1.1.2《弧度制》课件(新人教A版)

合集下载

弧度制(课件)高一数学(人教A版2019必修第一册)

弧度制(课件)高一数学(人教A版2019必修第一册)
2 故该扇形的面积的最大值为245cm2,取得最大值时圆心角为 2 rad,弧长为 5 cm.
当堂达标
1.圆的半径为 r,该圆上长为32r 的弧所对的圆心角是(
)
2 A.3 rad
B.32 rad
2π C. 3 rad
D.32π rad
3 B 解析:由弧度数公式 α=rl,得 α=2rr=32,因此圆弧所对的圆心角是32 rad.
显然1π2<1π0<1<71π2. 故 α<β<γ<θ=φ.
显然,15°<18°<57.30°<105°. 故 α<β<γ<θ=φ.
经典例题
题型一 角度制与弧度制的互化
(2)-1 480°=-1 480×1π80=-749π=-10π+169π, 其中 0≤169π<2π, 因为169π是第四象限角, 所以-1 480°是第四象限角.
经典例题
题型二 用弧度制表示终边相同的角
跟踪训练2
用弧度制表示终边落在如图(右)所示阴影部分内的角 θ 的集合.
解:终边落在射线 OA 上的角为 θ=135°+k·360°,k∈Z, 即 θ=34π+2kπ,k∈Z. 终边落在射线 OB 上的角为 θ=-30°+k·360°,k∈Z, 即 θ=-6π+2kπ,k∈Z,
1.角度制:
(1)定义:用 度 作为单位来度量角的单位制.
1
(2)1 度的角:周角的 360 . 2.弧度制:
(1)定义:以 弧度 作为单位来度量角的单位制.
(2)1 弧度的角:长度等于半径长的圆弧所对的圆心角.
自主学习
3.弧度数
一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的
弧度数是 0 . 如果半径为 r 的圆的圆心角 α 所对的弧长为 l,那么,角 α 的弧度数的绝 l

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
180
答案: 5 r ad
8
r5 a d.
8
(2)因为1rad=( 1 8 0 °),

所以- 5 rad=-( 5 ×
12
12
答案:-75°
)°1=8 0-75°.

2.(1) 1 π9 =6π+ .
3
3
(2)-315°=- 7 = -2π+ .
4
4
【方法技巧】进行角度制与弧度制的互化的原则和
{|2n, nZ} {| ( 2n1) , nZ}
4
4
{|k, kZ}. 4
2.(1)以OA为终边的角为 +2kπ(k∈Z);以OB为终边
6
的角为- 2 +2kπ(k∈Z).所以阴影部分(不包括边界)
3
内的角的集合为 { |- 2 + 2 k + 2 k , k Z } .
【解析】所求角的集合为
{ |2 k 2 k + 或 2 k + 2 2 k + , k Z } . 33
2.若将本例2中变成如图所示的图形,写出终边落在阴 影部分(不包括边界)内的角的集合.
【解析】30°= ,150°= . 5
【解析】(1)330°和60°的终边分别对应 - 和 ,
63
所表示的区域位于 - 与之间且跨越x轴的正半轴,
63
所以终边落在阴影部分(不包括边界)的角的集合为
{ |2 k - 2 k + , k Z } .
6
3
(2)210°和135°的终边分别对应 - 5 所和 表3,示的
弧长为l,半径为r,
l+ 2 r=10, ①

【数学】1.1.2《弧度制》课件(新人教A版必修4)

【数学】1.1.2《弧度制》课件(新人教A版必修4)

o

(2)弧度制与角度数是不可以混合写
如: k 360
o

3
×
或2k 60
o
例1. 把112º30′化成弧度(用π 表示)。
解:
5 112º30′=112.5× = . 180 8

8 例2. 把 化成度。 5
解:1rad= (
180

)
8 8 180 ( ) 5 5
1.1.2
弧度制
学习目标
1、弧度制的概念 2、弧长公式 3、扇形面积公式 4、角度与弧度的互化
弧度的概念
长度等于半径长的圆弧所对的圆心角叫做1弧 度的角,弧度记作rad。这种以弧度为单位来
度量角的制度叫做弧度制。
注:今后在用弧度制表示角的时候,弧度二字 或rad可以略去不写。
弧度制与角度制的换算 ① 正角的弧度数是一个正数, 负角的弧度数是一个负数,
n 1 2 S R R 360 2
2
1 又 αR=l,所以 S lR 2
例5. 在半径为R的圆中,240º的中心角所对的
弧长为
中心角等于
,面积为2R2的扇形的
弧度。
4 解:(1)240º = ,根据l=αR,得 3
1 2 1 (2)根据S= lR= αR ,且S=2R2. 2 2
288
例3. 填写下表:
角度 弧度 角度 0° 30°
6
5 6
45°

4
60°

3
90°

2
0
120° 2
3
135° 150° 180°
3 4
270° 360°
3 2
弧度

1.1.2弧度制 课件(人教A版必修4)

1.1.2弧度制 课件(人教A版必修4)

的 形 式.
例 10 不能写成
3
而应写成 2 4
3
3
3
的 形 式,
1、(1)把 1480 写成 2k(k Z)的形式, 其中0
(2)若 4,0,且与(1)中的终边
相同,求 .
2、如图,已知角的终边区域, 求出角的范围.
y
450
0 (1)
x
| 2
4
2
2
y
450
0
x
( )
(2)
度量角的制度——弧度制。
如图,把长度等于半径长的圆弧所对的圆心角 叫做1弧度的角,记作1rad,读作1弧度.
1弧度圆心角的大小与所在圆的半径的大小是 否有关?为什么?
r
A
B
1rad r
O
约定: 正角的弧度数为正数, 负角的弧度数为负数, 零角的弧度数为0.
用弧度做单位来度量角的制度叫做 弧度制
如果将半径为r圆的一条半径OA,绕圆心
| 2 ( )
3、 终边与X轴重合;
| ( )
4、 终边与Y轴正半轴重合;
|
2
2
( )
5、 终边与Y轴负半轴重合;
|
2
3
2
( )
6、 终边与Y轴重合;
|
2
( )
7、第一象限内的角;
|
2
2
2
( )
8、第二象限内的角;
|
2
2
2
( )
9、第三象限内的角;
| 2
满足的表达式

若角 和 的终边关于 x 轴对称, 则 与 满足
的表达式

若角 和 的终边关于原点对称, 则 与 满足的表

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
(2)将下列各弧度角化为角度:①-51π2 rad;②139π.
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,

12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三

高中数学必修四1.1.2弧度制课件人教A版

高中数学必修四1.1.2弧度制课件人教A版
-6-
1.1.2
1 2AOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(4)角的概念推广后,在弧度制下,角的集合与实数集R之间建立起 一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度 数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等 于这个实数的角)与它对应.
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
3.弧度制与角度制的换算 π (1)角度转化为弧度:360° =2π rad,180° =π rad,1° = rad ≈0.017 180 45 rad. (2)弧度转化为角度:2π rad=360° ,π rad=180° ,1 rad=
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.用弧度制表示象限角与终边在坐标轴上的角 剖析:(1)象限角的表示:
角 α 终边所在象限 第一象限 第二象限 第三象限 第四象限 集合 ������ x 2k������ < α < 2k������ + ,������∈Z 2 π ������ 2������π + < ������ < 2������π + π,������∈Z 2 3π ������ 2������π + π < ������ < 2������π + ,������∈Z 2 3π ������ 2������π + < ������ < 2������π + 2π,������∈Z 2

人教A版高中数学必修四《1.1.2弧度制》ppt课件.ppt

人教A版高中数学必修四《1.1.2弧度制》ppt课件.ppt

• 20、No man is happy who does not think himself so.——Publilius Syrus认为自己不幸福的人就不会幸福。2020年8月5日星期三11时1分19秒11:01:195 August 2020
• 21、The emperor treats talent as tools, using their strongpoint to his advantage. 君子用人如器,各取所长。上午11时1分19秒上午11时1分11:01:1920.8.5
3

1.什么叫1弧度角? 2.“角度制”与“弧度制”的联系与区别; 3.弧长公式与扇形面积公式.
把希望建筑在意欲和心愿上面的人们,二十 次中有十九次都会失望。
——大仲马
• 1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist) 天才只意味着终身不懈的努力。20.8.58.5.202011:0311:03:10Aug-2011:03
• •
THE END 8、For man is man and master of his fate.----Tennyson人就是人,是自己命运的主人11:0311:03:108.5.2020Wednesday, August 5, 2020
9、When success comes in the door, it seems, love often goes out the window.-----Joyce Brothers成功来到门前时,爱情往往就走出了窗外。 11:038.5.202011:038.5.202011:0311:03:108.5.202011:038.5.2020

高一数学必修4课件:1-1-2弧度制

高一数学必修4课件:1-1-2弧度制

第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
3π 3 (2)β1= 5 =5×180° =108° ,设 θ=k· +β1(k∈Z), 360° 由-720° ≤θ<0° ,得-720° 360° ≤k· +108° , <0° ∴k=-2 或-1, ∴-720° ~0° 之间与 β1 有相同终边的角是:-612° 和- π 252° 2=- =-60° ,β , 3 设 γ=k· -60° 360° (k∈Z),则由-720° 360° ≤k· -60° , <0° 从而 k=-1 或 k=0,因此在-720° ~0° 之间与 β2 有相同终边 的另一个角为-420° .
成才之路· 数学
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修4
第一章
三角函数
第一章 三角函数
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1 任意角和弧度制
第一章 三角函数
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1.2 弧度制
第一章 三角函数
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
下列表述中正确的是(
)
A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧 C.一弧度是一度的弧与一度的角之和 D.一弧度是长度等于半径长的弧所对的圆心角的大小, 它是角的一种度量单位
[答案] D
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4

《红对勾》2015-2016学年人教A版高中数学必修4课件1-1-2弧度制

《红对勾》2015-2016学年人教A版高中数学必修4课件1-1-2弧度制
l 么,角α的弧度数的绝对值是|α|= r .
3.角α=6这种表达方式正确吗? 答:正确.角α=6表示6弧度的角,这里将“弧度”省 去了.
角度与弧度的互化
4.在同一个式子中,角度制与弧度制能否混用?为什 么?
答:角度制和弧度制是表示角的两种不同的度量方 法,两者有着本质的不同,因此在同一个表达式中不能出 现两种度量方法的混用,如α=2kπ+30°,k∈Z是不正确的 写法,应写成α=2kπ+6π,k∈Z.
扇形的弧长和面积的计算
【例 3】 已知一扇形的周长为 8 cm,当它的半径 和圆心角取什么值时,扇形的面积最大?并求出最大面 积.
【分析】 (1)用哪些量表达扇形的周长?(半径和弧 长)
(2)扇形的面积公式是什么?能否用半径表示?(S= 12lr,能)
(3)如何求扇形面积的最大值?(利用二次函数)
答:随着半径的变化,弧长也在变化,但对于一定大 小的圆心角所对应的弧长与半径的比值是唯一确定的,与 半径的大小无关.
任意角的弧度数与实数的对应关系
(1)正角:正角的弧度数是一个 正数 (2)负角:负角的弧度数是一个 负数 (3)零角:零角的弧度数是 0 . (4)如果半径为r的圆的圆心角α所对弧的长为l,那
角度制与弧度制的互化
【例 2】 设 α1=510°,α2=-750°,β1=45π,β2= -161π.
(1)将 α1,α2 用弧度表示出来,并指出它们各自终边 所在的象限;
(2)将 β1,β2 用角度表示出来,并在[-360°,360°) 内找出与它们终边相同的所有的角.
【分析】 首先利用 1°=18π0rad 可将角度化成弧度,利 用 1rad=18π0°可将弧度化成角度,然后再根据要求指出 α1, α2 终边所在的象限,与 β1,β2 终边相同且在[-360°,360°) 内的角.

新课标高中数学人教A版必修四全册课件1.1.2弧度制(一)

新课标高中数学人教A版必修四全册课件1.1.2弧度制(一)

弧 度
0
6
4
3
2
23
角 度
135o
150o
180o
270o
360o
弧 度
第三十五页,编辑于星期日:十三点 十八分。
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0
6
4
3
2
23
角 度
135o
150o
180o
弧 3
度4
270o
360o
第三十六页,编辑于星期日:十三点 十八分。
特殊角的弧度
r ③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角的弧度数的绝对值||=
l. r
第十七页,编辑于星期日:十三点 十八分。
角度与弧度之间的转换
①将角度化为弧度:
第十八页,编辑于星期日:十三点 十八分。
角度与弧度之间的转换
①将角度化为弧度:
第十九页,编辑于星期日:十三点 十八分。
270o
360o
第三十八页,编辑于星期日:十三点 十八分。
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0
6
4
3
2
23
角 度
135o
150o
180o
弧 3 5
度4 6
270o
3
2
360o
第三十九页,编辑于星期日:十三点 十八分。
特殊角的弧度
角 度
0o
30o
45o
60o

人教版数学第一章弧度制(共20张PPT)教育课件

人教版数学第一章弧度制(共20张PPT)教育课件

360
A B 的长 OB旋转的方向 AOB 的弧度数 AOB的度数
r
逆时针方向
180
2 r
逆时针方向
2
r
逆时针方向
1
360 57.30
2r
顺时针方向
-2
114.60
r
顺时针方向
180
0
未旋转
0
0
r
逆时针方向
180
2 r
逆时针方向
2
360
新知2:
(1)一般地,正角的弧度数是一个正数,负 角的弧度数是一个负数,零角的弧度数是0.
:


















































:







1







5












楚 弄
有 怎
完 情













西

人教A版必修四1.1.2弧度制课件 (共17张PPT)

人教A版必修四1.1.2弧度制课件 (共17张PPT)

C
l=2r
2rad
A O
4.角的弧度数的绝对值: l
r
5.
正角 零角 负角 角的弧度数
对应角的
正实数 弧度数 零
负实数 实数集R
二、角度制与弧度制换算:
(1)将角度化为弧度:
360 2 rad 180 rad
1 rad
180
n
n0 _1_8_0__ rad
二、角度制与弧度制换算:
(2)将弧度化为角度:
2 360
180
1rad (180) 57.30 5718'
180n
n _____ 0
特殊角的弧度:
角 度
0o
30o
45o
60o
90o 120o
弧 度
0
6
4
2
323
角 度
135o
150o
180o270o源自360o弧 3 度4
5
6
3 2
2
常规写法:
① 用弧度数表示角时,常常把弧度数
(1)理解弧度制的概念; (2)熟练进行角度制与弧度制的 换算; (3)能应用弧长公式与扇形面积 公式解决有关问题.
角度制:
1.定义:是用“度”作单位来度量角 的单位制叫做角度制.
2.角度制的单位:度、分 规定:周角的 1 为10 ,即周角为3600
360
一、弧度制:
1.定义:是用“弧度”作单位来度量角的 单位制叫做弧度制.
例2:在半径为R的圆中,240º的圆心角
所对的弧长为
,面积为2R2的
扇形的圆心角等于
弧度。
解:(1)240º= 4 ,根据l=αR,得 l 4 R
3

高中数学(新人教A版)必修第一册:弧度制【精品课件】

高中数学(新人教A版)必修第一册:弧度制【精品课件】
【解析】 由-1 485°=-5×360°+315°, 所 【答 以案 -】1 485-°1可0π以+表74示π为-10π+74π.
5.一个扇形的面积为 1,周长为 4,求该扇形圆心角的弧度数.
【解析】 设扇形的半径为 R,弧长为 l,圆心角为 α, 则 2R+l=4.① 由扇形的面积公式 S=12 lR,得12lR=1.②
1.正确表示终边落在第一象限的角的范围的是( )
A.2kπ,2kπ+π2 (k∈Z)
B.kπ,kπ+π2 (k∈Z)
C.2kπ,2kπ+π2 (k∈Z)
D.kπ,kπ+π2 (k∈Z)
【解析】 B 中 k=1 时为π,23π显然不正确;因为第一象限
角不含终边在坐标轴的角故 C、D 均错,只有 A 正确.
∴当 r=5 时,扇形面积最大为 S=25. 此时 l=10,α=2, 故当扇形半径 r=5,圆心角为 2 rad 时, 扇形面积最大.
解题方法(扇形弧长和面积公式注意事项 )
弧度制下解决扇形相关问题的步骤: (1)明确弧长公式和扇形的面积公式:l=|α|r,S=12|α|r2 和 S=12 lr.(这里 α 必须是弧度制下的角) (2)分析题目的已知量和待求量,灵活选择公式. (3)根据条件列方程(组)或建立目标函数求解.
解析: 用弧度制先写出边界角,再按逆时针顺序写出区域角,
(1)θ-π6+2kπ<θ<152π+2kπ,k∈Z
.
(2)θ-34π+2kπ<θ<34π+2kπ,k∈Z
.
(3)θπ6+kπ<θ<π2+kπ,k∈Z
.
解题方法(表示角的集合注意事项)
[跟踪训练二] 1.如图,用弧度表示顶点在原点,始边重合于 x 轴的非负半轴,终

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

[归纳升华] 角度与弧度互化技巧
在进行角度与弧度的换算时,抓住关系式π rad=180°是关键,由它可以得 到:度数×1π80=弧度数,弧度数×1π80°=度数.
1.将下列角度与弧度进行互化: (1)5611π;(2)-71π2 rad;(3)10°;(4)-855°.
解析: (1)5611π=5611×180°=15 330°;
2.5 弧度的角的终边所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: 因为32π<5<2π,因此 5 弧度的角的终边在第四象限.
答案: D
3.扇形圆心角为 216°,弧长为 30π,则扇形半径为________.
解析: 216°=216×1π80=6π5 ,l=α·r=6π5 r=30π,∴r=25. 答案: 25
(3)如图所示,扇形 AOB 的面积是 4 cm2,它的周长是 10 cm,求扇形的圆心 角 α 的弧度数及弦 AB 的长.
[边听边记] (1)由公式|α|=rl,可知圆的半径变为原来的 2 倍,弧长也变为原 来的 2 倍时,圆心角大小不变;但扇形面积 S=12lr,故面积变为原来的 4 倍.
(2)设扇形的弧长为 l,半径为 r,则 l+2r=40,则 S=12lr=12(40-2r)r=20r -r2,所以 r=10 时,扇形面积最大,此时 l=40-2r=20,圆心角的弧度数 α=rl =2100=2.
π (2)如图,330°角的终边与-30°角的终边相同,将-30°化为弧度,即- 6 ,
而 75°=75×1π80=51π2 ,
∴终边落在阴影部分内(不包括边界)的角的集合为
θ|
2kπ-π6 <θ<2kπ+51π2 ,k∈Z.

弧度制课件(共20张PPT)高一数学(人教A版2019必修第一册)

弧度制课件(共20张PPT)高一数学(人教A版2019必修第一册)
(2)求圆心角 所在的扇形的弧长 及弧所在的弓形的面积 .
【解析】(1)半径为6的圆 中,弦 的长为6,
所以三角形 为正三角形,
π
所以弦 所对圆心角 为 3 ,
(2)由弧长公式得: = =
扇形的面积
又 △ =
1
2
扇形
=
1
2
=
×6×6×
3
2
1
2


° =

= (
)° ≈ . °

新知2:扇形的弧长和面积公式:
例6.利用弧度制证明下列关于扇形的公式:
(1) = ;(2) =
1
2 ;(3)
2
=
1
.
2
其中是圆的半径,(0 < < 2)为圆心角,是扇形的弧长,是扇形的面积.
1
2
× 10 × 10
= 25 − 50 cm 2 ;
2 + = 6
=1
=2
(2)由已知得 1 = 2 ,解得



=
4

=
2
2
∴ = 4或 = 1
典型例题
题型二:扇形的弧长及面积公式的应用
【对点训练3】已知一扇形的中心角是120°,所在圆的半径是 10cm,求:
(1)扇形的弧长;
(4) 6
(3)
= −

3
11π
9
19π
6
×
=
=
×
π
6
×


3
×
180
π
180
π
180
π
180
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6. 用弧度制表示弧长及扇形面积公式:
① 弧长公式: l R
l l R 由公式: R
n R 比公式 l 简单. 180
弧长等于弧所对的圆心角(的弧度数) 的绝对值与半径的积.
1 ② 扇形面积公式 S lR 2
其中l是扇形弧长,R是圆的半径。 证明:设扇形所对的圆心角为nº (αrad),则
3
135° 150° 180° 210° 225° 240°
5 6
π
7 4
7 6
5 4
4 3
270° 300° 315° 330° 360°
3 2
5 3
11 6
弧度

例4. 扇形AOB中, AB 所对的圆心角是60º ,
半径是50米,求 AB 的长l(精确到0.1 米)。
解:因为60º = 3 ,所以
1.1.2
弧度制
在初中几何里,我们学习过角的度量,
1度的角是怎样定义的呢?
1 周角的 为1度的角。 360
这种用1º角作单位来度量角的制度叫做 角度制 ,今天我们来学习另一种在数学和其
他学科中常用的度量角的制度——弧度制。
可以用圆的半径作单位去度量角。
2.定义:
长度等于半径长的圆弧所对的圆心角叫做1弧 度的角,弧度记作rad。这种以弧度为单位来 度量角的制度叫做弧度制。 注:今后在用弧度制表示角的时候,弧度二字 或rad可以略去不写。
3×50≈52.5 .
A
l=α· r=
答: AB 的长约为52.5米.
O
B
例5. 在半径为R的圆中,240º的中心角所对的
弧长为
中心角等于
,面积为2R2的扇形的
弧度。
4 解:(1)240º = ,根据l=αR,得 3
1 2 1 (2)根据S= lR= αR ,且S=2R2. 2 2
4 l R 3
3. 弧度制与角度制相比: (1) 弧度制是以“弧度”为单位的度量角的单
位制,角度制是以“度”为单位来度量角的
单位制;1弧度≠1º; (2)1弧度是弧长等于半径长的圆弧所对的圆
1 心角的大小,而1度是圆周 的所对的圆心 360
角的大小;
(3)弧度制是十进制,它的表示是用一个实
数表示,而角度制是六十进制;
所以 α=4.
例6.与角-1825º 的终边相同,且绝对值最小 的角的度数是___,合___弧度。 解:-1825º =-5×360º -25º , 所以与角-1825º 的终边相同,且绝对值 最小的角是-2 360 2
2
又 αR=l,所以
1 S lR 2
例1. (1) 把112º30′化成弧度(精确到0.001);
(2)把112º30′化成弧度(用π 表示)。
解: (1)112º30′=112.5º,
1

180
0.0175
5 (2) 112º30′=112.5× = . 180 8
(4)以弧度和度为单位的角,都是一个与 半径无关的定值。
填表1.1-1
l 4.公式: | | , r
表示的是在半径为r的圆中,弧长为l的
弧所对的圆心角是α rad。
5. 弧度制与角度制的换算 ① 用角度制和弧度制度量角,零角既是0º 角,又是0 rad角,同一个非零角的度数和 弧度数是不同的. ② 平角、周角的弧度数:
平角= rad、周角=2 rad.
③ 正角的弧度数是正数,负角的弧度数是 负数,零角的弧度数是0.
l ④角的弧度数的绝对值: r
(l为弧长,r为半径)
⑤ ∵ 360=2 rad ,∴180= rad
∴ 1 =

180
rad 0.01745rad
180 1 rad 57.30 57 18'
所以112º30′≈112.5×0.0175≈1.969rad.

8 例2. 把 化成度。 5
解:1rad= (
180

)
8 8 180 ( ) 5 5
288
例3. 填写下表:
角度 弧度 角度 弧度 角度 0° 30°
6
45°

4
60°

3
90°

2
0
3 4
120° 2
相关文档
最新文档