −+=−D .220a b ab −=5.(3分)若关于x 的方程240x a +−=的解是2x =,则a 的值等于( )A .8−B .0C .2D .86.(3分)如果3a <−,则|3|(a += )A .3a +B .3a −+C .3a −−D .3a −7.(3分)根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y −=−C .如果x y =,那么22x y −=−D .如果162x =,那么3x = 8.(3分)下列结论中:①若m n =,则||||m n =;②a 比a −大;③倒数等于其本身的数是1−,0,1+;④近似数1.20精确到了十分位.正确的个数有( )A .0个B .1个C .2个D .3个9.(3分)如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A .0ab >B .0a b +>C .||||0a b −<D .0a b −<10.(3分)小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A .14,17B .14,18C .13,16D .12,16二、填空题(本题共16分,每小题2分)11.(2分)写出一个比52−小的整数: . 12.(2分)把下列各数填入相应的大括号里:13,8+,3()4−−,0.3,0, 1.04−,2(10)−−,|8|. 正分数集合:{ }⋯;非负整数集合:{ }⋯.13.(2分)如果代数式234x x −的值为5,那么代数式2687x x −−的值等于 .14.(2分)如图,某长方形广场的长为a 米,宽为b 米,四角铺上半径为r 米的扇形草地(2)r b <,则未铺草地的面积共有 平方米.(用含π,a ,b ,r 的代数式表示)15.(2分)若24x =,||9y =且0xy <,则x y += .16.(2分)已知a ,b 互为倒数,m ,n 互为相反数,则2()3n m n ab m+−+的值是 . 17.(2分)若整数x 满足||x x =,并且|5|5x x −=−,则所有符合条件的x 的值有 个.18.(2分)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是 ,第n 个图形需要黑色棋子的个数是 (1n ,且n 为整数).三、解答题(共8小题,共54分,第19题12分,第20~22题,每题5分,第23~24题,每题6分,第25题8分,第26题7分)19.(12分)计算:(1)12411()()()()23523+++−+−++. (2)12536()4912⨯−+. (3)22116()(5)(3)3−−⨯−+−÷−. 20.(5分)已知多项式:22153(2)23x xy x xy −−−+−. (1)化简此多项式;(2)当12,2x y =−=时,求此多项式的值. 21.(5分)如图,数轴上表示点A 的数为a ,数轴上表示点B 的数为5a +.(1)请标出点B 的位置;(2)根据测量,请写出5a += (精确到0.1);(3)比较大小:a 、a −、5−.22.(5分)小华同学准备化简:22(353)(6x x x x −−−−□2)算式中“□”是“+,−,⨯,+”中的某一种运算符号.(1)如果“□”是“+”,请你化简22(353)(6x x x x −−−−□2);(2)已知当1x =时,22(353)(6x x x x −−−−□2)的结果是3−,请你通过计算说明“□”所代表的运算符号.23.(6分)小尚的妈妈在某玩具厂工作,厂里规定每周工作五天,该厂实行工资“日结算制”:每天的基本工资为200元,每天基本任务量为40个,若超额完成任务,则超出部分每个按7元奖励;若未完成任务,则未完成部分每个按8元扣除.由于种种原因,实际每天生产量与计划量相比有出入,下表是小尚妈妈某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知小尚妈妈星期三生产玩具 个;本周实际生产玩具 个;(2)小尚妈妈本周的工资总额是多少元?(3)若将工资“日结算制”改为“周结算制”,即每周的基本工资为1000元,每周基本任务为200个;若超额完成任务,则超出部分每个按7元奖励;若未完成任务,则未完成部分每个按8元扣除,在此方式下小尚妈妈本周的工资与“日结算制”的工资哪一个更多?请说明理由.24.(6分)若2(1)|2|0a a b +++=,且|1|2c −=,求3()c a b −的值.25.(8分)探究规律,完成相关题目:对非零数定义一种新的运算,叫※(宏)运算.下列是一些按照※(宏)运算的运算法则进行运算的算式;(5)+※(2)7+=+;(3)−※(5)8−=+;(3)−※(4)1+=−;(5)+※(8)3−=−.(1)我们在研究有理数的加法运算时,既要考虑符号,又要考虑绝对值.请你类比有理数加法的运算法则,归纳※(宏)运算的运算法则;同号两数进行※(宏)运算时 ,异号两数进行※(宏)运算时 .(2)计算:(2)−※[(4)+※(1)]−= .(括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,请你判断交换律和结合律在※(宏)运算中是否适用,如不适用,举反例说明.(举一个例子即可)26.(7分)阅读下列材料:我们给出如下定义:数轴上给定两点A ,B 以及一条线段PQ ,若线段AB 的中点R 在线段PQ 上(点R 能与点P 或Q 重合),则称点A 与点B 关于线段PQ 径向对称.下图为点A 与点B 关于线段PQ 径向对称的示意图. 解答下列问题:如图1,在数轴上,点O 为原点,点A 表示的数为1−,点M 表示的数为2.(1)①点B ,C ,D 表示的数分别为33,,32−,在B ,C ,D 三点中, 与点A 关于线段OM 径向对称;②点E 表示的数为x ,若点A 与点E 关于线段OM 径向对称,则x 的最大值是 ;(2)点F 是数轴上一个动点,点A 与点M 关于线段OF 径向对称,线段OF 的最小值是 ;(3)在数轴上,点A ,N ,M 表示的数分别是1−,1,2,当点A 以每秒1个单位长度的速度向正半轴方向移动时,线段MN 同时以每秒3个单位长度的速度向正半轴方向移动,设移动的时间为t 秒(0)t >,则点A 与点G 关于线段MN 径向对称,则点G 表示的最大数是 ,最小数是 .(用含t 的代数式表示)一、填空题(每小题3分,共12分)27.(3分)从1−,2−,3−,4,5中取三个不同的数相乘,可得到的最大乘积是 ,最小乘积是 .28.(3分)已知有理数a 、b 、c 满足0a b c ++=,则||||||a b c a b c++= . 29.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是 天.30.(3分)将1,2,3,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a ,b 代入||2a b a b +−−中进行计算,求出结果,可得到50个值,则这50个值的和的最大值为 . 二、解答题(每小题4分,共8分)31.(4分)已知a ,b ,c 在数轴上的位置如图,化简2|||||2|a b b c c a −−+−+.32.(4分)我们把按一定规律排列的一列数,称为数列,若对于一个数列中依次排列的相邻的三个数m ,n ,p ,总满足2p m n =−,则称这个数列为理想数列.(1)若数列2,1−,a ,4−,b ,,是理想数列,则a = ,b = ;(2)请写出一个由五个不同正整数组成的理想数列: ;(3)若数列,m ,n ,p ,q ,是理想数列,且31q p −=,求代数式222(41)16()2019n n m m n −−+−+的值.2019北京海淀清华附中上地学校初一(上)期中数学参考答案一、选择题(本题共30分,每小题3分)1.【分析】先求得a 的值,然后在依据相反数的定义求解即可.【解答】解:30a +=,3a ∴=−.3−的相反数是3.故选:A .【点评】本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.2.【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:4822亿元,用科学记数法表示114.82210⨯,故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.【解答】解:根据题意同类项的定义(所含字母相同,相同字母的指数相同)得出与22x y 是同类项的是23yx . 故选:D .【点评】本题考查了同类项定义,定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据合并同类项得法则判断即可.【解答】解:A 、54x x x −=,错误;B 、22x 与32x 不是同类项,不能合并,错误;C 、43b b b −+=−,正确;D 、22a b ab −,不是同类项,不能合并,错误;故选:C .【点评】本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.5.【分析】把2x =代入方程计算即可求出a 的值.【解答】解:把2x =代入方程得:440a +−=,解得:0a =,故选:B .【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【分析】根据有理数加法运算法则判断30a +<,然后根据绝对值的意义进行化简.【解答】解:3a <−,30a ∴+<,|3|(3)3a a a ∴+=−+=−−,故选:C .【点评】本题考查绝对值的化简,有理数的加法运算,理解有理数加法运算法则,掌握绝对值的意义(一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0)是解题关键.7.【分析】直接利用等式的基本性质分别分析得出答案.【解答】解:A 、如果23x =,那么23x a a=,(0)a ≠,故此选项错误; B 、如果x y =,那么55x y −=−,故此选项错误;C 、如果x y =,那么22x y −=−,正确;D 、如果162x =,那么12x =,故此选项错误; 故选:C .【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.8.【分析】①根据绝对值的性质判断;②根据相反数的定义判断;③根据倒数的定义判断;④根据近似数的定义判断.【解答】解:①若m n =,则||||m n =,正确;②当0a <时,a a <−,故原说法错误;③倒数等于其本身的数是1−,0,1+,说法错误,0没有倒数;④近似数1.20精确到了百分位,故原说法错误;所以正确的个数有1个.故选:B .【点评】本题主要考查了倒数,相反数,绝对值以及近似数和有效数字,掌握相关的定义是解题的关键.9.【分析】根据图示,可得0a b <<,而且||||a b >,据此逐项判断即可.【解答】解:根据图示,可得0a b <<,而且||||a b >,0a b <<,0ab ∴<,∴选项A 不正确;0a b <<,而且||||a b >,0a b ∴+<,∴选项B 不正确,选项D 正确;||||a b >,||||0a b ∴−>,∴选项C 不正确;故选:D .【点评】此题主要考查了数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是判断出:0a b <<,而且||||a b >.10.【分析】设每堆牌的数量都是x ,把每堆牌的数量用含x 的代数式表示,从而得出第2堆有(9)x −张牌,然后根据观众A 、B 说的张数求出x 的值.【解答】解:a :设每堆牌的数量都是(10)x x >;b :第1堆4x +,第2堆4x −,第3堆x ;c :第1堆4812x x ++=+,第2堆4x −,第3堆8x −;d :第1堆12(4)16x x +−−=,第2堆4x −,第3堆8(4)212x x x −+−=−,e :第1堆16521+=,第2堆459x x −−=−,第3堆212x −.如果95x −=,那么14x =,如果98x −=,那么17x =.故选:A .【点评】本题考查了整式的加减运算,解决此题,根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.二、填空题(本题共16分,每小题2分)11.【分析】根据正数大于一切负数,两个负数比大小,绝对值大的其值反而小,据此解答即可. 【解答】解:比52−小的整数可得是3−、4−等. 故答案为:3−(答案不唯一).【点评】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比大小,绝对值大的其值反而小.12.【分析】将3()4−−,2(10)−−,|8|化简后,利用正分数的意义和非负整数的意义进行解答即可. 【解答】解:33()44−−=,2(10)100−−=−,|8|8=,∴正分数集合:{13,3()4−−,0.3,}⋅⋅⋅; 非负整数集合:{8+,0,|8|,}⋅⋅⋅. 故答案为:13,3()4−−,0.3;8+,0,|8|. 【点评】本题主要考查了有理数的乘方,相反数,绝对值的意义,有理数的概念.正确利用相反数,绝对值和负数的偶次方化简是解题的关键.13.【分析】将代数式适当变形,利用整体代入解答即可.【解答】解:226872(34)7x x x x −−=−−,2345x x −=,∴原式2573=⨯−=.故答案为:3.【点评】本题主要考查了求代数式的值,将代数式适当变形,利用整体代入解答是解题的关键.14.【分析】利用长方形的面积减去一个圆的面积就是未铺草地的面积列式即可求解.【解答】解:由题意得未铺草地的面积是2(?)ab r π平方米,故答案为2(?)ab r π.【点评】本题考查了列代数式,能正确列代数式是解此题的关键.15.【分析】根据24x =,||9y =且0xy <这几个条件,先求出x 、y 的值,代入x y +计算即可.【解答】解:24x =,||9y =,2x ∴=±,9y =±,0xy <,∴①2x =,9y =−,代入7x y +=−,②2x =−,9y =,代入7x y +=7x y ∴+=−或7.故答案为:7−或7.【点评】本题主要考查绝对值、有理数加法、有理数乘法,掌握这几个知识点的综合应用是解题关键.16.【分析】由题意可知:1ab =,0m n +=,然后代入原式即可求出答案.【解答】解:由题意可知:1ab =,0m n +=, ∴1n m=− ∴原式2031(1)4=⨯−⨯+−=−,故答案为:4−.【点评】本题考查代数式求值,掌握互为倒数的两数乘积是1和互为相反数的两数和为0是解题关键.17.【分析】根据绝对值的意义求出x 的取值范围,进而得出整数x 即可.【解答】解:||x x =,0x ∴,又|5|5x x −=−,5x ∴,05x ∴,又x 为整数,x ∴可以为0,1,2,3,4,5,共6个,故答案为:6.【点评】本题考查绝对值,理解绝对值的意义是解决问题的前提,求出x 的取值范围是正确解答的关键.18.【分析】根据题意,分析可得第1个图形需要黑色棋子的个数为233⨯−,第2个图形需要黑色棋子的个数为344⨯−,第3个图形需要黑色棋子的个数为455⨯−,依此类推,可得第n 个图形需要黑色棋子的个数是(1)(2)(2)n n n ++−+,计算可得答案.【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子233⨯−个, 第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子344⨯−个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子455⨯−个,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是(1)(2)(2)(2)n n n n n ++−+=+;当5n =时,5(52)35⨯+=,故答案为:35,(2)n n +.【点评】本题考查归纳推理的运用,解题时注意图形中有重复的点,即多边形的顶点.三、解答题(共8小题,共54分,第19题12分,第20~22题,每题5分,第23~24题,每题6分,第25题8分,第26题7分)19.【分析】(1)先去括号,再同分母相结合计算即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算乘除法,最后计算加减法.【解答】解:(1)原式1241123523=+−−+ 1121422335=−++− 415=−15=; (2)原式1253636364912=⨯−⨯+⨯ 9815=−+16=;(3)原式151693=−−⨯+ 25133=−−+ 5533=−+ 0=.【点评】本题考查有理数的混合运算,熟练的掌握运算法则和弄清楚运算顺序是解题关键.20.【分析】(1)先去括号,再合并同类项即可;(2)将x 、y 的值代入计算即可.【解答】解:(1)原式225632x xy x xy =++−−226x xy =−+;(2)当2x =−,12y =时, 原式212(2)(2)62=⨯−−−⨯+ 816=++ 15=.【点评】本题主要考查整式的加减,解题的关键是掌握整式的加减的实质:去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.【分析】(1)根据点A 的位置可得点B 的大概位置;(2)根据a 的近似值和5a +的近似值;(3)根据a 的近似值判断即可.【解答】解:(1)如图所示:(2)根据测量,请写出5 2.8a +=,故答案为:2.8;(3)0a <且||3a <,5a a ∴−<<−.【点评】本题考查了数轴,近似数和有效数字以及有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比大小,绝对值大的其值反而小.22.【分析】(1)根据题意,可以先出相应的算式,然后计算即可;(2)根据当1x =时,22(353)(6x x x x −−−−□2)的结果是3−,将1x =代入式子化简,即可得到“□”所代表的运算符号.【解答】解:(1)当“□”是“+”时,22(353)(62)x x x x −−−−+2235362x x x x =−−−+−225x x =+−;(2)当1x =时,22(353)(6x x x x −−−−□2)的结果是3−,22(31513)(161∴⨯−⨯−−−⨯□2)3=−,(3153)(16∴⨯−−−−□2)3=−,(353)(16∴−−−−□2)3=−,5(16∴−−−□2)3=−,5316∴−+=−□2,216∴−=−□2,36∴−=−□2,623−÷=−,∴ “□”所代表的运算符号是“÷”.【点评】本题考查整式的加减、有理数的混合运算,熟练掌握它们的运算法则和运算顺序是解答本题的关键.23.【分析】(1)根据记录可知,小尚妈妈星期三生产玩具40139−=(个);先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(2)先计算每天的工资,再相加即可求解;(3)用基本工资加上奖励工资即可求出“周结算制”工资,然后再比较即可.【解答】解:(1)小尚妈妈星期三生产玩具40139−=(个),本周实际生产玩具:405(52104)206⨯++−−++=(个),故答案为:39;206;(2)2005(54)7(21)8⨯++⨯−+⨯10006324=+−1039=(元),故小尚妈妈本周的工资总额是1039元;(3)“周结算制”工资为:1000(206200)71042+−⨯=(元),10391042<,∴ “周结算制”的工资更多.【点评】本题考查了正数与负数,有理数的混合运算,读懂表格数据,根据题意准确列式是解题的关键.24.【分析】根据偶次方的非负性,绝对值的性质求解a ,b ,c 的值,再代入计算可求解.【解答】解:(1)2|2|0a a b +++=,且|?1|2c =,1a ∴=−,2b =,3c =或?1,当3c =时,3(?)3(12)9c a b =⨯−−=−;当?1c =时,3(?)?1(12)3c a b =⨯−−=.综上,3()c a b −的值为9−或3.【点评】本题考查了代数式求值、绝对值、偶次方的非负性等知识点,能正确根据偶次方,绝对值的非负性及性质求出a 、b 、c 的值是解此题的关键.25.【分析】(1)根据题目中的例子可以总结出※(宏)运算的运算法则;(2)根据(1)中的结论可以解答本题,注意运算顺序;(3)据(1)中的结论分别采用加法交换律和结合律计算可以解答本题.【解答】解:(1)由题意可得,归纳※(宏)运算的运算法则:同号两数进行※(宏)运算时,同号得正,并把它们的绝对值相加,异号两数进行※(宏)运算时,异号得负,并用较大的绝对值减去较小的绝对值;故答案为:同号得正,并把它们的绝对值相加;异号得负,并用较大的绝对值减去较小的绝对值.(2)(2)−※[(4)+※(1)]−(2)=−※(3)−5=.故答案为:5.(3)(2)−※(3)1+=−,(3)−※(2)1+=−.∴加法交换律适用;(4)+※(1)−※(2)(3)+=−※(2)1+=−,(4)+※[(1)−※(2)](4)+=+※(1)3−=−,而13−≠−,∴加法结合律不适用.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.【分析】(1)①根据径向对称的定义判断即可.②求出点M 是AE 的中点时x 的值即可解决问题.(2)若点A 与点M 关于线段OF 径向对称,设点F 表示的数为m ,则x 的取值范围是59t x t −−,构建不等式即可解决问题.【解答】解:(1)①点A 表示的数为1−,点B ,C ,D 表示的数分别为33,,32−. ∴点A 和点B 的中点表示的数为2−,点A 与点C 的中点表示的数为14,点A 和点D 的中点表示的数为1, 点O 为原点,点M 表示的数为2,∴点C 和点D 与点A 关于线段OM 径向对称;故答案为:点C 和点D ;②若点E 表示的数为x ,则点A 和点E 的中点所对应的数为:12x −+, 若x 最大,则点A 和点E 的中点与点M 重合,即122x −+=, 解得5x =.故答案为:5.(2)设点F 所对应的数为m ,点A 表示的数为1−,点M 表示的数为2,∴点A 和点M 的中点所对应的数为12, 若OF 最小,则点A 和点M 的中点与点F 重合,此时12OF =; 故答案为:12. (3)在数轴上,点A ,N ,M 表示的数分别是1−,1,2,由点的运动可知,运动后点A 所对应的点为1t −+,点M 所对应的点为23t +,点N 所对应的点为13t +, 点A 与点G 关于线段MN 径向对称,∴当点A 与点G 的中点与点N 重合时,点G 所表示的数最小,最小的数为:2(13)(1)53t t t ⨯+−−+=+; 当点A 与点G 的中点与点M 重合时,点G 所表示的数最大,最大的数为:2(23)(1)55t t t ⨯+−−+=+. 故答案为:55t +;53t +.【点评】本题考查一元一次方程的应用,数轴,径向对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.一、填空题(每小题3分,共12分)27.【分析】取两个负数,一个正数,得到的乘积是正数;取一个负数或三个负数,得到的乘积是负数.【解答】解:(2)(3)530−⨯−⨯=,(3)4560−⨯⨯=−,故答案为:30,60−.【点评】本题考查了有理数的乘法法则,掌握几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正是解题的关键.28.【分析】根据有理数的加法、绝对值的意义分情况进行计算即可求解. 【解答】解:有理数a 、b 、c 满足0a b c ++=,且a 、b 、c 都不能为0,a ∴、b 、c 异号,①当其中一个数为正数,另外两个数为负数时,原式1111=−−=−.②当其中一个数为负数,另外两数为正数时,原式1111=−++=. 综上,||||||1a b c a b c++=±, 故答案为1±.【点评】本题考查了有理数的加法、绝对值的意义,解决本题的关键是进行分类讨论.29.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数37⨯+百位上的数27⨯+十位上的数7⨯+个位上的数.【解答】解:孩子自出生后的天数是321737276510⨯+⨯+⨯+=,故答案为:510.【点评】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.30.【分析】设a b >,将代数式化简||2a b a b b +−−=;可知:将每组中的两个数a ,b ,分别代入代数式后计算的结果等于两个数中较小的数.如果求这50个值的和的最大值,每组中的两个数应为相邻的两数,且像1和2,3和4,5和6,⋅⋅⋅⋅⋅⋅,99 和100 这样分组,则这50个值的和的最大值为:9997951++++⋅⋅⋅+,计算这个算式即可得出结论.【解答】解:每组中的两个数记为a ,b ,设a b >, 则||()222a b a b a b a b a b a b b +−−+−−+−+===. ∴将每组中的两个数a ,b ,分别代入代数式后计算的结果等于两个数中较小的数.∴如果求这50个值的和的最大值,每组中的两个数应为相邻的两数,这样,这50个值的和的最大值为:(991)50999795125002+⨯++++⋅⋅⋅+==. 故答案为:2500.【点评】本题主要考查了求代数式的值,若求和的最大值,找出分组的规律是解题的关键.二、解答题(每小题4分,共8分)31.【分析】根据a ,b ,c 在数轴上的位置确定a b −,b c +,2c a +的符号即可去掉绝对值,从而得出结论.【解答】解:由a ,b ,c 在数轴上的位置可知0a b −<,0b c +>,20c a +<,2|||||2|a b b c c a ∴−−+−+2()()(2)b a b c c a =−−+−−−222b a b c c a =−−−++b =.【点评】本题主要考查数轴的概念和绝对值的化简,关键是要能根据a ,b ,c 在数轴上的位置决定每个绝对值内式子的符号.32.【分析】(1)根据题中的新定义确定出a 与b 的值即可;(2)根据理想数列的定义,先任意写出前两个数,再依次写出其他3个数即可;(3)根据理想数列的定义,先用m 、n 表示出p 、q ,再根据21q p −=得到m 、n 间关系,然后整体代入求值即可.【解答】解:(1)根据题中的新定义得:22(1)415a =−−=+=,2(4)25429b a =−−=+=;故答案为:5;29;(2)当前两个数分别为3,4时,则第3个数为:2345−=,第4个数为:24511−=,第5个数为:251114−=,故一个由五个不同正整数组成的理想数列为:3,4,5,11,14;故答案为:3,4,5,11,14(答案不唯一);(3)根据题意得:2p m n =−,2q n p =−,22q n m n ∴=−+,31q p −=,2223()1n m n m n ∴−+−−=,即22414n m n −−=−或22441n m n −+=,222(41)16()2019n n m m n ∴−−+−+2(4)16()2019n n m n =−+−+22416162019n m n =−+−+224(44)2019n m n =−−++=−⨯+412019=−+42019=.2015【点评】本题考查了规律型:数字的变化类,代数式求值.解决(1)(2)需理解理想数列的意义,题目(3)比较复杂,解决本题(3)的关键是找到m、n间关系,整体代入求值.。

赣榆县外国语学校七年级数学期中考试试题

赣榆县外国语学校七年级数学期中考试试题

数学试卷B2019——2019学年度第二学期期中学业水平检测七年级数学试卷(考试时间:100分钟 本卷满分:150分)一、选择题(本大题共有10题,每小题3分,共30分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母写在答题纸相应的表格中。

) 本大题共有9题,每小题3分,共27分。

不需写出解答过程,请把答案填写在答题纸相应位置上。

)11. 12. 13. 14. 15.16. 17. 18. 19.三、解答题(本大题共9小题,共93分。

请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤。

) 20、计算:(6分×2=12分)21、因式分解:(6分×2=12分)22、解方程组(本题满分12分,每小题6分)23、(本题9分)如图,在00ABC B 40C 110∆∠∠中,=,=,按要求完成下列各题(1)作△ABC 的高AD ;(2)作△ABC 的角平分线AE ;(3)根据你所画的图形求∠DAE 的度数.24、(本题10分)先化简再求值:,其中( a-3)2+│b-2│=0。

()()211212323--⎡⎤--⨯⨯--⎣⎦2(1)21y x x y =+⎧⎨-=-⎩31(2)2151x y x y -=⎧⎨+-=⎩2(2)(2)()(2)a b a b a b a a b +--+-+()()452322(1)()a a a ⋅÷-2(1)416a -223(2)2128x xy xy--+数学试卷21GF E DCBA ②m nmmn③mm①25、(本题9分)如图,在△ABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上, ∠1=∠2.试判断DG 与BC 的位置关系,并说明理由。

26、(本题9分)将下列方格纸中的△ABC 向右平移8格,再向上平移2格,得到△111C B A . (1)画出平移后的三角形;(2)若BC=3,AC=4,则11C A = . (3)如果AC ⊥BC ,则∠C 1= .27、(本题10分)如图,在△ABC 中,BC AD ,AE 平分∠BAC ,∠B =70°,∠C =30°. (1)求∠BAE 的度数; (2)求∠DAE 的度数;(3)探究:如果只知道∠B -∠C = 40°,也能得出∠DAE 的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.28、(本题10分)图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.⑴图②中的阴影部分的面积为 ;⑵观察图②请你写出三个代数式(m +n )2、(m -n )2、mn 之间的等量关系是 .⑶若x +y =-6,xy =2.75,则x -y = . ⑷实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了 .⑸试画出一个几何图形,使它的面积能表示(m +n )(m +3n )=m 2+4mn +3n 2.ED CBA。

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。

2019年春季学期七年级下册期中数学试卷(有答案与解析)

2019年春季学期七年级下册期中数学试卷(有答案与解析)

2019年春季学期七年级下册期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.已知a m=5,a n=2,则a m+n的值等于()A.2.5B.7C.10D.252.下列运算运用乘法公式不正确的是()A.(x﹣y)2=x2﹣2xy+y2B.(x+y)2=x2+y2C.(x+y)(x﹣y)=x2﹣y2D.(﹣x+y)(﹣x﹣y)=x2﹣y23.下列计算正确的是()A.a2+a2=a4B.a3•a2=a6C.a6÷a2=a4D.(﹣a2b3)2=a4b94.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④6.如图,如果∠1=∠2,那么下列说法正确的是()A.∠3=∠4B.AB∥CD C.AD∥BC D.∠ABC=∠ADC 7.下列说法正确的是()A.三角形的三条高至少有一条在三角形内B.直角三角形只有一条高C.三角形的角平分线其实就是角的平分线D.三角形的角平分线、中线、高都在三角形的内部8.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,则图中与∠FDB相等的角(不包含∠FDB)的个数为()A.3B.4C.5D.69.下列说法不正确的有()①一个三角形至少有2个锐角;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③过n边形的一个顶点可作(n﹣3)条对角线;④n边形每增加一条边,则其内角和增加360°.A.1个B.2个C.3个D.4个10.已知:a=﹣2017x+2018,b=﹣2017x+2019,c=﹣2017x+2020,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.0B.1C.2D.3二、填空题(本大题共8小题,每小题2分,共16分)11.水珠不断地滴在一块石头上,1年后石头形成了一个深为0.001m的小洞,用科学记数法表示小洞的深度为m.12.若x2+x+m是一个完全平方式,则m的值为.13.若(x+a)(3x﹣2)的结果中不含关于字母x的一次项,则a=.14.如果三角形的两边长分别是3和5,那么它的第三边x的取值范围是.15.若2x+5y﹣3=0,则4x﹣1×32y=.16.观察下列式子(1)(1+1)2=1+2+1,(2)(2+1)2=4+4+1,(3)(3+1)2=9+6+1,…探索规律,用含n的式子表示第n个等式.(n为正整数)17.如图,将长方形纸片ABCD沿EF翻折,使点C落在点C处,若∠BEC′=28°,则∠D′GF 的度数为.18.如图,线段AB、AC是两条绕点A可以自由旋转的线段(但点A、B、C始终不在同一条直线上),已知AB=5,AC=7,点D、E分别是AB、BC的中点,则四边形BEFD面积的最大值是.三、解答题(本大题共8小题,共64分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡山实验中学2019年七年级上学期期中检测试题
制卷人:胡小聪 审核人:李文伟
考试时间:120分钟 满分:120分
一、 选择题(共36分,每小题3分)
1.方程4x -1=3的解是( )
A .x =1
B .x =-1
C .x =2
D .x =-2 2.若x =-3是方程2(x -m )=6的解,则m 的值为( )
A .6
B .-6
C .12
D .-12 3、若a -b <0,则下列各式中一定正确的是( ) A 、a >b B 、ab >0 C 、0a b
< D 、-a >-b
4. 若代数式-2x +3的值大于 -2,则x 的取值范围是( )
A .x <2
5 B .x >2
5 C .x <5
2 D .x <2
5-
5.不等式1-2x <5-2
1x 的负整数解有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
6. 不等式组x 1042x 0>-⎧⎨-≥⎩

②的解集在数轴上表示为( )
7、在等式b kx y +=中,当2=x 时,4-=y ;当2-=x 时,8=y ,则这个等式是( ) A 、23+=x y B 、23+-=x y C 、23-=x y D 、23--=x y
8、已知⎩
⎨⎧==12
y x 是方程组⎩⎨⎧=+-=-513by x y ax 的解,则a 、b 的值为( )
A 、1,3a b =-=
B 、3,1==b a
C 、1,3==b a
D 、1,3-==b a 9、方程732=-y x 用含x 的代数式表示y 为( ) A 、327x y -=
B 、372-=x y
C 、237y x +=
D 、2
37y
x -= 10、若不等式组3
x m
x ≤⎧⎨
>⎩ 无解,则m 的取值范围是( )
A 、3m >
B 、3m <
C 、3m ≥
D 、3m ≤
11.8个一样大小的长方形恰好拼成一个大的长方形(如下图),若大长方形的宽为
8cm,则每一个小长方形的面积为 ( ) A .8cm 2
B .15cm 2
C .16cm 2
D .20cm 2
12. .如果不等式1>ax 的解集是a
x 1<,则( ) A 、0≥a B 、0≤a C 、0>a D 、0<a
二、填空题( 共24分,每小题3分)
13、若关于x 、y 的方程x m-1-2y 3+n =5是二元一次方程,则m = ,n = 14、已知方程x mx 32=-的解为1-=x ,则=m 15、当=x 时,代数式
2
1
+x 与3-x 的值互为相反数。

16、不等式1330x ->的正整数解是
17、买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了 枚,80分的邮票买了 枚。

18、不等式组2x+3>53x 2<4⎧⎨-⎩
的解集为 。

19、 课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,
这样比原来减少2组.这些学生共有 人. 20.已知关于x 的不等式组0
321
x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是
三、解答题
21、解方程(组)(每题5分,共15分)
(1)1
61
282=--+y y (2)⎩⎨⎧2x +3y =1,3x +2y =4.
(3)⎪⎩
⎪⎨⎧=++=-+=+-.1007670
2302z y x z y x z y x
22、解不等式(组)(每题5分,共10分)
(1)13(1)4()32
x x -<-- (2)解不等式组()x+5
x 2
x 3x 15
>⎧⎪
⎨⎪--≤⎩
并在数轴上表示出它的解集。

23.(7分)方程组⎩
⎪⎨⎪⎧3x -2y =7,
5x +2y =1的解满足方程2x -ky =10,求k 的值.
24.(8分)(2016·海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?
25.(9分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个完全相同的大棚组成的植物养殖区(如图①),要求两个大棚之间有间隔4米的路,设计方案如图②,已知每个大棚的周长为44米.
(1)求每个大棚的长和宽各是多少?
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?
26.(11分)(2016·凉山州)为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A,B两型污水处理设备每周每台分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨.请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?
七年级数学半期试题参考答案一、选择题
1A 2B 3D 4A 5B 6C 7B 8B 9B 10D 11B 12D
二、填空
13、m=2 n=-2
14、m=1
15、53
16、1,2,3,4 17、14枚,6枚 18、1<x <2 19、48 20、-3<a ≤-2 三、解答
21、(1)解:3(y+2)-4(2y-1)=24 3y+6-8y+4=24 -5y=14 y=-145
(2)解:①+②×2,得7x-3z=0④
①×3+③,得x+z=10⑤
④和⑤联立方程组7x-3z=0
x+z=10 ⎧⎨⎩
解得x=37z ⎧⎨=⎩把x=3
7z ⎧⎨=⎩代入①得y=5 所以35
7
x y z =⎧⎪=⎨⎪
=⎩
22、(1)解:3x-3<4x-2-3 (2)解:解不等式①,得x <5
3x-4x <-2 解不等式②,得x ≥-1
-x <-2 所以不等式组的解集是:-1≤x <5 x >2 (数轴图略)
23、解:解方程组⎩⎨
⎧-=-+=+1726
52y x k y x ,得x=2k-18y k ⎧⎨=+⎩
因为x<0,y<0,所以
2k-10
80
k


+
⎩解不等式组得,k<-8
24、解:因为(x2-x+1)-( x2+2x+1)=-3x
所以当-3x>0即x<0时, x2-x+1>x2+2x+1 当-3x<0即x>时, x2-x+1<x2+2x+1
当-3x=0即x=0时, x2-x+1= x2+2x+1
25、解:把
x=-3
y=-1



代入②式,得b=10;把
x=5
y=4


⎩代入①式,得a=-1
所以原方程组为
515
4102
x y
x y
-+=


-=-
⎩解这个方程组得
x=14
29
5
y



=
⎪⎩
所以x-y=14-29
5
=
41
5
四、解应用题
26、解:设王老师这笔稿费有x元,根据题意,得
(x-800)×14%=420
解得x=3800
经检验,符合题意。

答:王老师这笔稿费有3800元。

27、解:(1)P=0.3x+200 Q=0.2x-200
(2)当x=900时,Q=0.2×900-200=-20
即当总产量达到900台时,没有盈利,亏了20万元。

(3)当Q>0时,开始盈利。

即0.2x-200>0,解得x>1000
当总产量超过1000台时,公司开始盈利。

28、解:(1)设A型台灯购进x盏,B型台灯购进y盏,根据题意得
x+y=5040652500x y ⎧⎨+=⎩解得x=3020y ⎧⎨=⎩
答:A 型台灯购进30盏,B 型台灯购进20盏。

(2)设购进B 型台灯m 盏,由题意得
35m+20(50-m)≥1400
解得m ≥
80
3
所以要使销售这批台灯的总利润不少于1400元,至少需购进B 型台灯27盏。

相关文档
最新文档