四川省泸州市江阳区2015年中考数学二模试题(含解析)

合集下载

2015初三二模数学试题参考答案

2015初三二模数学试题参考答案

初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。

泸县2015年春九年级数学二诊试题答案

泸县2015年春九年级数学二诊试题答案

二次诊断考试数学答案 第 1 页 共 6 页初中2015级教学质量第二次诊断性考试数学试题参考答案二、填空题:13.)3)(2(--x x x ;14.3π;15.9;16.①、②、④. 三、解答题:17.解:原式=4123432-+⨯-…………………………………………………………4分 =413232-+-……………………………………………………………5分 =-3.……………………………………………………………………………6分18.解:原式=)(]))(())(([bba b a b a b a b a b a a --⨯-+---+ (3)分 =)())((b ba b a b a b --⨯-+……………………………………………………4分 =ba +-1 (5)分当3=a ,2=b 时,原式=32231-=+-………………………………………………………………6分19. 证明:(1)∵四边形ABCD 为平行四边形, ∴AB ∥DC ,∴∠ABE=∠ECF ,……………………………………………………………………………1分 又∵E 为BC 的中点,∴BE=CE ,……………………………………………………………………………………2分 在△ABE 和△FCE 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AEB CE BE ECF ABE …………………………………………………………………………4分 ∴△ABE ≌△FCE (ASA );…………………………………………………………………5分 ∴CF AB =. ∵CD AB =,∴CF CD =. …………………………………………………………………………………6分二次诊断考试数学答案 第 2 页 共 6 页四、20. 解:(1)总的车票数是:(20+40+10)÷(1﹣30%)=100, 故去C 地的车票数量是100﹣70=30,……………………………………………………… 1分补全的统计图如下图:………………………………… 3分 (2)余老师抽到去B 地的概率是=;………………………………………………4分(3)根据题意列表如下:………………………………………………………………………………………………… 5分 ∵两个数字之和是偶数时的概率是=,∴票给李老师的概率是,……………………………………………………………………6分 故这个规定对双方是公平的.………………………………………………………………7分 解之,得.………………………………………………………………………………5分 ∴50≤≤m ,又∵在一次函数1400001000+=m w 中,01000>=k ,二次诊断考试数学答案 第 3 页 共 6 页∴w 随m 的增大而增大,∴当5=m 时,14500014000051000=+⨯=最大w .…………………………………6分 ∴精加工天数为155=÷,粗加工天数为(9155140=÷-). 答:安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.………7分 五、22.解:如图,过点A 作BF AD ⊥,垂足为D .……………………………………1分∵300=AB ,030=∠ABF ,∴15021==AB AD ,…………………………………3分 ∵200150<,∴城市A 会受到这次台风的影响. …………………………………………4分 (2)在BF 上取两点E 、G ,使200==AF AE ,当台风中心从E 移动到G 时,城市A 都要受到这次台风的影响. 在ADE Rt ∆中,1502002222=-=-=AD AE DE ∴71002==DE EG ∵107107100=,即这次台风影响城市A 的持续时间为h 10.23. 解:(1)∵0)2(4)](2[22=+-+-=∆c ab b a ,化简,得222c b a =+,故ABC ∆是直角三角形,其中︒=∠90C .……………………1分∵A sin 、B sin 是方程08)52()5(2=-+--+m x m x m 的两根,∴A sin +=B sin 552+-m m ,A sin ·=B sin 58+-m m .………………………………………2分 又∵︒=∠+∠90B A ,∴A B cos sin =,…………………………………………………3分∴A sin +=A cos 552+-m m ①A sin ·=A cos 58+-m m ②将①两边平方,得2552(cosA sinA 21+-=⋅+m m ③……………………………………4分 将②代入③,得2552(5)8(21+-=+-+m m m m . 解这个方程,得201=m ,42=m (舍).∴m 的值为20. ……………………………………………………………………………5分(2)∵ππ25)2(2=c ,∴10=c .………………………………………………………6分又∵A sin +=A cos 5710=+=+b a c b c a ∴14=+b a .………………………………………………………………………7分故ABC ∆的周长=241068=++=++c b a .……………………………………………8分二次诊断考试数学答案 第 4 页 共 6 页六、24. (1)答:PD 与O ⊙相切,D 为切点. …………………………………………1分 证明如下:连接DO 并延长交O ⊙于点M ,连接BM 、CM .∵DM 为O ⊙的直径,∴090=∠=∠DCM DBM .……………………………………2分 又∵PCD ABD PDA ∠=∠=∠,ACB ADB ∠=∠,BCM BDM ∠=∠∴090=∠=∠+∠+∠=∠+∠+∠=∠DCM BCM ACM PCD BDM ADB PDA PDM , …………………………………………………………………………………………………3分 故PD 为O ⊙的切线. ………………………………………………………………………4分 (2)解:∵43tan ==∠DH AH ADB ,∴设x AH 3=,则x DH 4=,x PA )334(-=, x PH 34=.…………………………………………………………………………………5分在PHD Rt ∆中,x x x PH DH PD 8)34()4(2222=+=+=,∴030=∠P ,060=∠PDH .∴030=∠BDM .……………………………………………………………………………6分 在BDM Rt ∆中,32530cos 50cos 0=⨯=∠=BDM DM BD .……………………7分 (3)∵DAH ADB ∠-︒=∠90,CMD CDM ∠-︒=∠90,又∵CMD DAH ∠=∠ ∴CDM ADB ∠=∠,∴43tan tan =∠=∠ADB CDM,∴43=CDCM,………………………………………8分 设k CM 3=,则k CD 4=,505==k DM , ∴10=k .∴30=CM .…………………………………………………………………………………9分∵ = ∴30==CM AB .在ABH Rt ∆中,222BH AH AB +=, ∴222)4325()3(30x x -+=,解之,得3341-=x ,3342+=x (舍). ………………………………………10分 ∴)334(3-=AH ,)334(4-=DH ,)433(3+=BH . ∵ADH ∆∽BCH ∆, ∴CH DH BH AH =,∴CH )334(4)433(3)33(43-=+-,ABCMAB CM二次诊断考试数学答案 第 5 页 共 6 页)433(4+=CH .…………………………………………………………………………11分故CH BD AH BD S ABCD ⨯+⨯=2121四边形 =]43343343[32521)()(++-⨯ =32175900+.……………………………………………………………12分 25.解:(1)∵抛物线c bx x y ++=241-过点2(A ,)0, 0(B ,)25,∴⎪⎪⎩⎪⎪⎨⎧==++⨯-25,022412c c b …………………………………………………………………1分解之,得⎪⎪⎩⎪⎪⎨⎧=-=2543c b所求抛物线的解析式为254341-2+-=x x y .………………………………………2分 ∵直线23-=kx y 过点2(A ,)0, ∴0232=-k ,………………………………………………………………………………3分 ∴43=k ,所求直线的解析式为2343-=x y .…………………………………………………………4分(2)假设存在这样的点P ,使得四边形PMEC 是平行四边形,则CE PM =.解方程组⎪⎪⎩⎪⎪⎨⎧-=+-=2343254341-2x y x x y 得点D 的坐标为(-8,)215-.…………………………5分∵⊥DE y 轴于,∴8=DE ,623215=---=CE .二次诊断考试数学答案 第 6 页 共 6 页设点P 的坐标为(x,254341-2+-x x ),则M 的坐标为(x,2343-x ), ∴PM -+-=)254341-(2x x (2343-x )42341-2+-=x x .…………………………6分∴CE PM =642341-2=+-=x x ,解之,得21-=x ,42-=x ,………………………………………………………………7分 ∵2-28<<-,2-48<<-,∴21-=x ,42-=x 均符合题意.当21-=x 时,325)2(43)2(412=+-⨯--⨯-=y , 当42-=x 时,2325)4(43)4(412=+-⨯--⨯-=y ,∴所求点的坐标为2(1-P ,)3,4(2-P ,)23.……………………………………………8分 (3)在DCE Rt ∆中,10682222=+=+=CE DE CD ,………………………9分∵PMN ∆∽DCE ∆,∴DEPNCD PM CE MN ==, ∴104234162+--=x x MN ,即5121092032+--=x x MN ,…………………………10分 104234182+--=x x PN ,即51656512+--=x x PN ,……………………………11分 ∴MN PN PM l ++=++-=)42341-(2x x ++--)5165651(2x x )512109203(2+--x x=548518532+--x x =15)3(532++-x ,∵-8<-3<2故当3-=x 时,15=最大值l .…………………………………………………………12分。

2015年中考二模名校考试数学试题及答案

2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

泸州市2015年高中阶段学校招生考试数学试卷

泸州市2015年高中阶段学校招生考试数学试卷

泸州市2015年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟. 第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.7-的绝对值为 A.7 B.17 C.17- D.7- 2.计算23()a 的结果为A.4a B.5a C.6a D.3.如左下图所示的几何体的左视图是BA4.截止到2014为A.51.1210⨯ B.61.1210⨯函数值0y >成立的x 的取值范围是A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D.42x -<<10.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是BDC BA11. 如图,在△ABC 中,AB=AC ,BC=24,tanC=2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为A.13B.152C.272D.1212. 在平面直角坐标系中,点A ,B B 、C 三点为顶点的三角形是等腰三角形,则点 A.2 B.3 C.4 第Ⅱ卷 (注意事项:用0.5答无效.二、填空题(每小题3分,共12分)13.分解因式:222m -= .14.用一个圆心角为120°,半径为6是 .17.计算:01sin 4520152O--+18.如图,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .19.化简:221(1)211m m m m ÷-+++第11题图四、(每小题7分,共14分)20.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和(1(2)如果家庭月均用水量“大于或等于4t 计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<取出的2个家庭来自不同范围的概率。

四川省泸州市2015年中考数学真题试题(无答案)

四川省泸州市2015年中考数学真题试题(无答案)

四川省泸州市2015年中考数学真题试题全卷满分120分,考试时间120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.7-的绝对值为 A.7 B.17 C.17- D.7- 2.计算23()a 的结果为A.4a B.5a C.6a D. 9a 3.如左下图所示的几何体的左视图是DCBA4.截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为 A.51.1210⨯ B.61.1210⨯C.71.1210⨯ D. 81.1210⨯5. 如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为A. 90°B. 100°C. 110°D. 120° 6.菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D. 对角线互相垂直则这些队员年龄的众数和中位数分别是A. 15,15B. 15,14C.16,15D.14,15 8. 如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C=65°,则∠P 的度数为 A. 65° B. 130° C. 50° D. 100°9.若二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,则使函数值0y >成立的x 的取值范围是A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D.42x -<<10.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是DC BA第5题图BC第8题图第11题图11. 如图,在△ABC 中,AB=AC ,BC=24,tanC=2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为A.13B.152C.272 D.1212. 在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为A.2B.3C.4D.5第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分) 13.分解因式:222m -= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .15.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .16.如图,在矩形ABCD 中,BC =,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:三、(每小题6分,共18分) 17.计算:01sin 4520152O--+18.如图,AC=AE ,∠1=∠2,AB=AD. 求证:BC=DE.19.化简:221(1)211m m m m ÷-+++四、(每小题7分,共14分)20.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方第16题图F1412108642频数(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。

四川省泸州市2015年中考数学真题试题(含解析)

四川省泸州市2015年中考数学真题试题(含解析)

2015年四川省泸州市中考数学试卷解析(全卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1. (2015年四川泸州3分)7-的绝对值为【 】 A.7 B.17 C.17- D.7- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点7-到原点的距离是7,所以7-的绝对值是7. 故选A.2. (2015年四川泸州3分)计算23()a 的结果为【 】 A.4a B.5a C.6a D. 9a 【答案】C. 【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:23236()a a a ⨯==.故选C.3. (2015年四川泸州3分)如左下图所示的几何体的左视图是【 】A.B. C. D.【答案】C.【考点】简单几何体的三视图.【分析】找到从左面看所得到的图形即可:从左面看易得是一个矩形. 故选C.4. (2015年四川泸州3分)截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为【 】A.51.1210⨯B.61.1210⨯C.71.1210⨯D. 81.1210⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵1120000一共7位,∴1120000=1.12×106. 故选B.5. (2015年四川泸州3分)如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为【 】A. 90°B. 100°C. 110°D. 120° 【答案】B.【考点】角平分线定义;平行的性质;三角形内角和定理;方程思想的应用. 【分析】∵CB 平分∠ABD ,∴2ABD CBD ∠=∠.又∵AB ∥CD ,∴1802180ABD D CBD D ∠+∠=︒⇒∠+∠=︒.又∵∠C=40°,∴18040180C CBD D CBD D ∠+∠+∠=︒⇒︒+∠+∠=︒二者联立218021801004018022280CBD D CBD D D CBD D CBD D ∠+∠=︒∠+∠=︒⎧⎧⇒⇒∠=︒⎨⎨︒+∠+∠=︒∠+∠=︒⎩⎩.故选B.6. (2015年四川泸州3分)菱形具有而平行四边形不具有的性质是 【 】 A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分D. 对角线互相垂直【答案】D.【考点】平行四边形和菱形的性质.【分析】根据平行四边形和菱形的性质对各选项进行判断,作出选择:A.“两组对边分别平行”是平行四边形和菱形都具有的性质,选项错误;B. “两组对角分别相等”是平行四边形和菱形都具有的性质,选项错误;C. “对角线互相平分”是平行四边形和菱形都具有的性质,选项错误;D. “对角线互相垂直”是菱形具有而平行四边形不具有的性质,选项正确.故选D.7. (2015年四川泸州3分)某校男子足球队的年龄分布情况如下表:A. 15,15B. 15,14C.16,15D.14,15【答案】A.【考点】众数;中位数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中15出现8次,出现的次数最多,故这组数据的众数为15.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).共有数据22个,第11个数和第12个数都是15人,所以中位数是:(15+15)÷2=15(人).故选A.8. (2015年四川泸州3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为【】A. 65°B. 130°C. 50°D. 100°【答案】C .【考点】圆周角定理;切线的性质;多边形内角和定理.【分析】∵∠C 和∠AOB 是同圆中同弧所对的圆周角和圆心角,且∠C=65°,∴∠AOB =130°.∵PA 、PB 分别与⊙O 相切于A 、B 两点,∴∠PAO =∠PBO =90°. ∴360 360130909050P AOB PAO PBO ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒ 故选C .9. (2015年四川泸州3分)若二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,则使函数值0y >成立的x 的取值范围是【 】A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D. 42x -<< 【答案】D .【考点】二次函数的图象和性质.【分析】∵二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,∴二次函数2(0)y ax bx c a =++<的图象开口向下,与x 轴的另一交点为()4,0- .∴使函数值0y >成立的x 的取值范围是:42x -<<. 故选D .10. (2015年四川泸州3分)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是【 】A. B. C. D.【答案】B .【考点】一元二次方程根与系数的关系;解一元一次不等式;一次函数图象与系数的关系;整体思想和数形结合思想的应用.【分析】∵关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,∴()()2241>0<0kb kb ∆=--+⇒. 根据一次函数图象与系数的关系,选项A 中>0>0>0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项B 中>0<0<0k kb b ⎧⇒⎨⎩,与<0kb 相符;选项C 中<0>0<0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项D 中>000k kb b ⎧⇒=⎨=⎩,与<0kb 不符.故选B .11. (2015年四川泸州3分) 如图,在△ABC 中,AB =AC ,BC =24,tan C =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为【 】A.13B.152C.272D.12【答案】A .【考点】翻折问题;等腰三角形的性质;勾股定理;翻折对称的性质;锐角三角函数定义;方程思想的应用.【分析】如答图,过点E 作EH ⊥BC 于点H ,∵AB =AC ,BC =24,∴CH =12. ∵tan C =2,∴AH =24.设,CE x DH y == ,则2E H x =.∵△ABC 沿直线l 翻折,点B 落在边AC 的中点E 处,∴BD =DE 24x y =--.在Rt EDH ∆中,()22212185y y y +=-⇒=. ∴BD =DE 2413x y =--=. 故选A .12. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】 A.2 B.3 C.4 D.5 【答案】B .【考点】点的坐标;等腰三角形的判定;分类思想和数形结合思想的应用.【分析】如答图,作AB 中垂线交x 轴于1C ,则1ABC ∆是等腰三角形;以点A 为圆心,AB 长为半径画圆交x 轴于23,C C 则23,ABC ABC ∆∆ 是等腰三角形;以点B 为圆心,AB 长为半径画圆与x 轴没有交点(因为点到x 轴的距离AB =).∴点C 的个数为3. 故选B .第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分)13. (2015年四川泸州3分)分解因式:222m -= ▲ . 【答案】()()211m m +-.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式2后继续应用平方差公式分解即可:()()()222221211m m m m -=-=+-.14. (2015年四川泸州3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 ▲ . 【答案】2.【考点】圆锥和扇形的计算.【分析】∵扇形的半径为6、圆心角为120°,∴扇形的弧长为12064180ππ⋅⋅=. ∵圆锥的底面周长等于它的侧面展开图的弧长, ∴根据圆的周长公式,得242r r ππ=⇒=.15. (2015年四川泸州3分)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 ▲ . 【答案】27.【考点】一元二次方程根与系数的关系;求代数式的值;整体思想的应用. 【分析】∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴12125,1x x x x +=⋅=- .∴()()2222121212252127x x x x x x +=+-⋅=--=.16. (2015年四川泸州3分)如图,在矩形ABCD 中,BC =,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:其中正确命题的序号是 ▲ (填上所有正确命题的序号).【答案】①③.【考点】矩形的性质;等腰(直角)三角形的判定和性质;三角形内角和定理;全等三角形的判定和性质;直角三角形斜边上的中线的判定;勾股定理;相似三角形的判定和性质;特殊元素法和方程思想的应用.【分析】①∵在矩形ABCD 中,BC =,∴不妨设1AB =,则BC =∴18067.5AEB AED DEC AEH ∠=︒-∠-∠=︒=∠.故命题①正确.②∵ADH ∆是等腰直角三角形,∴1DH =.不难证明(ABE AHE AAS ∆∆≌④如答图,延长AB 至G ,使BG=BF ,连接CG ,设BF x =,则2FG x =.∴2BF x ==∴2BC BF -=.)12==∴BC BF -≠.故命题④错误. 综上所述,正确命题的序号是①③.三、(每小题6分,共18分)17. (2015年四川泸州6分)计算:01sin 4520152O--+【答案】解:原式113121222=-+=-+=.【考点】实数的运算;特殊角的三角函数值;二次根式化简;零指数幂;负整数指数幂.【分析】针对特殊角的三角函数值,二次根式化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年四川泸州6分)如图,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .【答案】证明:∵∠1=∠2,∴12EAB EAB ∠+∠=∠+∠,即CAB EAD∠=∠. 又∵AC=AE , AB=AD ,∴()CAB EAD SAS ∆∆≌. ∴BC=DE .【考点】全等三角形的判定和性质.【分析】要证BC=DE ,根据全等三角形的性质只要CAB EAD ∆∆≌即可,而要证全等已有两边对应相等,由∠1=∠2可推出夹角对应相等而得证.19. (2015年四川泸州6分)化简:2211211m m m m ⎛⎫÷- ⎪+++⎝⎭【答案】解:()()2222221112111111m m m m m m m m m m m m m m +⎛⎫÷-=÷=⋅= ⎪+++++⎝⎭++. 【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简. 四、(每小题7分,共14分)20. (2015年四川泸州7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.【答案】解:(1)∵月均用水量45x ≤<所占百分比为()14%24%20%12%6%4%30%-+++++=; 月均用水量45x ≤<的频数为5030%15⨯=;月均用水量67x ≤<的频数为5012%6⨯=,∴补全频数分布表和频数分布直方图如下:(2)∵样本中家庭月均用水量“大于或等于4t 且小于7t ”占62%,∴估计总体中的中等用水量家庭大约有45062%279⨯=(户).(3)设月均用水量在23x ≤<范围内的样本家庭为,A B ,月均用水量在89x ≤<范围内的样本家庭为,X Y ,∵从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,共有6种等可能结果:()()()()()(),,,,,,,,,,,A B A X A Y B X B Y X Y ,抽取出的2个家庭来自不同范围的有4种情况:()()()(),,,,,,,A X A Y B X B Y ,∴抽取出的2个家庭来自不同范围的概率为4263=.为 【考点】频数分布表和频数分布直方图;频数、频率和总量的关系;用样本估计总体;概率.【分析】(1)由已知信息,根据频数、频率和总量的关系,求出月均用水量45x ≤<所占百分比和频数,月均用水量67x ≤<的频数,从而补全频数分布表和频数分布直方图.(2)求出样本中家庭月均用水量“大于或等于4t 且小于7t ” 所占百分比,即可用样本估计总体. (3)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (2015年四川泸州7分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同). (1)A 、B 两种花草每棵的价格分别是多少元?(2)若购买A 、B 两种花草共31棵,且B 种花草的数量少于A 种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】解:(1)设A 种花草每棵的价格是x 元, B 种花草每棵的价格是y 元,根据题意,得3015675125940675x y x y +=⎧⎨+=-⎩,解得205x y =⎧⎨=⎩.答:A 种花草每棵的价格是20元, B 种花草每棵的价格是5元. (2)设购买A 种花草a 棵,则购买B 种花草31a -棵,所需费用z 元.根据题意,得31<20310a a a a -⎧⎪≥⎨⎪-≥⎩,解得31>3031a a a ⎧⎪⎪≥⎨⎪≥⎪⎩,即31<313a ≤.∵()2053115155z a a a =+-=+中15>0,∴15155z a =+是增函数. ∴当11a =时,费用最省,此时3120a -=,320z =.∴费用最省的方案是购买A 种花草11棵,则购买B 种花草20棵,所需费用320元.【考点】一次函数、二元一次方程组和一元一次不等式组的应用.【分析】(1)方程(组)的应用解题关键是找出等量关系,列出方程(组)求解. 本题等量关系为:“分别购进A 、B 两种花草30棵和15棵,共花费675元”和“分别购进A 、B 两种花草12棵和5棵,两次共花费940元”.(2)设购买A 种花草a 棵,根据已知列出不等式组求出a 的取值范围,再根据所需费用关于a 的一次函数的增减性求出费用最省的方案和所需费用. 五、(每小题8分,共16分)22. (2015年四川泸州8分)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行. 当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处. 若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值).【答案】解:如答图,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A 的距离最近的点.∵渔船从B 到C 用时0.5小时,渔船的速度为每小时30海里, ∴300.515BC =⨯=(海里).根据题意,知ADB ∆是等腰直角三角形, ∴设AD BD x ==,则15CD x =-. 在Rt ADC ∆中,∵30CAD ∠=︒,∴tan CDCAD AD ∠=,即1515tan30x x x x --︒=⇒=.解得(1532x -=. (153302÷=∴该渔船从B 小时,离观测点A 的距离最近. 【考点】解直角三角形的应用(方向角问题);锐角三角函数定义;特殊角的三角函数值;方程思想的应用.【分析】作辅助线,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A 的距离最近的点,从而解Rt ADB ∆和Rt ADC ∆即可求解.23. (2015年四川泸州8分)如图,一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3. (1)求该一次函数的解析式; (2)若反比例函数my x=的图象与该一次函数的图象交于二、四象限内的A 、B 两点,且AC =2BC ,求m 的值.【答案】解:(1)设一次函数(0)y kx b k =+<的图象与y 的交点为()0,c .∵一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3,∴1332c ⋅⋅=,解得2c =.∴032k b b =+⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩.∴该一次函数的解析式为223y x =-+. (2)如答图,分别过点A 、B 作x 的垂线,垂足分别为M 、N ,设A 、B 两点的坐标分别为()(),,,A A B B x y x y ,∵A 、B 两点在m y x =上,∴,A B A Bm m y y x x == . 易得AMC BNC ∆∆∽,∴CM AM ACCN BN BC==. ∵2,3,3,,A B A B AC BC CM x CN x AM y BN y ==-=-==- ,∴()()323323321322A B A BA AB A BA B Bm x x x x x x m m m x x x x x x ⎧-=-⎧=--⎪-⎪==⇒⇒⎛⎫⎨⎨-=-=- ⎪⎪⎪-⎩⎝⎭⎩ ()132362B B B x x x ⇒--=-⇒=.∵B 点在223y x =-+上,∴26223B y =-⋅+=-. ∴12B B m x y =⋅=-.【考点】一次函数和反比例函数综合题;曲线上点的坐标与方程的关系;相似三角形的判定和性质. 【分析】(1)根据已知条件求出一次函数(0)y kx b k =+<的图象与y 的交点坐标,即可根据曲线上点的坐标与方程的关系列式求出(0)y kx b k =+<的系数,从而得到该一次函数的解析式.(2)分别过点A 、B 作x 的垂线,垂足分别为M 、N ,应用相似三角形的判定和性质,列式求出点A 或点B 的坐标即可求得m 的值.六、(每小题12分,共24分)24. (2015年四川泸州12分)如图,△ABC 内接于⊙O ,AB =AC ,BD 为⊙O 的弦,且AB ∥CD ,过点A作⊙O 的切线AE 与DC 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ABCE 是平行四边形; (2)若AE =6,CD =5,求OF 的长.【答案】解:(1)证明:如答图1,连接AO 并延长交⊙O 于另一点G ,连接CG ,∵AE 是⊙O 的切线,∴AE AG ⊥.∴90EAG ∠=︒,即90EAC CAG ∠+∠=︒. ∵AO 是⊙O 的直径,∴90ACG ∠=︒. ∴90G CAG ∠+∠=︒. ∴EAC G ∠=∠.∵G ∠和ABC ∠是同圆中同弧所对的圆周角, ∴G ABC ∠=∠. ∴EAC ABC ∠=∠.(学习过弦切角定理的直接得此)∵AB =AC ,∴ACB ABC ∠=∠.∴EAC ACB ∠=∠.∴AE ∥BC . 又∵AB ∥CD ,∴四边形ABCE 是平行四边形.(2)如答图2,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,∵AE 是⊙O 的切线,∴根据切割线定理,得2AE EC ED =⋅,(没学习切割线定理可由相似得到) ∵ AE =6,CD =5,∴()265EC EC =⋅+,解得4EC =(已舍去负数).由圆的对称性,知四边形ABDC 是等腰梯形,且4AB AC BD EC ====.又根据对称性和垂径定理,知AO 垂直平分BC ,MN 垂直平分,AB DC .设,,OF x OH y FH z === , ∵4,6,5AB BC DC === ∴3,322BC BCBF FH z DF CF FH z =-=-==+=+ . 易证OFH DFM BFN ∆∆∆∽∽,∴53232DF DM z OF OH x y BF BN z OF OHx y ⎧⎧⎪+==⎪⎪⎪⇒⎨⎨⎪⎪-==⎪⎪⎩⎩. 两式相加和相除,得69324135334y x x y z z z ⎧⎧==⎪⎪⎪⎪⇒⎨⎨+⎪⎪==⎪⎪⎩-⎩. 又∵222x y z =+,∴2291169x x x =+⇒. ∴OF. 【考点】切线的性质;圆周勾股定理;等腰三角形的性质;平行的判定;平行四边形的判定和性质;等腰梯形的判定和性质;垂径定理;相似判定和性质;勾股定理.【分析】(1)作辅助线,连接AO 并延长交⊙O 于另一点G ,连接CG ,根据切线的性质证明EAC ABC ∠=∠,根据等腰三角形等边对等角的性质和等量代换得到EAC ACB ∠=∠,从而根据内错角相等两直线平行的判定得到AE ∥BC ,结合已知AB ∥CD 即可判定四边形ABCE 是平行四边形.(2)作辅助线,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,根据切割线定理求得4EC =,证明四边形ABDC 是等腰梯形,根据对称性、圆周角定理和垂径定理的综合应用证明OFH DFM BFN ∆∆∆∽∽,并由勾股定理列式求角即可.25. (2015年四川泸州12分)如图,已知二次函数的图象M 经过A (1-,0),B (4,0),C (2,6-)三点. (1)求该二次函数的解析式;(2)点G 是线段AC 上的动点(点G 与线段AC 的端点不重合),若△ABG 与△ABC 相似,求点G 的坐标时,点D 关于l 的对称点为E ,能否在图象M 和l 上分别找到点P 、Q ,使得以点D 、E 、P 、Q 为顶点的四边形为平行四边形. 若能,求出点P 的坐标;若不能,请说明理由.【答案】解:(1)∵二次函数的图象M 经过A (1-,0),B (4,0)两点,∴可设二次函数的解析式为()()14y a x x =+-. ∵二次函数的图象M 经过C (2,6-)点, ∴()()62124a -=+-,解得1a =.∴二次函数的解析式为()()14y x x =+-,即234y x x =--. (2)易用待定系数法求得线段AC 的解析式:22y x =--.设点G 的坐标为(),22k k -- .△ABG 与△ABC 相似只有△AGB ∽△ABC 一种情况. ∴AG ABAB AC=.∵5,1AB BC AG ===+ .513k =⇒+=.∴23k =或83k =-(舍去). ∴点G 的坐标为210,33⎛⎫- ⎪⎝⎭ .(3)能. 理由如下:如答图,过D 点作x 的垂线交于点H ,∵(,)D m n (12)m -<<, ∴(,22)H m m -- .∵点(,)D m n 是图象M 上,∴2(,3m 4)D m m -- .∵223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,∴图象M 的对称轴l 为x =若以点D 、E 、P 、Q 为顶点的四边形为平行四边形,则PQ ∥DE 且2PQ =.722+=或31222-=-. ∴点P 的纵坐标为2732592244⎛⎫--=- ⎪⎝⎭.【考点】二次函数综合题;单动点、轴对称和平行四边形存在性问题; 待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的性质;勾股定理;二次函数的性质;平行四边形的判定;方程思想和分类思想的应用.【分析】(1)设交点式的式,应用待定系数法可求二次函数的解析式.(2)待定系数法求得线段AC的解析式,设出点G的坐标,根据相似三角形的性质列式求解.(3垢四边形是平行四边形的判定分对称轴两边求解.。

四川省泸州市2015届高三第二次诊断性考试数学(理)试题及答案

四川省泸州市2015届高三第二次诊断性考试数学(理)试题及答案

泸州市高2012级第二次教学质量检测数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)两部分. 第一部分1至2页,第二部分3至4页.共150分.考试时间120分钟. 第一部分的答案涂在机读卡上,第二部分的答案写在答题卡上.第一部分(选择题 共50分)注意事项:1. 答第一部分前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂、写在机读卡上.2. 每小题选出答案后,用2B 铅笔把机题卡上对应题的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在草稿子、试题卷上.3.本部分共12个题,每小题5分共60分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一个选 项是符合题目要求.1.已知集合{|12}A x x =-<<,2{|log 2}B x x =<,则A B =A .(1,2)B .(1,4)-C .(0,2)D .(0,4)2.计算sin 43cos13sin13sin 47- 的值等于A .12B C D 3.函数ln ||||x x y x =的图象可能是4.下列命题中,真命题是A .0x ∃∈R ,020x ≤B .x ∀∈R ,22x x >C .“0a b +=”是“1ab=-”的充要条件D .“1,1a b >>”是“1ab >”的充分条件5. 执行如图所示的程序框图,输出S 的值是A .3B .-6C .10D .-156. 一个几何体的三视图如图所示,则该几何体的表面积是A .5πB .6πC .7πD .8π7. 不等式组124x y x y +⎧⎨-⎩≥≤的解集记为D ,下列四个命题中正确的是A .(,)x y D ∀∈,22x y +-≥B .(,)x y D ∀∈,22x y +≥C .(,)x yD ∀∈,23x y +≤ D .(,)x y D ∃∈,21x y +-≤8. 某工厂某种产品的年固定成本为250万元,每生产x 千件需另投入成本为()G x ,当年产量不足80千件时,21()103G x x x =+(万元);当年产量不小于80千件时,10000()511450G x x x=+-(万元).每 件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完,则该厂在这一商品的生产中所获年利润的最大值是 A .900万元B .950万元C .1000万元D .1150万元9. 已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是 A .2-3πB .1-6πC .2-2πD .1-12π10.已知函数322(1),()11(1)22,0.32kx k a x f x x ax a x a a x +-⎧⎪=⎨-+--+-<⎪⎩≥0,其中a ∈R ,若对任意的非零实数1x ,存在 42侧视图俯视图正视图唯一的非零实数2x (12x x ≠),使得12()()f x f x =成立,则k 的最大值为 A .1-B .2-C .4-D .3-第二部分 (非选择题 共100分)注意事项:1.用0.5毫米黑色签字笔直接答在答题卡上,答在试题卷上无效.作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷上无效.2.本卷共11个小题,共100分.二、填空题:本大题共5小题,每小题5分,共25分,把正确答案填在题中横线上11.如果复数21iz =-+(i 是虚数单位),则复数z 的虚部为 .12.已知数列{}n a 为等差数列, n S 为其前n 项和,若112a =,23S a =,则其公差为_____.13.在三棱柱ABC -A 1B 1C 1中,∠BCA =90°,AA 1⊥平面ABC ,M ,N 分别是A 1B 1,A 1C 1的中点,若BC =CA =CC 1,则直线BM 与直线AN 所成角的 余弦值为 .14.已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,重心为G (三角形中三边中线的交点),若23aGA cGC +=0,则cos B = .16.(本题满分12分)MB 1A 1C 1ACBN以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分):已知甲组数据的中位数为13,乙组数据的众数是18.(Ⅰ)求,x y 的值,并用统计知识分析两组学生成绩的优劣;(Ⅱ)从两组学生中任意抽取3名,记抽到甲组的学生人数为X ,求X 的分布列和期望. 17.(本题满分12分) 在锐角ABC △中,角A,B,C 所对的边分别为c b a ,,,向量(2,1)a m =,(cos ,2)C c b -n =, 且⊥m n .(Ⅰ) 求角A 的大小;(Ⅱ)求函数2cos2()11tan Cf C C=-+的值域.18.(本题满分12分)已知函数1()lg(0)1ax f x a x +=>-为奇函数,函数22()()g x b b x=+∈R . (Ⅰ)求函数()f x 的定义域;(Ⅱ)当11[,]32x ∈时,关于x 的不等式(1)lg ()f x g x -≤有解,求b 的取值范围.19.(本题满分12分)已知数列{}n a ,满足11,21,.n n n a n a a n +⎧⎪=⎨⎪+⎩为偶数,为奇数,452a =,若211(0)n n n b a b -=-≠.(Ⅰ)求1a ,并证明数列{}n b 是等比数列;(Ⅱ)令21(21)n n c n a -=-,求数列{}n c 的前n 项和n T .20.(本题满分13分)如图,在多面体111-ABC A B C 中,侧面11AA B B ⊥底面111A B C ,四边形11AA B B 是CAA 1C 1B 1B矩形,1111AC =A B ,111120B AC ∠=,11//BC B C ,112B C BC =.(Ⅰ)求证:111AC B C ⊥; (Ⅱ)当二面角11C AC B --的正切值为2时,求111AA A B 的值.21.(本题满分14分)已知函数3()3f x x x =-,()e ()x g x ax a =-∈R .其中e 是自然对数的底数. (Ⅰ)求经过点2(,2)3A -与曲线()f x 相切的直线方程;(Ⅱ)若函数()()1ln ((0,2])F x g x x x x =--∈,求证:当e 1a <-时,函数()F x 无零点;(Ⅲ)已知正数m 满足:存在0[1)x ∈+∞,,使得000()()()g x g x mf x +-<-成立.试比较1e 1e m m --与的大小,并证明你的结论.一、选择题二、填空题11.-1; 12.12; 13; 14.112; 15. (1)(4) .三、解答题16.解:(Ⅰ)甲组五名学生的成绩为9,12,10+x ,24,27.乙组五名学生的成绩为9,15,10+y ,18,24. 因为甲组数据的中位数为13,乙组数据的众数是18,所以3x =, ··············································································· 2分8y =, ······················································································· 4分因为甲组数据的平均数为855, ······················································ 5分 乙组数据的平均数是845, ····························································· 6分 则甲组学生成绩稍好些; ······························································ 7分 (Ⅱ)X 的取值为0、1、2、3.353101(0)12C P X C ===, ··································································· 8分12553105(1)12C C P X C ===, ································································· 9分5(2)12P X ==, ········································································ 10分 1(3)12P X ==, ········································································ 11分 所以X 的分布列为EX =0123,121212122⨯+⨯+⨯+⨯= ∴X 的期望为3.2·········································································· 12分17.解:(Ⅰ) ∵⊥m n ,∴2cos 20a C c b +-=, ····································································· 1分 由正弦定理得:2sin cos sin 2sin 0A C C B +-=, ····································· 2分 ∵()B A C π=-+, ··········································································· 3分 ∴2sin cos sin 2sin()0A C C A C +-+=, ················································· 5分 ∴2sin cos sin 2sin cos 2cos sin 0A C C A C A C +--=, ∴sin 2cos sin 0C A C -=,∵0C π<<,∴sin 0C >, ∴1cos 2A =,∴3A π=; ··································································· 6分 (Ⅱ)2cos 2()11tan Cf C C-=++,222(cos sin )1sin 1cos C C C C--=++, ··································································· 7分222cos (cos sin )1cos sin C C C C C--=++, ···························································· 8分 22cos 2cos sin 1C C C =-++, ······························································ 9分 sin 2cos 2C C =-, ·········································································· 10分)4C π- ············································································· 11分 ∵3A π=,ABC △是锐角三角形,∴62C ππ<<,∴321244C πππ<-<, ∴函数()f C的值域为. ················································ 12分 18. 解:(Ⅰ)由1()lg(0)1axf x a x+=>-为奇函数得:()()0f x f x -+=, 即222111lg lg lg 0111ax ax a x x x x -+-+==+--, ··················································· 2分 所以222111a x x -=-,解得1a =, ························································· 4分 经检验符合题意,故1()lg1xf x x+=-, ··················································· 5分所以()f x 的定义域是(1,1)-; ·························································· 6分 (Ⅱ)不等式(1)lg ()f x g x -≤等价于222x b x x-+≤, ·································· 7分 即2221b x x-+-≥在11[,]32x ∈有解, ·················································· 8分 故只需min 222(1)b xx -+-≥, ···························································· 9分 因为11[,]32x ∈,所以1[2,3]x∈, ····················································· 10分函数21112()22y x =---, ······························································ 11分所以2min 112(3)1322y =---=-,所以13b -≥,所以b 的取值范围是[13,)-+∞. ··································· 12分19.解:(Ⅰ)∵452a =,11,21,.n n n a n a a n +⎧⎪=⎨⎪+⎩为偶数,为奇数∴353122a =-=,·········································································· 1分 ∴23a =, ··················································································· 2分∴12a =; ··················································································· 3分∵212+12-12111121112n n n n n n a b a b a a +--===---, ······················································ 5分故数列{}n b 是首项为1,公比为12的等比数列; ································· 6分(Ⅱ)由(I )知:11()2n n b -=,且1211(21)(21)()(21)2n n n c n a n n --=-=-+-, ········ 7分1321122n n n S --=+++ , ①21113232122222n n n n n S ---=++++ ,② ················································· 8分 ①-②得:221111211122222n n n n S --=+++++- , ·································· 9分111()2121212n n n ---=+--2332n n +=-,···················································· 10分 所以4662n nn S +=-. ····································································· 11分 故[135(21)]n n T S n =+++++-24662nn n +=+-. ··································································· 12分20.解法一:(Ⅰ) 取11B C 的中点D ,连接CD 、1A D ,因为11//BC B C ,112B C BC =,所以1//CB DB ,∴1CB DB =,∴四边形1CDB B 是平行四边形, ····················································· 1分 又11AA B B 是矩形,∴1//CD AA , ········ 2分 因为侧面11AA B B ⊥底面111A B C ,111AA A B ⊥,∴1AA ⊥底面111A B C ,∴1AA ⊥11B C , ····························· 3分 因为点D 是11B C 的中点,1111AC =A B ,∴111B C A D ⊥, ······························ 4分又111A D AA A = ,∴11B C ⊥平面1AA DC , ······································· 5分∴111AC B C ⊥;··········································································· 6分 (Ⅱ)过点C 作CE AD ⊥于点E , 过点E 作1EF AC ⊥于点F , 连接CF ,········· 7分由(Ⅰ)知:11B C ⊥平面1AA DC ,11B C ⊂平面11AB C , ∴平面11AB C ⊥平面1AA DC ,且交线为AD ,CE ⊥平面11AB C ,即1CE AC ⊥, ··················································· 8分 所以1AC ⊥平面CEF , 则1CF AC ⊥所以CFE ∠为二面角11C AC B --的平面角, ····································· 9分设111A B =,1AA λ=,则1C D 112A D =,所以AD =,CE =, ·········································· 10分∵1AFE ADC △△,又因AE =,1AC∴EF =··························································· 11分二面角11C AC B --的正切值为2, ∴tan 2CECFE EF ∠==,=, ······················ 12分解之得:λ=111AA A B. ······································ 13分解法二:(Ⅰ) 过点1A 在平面111A B C 内作111EA A B ⊥,因为侧面11AA B B ⊥底面111A B C , 所以1EA ⊥侧面11AA B B ,所以11A A A E ⊥,111A E A B ⊥, ··········· 2分因为11AA B B 是矩形,所以111A A A B ⊥, ············································ 3分 以1A 为原点,射线1A E ,11A B , 1A A 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系. 设111A B =,1AA λ=,则1C D =,112A D =,所以1(0,1,0)B ,(0,0,)A λ,11,0)2C -,1,)4C λ. ··················· 4分因为11,)4AC λ=,113,0)2B C =- ,又11113()0042AC B C λ=⨯-+⨯= , ······································ 5分 所以111AC B C ⊥,即111AC B C ⊥; ····················································· 6分 (Ⅱ) 设平面11AB C 的一个法向量为(,,)x y z =m ,所以1C A ⊥ m ,11B C ⊥m ,因为1(0,1,)B A λ=-,113,0)2B C =- ,C则00x y z λ⎧=⎪⎨-=⎪⎩,取1)λ=m , ················································· 8分设平面1AC C 的一个法向量为(,,)x y z =n ,所以1C A ⊥n ,CA ⊥ n ,因为11(,)2C A λ=,1,0)4AC = ,则020y y z λ+=--=,取(1,=n , ····································· 10分∵二面角11C AC B --的正切值为2, ∴二面角11C AC B --,即cos )<>=m,n , ············ 11分=, ······················································ 12分解得:λ111AA A B. ······································ 13分21. 解:(Ⅰ)由3()3f x x x =-得2()33f x x '=-,设过点A 的直线与曲线()f x 相切于点(,)B m n , 所以切线斜率为2()33f m m '=-,切线方程为323(33)()y m m m x m -+=--, ········································ 1分 因为点2(,2)3A -在切线上,所以32223(33)()3m m m m -+=---, ··········· 2分解之得:0m =,或1m =-当0m =时,(0)3f '=-且(0,0)B ,故直线方程为3y x =-, ·················· 3分 当1m =-时,(1)0f '-=且(1,2)B -,故直线方程为2y =; ····················· 4分(Ⅱ)因为()e 1ln x F x ax x x =---,由()0F x =得,e 1ln x a x x -=-, ······················································ 5分 设e 1()ln x h x x x -=-,则2(e 1)(1)()x x h x x --'=, ····································· 6分 当01x <<时,()0h x '<,当12x <<时,()0h x '>所以()h x 在(0,1)单调递减,(1,2)单调递增, ········································ 7分 又(1)e 1h =-,所以当e 1a <-时,函数()F x 无零点; ··············································· 8分(Ⅲ)()()()e +e x x G x g x g x -=+-=,则'()e e x x G x -=-,当1x >时'()0G x >,∴()G x 在(1)+∞,上单调递增, ························································ 9分。

四川省泸州市中考数学模拟考试试题(含解析)

四川省泸州市中考数学模拟考试试题(含解析)

四川省泸州市中考数学模拟考试试题一、选择题:(本大题共12个小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.﹣2B.2C.D.﹣2.(3分)光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为()A.950×1010km B.95×1011kmC.9.5×1012km D.0.95×1013km3.(3分)下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m64.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.7.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠08.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF ∥AB,且AD:DB=3:5,那么CF:CB等于()A.3:8B.3:5C.5:8D.2:59.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.10.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A.3B.C.D.911.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b <0,③b2+8a>4ac,④a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共12分)13.(3分)分解因式:16m3﹣mn2.14.(3分)已知关于x的分式方程+=1的解为负数,则k的取值范围是.15.(3分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.16.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为.三、本大题共3个小题,每小题6分,共18分17.(6分)计算:2sin60°﹣(π﹣3.14)0+|1﹣|+()﹣1.18.(6分)化简求值:÷(1﹣),其中x=﹣1.19.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.四、本大题共2个小题,每小题7分,共14分20.(7分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.21.(7分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.五、每小题8分,共16分22.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C 点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E 处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)23.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.六、每小题12分,共24分24.(12分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AD•AC=AP•BC;(3)若BC=6,tan∠F=.求⊙O的直径AC的长.25.(12分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y 轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.参考答案与试题解析一、选择题:(本大题共12个小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.﹣2B.2C.D.﹣【分析】只有符号不同的两个数互为相反数.【解答】解:﹣的相反数是.故选:C.2.(3分)光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为()A.950×1010km B.95×1011kmC.9.5×1012km D.0.95×1013km【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=9.5×1012,故选:C.3.(3分)下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m6【分析】根据合并同类项法则,积的乘方和幂的乘方,同底数幂的除法、乘法分别求出每个式子的值,再判断即可.【解答】解:A、结果是2x4,故本选项错误;B、结果是4a2,故本选项错误;C、结果是x2,故本选项正确;D、结果是x5,故本选项错误;故选:C.4.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出不等式组的解集,再根据数轴上不等式的解集的表示方法解答.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤1,在数轴上表示如下:.故选:B.6.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,故选:A.7.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF ∥AB,且AD:DB=3:5,那么CF:CB等于()A.3:8B.3:5C.5:8D.2:5【分析】由DE∥BC,可得=,再结合EF∥AB可求得,可求得CF:CB.【解答】解:∵DE∥BC,EF∥AB,∴AE:EC=AD:DB=BF:CF=3:5,∴CF:CB=5:8,故选:C.9.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选:B.10.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A.3B.C.D.9【分析】先根据垂径定理得到CE=DE,再根据圆周角定理得到∠COB=60°,然后利用含30度的直角三角形三边的关系求出CE,从而得到CD的长.【解答】解:∵CD⊥AB,∴CE=DE,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=,∴CE=OE=×=,∴CD=2CE=3.故选:A.11.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=xcm,当0≤x≤1时,M在BC边上,BM=3xcm,AN=(3﹣x)cm,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=(9﹣3x)cm,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选:A.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b <0,③b2+8a>4ac,④a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∵a<0,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.二、填空题(每小题3分,共12分)13.(3分)分解因式:16m3﹣mn2=m(4m+n)(4m﹣n).【分析】直接提取公因式m,再利用平方差公式分解因式得出答案.【解答】解:16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n).故答案为:m(4m+n)(4m﹣n).14.(3分)已知关于x的分式方程+=1的解为负数,则k的取值范围是k>﹣且k≠0.【分析】先去分母得到整式方程(2k+1)x=﹣1,再由整式方程的解为负数得到2k+1>0,由整式方程的解不能使分式方程的分母为0得到x≠±1,即2k+1≠1且2k+1≠﹣1,然后求出几个不等式的公共部分得到k的取值范围.【解答】解:去分母得k(x﹣1)+(x+k)(x+1)=(x+1)(x﹣1),整理得(2k+1)x=﹣1,因为方程+=1的解为负数,所以2k+1>0且x≠±1,即2k+1≠1且2k+1≠﹣1,解得k>﹣且k≠0,即k的取值范围为k>﹣且k≠0.故答案为k>﹣且k≠0.15.(3分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.16.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为4.【分析】先连接OP,PC,OC,根据OP+PC≥OC,OC=5,PC=3,即可得到当点O,P,C三点共线时,OP最短,根据OP=5﹣3=2,可得AB=2OP=4.【解答】解:如图,连接OP,PC,OC,∵OP+PC≥OC,OC=5,PC=3,∴当点O,P,C三点共线时,OP最短,如图,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,∵OC=5,CP=3,∴OP=5﹣3=2,∴AB=2OP=4,故答案为:4.三、本大题共3个小题,每小题6分,共18分17.(6分)计算:2sin60°﹣(π﹣3.14)0+|1﹣|+()﹣1.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣1+﹣1+2=2.18.(6分)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.19.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.四、本大题共2个小题,每小题7分,共14分20.(7分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为48人,扇形统计图中D类所对应扇形的圆心角为105度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.【分析】(1)由条形统计图与扇形统计图可得七年级(1)班学生总人数为:12÷25%=48(人),继而可得扇形统计图中D类所对应扇形的圆心角为为360°×=105°;然后求得C类的人数,则可补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的情况,再利用概率公式即可求得答案.【解答】解:(1)∵七年级(1)班学生总人数为:12÷25%=48(人),∴扇形统计图中D类所对应扇形的圆心角为为:360°×=105°;故答案为:48,105;C类人数:48﹣4﹣12﹣14=18(人),如图:(2)分别用A,B表示两名擅长书法的学生,用C,D表示两名擅长绘画的学生,画树状图得:∵共有12种等可能的结果,抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的有8种情况,∴抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率为:=.21.(7分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,∴m=75时,W最小=1125.∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.五、每小题8分,共16分22.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C 点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E 处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF 的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.23.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴S△AOB=(1+4)×(4﹣1)÷2=,∵S△P AC=,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△P AC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).六、每小题12分,共24分24.(12分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AD•AC=AP•BC;(3)若BC=6,tan∠F=.求⊙O的直径AC的长.【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA≌∠POB,继而证明△P AO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论;(2)分析要证明的等式,可以看出是一个比例等式,可想到利用相似三角形来证明,找出相关相似三角形即可解决问题.(3)根据题意可确定OD是△ABC的中位线,设AD=3x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,根据勾股定理计算即可.【解答】(1)证明:连接OB,根据垂径定理的知识,得出OA=OB,∠POA≌∠POB,∴△P AO≌△PBO,∴∠PBO=∠P AO,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠P AO=90°,∴直线P A为⊙O的切线;(2)证明:∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴OD⊥AB,∴△ADO∽△ABC,又∵AD⊥PO,OA⊥P A,∴△PDA∽△POA∽△ADO,∴△ABC∽△PDA,∴,∴AD•AC=AP•BC;(3)解:∵OA=OC,AD=BD,∴OD=BC=3,设AD=3x,∵tan∠F=,∴FD=4x,则OA=OF=4x﹣3,在Rt△AOD中,OA2=OD2+AD2,即(4x﹣3)2=32+(3x)2,解得:x=,∴FD=4x=,∴FO=FD﹣OD==,∴AC=2FO=.25.(12分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y 轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;(3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.【解答】解:(1)∵抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),,解得,b=﹣1.所以抛物线的解析式为,顶点D的坐标为(﹣1,).(2)设抛物线的对称轴与x轴交于点M,因为EF垂直平分BC,即C关于直线EG的对称点为B,连接BD交于EF于一点,则这一点为所求点H,使DH+CH最小,即最小为:DH+CH=DH+HB=BD=;而;∴△CDH的周长最小值为CD+DH+CH=;设直线BD的解析式为y=k1x+b1,则解得:;所以直线BD的解析式为y=x+3;由于BC=2,CE=BC=,Rt△CEG∽Rt△COB,得CE:CO=CG:CB,所以CG=2.5,GO=1.5,G(0,1.5);同理可求得直线EF的解析式为y=x+;联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,);(3)设K(t,),﹣4<t<2、过K作x轴的垂线交EF于N;则KN=y K﹣y N=﹣(t+)=﹣;所以S△EFK=S△KFN+S△KNE=KN(t+3)+KN(1﹣t)=2KN=﹣t2﹣3t+5=﹣(t+)2+;即当t=﹣时,△EFK的面积最大,最大面积为,此时K(﹣,).。

2015年中考数学二模试题附答案

2015年中考数学二模试题附答案

2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。

泸州市高2015级第二次教学质量诊断性考试数学理科

泸州市高2015级第二次教学质量诊断性考试数学理科

泸州市高2015级第二次教学质量诊断性考试数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷1至2页,第II 卷3至4 页.共150分.考试时间120分钟. 注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3. 填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I 卷 (选择题 共60分)一、 选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.复数12i2i +-的虚部是A .iB .1C .i -D .1-2.已知全集U =R ,{|1}M x x =<-,{|(3)0}N x x x =+<,则图中阴影部分表示的集合是 A .{|31}x x -<<- B .{|30}x x -<<C .{|10}x x -<≤D .{|3}x x <-3.在1,2,3,4,5,6,7这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的所有取法为A .6B .12C .18D .244.抛物线C :24y x =的焦点为F ,P 为C 上一点,过点P 作其准线的垂线,垂足为Q ,若||3PF =,则||FQ 的长度为A . 22B .3C .23D .425.将函数()sin f x x =的图像向右平移m 个长度单位后得到函数()g x ,若()g x 与()cos()3h x x π=+的零点重合,则m 的一个可能的值为 A .3πB .6πC .23πD .π6.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是A .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个B .与去年同期相比,2017年第一季度五个省的GDP 总量均实现了增长C .去年同期河南省的GDP 总量不超过4000亿元D .2017年第一季度GDP 增速由高到低排位第5的是浙江省 7.设a ,b 是两条不同的直线,α、β是不重合的两个平面,则下列命题中正确的是A .若a b ⊥,a α⊥,则//b αB .若//a α,αβ⊥,则//a βC .若//a α,//a β,则//αβD .若//a b ,a α⊥,b β⊥,则//αβ8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后,甲说:“丙被录用了”;乙说:“甲被录用了”;丙说:“我没被录用”.若这三人中仅有一人说法错误,则下列结论正确的是 A .甲被录用了 B .乙被录用了C .丙被录用了D .无法确定谁被录用了9.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()102mod 4=.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于 A .20 B .21 C .22 D .23 10.一个几何体的三视图及尺寸如图所示,则该几何体的外接球的表面积为A .24πB .48πC .96πD .384π11.双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F 、2F ,点P 是双曲线右支上一点,若双曲线的一条渐近线垂直平分1PF ,则该双曲线的离心率是A .2B .5C .2D .512.已知函数2,0()e ,x x x f x x >⎧=⎨⎩≤0,()e x g x =(e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为A .1(1ln 2)2-B .1ln 22+C .1ln2-D .1(1ln 2)2+第II 卷 (非选择题 共90分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共10个小题,共90分.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知变量x y ,满足约束条件02200x y x y x y +≥⎧⎪-+≥⎨⎪-≤⎩,则2z x y =-的最大值为 .14.二项式831()x x-展开式中的常数项是 (用数字做答).15.已知函数()sin f x x x =-,若2(2)()f a f a -+≥0,则实数a 的取值范围是 . 16.如图,在ABC △中,角,,A B C 的对边分别为,,a b c ,(sin cos )a b C C =+.若2A π=,D 为ABC △外一点,2DB =,1DC =,则四边形ABDC 面积的最大值为 .三、解答题:共70分。

四川省泸州市中考数学二模试卷

四川省泸州市中考数学二模试卷

四川省泸州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题(满分36分) (共12题;共36分)1. (3分)(2019·呼和浩特) 如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A .B .C .D .2. (3分)(2019·大庆) 在下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分)(2018·赤峰) 红山水库又名“红山湖”,位于老哈河中游,设计库容量25.6亿立方米,现在水库实际库容量16.2亿立方米,是暑期度假旅游的好去处.16.2亿用科学记数法表示为()A . 16.2×108B . 1.62×108C . 1.62×109D . 1.62×10104. (3分) (2019九上·南岸期末) 如图,空心圆柱在指定方向上的主视图是()A .B .C .D .5. (3分) (2017七上·娄星期末) 以下问题,不适合用全面调查的是()A . 旅客上飞机前的安检B . 学校招聘教师,对应聘人员的面试C . 了解某校七年级学生的课外阅读时间D . 了解一批灯泡的使用寿命6. (3分)不论x取何数,代数式x2-6x+10的值均为()A . 正数B . 零C . 负数D . 非负数7. (3分) (2019八上·遵义期末) 如图,点 B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用 m 的代数式表示△ABE 的面积()A .B . mC . mD . 3m8. (3分)(2013·百色) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (3分) (2019七下·岳阳期中) 为了绿化校园,某班学生参与共种植了144棵树苗其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有人,女生有人,根据题意,所列方程组正确是A .B .C .D .10. (3分)(2016·龙东) 已知反比例函数y= ,当1<x<3时,y的最小整数值是()A . 3B . 4C . 5D . 611. (3分)在圆心角为120°的扇形AOB中,半径OA=6,则扇形AOB的面积是()A . 6πB . 8πC . 12πD . 24π12. (3分) (2017八上·蒙阴期末) 如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A . AC∥DFB . ∠A=∠DC . AC=DFD . ∠ACB=∠F二、填空题(满分12分) (共4题;共12分)13. (3分) (2016九上·思茅期中) 分解因式:x2+4x+4=________.14. (3分)(2017·渠县模拟) 在□a2□2ab□b2的三个空格中,顺次填上“+”或“﹣”,恰好能构成完全平方式的概率是________.15. (3分)观察下面一列数,按某种规律在横线上填上适当的数:1,-,, -, ________ …,则第n个数是________.16. (3分) (2019八下·海淀期中) 如果直线y=-2x+k与两坐标轴围成的三角形面积是8,则k的值为________.三、解答题(满分52分) (共7题;共56分)17. (5分)计算:.18. (6分) (2019八上·伊通期末) 先化简,再求值:÷( +a+2),其中a满足等式|a+1|=0.19. (10分)(2018·惠山模拟) 今年4月23日是第23个“世界读书日”,也是江苏省第四个法定的全民阅读日。

【精校】2015年四川省泸州市中考真题数学

【精校】2015年四川省泸州市中考真题数学

2015年四川省泸州市中考真题数学一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)-7的绝对值为( )A. 7B.C. -D. -7解析:-7的绝对值等于7,故选:A.2.(3分)计算(a2)3的结果为( )A. a4B. a5C. a6D. a9解析:(a2)3=a6.故选:C.3.(3分)如图所示的几何体的左视图是( )A.B.C.D.解析:从几何体的左面看是一个矩形,∴几何体的左视图是矩形.故选:C.4.(3分)截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学记数法表示为( )A. 1.12×105B. 1.12×106C. 1.12×107D. 1.12×108解析:将1120000用科学记数法表示为:1.12×106.故选:B.5.(3分)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为( )A. 90°B. 100°C. 110°D. 120°解析:∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.故选B.6.(3分)菱形具有而平行四边形不具有的性质是( )A. 两组对边分别平行B. 两组对角分别相等C. 对角线互相平分D. 对角线互相垂直解析:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选D.7.(3分)某校男子足球队的年龄分布情况如下表:则这些队员年龄的众数和中位数分别是( )A. 15,15B. 15,14C. 16,15D. 14,15解析:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15.故选A.8.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为( )A. 65°B. 130°C. 50°D. 100°解析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°-(90°+90°+130°)=50°.故选C.9.(3分)若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=-1,则使函数值y>0成立的x的取值范围是( )A. x<-4或x>2B. -4≤x≤2C. x≤-4或x≥2D. -4<x<2解析:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=-1,∴二次函数的图象与x轴另一个交点为(-4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是-4<x<2.故选D.10.(3分)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )A.B.C.D.解析:∵x2-2x+kb+1=0有两个不相等的实数根,∴△=4-4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.11.(3分)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为( )A. 13B.C.D. 12解析:过点A作AG⊥BC于点G,∵AB=AC,BC=24,tanC=2,∴=2,GC=BG=12,∴AG=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,∴EF=AG=12,∴=2,∴FC=6,设BD=x,则DE=x,∴DF=24-x-6=18-x,∴x2=(18-x)2+122,解得:x=13,则BD=13.故选A.12.(3分)在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A. 2B. 3C. 4D. 5解析:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=-x+b,∵点A(,),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=-x+b,解得b=4,∴AB的中垂线所在的直线是y=-x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;,∵3>4,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.二、填空题(每小题3分,共12分)13.(3分)分解因式:2m2-2=_____.解析:2m2-2,=2(m2-1),=2(m+1)(m-1).故答案为:2(m+1)(m-1).14.(3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____.解析:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.15.(3分)设x1、x2是一元二次方程x2-5x-1=0的两实数根,则x12+x22的值为_____. 解析:∵x1、x2是一元二次方程x2-5x-1=0的两实数根,∴x1+x2=5,x1x2=-1,∴x12+x22=(x1+x2)2-2x1x2=25+2=27,故答案为:27.16.(3分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=2EH;③HO=AE;④BC-BF=EH其中正确命题的序号是_____(填上所有正确命题的序号).解析:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AD⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°-45°-67.5°=67.5°,∴∠AED=∠AEB,故①正确;设DH=1,则AH=DH=1,AD=DE=,∴HE=,∴2HE=≠1,故②错误;∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,故③正确;∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在△ABE与△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC-BF=(BE+CE)-(AB-AF)=(CD+EH)-(CD-EH)=2EH,故④错误,故答案为:①③.三、解答题(每小题6分,共18分)17.(6分)计算:×sin45°-20150+2-1.解析:原式第一项利用特殊角的三角函数值及二次根式性质化简,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.答案:原式=2×-1+=1.18.(6分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.解析:先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.答案:证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.19.(6分)化简:解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.答案:原式=.四、(每小题7分,共14分)20.(7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.解析:(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;(2)利用总户数540乘以对应的百分比求解;(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.答案:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50-2-12-10-6-3-2=15(户),所占的百分比是:×100%=30%.(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.则抽取出的2个家庭来自不同范围的概率是:=.21.(7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.解析:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据第一次分别购进A、B两种花草30棵和15棵,共花费940元;第二次分别购进A、B两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答.(2)设A种花草的数量为m株,则B种花草的数量为(31-m)株,根据B种花草的数量少于A种花草的数量的2倍,得出m的范围,设总费用为W元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.答案:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据题意得:,解得:,∴A种花草每棵的价格是20元,B种花草每棵的价格是5元.(2)设A种花草的数量为m株,则B种花草的数量为(31-m)株,∵B种花草的数量少于A种花草的数量的2倍,∴31-m<2m,解得:m>,∵m是正整数,∴m最小值=11,设购买树苗总费用为W=20m+5(31-m)=15m+155,∵k>0,∴W随x的减小而减小,当m=11时,W最小值=15×11+155=320(元).答:购进A种花草的数量为11株、B种20株,费用最省;最省费用是320元.五、解答题,每题8分22.(8分)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).解析:首先根据题意可得PC⊥AB,然后设PC=x海里,分别在Rt△APC中与Rt△APB 中,利用正切函数求得出PC与BP的长,由PC+BP=BC=30×,即可得方程,解此方程求得x的值,再计算出BP,然后根据时间=路程÷速度即可求解.答案:过点A作AP⊥BC,垂足为P,设AP=x海里.在Rt△APC中,∵∠APC=90°,∠PAC=30°,∴tan∠PAC=,∴CP=AP·tan∠PAC=x.在Rt△APB中,∵∠APB=90°,∠PAB=45°,∴BP=AP=x.∵PC+BP=BC=30×,∴x+x=15,解得x=,∴PB=x=,∴航行时间:÷30= (小时).答:该渔船从B处开始航行小时,离观测点A的距离最近.23.(8分)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.解析:(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b的值,然后利用待定系数法即可求得函数解析式;(2)作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.由△ACD∽△BCE,得出==2,那么AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.由直线AB的解析式为y=-x+2,得出A(3-3n,2n),B(3+n,-n),再根据反比例函数y=的图象经过A、B两点,列出方程(3-3n)·2n=(3+n)·(-n),解方程求出n的值,那么m=(3-3n)·2n,代入计算即可.答案:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=-,则函数的解析式是y=-x+2.故这个函数的解析式为y=-x+2;(2)如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,∴==2,∴AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.∵直线AB的解析式为y=-x+2,∴A(3-3n,2n),B(3+n,-n),∵反比例函数y=的图象经过A、B两点,∴(3-3n)·2n=(3+n)·(-n),解得n1=2,n2=0(不合题意舍去),∴m=(3-3n)·2n=-3×4=-12.六、(每小题12分,共24分)24.(12分)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O 的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.解析:(1)根据切线的性质证明∠EAC=∠ABC,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB,从而根据内错角相等两直线平行的判定得到AE∥BC,结合已知AB∥CD即可判定四边形ABCD是平行四边形;(2)作辅助线,连接AO,交BC于点H,双向延长OF分别交AB,CD于点N,M,根据切割线定理求得EC=4,证明四边形ABDC是等腰梯形,根据对称性、圆周角定理和垂径定理的综合应用证明△OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.答案:(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC·DE,∵AE=6,CD=5,∴62=CE(CE+5),解得:CE=4,(已舍去负数),由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC-FH=3-z,DF=CF=BC+FH=3+z,易得△OFH∽△DMF∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x=,∴OF=.25.(12分)如图,已知二次函数的图象M经过A(-1,0),B(4,0),C(2,-6)三点.(1)求该二次函数的解析式;(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标;(3)设图象M的对称轴为l,点D(m,n)(-1<m<2)是图象M上一动点,当△ACD的面积为时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.解析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式;(2)可求得直线AC的解析式,设G(k,-2k-2),可表示出AB、BC、AG的长,由条件可知只有△AGB∽△ABC,再利用相似三角形的性质可求得k的值,从而可求得G点坐标;(3)可设出D点坐标,从而表示出△ACD的面积,由条件求得D点坐标,可求得DE的长,当DE为边时,根据平行四边形的性质可得到PQ=DE=2,从而可求得P点坐标;当DE为对角线时,可知P点为抛物线的顶点,可求得P点坐标.答案:(1)∵二次函数的图象M经过A(-1,0),B(4,0)两点,∴可设二次函数的解析式为y=a(x+1)(x-4).∵二次函数的图象M经过C(2,-6)点,∴-6=a(2+1)(2-4),解得a=1.∴二次函数的解析式为y=(x+1)(x-4),即y=x2-3x-4.(2)设直线AC的解析式为y=sx+t,把A、C坐标代入可得,解得,∴线段AC的解析式为y=-2x-2,设点G的坐标为(k,-2k-2).∵G与C点不重合,∴△ABG与△ABC相似只有△AGB∽△ABC一种情况.∴.∵AB=5,,,∴,∴|k+1|=∴k=或k=-(舍去),∴点G的坐标为(,-).(3)能.理由如下:如图,过D点作x轴的垂线交AC于点H,∵D(m,n)(-1<m<2),∴H(m,-2m-2).∵点D(m,n)在图象M上,∴D(m,m2-3m-4).∵△ACD的面积为,∴[-2m-2-(m2-3m-4)][(m+1)+(2-m)]=,即4m2-4m+1=0,解得m=.∴D(,-).∵y=x2-3x-4=(x-)2-,∴图象M的对称轴l为x=.∵点D关于l的对称点为E,∴E(,-),∴DE=-=2,若以点D、E、P、Q为顶点的四边形为平行四边形,有两种情况:当DE为边时,则有PQ∥DE且PQ=DE=2.∴点P的横坐标为+2=或-2=-,∴点P的纵坐标为(-)2-=-,∴点P的坐标为(,-)或(-,-);当DE为对角线时,则可知P点为抛物线的顶点,即P(,-);综上可知存在满足条件的P点,其坐标为(,-)或(-,-)或(,-).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省泸州市江阳区2015年中考数学二模试题一、选择题(本题3分每题,其中每题四个选项中只有一个符合题意;共36分)1.的相反数是()A.B.﹣C.2 D.﹣22.如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.3.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°4.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1445.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BCA.4 B.1.75 C.1.70 D.1.657.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣18.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm29.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°10.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2012 D.201311.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.412.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=()A.(45,77)B.(45,39)C.(32,46)D.(32,23)二.填空题(3分每题共12分)13.分解因式:a3﹣ab2= .14.若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第象限.15.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.16.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=(x﹣2)2(0<x<2);其中正确的是(填序号).三.(本大题共3个小题,每题6分,共18分)17.计算:﹣4sin45°+(3﹣π)0+|﹣4|18.化简:.19.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.四.(本大题2个小题,共14分)20.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?21.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?五.(本大题共2小题,共16分).22.为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B、C,在点B 处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.请你求出该河段的宽度(结果保留根号).23.已知关于x的一元二次方程2x2+4x+m﹣1=0有两个非零实数根.(1)求m的取值范围;(2)两个非零实数根能否同时为正数或负数?若能,请求出相应m的取值范围;若不能,请说明理由.六.(本大题2小题,共24分)24.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若,求CQ的长;(3)求证:(FP+PQ)2=FP•FG.25.如图,已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.2015年四川省泸州市江阳区中考数学二模试卷参考答案与试题解析一、选择题(本题3分每题,其中每题四个选项中只有一个符合题意;共36分)1.的相反数是( )A .B .﹣C .2D .﹣2【考点】相反数.【专题】计算题.【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图是由3个完全相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据三视图的定义求解.【解答】解:从正面看,上面一层最左边有1个正方形,下边一层有2个正方形.故选:B .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,在△AB C 中,∠A=50°,∠ABC=70°,BD 平分∠ABC,则∠BDC 的度数是( )A .85°B .80°C .75°D .70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C 的度数,再由BD 平分∠ABC 求出∠ABD 的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD 平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.4.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2014年的产量=2012年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程;得到2014年产量的等量关系是解决本题的关键.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC【考点】平行四边形的判定.【专题】证明题.【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.A.4 B.1.75 C.1.70 D.1.65【考点】众数.【专题】常规题型.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;【点评】此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.7.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1【考点】函数自变量的取值范围.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.【点评】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.8.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm2【考点】圆锥的计算.【专题】数形结合.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的侧面积=2π×2×5÷2=10π.故选:B.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法.9.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°【考点】翻折变换(折叠问题);菱形的性质.【专题】计算题.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△D EC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.10.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2012 D.2013【考点】根与系数的关系;一元二次方程的解.【分析】首先根据根与系数的关系,求出a+b=﹣1;然后根据a是方程x2+x﹣2014=0的实数根,可得a2+a ﹣2014=0,据此求出a2+2a+b的值为多少即可.【解答】解:∵a、b是方程x2+x﹣2014=0的两个实数根,∴a+b=﹣1;又∵a2+a﹣2014=0,∴a2+a=2014,∴a2+2a+b=(a2+a)+(a+b)=2014+(﹣1)=2013即a2+2a+b的值为2013.故选:D.【点评】此题主要考查了根与系数的关系,要熟练掌握,解答此题的关键是要明确:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.11.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得C、D的坐标是关键.12.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=()A.(45,77)B.(45,39)C.(32,46)D.(32,23)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】先计算出2013是第几个数,然后判断第1007个数在第几组,再判断是这一组的第几个数即可.【解答】解:2013是第=1007个数,设2013在第n组,则1+3+5+7+…+(2n﹣1)≥1007,即≥1007,解得:n≥31.7,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1007个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2013是(+1)=46个数.故A2013=(32,46).故选:C.【点评】此题考查了数的规律变化,需要熟练掌握其中的方法与技巧,在规律不好发现的时候可以用试一试的办法找其规律.二.填空题(3分每题共12分)13.分解因式:a3﹣ab2= a(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).14.若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第二或一、三象限象限.【考点】二次函数的性质;二次根式有意义的条件;反比例函数的性质.【分析】根据被开方数大于等于0,分母不等于0可得2﹣2k>0,再根据反比例函数的性质确定出反比例函数图象的位置,求出抛物线对称轴为直线x=﹣1,与y轴的交点在正半轴,确定出抛物线图象不在第四象限,从而判断出交点的位置.【解答】解:根据题意得,2﹣2k>0,∴2k﹣2<0,k<1,当<k<1时,反比例函数y=的图象位于第一、三象限,当k<时,反比例函数y=的图象位于第二、四象限,∵抛物线y=x2+2x+2﹣2k的对称轴为直线x=﹣=﹣1,与y轴的交点为(0,2﹣2k),在y轴正半轴,∴抛物线y=x2+2x+2﹣2k的图象不经过第四象限,∴双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第二象限或一、三象限.故答案为:二或一、三象限.【点评】本题考查了二次函数的性质,反比例函数的性质,熟记二次函数的性质与反比例函数的性质判断出函数图象所经过的象限是解题的关键,也是本题的难点.15.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.【考点】相似三角形的判定与性质;圆周角定理;锐角三角函数的定义.【分析】连接AD,在Rt△ABD中利用勾股定理求出AD,证明△DAC∽△DBA,利用对应边成比例的知识,可求出CD、AC,继而根据sin∠ECB=sin∠DCA=即可得出答案.【解答】解:连接AD,则∠ADB=90°,在Rt△ABD中,AB=5,BD=4,则AD==3,∵,∴∠DAC=∠DBA,∴△DAC∽△DBA,∴==,∴CD=,∴AC==,∴sin∠ECB=sin∠DCA==.故答案为:.【点评】本题考查了相似三角形的判定与性质,解答本题的关键是作出辅助线,证明△DAC∽△DBA,求出CD、AD的长度,难度一般.16.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=(x﹣2)2(0<x<2);其中正确的是①②③④(填序号).【考点】矩形的性质;全等三角形的判定与性质;等边三角形的判定;菱形的判定.【专题】压轴题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.③当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.④易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式..【解答】解①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥D1C1,∴四边形ABC1D1是菱形,故②正确;③如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故③正确.④易得△AC1F∽△ACD,∴=()2,解得:S△AC1F=(x﹣2)2(0<x<2);故④正确;综上可得正确的是①②③④.故答案为:①②③④.【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三.(本大题共3个小题,每题6分,共18分)17.计算:﹣4sin45°+(3﹣π)0+|﹣4|【考点】实数的运算.【分析】本题涉及零指数幂、特殊角的锐角三角函数值、二次根式化简、绝对值的化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则,求得计算结果.【解答】解:﹣4sin45°+(3﹣π)0+|﹣4|==5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、特殊角的锐角三角函数值、二次根式、绝对值的化简等考点的运算.18.化简:.【考点】分式的混合运算.【分析】首先将分式的分子与分母分解因式,进而化简求出即可.【解答】解:原式=×+=+=1.【点评】此题主要考查了分式的混合运算,正确将分式的分子与分母分解因式是解题关键.19.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质,解题的关键是利用等边对等角得到∠B=∠C.四.(本大题2个小题,共14分)20.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?【考点】条形统计图;扇形统计图;列表法与树状图法.【专题】图表型;数形结合.【分析】(1)先利用二年级志愿者的人数和它所占的百分比计算出志愿者的总人数为60人,再用60乘以20%得到三年级志愿者的人数,然后用100%分别减去二、三年级所占的百分比即可得到一年级志愿者的人数所占的百分比,再把两幅统计图补充完整;(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,利用树状图展示所有12种等可能的结果,再找出两人都是二年级志愿者的结果数,然后利用概率公式计算.【解答】解:(1)三个年级省运会志愿者的总人数=30÷50%=60(人),所以三年级志愿者的人数=60×20%=12(人);一年级志愿者的人数所占的百分比=1﹣50%﹣20%=30%;如图所示:(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,画树形图为:,共有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,所以P(两名队长都是二年级志愿者)==.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.21.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【考点】分式方程的应用;一元一次不等式组的应用.【专题】工程问题.【分析】(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程,求出a的值即可;(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x 和y的值.【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.五.(本大题共2小题,共16分).22.为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B、C,在点B 处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.请你求出该河段的宽度(结果保留根号).【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC于点D,易得AD=CD,进而可得BD=BC﹣CD=200﹣AD.在Rt△ABD中,通过解直角三角形求解.【解答】解:过点A作AD⊥BC于点D.据题意,∠ABC=90°﹣30°=60°,∠ACD=45°.∴∠CAD=45°,∴∠ACD=∠CAD,∴AD=CD,∴BD=BC﹣CD=200﹣AD.在Rt△ABD中,,∴.∴.∴.答:该河段的宽度为()米.【点评】此题考查解直角三角形的应用,关键把实际问题转化为数学问题加以解决.23.已知关于x的一元二次方程2x2+4x+m﹣1=0有两个非零实数根.(1)求m的取值范围;(2)两个非零实数根能否同时为正数或负数?若能,请求出相应m的取值范围;若不能,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)根据题意得出不等式,求出不等式的解集即可.(2)设方程的两个根为x1,x2,则x1+x2=﹣2,x1•x2=,再看看两根同时为正数或负数是否符合两个等式即可.【解答】解:(1)∵关于x的一元二次方程2x2+4x+m﹣1=0有两个非零实数根,∴△≥0,m≠1∴△=42﹣4×2(m﹣1)≥0,m≤3,即m的取值范围是:m≤3且m≠1.(2)能同时为负数,理由是:设方程的两个根为x1,x2,则x1+x2=﹣2,x1•x2=,当两根为正数时,不符合x1+x2=﹣2,即两个根不能同时为正数;当两根为负数时,符合x1+x2=﹣2,此时x1•x2=>0,解得:m>1,即两个非零实数根能同时为负数,相应m的取值范围是m>1.【点评】本题考查了根与系数的关系和根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,且a≠0)的根的判别式是△=b2﹣4ac,如果两个根为为x1,x2,则x1+x2=﹣,x1•x2=.六.(本大题2小题,共24分)24.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若,求CQ的长;(3)求证:(FP+PQ)2=FP•FG.【考点】勾股定理;垂径定理;圆心角、弧、弦的关系;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.【专题】综合题;压轴题;数形结合.【分析】(1)由于AB是⊙O的直径,则∠ACB=90°,只需证明P是Rt△ACQ斜边AQ的中点即可;由垂径定理易知弧AC=弧AE,而C是弧AD的中点,那么弧CD=弧AE,即∠PAC=∠PCA,根据等角的余角相等,还可得到∠AQC=∠PCQ,由此可证得AP=PC=PQ,即P是△ACQ的外心;(2)由(1)的相等弧可知:∠ABC=∠ACE=∠CAQ,那么它们的正切值也相等;在Rt△CAF中,根据CF的长及∠ACF的正切值,通过解直角三角形可求得AC的长,进而可在Rt△CAQ中,根据∠CAQ的正切值求出CQ的长;(3)由(1)知:PQ=CP,则所求的乘积式可化为:CF2=FP•FG;在Rt△A CB中,由射影定理得:CF2=AF•FB,因此只需证明AF•FB=FG•FP即可,将上式化成比例式,证线段所在的三角形相似即可,即证Rt△AFP∽Rt△GFB.【解答】(1)证明:∵C是的中点,∴,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△PCQ中,PC=PQ,∵CE⊥直径AB,∴∴∴∠CAD=∠ACE.∴在△APC中,有PA=PC,∴PA=PC=PQ∴P是△ACQ的外心.(2)解:∵CE⊥直径AB于F,∴在Rt△BCF中,由tan∠ABC=,CF=8,得.∴由勾股定理,得BC==∵AB是⊙O的直径,∴在Rt△ACB中,由tan∠ABC==,BC=,∴AC=10,易知Rt△ACB∽Rt△QCA,∴AC2=CQ•BC,∴CQ==;(3)证明:∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠ABD=90°又CF⊥AB,∴∠ABG+∠G=90°∴∠DAB=∠G;∴Rt△AFP∽Rt△GFB,∴,即AF•BF=FP•FG易知Rt△ACF∽Rt△CBF,∴CF2=AF•BF(或由射影定理得)∴FC2=PF•FG,由(1),知PC=PQ,∴FP+PQ=FP+PC=FC∴(FP+PQ)2=FP•FG.【点评】此题主要考查了圆心角、弧的关系,圆周角定理,三角形的外接圆,勾股定理以及相似三角形的判定和性质等知识.25.如图,已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.【考点】二次函数综合题.【专题】压轴题.【分析】(1)首先求出一次函数y=﹣x+与坐标轴交点A、B的坐标,然后解直角三角形求出BF、EF、AF的长;(2)由EF∥AD,且EF=AD=t,则四边形ADEF为平行四边形,若▱ADEF是菱形,则DE=AD=t.由DE=2OD,列方程求出t的值;如答图1所示,推出∠BAG=∠GAF,∠ABG=∠AGF=30°,证明△AFG与△AGB相似.(3)当△ADF是直角三角形时,有两种情形,需要分类讨论:①若∠ADF=90°,如答图2所示.首先求出此时t的值;其次求出点G的坐标,利用待定系数法求出直线BG的解析式,得到点M的坐标;最后利用顶点式和待定系数法求出抛物线的解析式;②若∠AFD=90°,如答图3所示.解题思路与①相同.【解答】解:(1)在直线解析式y=﹣x+中,令x=0,得y=;令y=0,得x=1.。

相关文档
最新文档