MAX9027中文资料

合集下载

MAX1677中文数据手册

MAX1677中文数据手册

MAX1677是MAXIM公司生产的高效率、双输出的升压和LCD偏置DC-DC转换器。

(1)特性
MAX1677内部包括两个电源控制器,其中一路输出3.3 V/300 mA主电源,另外一路输出液晶显示器的偏置电源。

MAX1677主要具有下列特性:
输人电压范围为0.7-5.5 V;
主输出电压2.5-5.5 V(可调电压输出),或工厂预设值3.3 V输出,最大输出电流可达350 mA;
第二路输出一28- +28 V的电压,可为LCD提供对比度调节电压;
转换效率可达95%;
静态工作电流只有20μA;
关断维持电流仅1μA;
具有电池欠电压检测电路。

(2)内部电路与引脚功能
MAX1677采用16引脚QSOP封装,体积很小,不需要外接场效应晶体管。

其内部电路框图如图1-196所示,各引脚功能见下表.
(3)应用电路
由于MA-X1677输人电压范围(0.7-5.5 V)较大,因此可以依据不同系统提供的安装电池空间和所需的不同电池电压与容量,灵活地选择电池的种类,如1-3节普通干电池、碱性电池、镍镐充电电池或1节锉电池。

MAX1677适用于需要两种可调电源电压的便携式设备中,如手持式终端、PDA,便携式仪表、便携电话、笔记本电脑显示屏等。

MAX1677的典型应用电路如图所示。

MAX9027EBT-T中文资料

MAX9027EBT-T中文资料

MAX9026EBT-T MAX9027EBT-T MAX9028EBT-T
Pin Configurations
TOP VIEW (BUMPS ON BOTTOM) B 1 A VCC
IN+
Selector Guide
PART MAX9025 MAX9026 MAX9027 MAX9028 INTERNAL REFERENCE Yes Yes No No OUTPUT TYPE Push-Pull Open-Drain Push-Pull Open-Drain SUPPLY CURRENT (µA) 1.0 1.0 0.6 0.6
VEE
( ) MAX9027/MAX9028 PINS
UCSP
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX9025–MAX9028
OrT TEMP RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C BUMPPACKAGE 6 UCSP-6 6 UCSP-6 6 UCSP-6 6 UCSP-6 TOP MARK ADB ADC ADD ADE
ELECTRICAL CHARACTERISTICS—MAX9025/MAX9026 (WITH REF)

比较器

比较器

模拟比较器:将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰.数字比较器:用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平.最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门).电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。

利用简单电压比较器可将正弦波变为同频率的方波或矩形波电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。

常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器.1.模拟比较器将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰.2.数字比较器用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平.最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门).电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。

MAX6627中文资料

MAX6627中文资料

General DescriptionThe MAX6627/MAX6628 precise digital temperature sensors report the temperature of a remote sensor. The remote sensor is a diode-connected transistor, typically a low-cost, easily mounted 2N3904 NPN type that replaces conventional thermistors or thermocouples.The MAX6627/MAX6628 can also measure the die tem-perature of other ICs, such as microprocessors (µPs) or microcontrollers (µCs) that contain an on-chip, diode-connected transistor.Remote accuracy is ±1°C when the temperature of the remote diode is between 0°C and +125°C and the tem-perature of the MAX6627/MAX6628 is +30°C. The tem-perature is converted to a 12-bit + sign word with 0.0625°C resolution. The architecture of the device is capable of interpreting data as high as +145°C from the remote sensor. The MAX6627/MAX6628 tempera-ture should never exceed +125°C.These sensors are 3-wire serial interface SPI™ compat-ible, allowing the MAX6627/MAX6628 to be readily con-nected to a variety of µCs. The MAX6627/MAX6628 are read-only devices, simplifying their use in systems where only temperature data is required.Two conversion rates are available, one that continu-ously converts data every 0.5s (MAX6627), and one that converts data every 8s (MAX6628). The slower ver-sion provides minimal power consumption under all operating conditions (30µA, typ). Either device can be read at any time and provide the data from the last con-version.Both devices operate with supply voltages between +3.0V and +5.5V, are specified between -55°C and +125°C, and come in the space-saving 8-pin SOT23package.ApplicationsHard Disk Drive Smart Battery Packs AutomotiveIndustrial Control Systems Notebooks, PCsFeatureso Accuracy±1°C (max) from 0°C ≤T RJ ≤+125°C, T A = +30°C ±2.4°C (max) from -55°C ≤T RJ ≤+100°C,0°C ≤T A ≤+70°C o 12-Bit + Sign, 0.0625°C Resolution o Low Power Consumption30µA (typ) (MAX6628)200µA (typ) (MAX6627)o Operating Temperature Range (-55°C to +125°C)o Measurement Temperature Range, Remote Junction (-55°C to +145°C)o 0.5s (MAX6627) or 8s (MAX6628) Conversion Rate o SPI-Compatible Interface o +3.0V to +5.5V Supply Range o 8-Pin SOT23 PackageMAX6627/MAX6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface________________________________________________________________Maxim Integrated Products 119-2032; Rev 1; 7/01For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering InformationSPI is a trademark of Motorola, Inc.Pin Configuration appears at end of data sheet.M A X 6627/M A X 6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial InterfaceABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All Voltages Referenced to GNDV CC ...........................................................................-0.3V to +6V SO, SCK, DXP, CS ........................................-0.3V to V CC + 0.3V DXN.......................................................................-0.3V to +0.8V SO Pin Current Range.........................................-1mA to +50mA Current Into All Other Pins..................................................10mA ESD Protection (Human Body Model).. (2000V)Continuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 9.7mW/°C above +70°C)...........777mW Operating Temperature Range .........................-55°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s)...................................Note 1ELECTRICAL CHARACTERISTICS(3.0V ≤V CC ≤5.5V, -55°C ≤T A ≤+125°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = +3.3V, unless otherwise Note 1:This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the devicecan be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for I R/VPR and Convection Reflow. Preheating is required. Hand or wave soldering is not allowed.MAX6627/MAX6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(3.0V ≤V= +25°C, V = +3.3V, unless otherwise Note 4:Serial timing characteristics guaranteed by design.M A X 6627/M A X 6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface0501001502002503003.04.03.54.55.05.5AVERAGE OPERATING CURRENTvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)A V E R A G E O P E R A T I N G C U R R E N T (µA )-3-2-10123-55-5-3020457095120145TEMPERATURE ERROR vs. TEMPERATURETEMPERATURE (°C)T E M P E R A T U R E E R R O R(°C )0.61.00.81.41.21.81.62.02.42.22.6-55-52045-307095120145POWER-ON-RESET THRESHOLDvs. TEMPERATUREM A X 6627/8 t o c 03TEMPERATURE (°C)P O W E R -O N -R E S E T T H R E S H O L D (V )Typical Operating Characteristics(V CC = +3.3V, T A = +25°C, unless otherwise noted.)10100k10M 1k10010k1M100MTEMPERATURE ERROR vs.POWER-SUPPLY NOISE FREQUENCYFREQUENCY (Hz)T E M P E R A T U R E E R R O R (°C )0426810120255075100125-22468101214RESPONSE TO THERMAL SHOCKTIME (s)T E M P E R A T U R E (°C )13245M A X 6627/8 t o c 06CAPACITANCE (pF)T E M P E R A T U R E E R R O R (°C )10,000500015,00020,000TEMPERATURE ERROR vs. DXP/DXN CAPACITANCEMAX6627/MAX6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial InterfaceDetailed DescriptionThe MAX6627/MAX6628 remote digital thermometers report the temperature of a remote sensor. The remote sensor is a diode-connected transistor —typically, a low-cost, easily mounted 2N3904 NPN type —that replaces conventional thermistors or thermocouples.The MAX6627/MAX6628 can also measure the die tem-perature of other ICs, such as µPs or µCs, that contain an on-chip, diode-connected transistor.Remote accuracy is ±1°C when the temperature of the remote diode is between 0°C and +125°C and the tem-perature of the MAX6627/MAX6628 is +30°C. Data is available as a 12-bit + sign word with 0.0625°C resolu-tion. The operating range of the device extends from -55°C to +125°C, although the architecture of the device is capable of interpreting data up to +145°C.The device itself should never exceed +125°C.The MAX6627/MAX6628 are designed to work in con-junction with an external µC or other intelligent device serving as the master in thermostatic, process-control,or monitoring applications. The µC is typically a power management or keyboard controller, generating SPI serial commands by “bit-banging ” GPIO pins.Two conversion rates are available; the MAX6627 con-tinuously converts data every 0.5s, and the MAX6628continuously converts data every 8s. Either device can be read at any time and provide the data from the last conversion. The slower version provides minimal power consumption under all operating conditions. Or, by tak-ing CS low, any conversion in progress is stopped, and the rising edge of CS always starts a fresh conversion and resets the interface. This permits triggering a con-version at any time so that the power consumption of the MAX6627 can be overcome, if needed. Both devices operate with input voltages between +3.0V and +5.5V and are specified between -55°C and +125°C.The MAX6627 and MAX6628 come in space-saving 8-pin SOT23 packages.ADC Conversion SequenceThe device powers up as a free-running data converter (Figure 1). The CS pin can be used for conversion con-trol. The rising edge of CS resets the interface and starts a conversion. The falling edge of CS stops any conversion in progress, overriding the latency of the part. Temperature data from the previous completed conversion is available for read (Tables 1 and 2). I t is required to maintain CS high for a minimum of 320ms to complete a conversion.Idle ModePull CS low to enter idle mode. In idle mode, the ADC is not converting. The serial interface is still active and temperature data from the last completed conversion can still be read.Power-On ResetThe POR supply voltage of the MAX6627/MAX6628 is typically 1.6V. Below this supply voltage, the interface is inactive and the data register is set to the POR state,Figure 1. Free-Running Conversion Time and Rate RelationshipsTable 1. Data Output FormatM A X 6627/M A X 6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface 6_______________________________________________________________________________________1.6V (typ), the device starts to convert, although tem-perature reading is not recommended at V CC levels below 3.0V.Serial InterfaceFigure 2 is the serial interface timing diagram. The data is latched into the shift register on the falling edge of the CS signal and then clocked out at the SO pin on the falling edge of SCK with the most-significant bit (MSB)first. There are 16 edges of data per frame. The last 2bits, D0 and D1, are always in high-Z mode. The falling edge of CS stops any conversion in progress, and the rising edge of CS always starts a new conversion and resets the interface. It is required to maintain a 320ms minimum pulse width of high CS signal before a con-version starts.Applications InformationRemote-Diode SelectionTemperature accuracy depends upon having a good-quality, diode-connected, small-signal transistor.Accuracy has been experimentally verified for all of the devices listed in Table 3. The MAX6627/MAX6628 can also directly measure the die temperature of CPUs and other ICs with on-board temperature-sensing diodes.The transistor must be a small-signal type with a rela-tively high forward voltage. This ensures that the input voltage is within the A/D input voltage range. The for-ward voltage must be greater than 0.25V at 10µA at the highest expected temperature. The forward voltage must be less than 0.95V at 100µA at the lowest expect-ed temperature. The base resistance has to be less than 100Ω. Tight specification of forward-current gain (+50 to +150, for example) indicates that the manufac-turer has good process control and that the devices have consistent characteristics.ADC Noise FilteringThe integrating ADC has inherently good noise rejec-tion, especially of low-frequency signals such as 60Hz/120Hz power-supply hum. Micropower operation places constraints on high-frequency noise y out the PC board carefully with proper external noise filtering for high-accuracy remote measurements in electrically noisy environments.Figure 2. SPI Timing DiagramTable 3. SOT23-Type Remote-Sensor the collector).Table 2. Temperature Data Format (Two ’s Complement)Filter high-frequency electromagnetic interference (EMI) at DXP and DXN with an external 2200pF capaci-tor connected between the two inputs. This capacitor can be increased to about 3300pF (max), including cable capacitance. A capacitance higher than 3300pF introduces errors due to the rise time of the switched-current source.PC Board Layout1)Place the MAX6627/MAX6628 as close as practicalto the remote diode. I n a noisy environment, such as a computer motherboard, this distance can be 4in to 8in, or more, as long as the worst noise sources (such as CRTs, clock generators, memory buses, and ISA/PCI buses) are avoided.2)Do not route the DXP/DXN lines next to the deflec-tion coils of a CRT. Also, do not route the traces across a fast memory bus, which can easily intro-duce +30°C error, even with good filtering.Otherwise, most noise sources are fairly benign.3)Route the DXP and DXN traces parallel and close toeach other, away from any high-voltage traces such as +12VDC. Avoid leakage currents from PC board contamination. A 20M Ωleakage path from DXP to ground causes approximately +1°C error.4)Connect guard traces to GND on either side of theDXP/DXN traces (Figure 3). With guard traces in place, routing near high-voltage traces is no longer an issue.5)Route as few vias and crossunders as possible tominimize copper/solder thermocouple effects. 6)When introducing a thermocouple, make sure thatboth the DXP and the DXN paths have matching thermocouples. In general, PC board-induced ther-mocouples are not a serious problem. A copper solder thermocouple exhibits 3µV/°C, and it takes approximately 200µV of voltage error at DXP/DXN to cause a +1°C measurement error, so most para-sitic thermocouple errors are swamped out.7)Use wide traces. Narrow traces are more inductiveand tend to pick up radiated noise. The 10mil widths and spacings recommended in Figure 3 are not absolutely necessary (as they offer only a minor improvement in leakage and noise), but use them where practical.8)Placing an electrically clean copper ground planebetween the DXP/DXN traces and traces carrying high-frequency noise signals helps reduce EMI.Twisted Pair and Shielded CablesFor remote-sensor distances longer than 8in, or in par-ticularly noisy environments, a twisted pair is recom-mended. I ts practical length is 6ft to 12ft (typ) before noise becomes a problem, as tested in a noisy elec-tronics laboratory. For longer distances, the best solu-tion is a shielded twisted pair like that used for audio microphones. For example, Belden #8451 works well for distances up to 100ft in a noisy environment.Connect the twisted pair to DXP and DXN and the shield to ground, and leave the shield ’s remote end unterminated. Excess capacitance at DXN or DXP limits practical remote-sensor distances (see Typical Operating Characteristics ).For very long cable runs, the cable ’s parasitic capaci-tance often provides noise filtering, so the recommend-ed 2200pF capacitor can often be removed or reduced in value. Cable resistance also affects remote-sensor accuracy. A 1Ωseries resistance introduces about +1/2°C error.MAX6627/MAX6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface_______________________________________________________________________________________7Figure 3. Recommended DXP/DXN PC TracesM A X 6627/M A X 6628Chip InformationTRANSISTOR COUNT: 6241PROCESS: BiCMOSRemote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial Interface 8_______________________________________________________________________________________MAX6627/MAX6628Remote ±1°C Accurate Digital Temperature Sensors with SPI-Compatible Serial InterfaceMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________9©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information。

MAX1972中文资料

MAX1972中文资料

Features
o Current-Mode, 1.4MHz Fixed-Frequency PWM Operation o 180° Out-of-Phase Operation Reduces Input Capacitor o ±1% Output Accuracy Over Load, Line, and Temperature Ranges o 750mA Guaranteed Output Current o 2.6V to 5.5V Input o Power-On Reset Delay of 16.6ms (MAX1970) or 175ms (MAX1971 and MAX1972) o Power-Fail Output (MAX1970 and MAX1972 Only) o Power-On Reset Input (MAX1971 Only) o Operation Outside xDSL Band o Ultra-Compact Design with Smallest External Components o Outputs Adjustable from 0.8V to VIN or 1.8V/3.3V and 1.5V/2.5V Preset o All-Ceramic Capacitor Application o Soft-Start Reduces Inrush Current
Pin Configuration
TOP VIEW
RSI EN
RSI EN
IN
VCC
POR POR LX1 OUT1 1.8V 750mA
LX1 1 VCC 2 COMP1 3 FB1 4
16 PGND 15 LX2 14 IN
MAX1971 COMP1 COMP2 VCC FBSEL1 FB1

Maxim美信产品命名规则--赛矽电子何小姐

Maxim美信产品命名规则--赛矽电子何小姐

Maxim产品命名规则第二货源型号命名我们提供的第二货源产品采用特定型号最流行的编号,而不是我们自己的命名规则。

其中包括原有的产品等级、温度范围、封装类型和引脚数编号。

对于第二货源,Maxim经常提供其他厂商不能提供的封装类型和温度范围,这些器件的型号通常采用原来的编码。

自主产品的命名规则绝大多数Maxim产品采用公司专有的命名系统,包括基础型号和后续的3个或4个字母尾缀,有时还带有其它标识符号。

例如:(A)是基础型号基本型号(也称为基础型号)用于区分不同的产品类型,与封装、温度及其它参量无关。

精度等级等参量通常用型号尾缀表示,有些情况下会为不同参量的器件分配一个新的基本型号。

(B)是3字母或4字母尾缀器件具有4个尾缀字母时,第一个尾标代表产品的等级(精度、电压规格、速率等)。

例如:MAX631ACPA中,第一个尾标"A"表示5%的输出精度。

产品数据资料中给出了型号对应的等级。

其余三个字符是3字母尾缀,分别表示温度范围、封装类型和引脚数。

具体含义如下表所示:例如:MAX696CWEC = 工作温度范围为C级(0°C至+70°C)W = 封装类型:W (SOIC 0.300")E = 引脚数,标号为E (这种封装类型为16引脚)请注意:不同的产品类型尾缀代码可能不一致,详细信息或规格说明请参考数据资料。

温度范围商业级 C 0°C至+70°C汽车AEC-Q100 2级 G -40°C 至+105°C汽车AEC-Q100 0级 T -40°C 至+150°C扩展商业级 U 0°C 至+85°C汽车AEC-Q100 1级 A -40°C 至+125°C工业级 I -20°C 至+85°C扩展工业级 E -40°C 至+85°C军品级 M -55°C 至+125°C封装类型A SSOP (缩小外形封装) 209 mil (14, 16, 20, 24, 28引脚);300 mil (36引脚)B UCSP (超小型晶片级封装)C 塑料TO-92;TO-220C LQFP 1.4mm (7mm x 7mm 过孔20mm x 20mm)C TQFP 1.0mm (7mm x 7mm 过孔20mm x 20mm)D 陶瓷Sidebraze 300 mil (8, 14, 16, 18, 20引脚);600 mil (24, 28, 40, 48引脚)E QSOP (四分之一小外型封装)F 陶瓷扁平封装G 金属外壳(金)G QFN (塑料、薄型、四边扁平封装,无引脚冲压) 0.9mmH SBGA (超级球栅阵列θ)H TQFP 1.0mm 5mm x 5mm (32引脚)H TSSOP (薄型缩小外形封装) 4.4mm (8引脚)J CERDIP (陶瓷双列直插) (N) 300 mil (8, 14, 16, 18, 20引脚);(W) 600 mil (24, 28, 40引脚)K SOT 1.23mm (8引脚)L LCC (陶瓷无引线芯片载体) (18, 20, 28引脚)L FCLGA (倒装芯片、基板球栅阵列);薄型LGA (薄型基板球栅阵列) 0.8mm L µDFN (微型双列扁平封装,无引线) (6, 8, 10引脚)M MQFP (公制四边扁平封装)高于1.4mm ;ED-QUAD (28mm x 28mm 160引脚) N PDIP (窄型塑料双列直插封装) 300 mil (24, 28引脚)P PDIP (塑料双列直插封装) 300 mil (8, 14, 16, 18, 20引脚);600 mil (24, 28, 40引脚)Q PLCC (塑料陶瓷无引线芯片载体)R CERDIP (窄型陶瓷双列直插封装) 300 mil (24, 28引脚)S SOIC (窄型塑料小外形封装) 150 milT 金属外壳(镍)T TDFN (塑料、超薄、双列扁平封装,无引线冲压) 0.9mm (6, 8, 10 & 14引脚)T 薄形QFN (塑料、超薄、四列扁平封装,无引线冲压) 0.8mmTQ 薄形QFN (塑料、超薄、四列扁平封装,无引线冲压) 0.8mm (8引脚)U SOT 1.23mm (3, 4, 5, 6引脚)U TSSOP (薄型缩小外形封装) 4.4mm (14, 16, 20, 24, 28, 38, 56引脚);6.1mm (48引脚)U µMAX (薄型缩小外形封装) 3mm x 3mm (8, 10引脚)V U. TQFN (超薄QFN - 塑装、超薄四边扁平,无引线冲压) 0.55mm W SOIC (宽型、塑料小外形封装) 300 milW WLP (晶片级封装)X CSBGA 1.4mmX CVBGA 1.0mmX SC70Y SIDEBRAZE (窄型) 300 mil (24, 28引脚),超薄LGA 0.5mmZ 薄型SOT 1mm (5, 6, 8引脚)引脚数A 8, 25, 46, 182B 10, 64C 12, 192D 14, 128E 16, 144F 22, 256G 24, 81H 44, 126I 28, 57J 32, 49K 5, 68, 265L 9, 40M 7, 48, 267N 18, 56O 42, 73P 20, 96Q 2, 100R 3, 84S 4, 80T 6, 160U 38, 60V 8 (.200"引脚圆周,隔离外壳), 30, 196W 10 (.230"引脚圆周,隔离外壳), 169X 36, 45Y 8 (.200"引脚圆周,外壳接引脚4), 52Z 10 (.230"引脚圆周,外壳接引脚5), 26, 72(C)其它尾缀字符在3字母或4字母尾缀的后面可能还会出现其它字符,这些字符可能单独出现,也可能与型号组合在一起。

MAX9217-MAX9218 中文资料

MAX9217-MAX9218 中文资料

MAX9217/MAX9218视频链路中的音频数据传输MAX9217/MAX9218串行器和解串器芯片组通过一对儿双绞线LVDS链路实现视频数据传输,广泛用于汽车和工业应用领域。

视频信号的每一帧总是存在消隐周期,可以利用这些周期“承载”音频数据。

在本应用笔记中,我们讨论音频数据的传输格式,视频链路发送数据的方法以及系统实现的具体实例。

简介MAX9217/MAX9218芯片组是一个收发器对儿,发送器(MAX9217)将并行数据转换成串行数据,发送给接收器(MAX9218);接收器再将串行数据转换成并行数据。

该芯片组设计用于通过一对儿低成本双绞线电缆(如,以太网中常用的UTP-CAT5电缆),将视频和控制信号从图形控制器(处理器)传输到LCD或等离子平面显示器。

传输距离可超过10米。

该芯片组链路结构简单,所使用的传输线为低成本电缆,是汽车、仪表、医疗设备等视频显示的理想方案。

该芯片组不仅可以在两点之间传送视频信号,有时,人们还希望其同时传送音频信号。

在本应用笔记中,我们将讨论如何利用视频信号的消隐期,通过控制信号通道将音频数据传送到显示器。

我们还将解释怎样把数字音频数据转换成模拟音频信号,并给出了显示面板端扬声器驱动的系统结构。

MAX9217/MAX9218链路功能和视频数据格式MAX9217串行器具有27位并行输入,总线速率高达35Mbps。

在这27位中,18位是视频RGB数据:3基色各占用6位,其余9位是控制信号。

9位控制信号中的前3位指定为垂直、水平和RGB数据同步:VSYNC (C0)、HSYNC (C1)和ENAB (C2)。

剩下的6个控制位(C3至C8)用于其他控制信号。

本例中,我们使用6个控制位中的一部分传输音频数据。

MAX9217可以将18位RGB数据或9位控制数据转换为串行数据,然后通过LVDS 链路对其进行传输。

在视频显示的消隐期内发送控制数据,由RGB数据使能信号(ENAB)指示。

MAXIM MAX727 MAX728 MAX729 说明书

MAXIM MAX727 MAX728 MAX729 说明书

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!_______________General DescriptionThe MAX727/MAX728/MAX729 are monolithic, bipolar,pulse-width modulation (PWM), switch-mode, step-down DC-DC regulators. Each is rated at 2A. Very few external components are needed for standard operation because the power switch, oscillator, feedback, and control circuitry are all on-chip. Employing a classic buck topology, these regulators perform high-current step-down functions.These regulators have excellent dynamic and transient response characteristics, while featuring cycle-by-cycle cur-rent limiting to protect against overcurrent faults and short-circuit output faults. They also have a wide 8V to 40V input range.Each regulator is available in a 5-pin TO-220 package.These devices have a preset 100kHz oscillator frequency and a preset current limit of 2.6A. See the MAX724/MAX726 data sheet for more applications information._______________________ApplicationsDistributed Power from High-Voltage BusesHigh-Current, High-Voltage Step-Down Applications Multiple-Output Buck ConverterMAX727/MAX728/MAX7295V/3.3V/3V 2A Step-Down, PWM,Switch-Mode DC-DC Regulators________________________________________________________________Maxim Integrated Products 1__________________Pin Configuration__________Typical Operating CircuitCall toll free 1-800-998-8800 for free samples or literature.19-0149; Rev 2; 9/95___________________________Featureso Input Range:Up to 40V o 2A On-Chip Power Switch o Fixed Outputs:5V (MAX727)3.3V (MAX728)3V (MAX729)o 100kHz Switching Frequencyo Excellent Dynamic Characteristics o Few External Components o 8.5mA Quiescent Current o TO-220 Package______________Ordering InformationM A X 727/M A X 728/M A X 7295V/3.3V/3V 2A Step-Down, PWM,Switch-Mode DC-DC Regulators 2_______________________________________________________________________________________Input Voltage..................................................45V Switch Voltage with Respect to Input Voltage................50V Switch Voltage with Respect to GND Pin (V SW negative)(Note 1).....................................................35V SENSE Pin Voltage...................................-0.3V, +10V Operating Temperature RangesMAX72_CCK .....................................0°C to +70°C MAX72_ECK....................................-40°C to +85°CJunction Temperature Ranges:MAX72_CCK....................................0°C to +125°C MAX72_ECK..................................-40°C to +125°C Storage Temperature Range ...................-65°C to +160°C Lead Temperature (soldering, 10sec)....................+300°CELECTRICAL CHARACTERISTICS(V IN = 25V, T j = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ABSOLUTE MAXIMUM RATINGSMAX727/MAX728/MAX7295V/3.3V/3V 2A Step-Down, PWM,Switch-Mode DC-DC Regulators_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V IN = 25V, T j = T MIN to T MAX , unless otherwise noted.)Note 1:Do not exceed switch-to-input voltage limitation.Note 2:For switch currents between 1A and 2A, maximum switch-on voltage can be calculated via linear interpolation.Note 3:By setting the SENSE pin to 5.5V, the V C pin is forced to its low clamp level and the switch duty cycle is forced to zero,approximating the zero load condition.Note 4:For proper regulation, total voltage from V IN to GND must be ≥8V after start-up.Note 5:To avoid extremely short switch-on times, the switch frequency is internally scaled down when V SENSE is less than 2.6V(MAX727), 2.0V (MAX728), or 1.8V (MAX729). Switch current limit is tested with V SENSE adjusted to give a 1µs minimum switch-on time.Note 6:Guaranteed, not production tested.0% duty cycle0% duty cycle V C Voltage Temperature Coefficient mV/°C Thermal Resistance Junction to Case (Note 6)°C/W 4.0V -4T j = T MIN to T MAXV C Voltage1.5T j = +25°C Output Voltage Line Regulation %/V 0.0050.0208V ≤V IN ≤40V ±1.0±3.0T j = T MIN to T MAX V OUT (nominal) = 5V (MAX727),3.3V (MAX728), or 3V (MAX729); all conditions of input voltage,output voltage, and load current Output Voltage Tolerance%±0.5±2.0T j = +25°C MAX729MAX728MAX727MAX729MAX728MAX727CONDITIONS2.23.8 6.5T j = +25°CSENSE Pin Divider Resistance 2.5 4.27.0k Ω3.0 5.08.02.90 3.00 3.10V C = 2VSENSE Voltage3.20 3.30 3.40V4.855.00 5.15UNITS MIN TYP MAX PARAMETER______________________________________________________________Pin Description5V IN supplies power to the internal circuitry and also connects to the collector of the internal power switch. V IN must be bypassed with a low-ESR capacitor, typically 200µF or 220µF.Internal Power Switch Output. The S witch output can swing 35V below ground and is rated for 2A.Ground requires a short, low-noise connection to ensure good load regulation. The internal refer-ence is referred to GND, so errors at this pin are multiplied by the error amplifier.Error-Amplifier Output. A series RC network connected to this pin compensates theMAX727/MAX728/MAX729. Output swing is limited to about 5.8V in the positive direction and -0.7V in the negative direction. V C can also synchronize the MAX727/MAX728/MAX729 to an external TTL clock in the 115kHz to 170kHz range. See MAX724/MAX726 data sheet.SENSE Input is the internal error amplifier's input, and should be directly connected to V OUT .SENSE also aids current limiting by reducing oscillator frequency when V OUT is low.4321PIN V INV SW GND V CSENSEFUNCTIONNAMEMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are M A X 727/M A X 728/M A X 7295V/3.3V/3V 2A Step-Down, PWM,Switch-Mode DC-DC Regulators implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.4___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1995 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.________________________________________________________Package Information。

比较器的选型

比较器的选型

比较器的合理选择May 22, 2006摘要:本文说明比较器的特性、指标以及比较器与运算放大器差异。

其中包括内置基准的比较器应用电路和利用双比较器构建窗检测器、利用四比较器解决电压或电流测量问题的电路。

长期以来,受运算放大器的影响,比较器的应用一直没有得到应有的重视。

直到目前随着比较器性能指标的改进,使其更好地胜任电压比较这一基本任务,这一状况才得到改善,本文主要介绍新型比较器的性能及其典型应用。

比较器的功能比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。

从这一角度来看,也可以将比较器当作一个1位模/数转换器(ADC)。

比较器与运算放大器运算放大器在不加负反馈时,从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。

而且,在这种情况下,运算放大器的响应时间比比较器慢许多,而且也缺少一些特殊功能,如:滞回、内部基准等。

比较器通常不能用作运算放大器,比较器经过调节可以提供极小的时间延迟,但其频响特性受到一定限制,运算放大器正是利用了频响修正这一优势而成为灵活多用的器件。

另外,许多比较器还带有内部滞回电路,这避免了输出振荡,但同时也使其不能当作运算放大器使用。

电源电压比较器与运算放大器工作在同样的电源电压,传统的比较器需要±15V等双电源供电或高达36V的单电源供电,这些产品在工业控制中仍有需求,许多厂商也仍在提供该类产品。

但是,从市场发展趋势看,目前大多数应用需要比较器工作在电池电压所允许的单电源电压范围内,而且,比较器必须具有低电流、小封装,有些应用中还要求比较器具有关断功能。

例如:MAX919、MAX9119和MAX9019比较器可工作在1.6V或1.8V至5.5V电压范围内,全温范围内的最大吸入电流仅为1.2µA/1.5µA,采用SOT23、SC70封装,类似的MAX965和MAX9100比较器工作电压可低至1.6V,甚至1.0V,因而非常适合电池供电的便携式产品,见表1。

UC2907中文资料

UC2907中文资料

C/S (–) 3

100
2k
C/S (+) 2
+
40k
VOLTAGE ERROR AMPLIFIER

+
VCC
1.75V
DRIVE
1.0V AMPLIFIER

DRV
+
20k
50k
12 COMP 9 OPTO DRIVE
8 ISET
17.5k
ADJUST AMPLIFIER

ADJ
+
14 ADJ OUT
85 100 115 mV
Input Bias Current
–1
µA
Open Loop Gain
COMP = 0.75V to 1.5V
65
dB
Unity Gain Bandwidth
TA = 25°C (Note 2)
700
kHz
Output Sink Current
(+) SENSE = 2.2V, COMP = 1V
Maximum Forced Voltage . . . . . . . . . . . . . . . – 0.3V to +10V Maximum Forced Current. . . . . . . . . . . . . . . . . . . . . . ±10mA Ground Amp Sink Current . . . . . . . . . . . . . . . . . . . . . . . +50mA Pins 1, 9, 12, 15 Sink Current. . . . . . . . . . . . . . . . . . . . . +20mA Storage Temperature Range . . . . . . . . . . . . . – 65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . – 55°C to +150°C Lead Temperature (Solder 10 Seconds) . . . . . . . . . . . . +300°C Pin Nos. refer to 16 Pin DIL Package Currents are positive into, negative out of the specified terminal. Consult packaging section of databook for thermal limitations and considerations of package.

比较器的合理选择

比较器的合理选择

比较器的合理选择摘要:本文说明比较器的特性、指标以及比较器与运算放大器差异。

其中包括内置基准的比较器应用电路和利用双比较器构建窗检测器、利用四比较器解决电压或电流测量问题的电路。

长期以来,受运算放大器的影响,比较器的应用一直没有得到应有的重视。

直到目前随着比较器性能指标的改进,使其更好地胜任电压比较这一基本任务,这一状况才得到改善,本文主要介绍新型比较器的性能及其典型应用。

比较器的功能比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。

从这一角度来看,也可以将比较器当作一个1位模/数转换器(ADC)。

比较器与运算放大器运算放大器在不加负反馈时,从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。

而且,在这种情况下,运算放大器的响应时间比比较器慢许多,而且也缺少一些特殊功能,如:滞回、内部基准等。

比较器通常不能用作运算放大器,比较器经过调节可以提供极小的时间延迟,但其频响特性受到一定限制,运算放大器正是利用了频响修正这一优势而成为灵活多用的器件。

另外,许多比较器还带有内部滞回电路,这避免了输出振荡,但同时也使其不能当作运算放大器使用。

电源电压比较器与运算放大器工作在同样的电源电压,传统的比较器需要±15V等双电源供电或高达36V的单电源供电,这些产品在工业控制中仍有需求,许多厂商也仍在提供该类产品。

但是,从市场发展趋势看,目前大多数应用需要比较器工作在电池电压所允许的单电源电压范围内,而且,比较器必须具有低电流、小封装,有些应用中还要求比较器具有关断功能。

例如:MAX919、MAX9119和MAX9019比较器可工作在1.6V或1.8V至5.5V电压范围内,全温范围内的最大吸入电流仅为1.2µA/1.5µA,采用SOT23、SC70封装,类似的MAX965和MAX9100比较器工作电压可低至1.6V,甚至1.0V,因而非常适合电池供电的便携式产品,见表1。

MAX1978中文数据手册

MAX1978中文数据手册

用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。

片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。

可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。

内部MOSFET的开关速度经过优化, 可降低噪声和EMI。

超低漂移斩波放大器可保持±0.001°C的温度稳定性。

直接控制输出电流而不是电压, 以消除电流浪涌。

独立的加热和冷却电流和电压限制提供最高水平的TEC保护。

MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。

真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。

当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。

模拟控制信号精确设置TEC 电流。

MAX1979提供高达6A的单极性输出。

提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。

仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。

提供模拟输出以监控TEC温度和电流。

此外, 单独的过热和欠温输出表明当TEC温度超出范围时。

片上电压基准为热敏电阻桥提供偏置。

MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。

采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。

评估套件可用于加速设计。

应用光纤激光模块典型工作电路出现在数据手册的最后。

WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。

MAX977中文资料

MAX977中文资料

ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.25V, specifications are for high-speed mode, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
The single MAX975 is available in 8-pin SO and 8-pin µMAX packages, while the dual MAX977 is available in 14-pin SO and 16-pin QSOP packages.
____________________________Features
SO µMAX/QSOP
+0.2
±2
±3
±1
±5
mV
±1
±7
Input-Referred Hysteresis VHYS VCM = 1V, VCC = 5V (Note 4)
Input Bias Current
Input Offset Current Input Capacitance
Common-Mode Rejection Ratio
PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
POWER SUPPLY
Supply-Voltage Operating Range
VCC
2.7
5.25
V
Supply Current Per Comparator

MAX247中文资料

MAX247中文资料

General DescriptionThe MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communica-tions interfaces, particularly applications where ±12V is not available.These parts are especially useful in battery-powered sys-tems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225,MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for appli-cations where printed circuit board space is critical.________________________ApplicationsPortable Computers Low-Power Modems Interface TranslationBattery-Powered RS-232 Systems Multidrop RS-232 Networks____________________________Features Superior to Bipolaro Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239)o Low-Power Receive Mode in Shutdown (MAX223/MAX242)o Meet All EIA/TIA-232E and V.28 Specifications o Multiple Drivers and Receiverso 3-State Driver and Receiver Outputs o Open-Line Detection (MAX243)Ordering InformationOrdering Information continued at end of data sheet.*Contact factory for dice specifications.MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers________________________________________________________________Maxim Integrated Products 1Selection Table19-4323; Rev 9; 4/00Power No. of NominalSHDN RxPart Supply RS-232No. of Cap. Value & Three-Active in Data Rate Number (V)Drivers/Rx Ext. Caps (µF)State SHDN (kbps)FeaturesMAX220+52/24 4.7/10No —120Ultra-low-power, industry-standard pinout MAX222+52/2 4 0.1Yes —200Low-power shutdownMAX223 (MAX213)+54/54 1.0 (0.1)Yes ✔120MAX241 and receivers active in shutdown MAX225+55/50—Yes ✔120Available in SOMAX230 (MAX200)+55/04 1.0 (0.1)Yes —120 5 drivers with shutdownMAX231 (MAX201)+5 and2/2 2 1.0 (0.1)No —120Standard +5/+12V or battery supplies; +7.5 to +13.2same functions as MAX232MAX232 (MAX202)+52/24 1.0 (0.1)No —120 (64)Industry standardMAX232A+52/240.1No —200Higher slew rate, small caps MAX233 (MAX203)+52/20— No —120No external capsMAX233A+52/20—No —200No external caps, high slew rate MAX234 (MAX204)+54/04 1.0 (0.1)No —120Replaces 1488MAX235 (MAX205)+55/50—Yes —120No external capsMAX236 (MAX206)+54/34 1.0 (0.1)Yes —120Shutdown, three stateMAX237 (MAX207)+55/34 1.0 (0.1)No —120Complements IBM PC serial port MAX238 (MAX208)+54/44 1.0 (0.1)No —120Replaces 1488 and 1489MAX239 (MAX209)+5 and3/52 1.0 (0.1)No —120Standard +5/+12V or battery supplies;+7.5 to +13.2single-package solution for IBM PC serial port MAX240+55/54 1.0Yes —120DIP or flatpack package MAX241 (MAX211)+54/54 1.0 (0.1)Yes —120Complete IBM PC serial port MAX242+52/240.1Yes ✔200Separate shutdown and enableMAX243+52/240.1No —200Open-line detection simplifies cabling MAX244+58/104 1.0No —120High slew rateMAX245+58/100—Yes ✔120High slew rate, int. caps, two shutdown modes MAX246+58/100—Yes ✔120High slew rate, int. caps, three shutdown modes MAX247+58/90—Yes ✔120High slew rate, int. caps, nine operating modes MAX248+58/84 1.0Yes ✔120High slew rate, selective half-chip enables MAX249+56/1041.0Yes✔120Available in quad flatpack packageFor free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/ReceiversABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243(V CC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T A = T MIN to T MAX ‚ unless otherwise noted.)Note 1:Input voltage measured with T OUT in high-impedance state, SHDN or V CC = 0V.Note 2:For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ..............................................................-0.3V to (V CC - 0.3V)R IN (Except MAX220)........................................................±30V R IN (MAX220).....................................................................±25V T OUT (Except MAX220) (Note 1).......................................±15V T OUT (MAX220)...............................................................±13.2V Output VoltagesT OUT ...................................................................................±15V R OUT .........................................................-0.3V to (V CC + 0.3V)Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW20-Pin Plastic DIP (derate 8.00mW/°C above +70°C)..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________3Note 3:MAX243 R2OUT is guaranteed to be low when R2IN is ≥0V or is floating.ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V= +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T = T to T ‚ unless otherwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 4_________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243108-1051525OUTPUT VOLTAGE vs. LOAD CURRENT-4-6-8-2642LOAD CURRENT (mA)O U T P U T V O L T A G E (V )1002011104104060AVAILABLE OUTPUT CURRENTvs. DATA RATE65798DATA RATE (kbits/sec)O U T P U T C U R R E N T (m A )203050+10V-10VMAX222/MAX242ON-TIME EXITING SHUTDOWN+5V +5V 0V0V 500µs/div V +, V - V O L T A G E (V )MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________5V CC ...........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................+0.3V to -14V Input VoltagesT IN ............................................................-0.3V to (V CC + 0.3V)R IN ......................................................................................±30V Output VoltagesT OUT ...................................................(V+ + 0.3V) to (V- - 0.3V)R OUT .........................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T OUT ......................................Continuous Continuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C)..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C).....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C)........889mW 24-Pin Narrow CERDIP(derate 12.50mW/°C above +70°C)..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _...................................................-40°C to +85°C MAX2 _ _ M _ _ ...............................................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________78.56.54.55.5TRANSMITTER OUTPUT VOLTAGE (V OH ) vs. V CC7.08.0V CC (V)V O H (V )5.07.57.46.02500TRANSMITTER OUTPUT VOLTAGE (V OH )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.46.27.27.0LOAD CAPACITANCE (pF)V O H (V )1500100050020006.86.612.04.02500TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE6.05.011.09.010.0LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )1500100050020008.07.0-6.0-9.04.55.5TRANSMITTER OUTPUT VOLTAGE (V OL ) vs. V CC-8.0-8.5-6.5-7.0V CC (V)V O L (V )5.0-7.5-6.0-7.62500TRANSMITTER OUTPUT VOLTAGE (V OL )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES-7.0-7.2-7.4-6.2-6.4LOAD CAPACITANCE (pF)V O L (V )150010005002000-6.6-6.810-105101520253035404550TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CURRENT-2-6-4-886CURRENT (mA)V +, V - (V )420__________________________________________Typical Operating CharacteristicsMAX223/MAX230–MAX241*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTSV+, V- WHEN EXITING SHUTDOWN(1µF CAPACITORS)MAX220-13SHDN*V-O V+500ms/divM A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 8_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)Note 4:Input voltage measured with transmitter output in a high-impedance state, shutdown, or V CC = 0V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ‚ ENA , ENB , ENR , ENT , ENRA ,ENRB , ENTA , ENTB ..................................-0.3V to (V CC + 0.3V)R IN .....................................................................................±25V T OUT (Note 3).....................................................................±15V R OUT ........................................................-0.3V to (V CC + 0.3V)Short Circuit (one output at a time)T OUT to GND............................................................Continuous R OUT to GND............................................................ContinuousContinuous Power Dissipation (T A = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C)...........1.07W Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering,10sec)..............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________9Note 5:The 300Ωminimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or V CC =0V is 10M Ωas is implied by the leakage specification.ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 10________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX225/MAX244–MAX24918212345TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE86416LOAD CAPACITANCE (nF)T R A N S M I T T E R S L E W R A T E (V /µs )14121010-105101520253035OUTPUT VOLTAGEvs. LOAD CURRENT FOR V+ AND V--2-4-6-88LOAD CURRENT (mA)O U T P U T V O L T A G E (V )64209.05.012345TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.05.58.5LOAD CAPACITANCE (nF)V +, V (V )8.07.57.06.5MAX220–MAX249Drivers/Receivers______________________________________________________________________________________11Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay TimingFigure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable TimingM A X 220–M A X 249Drivers/Receivers 12______________________________________________________________________________________ENT ENR OPERATION STATUS TRANSMITTERSRECEIVERS00Normal Operation All Active All Active 01Normal Operation All Active All 3-State10Shutdown All 3-State All Low-Power Receive Mode 11ShutdownAll 3-StateAll 3-StateTable 1a. MAX245 Control Pin ConfigurationsENT ENR OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All Active RA1–RA4 3-State,RA5 Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll 3-StateAll Low-Power Receive Mode All Low-Power Receive Mode 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RB5 Low-Power Receive ModeTable 1b. MAX245 Control Pin ConfigurationsTable 1c. MAX246 Control Pin ConfigurationsENA ENB OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All 3-State All Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll ActiveRA1–RA4 3-State,RA5 Active All Active 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RA5 Low-Power Receive ModeMAX220–MAX249Drivers/Receivers______________________________________________________________________________________13Table 1d. MAX247/MAX248/MAX249 Control Pin ConfigurationsM A X 220–M A X 249_______________Detailed DescriptionThe MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 dri-vers, RS-232 receivers, and receiver and transmitter enable control inputs.Dual Charge-Pump Voltage ConverterThe MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to dou-ble the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output.A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section),except on the MAX225 and MAX245–MAX247, where these pins are not available. V+ and V- are not regulated,so the output voltage drops with increasing load current.Do not load V+ and V- to a point that violates the mini-mum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222,MAX225, MAX230, MAX235, MAX236, MAX240,MAX241, and MAX245–MAX249, avoid using V+ and V-to power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applica-tions where a +10V external supply is applied to the V+pin (instead of using the internal charge pump to gen-erate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to V CC . This is because V+is internally connected to V CC in shutdown mode.RS-232 DriversThe typical driver output voltage swing is ±8V when loaded with a nominal 5k ΩRS-232 receiver and V CC =+5V. Output swing is guaranteed to meet the EIA/TIA-232E and V.28 specification, which calls for ±5V mini-mum driver output levels under worst-case conditions.These include a minimum 3k Ωload, V CC = +4.5V, and maximum operating temperature. Unloaded driver out-put voltage ranges from (V+ -1.3V) to (V- +0.5V). Input thresholds are both TTL and CMOS compatible.The inputs of unused drivers can be left unconnected since 400k Ωinput pull-up resistors to V CC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert.The internal input pull-up resistors typically source 12µA,except in shutdown mode where the pull-ups are dis-abled. Driver outputs turn off and enter a high-imped-ance state—where leakage current is typically microamperes (maximum 25µA)—when in shutdownmode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The power-supply current typically drops to 8µA in shutdown mode.The MAX220 does not have pull-up resistors to force the ouputs of the unused drivers low. Connect unused inputs to GND or V CC .The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240,and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver three-state control on the receiver outputs.The receiver TTL/CMOS outputs are in a high-imped-ance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239–MAX241), and are also high-impedance whenever the shutdown control line is high.When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1µA with the driver output pulled to ground. The driver output leakage remains less than 1µA, even if the transmitter output is backdriven between 0V and (V CC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1k Ωseries impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1k Ω.The driver output slew rate is limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifica-tions. Typical slew rates are 24V/µs unloaded and 10V/µs loaded with 3Ωand 2500pF.RS-232 ReceiversEIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert.Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels.The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors withDrivers/Receivers 14Table 2. Three-State Control of ReceiversMAX220–MAX249Drivers/Receivers______________________________________________________________________________________15nominal 5k Ωvalues. The receivers implement Type 1interpretation of the fault conditions of V.28 and EIA/TIA-232E.The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear out-put transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.Low-Power Receive ModeThe low-power receive-mode feature of the MAX223,MAX242, and MAX245–MAX249 puts the IC into shut-down mode but still allows it to receive information. This is important for applications where systems are periodi-cally awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communi-cation at faster data rates. This operation conserves system power.Negative Threshold—MAX243The MAX243 is pin compatible with the MAX232A, differ-ing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or “OK to send” state. Normally‚ the MAX243’s other receiver (+1.4V threshold) is used for the data line (TD or RD)‚ while the negative threshold receiver is con-nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA-232E specifications. This means a receiver output goes high whenever its input is driven negative‚ left floating‚or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this‚the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.Shutdown—MAX222–MAX242On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and MAX241‚ all receivers are disabled during shutdown.On the MAX223 and MAX242‚ two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions‚ the propagation delay increases to about 2.5µs for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices‚ SHDN (SH DN for MAX241) also disables the receiver outputs.The MAX225 provides five transmitters and five receivers‚ while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply cur-rent drops to less than 25µA and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225‚ all five receivers are controlled by the ENR input. On the MAX245‚ eight of the receiver out-puts are controlled by the ENR input‚ while the remain-ing two receivers (RA5 and RB5) are always active.RA1–RA4 and RB1–RB4 are put in a three-state mode when ENR is a logic high.Receiver and Transmitter EnableControl InputsThe MAX225 and MAX245–MAX249 feature transmitter and receiver enable controls.The receivers have three modes of operation: full-speed receive (normal active)‚ three-state (disabled)‚ and low-power receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.M A X 220–M A X 249Tables 1a–1d define the control states. The MAX244has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA )causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB ) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one A-side and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shut-down mode when both the A and B sides are disabled (ENA = ENB = +5V).The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active.The device enters shutdown mode with a logic high on both ENTA and ENTB .The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and trans-mitters go into a three-state mode with a logic high on both ENTA and ENTB .The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three dri-vers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB . In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec.__________Applications InformationFigures 5 through 25 show pin configurations and typi-cal operating circuits. In applications that are sensitive to power-supply noise, V CC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.Drivers/Receivers16______________________________________________________________________________________。

MAX系列芯片速查

MAX系列芯片速查

MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIO DS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADC MAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313, MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V 模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS 逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和PORMAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233, MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241, MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA 限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSE MAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLL MAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。

2-87572-9中文资料(AMP)中文数据手册「EasyDatasheet - 矽搜」

2-87572-9中文资料(AMP)中文数据手册「EasyDatasheet - 矽搜」

产品展示品牌行业客户服务About 家零件号搜索文本搜索备用零件搜索多个零件对照按字母搜索品牌搜索行业产品搜索产品类别搜索产品家庭搜索对手交参考文件数搜索无铅解决方案帮助/术语表AMP查看全部泰科电子品牌点击激活链接到所有其他产品AMPMODU.100中心线通孔接头AMP活性3-87572-5- 5个产品,共(泰科电子P / N:3-87572-5)以前下一个Sales信息相关CAD几何活性AMP ACES相关文件定价步骤搜索屏幕一般信息产品供货请使用客户图纸进行所有设计工作.s客户图纸:87572,修订ķ文档标题:头组件,MOD II,DBL ROW,.100X.100 @ 22,直角,(3)双面SHROUD163069.pdf163069.pdf(67K)下面照片和/或线条图是代表性一个产品只观看目图像.产品照片品牌:头类型:排数:没有.位置:简介:导流端外形尺寸(mm [中]):安装角度:AMP有罩Dual6标准1.68 [.066]直角中心线间距(毫米[]):帖子尺寸(mm [中]):配合柱长度(毫米[]):接触材料:端子尾部电镀:外壳材料:2.54×2.54 [.100x .100] 0.64 [0.025]平方米.8.08 [.318]磷青铜亮锡热塑性PCB防护持力特点:没有表面贴装兼容性:触点区域电镀:电路板支座:安装耳:面板附件:配合连接器Lock:高温外壳:外壳类型:高速串行数据连接器:终止后长度(毫米[]):没有亮锡没有没有没有没有没有3-Sided没有3.18 [.125]外壳颜色:壳易燃等级:黑UL 94V-0版权与隐私声明Visit泰科国际有限公司产品展示|品牌|行业|客户服务|About|家。

MAX1290中文资料

MAX1290中文资料
元器件交易网
19-1532; Rev 0; 9/99
KIT ATION EVALU E L B AVAILA
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface
D4 5 D3/D11 6 D2/D10 7 D1/D9 8 D0/D8 9
MAX1291
23 COM 22 CH0 21 CH1 20 CH2 19 CH3 18 CH4 17 CH5 16 CH6 15 CH7
Ordering Information
PART MAX1291ACEI MAX1291BCEI MAX1291AEEI MAX1291BEEI TEMP. RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 28 QSOP 28 QSOP 28 QSOP 28 QSOP INL (LSB) ±0.5 ±1 ±0.5 ±1
INT 10 RD 11 WR 12 CLK 13 CS 14
QSOP Pin Configurations continued at end of data sheet.
Ordering Information continued at end of data sheet.
Typical Operating Circuits appear at end of data sheet.
元器件交易网
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface MAX1291/MAX1293

Maxcell称重显示器使用说明书

Maxcell称重显示器使用说明书

.................................. 37
1
Maxcell
2-3-12 RS485 ID 输入 (选配功能)
............................................. 38

命令格式说明 ...................................................................................................................... 39
2-3-9 RS232 一般或简易输出重量 6 位或 7 位选择
..................... 35
2-3-10 RTC 时间调整
............................................................... 36
2-3-11 调整打印时年月日或日月年显示方式
2-3-3 输出格式选择
.................................................................... 29
2-3-4 传送方式设定
.................................................................... 30
使用前之准备工作
一. 请将本机放置于稳固且平坦之桌面上使用,勿放于摇动或振动之台架上。 二. 避免将本机放置于温度变化过大或空气流动剧烈之场所,如日光直射或冷气机之出风口。 三. 请使用独立之电源插座,以避免其它电器用品干扰。 四. 打开电源时,秤盘上请勿放置任何东西。 五. 产品使用时,秤物之重心须位于秤盘之中心点,且秤物不超出秤盘范围,以确保其准确度。 六. 使用本机前,请先温机 15 ~ 20 分钟。 七. 请注意当低电源警示之符号( )闪烁时,则表示须再行充电。 八. 如对本产品有任何建议,请不吝指正。

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

本文是Maxim 正式英文资料的译文,Maxim 不对翻译中存在的差异或由此产生的错误负责。

请注意译文中可能存在文字组织或翻译错误,如需确认任何词语的准确性,请参考Maxim 提供的英文版资料。

索取免费样品和最新版的数据资料,请访问Maxim 的主页: 。

_____________________________ _概述MAX481、MAX483、MAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI ,并降低由不恰当的终端匹配电缆引起的反射,实现最高250k b p s 的无差错数据传输。

M A X 481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps 的传输速率。

这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120(A 至500(A 之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1µA 。

所有器件都工作在5V 单电源下。

驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。

接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。

MAX487与MAX1487具有四分之一单位负载的接收器输入阻抗,使得总线上最多可以有128个M A X 487/MAX1487收发器。

使用MAX488-MAX491可以实现全双工通信,而MAX481、MAX483、MAX485、MAX487与MAX1487则为半双工应用设计。

_______________________________应用低功耗RS-485收发器低功耗RS-422收发器电平转换器用于EMI 敏感应用的收发器工业控制局域网____________________下一代器件的特性♦容错应用MAX3430: ±80V 故障保护、失效保护、1/4单位负载、+3.3V 、RS-485收发器MAX3440E-MAX3444E: ±15kV ESD 保护、±60V 故障保护、10Mbps 、失效保护、RS-485/J1708收发器♦对于空间受限应用MAX3460-MAX3464: +5V 、失效保护、20Mbps 、Profibus RS-485/RS-422收发器MAX3362: +3.3V 、高速、RS-485/RS-422收发器,采用SOT23封装MAX3280E-MAX3284E: ±15kV ESD 保护、52Mbps 、+3V 至+5.5V 、SOT23、RS-485/RS-422、真失效保护接收器MAX3293/MAX3294/MAX3295: 20Mbps 、+3.3V 、SOT23、RS-485/RS-422发送器♦对于多通道收发器应用MAX3030E-MAX3033E: ±15kV ESD 保护、+3.3V 、四路RS-422发送器♦对于失效保护应用MAX3080-MAX3089: 失效保护、高速(10Mbps)、限摆率RS-485/RS-422收发器♦对于低电压应用MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V 供电、±15kV ESD 保护、12Mbps 、限摆率、真正的RS-485/RS-422收发器MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487低功耗、限摆率、RS-485/RS-422收发器_____________________________________________________________________选择表19-0122; Rev 8; 10/03定购信息在本资料的最后给出。

MAXIM MAX4927 说明书

MAXIM MAX4927 说明书

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!General DescriptionThe MAX4927 meets the needs of high-speed differen-tial switching, including that of Gigabit Ethernet (10/100/1000) Base-T switching as well as LVDS and LVPECL switching. The MAX4927 provides enhanced ESD protection up to ±15kV and excellent high-fre-quency response,making the device especially useful for interfaces that must go to an outside connection.The MAX4927 offers extremely low capacitance (C ON ),as well as low on-resistance (R ON ), for low-insertion loss and very wide bandwidth. In addition to the four pairs of DPDT switches, the MAX4927 provides LED switching for laptop computer/docking station use.The MAX4927 is pin-to-pin equivalent to the PI3L500-A and STMUX1000L. The MAX4927 can replace either device in those applications, improving ESD protection and eliminating external ESD components. The MAX4927 is available in a space-saving 56-pin TQFN package and operates over the extended -40°C to +85°C temperature range.ApplicationsNotebooks and Docking StationsServers and Routers with Ethernet Interfaces Board-Level Redundancy Protection SONET/SDH Signal Routing T3/E3 Redundancy Protection LVDS and LVPECL SwitchingFeatures♦ESD Protection±15kV–IEC 61000-4-2 Air-Gap Discharge ±8kV–IEC 61000-4-2 Contact Discharge ±15kV–Human Body Model♦Single +3.0V to +3.6V Power-Supply Voltage ♦Low 4Ω(typ), 6.5Ω(max) On-Resistance (R ON )♦Ultra-Low 8pF (typ) On-Capacitance (C ON )♦-23dB Return Loss (100MHz)♦-3dB Bandwidth: 650MHz♦Optimized Pin Out for Easy Transformer and PHY Interface♦Built-In LED Switches for Switching Indicators to Docking Station ♦Low 450µA (max) Quiescent Current♦Bidirectional 8 to 16 Multiplexer/Demultiplexer ♦Standard Pin Out, Matching the P13L500-A and STMUX1000L♦Space-Saving Lead-Free Package56-Pin, 5mm x 11mm, TQFN PackageMAX49271000 Base-T , ±15kV ESD Protection LAN Switch________________________________________________________________Maxim Integrated Products 1Ordering Information19-0841; Rev 0; 6/07For pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .+Denotes lead-free package.Note:All devices are specified over the -40°C to +85°C operating temperature range.*EP = Exposed pad.Typical Operating Circuit and Functional Diagrams appear at end of data sheet.Pin ConfigurationM A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD ………………………………………………………-0.3V to +4V All Other Pins…………………………………-0.3V to (V DD + 0.3V)Continuous Current (A_ to _B_)......................................±120mA Continuous Current (LED_ to _LED_).…………………… ±40mA Peak Current (A_ to _B_)(pulsed at 1ms, 10% duty cycle) ……………………. ±240mA Current into Any Other Pin................................................±20mAContinuous Power Dissipation (T A = +70°C)56-Pin TQFN (derate 40.9mW/°C above +70°C).......5278mW Operating Temperature Range …………………. -40°C to +85°C Junction Temperature.……………………………………. +150°C Storage Temperature Range .…………………. -65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V DD = +3V to +3.6V, T A = T J = T MIN to T MAX , unless otherwise noted. Typical values are at V DD = 3.3V, T A = +25°C.) (Note 1)MAX49271000 Base-T ±15kV ESD Protection LAN Switch_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = +3V to +3.6V, T A = T J = T MIN to T MAX , unless otherwise noted. Typical values are at V DD = 3.3V, T A = +25°C.) (Note 1)Figure 1. Single-Ended Bandwidth, Crosstalk, and Off-IsolationM A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 4_______________________________________________________________________________________Figure 2. Turn-On and Turn-Off TimesFigure 3. Propagation Delay TimesFigure 4. Output SkewMAX49271000 Base-T , ±15kV ESD Protection LAN Switch_______________________________________________________________________________________5021435601.02.03.0ON-RESISTANCE vs. V A_V A_ (V)R O N (Ω)810121462416182220240 1.00.5 1.5 2.0 2.5 3.0LED_ ON-RESISTANCE vs. V LED_V LED_ (V)R O N L E D (Ω)030060090012001500-4010-15356085LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (p A )200220240260280300320340-40-1510356085QUIESCENT SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)Q U I E S C E N T S U P P L Y C U R R E N T (μA )SINGLE-ENDED INSERTION LOSSvs. FREQUENCYM A X 4927 t o c 05FREQUENCY (MHz)I N S E R T I O N L O S S (d B )10010-7-8-9-6-5-4-3-2-10-1011000Typical Operating Characteristics(V DD = 3.3V, T A = +25°C, unless otherwise noted.)M A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 6_______________________________________________________________________________________Pin DescriptionMAX49271000 Base-T , ±15kV ESD Protection LAN Switch_______________________________________________________________________________________7Detailed DescriptionThe MAX4927 is a high-speed analog switch targeted for 1000 Base-T applications. In a typical application,the MAX4927 switches the signals from two separate interface transformers and connects the signals to a single 1000 Base-T Ethernet PH Y (see the Typical Operating Circuit ). This configuration simplifies docking-station design by avoiding signal reflections associated with unterminated transmission lines in a T configura-tion. The MAX4927 is protected against ±15kV electro-static discharge (ESD) events. The MAX4927 also includes LED switches that allow the LED output sig-nals to be routed to a docking station along with the Ethernet signals. See the Functional Diagrams.With its low resistance and capacitance, as well as high ESD protection, the MAX4927 can be used to switch most low-voltage differential signals, such as LVDS,SERDES, and LVPECL, as long as the signals do not exceed maximum ratings of the device.The MAX4927switch provides an extremely low capac-itance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4927 features three built-in LED switches.The MAX4927incorporates a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resis-tance. An internal two-stage charge pump with a nomi-nal 7.5V output provides the high voltage needed to drive the gates of the n-channel switches while maintain-ing a consistently low R ON throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MH z provide proper charge-pump operation. Unlike other charge-pump cir-cuits, the MAX4927 includes internal flyback capacitors,reducing design time, board space, and cost.Digital Control InputsThe MAX4927 provides a single digital control input,SEL. SEL controls the high-frequency switches as well as the LED switches as shown in Table 1.Analog Signal LevelsThe on-resistance of the MAX4927 is very low and sta-ble as the analog input signals are swept from ground to V DD (see the Typical Operating Characteristics ). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. All the high-frequency switch inputs (A_,_B_), LED switch inputs (LED_, _LED_), and SEL have high ESD protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without dam-age. After an ESD event, the MAX4927 keeps working without latchup or damage.ESD protection can be tested in various ways. All signal and control inputs of the MAX4927 are characterized for protection to the following limits:•±15kV using the Human Body Model•±8kV using the Contact Discharge Method specifiedin IEC 61000-4-2•±15kV using the Air-Gap Discharge Method specifiedin IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.M A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 8_______________________________________________________________________________________Human Body ModelFigure 5a shows the H uman Body Model. Figure 5b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. H owever, it does not specifically refer to integrated circuits. The MAX4927helps equipment design to meet IEC 61000-4-2 without the need for additional ESD-protected components.The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the H uman Body Model. Figure 5c shows the IEC 61000-4-2 model, and Figure 5d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine ModelThe machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance.The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly.The Air-Gap Discharge Method involves approaching the device with a charged probe. The Contact Discharge Method connects the probe to the device before the probe is energized.Applications InformationTypical Operating CircuitThe Typical Operating Circuit shows the MAX4927 in a 1000 Base-T docking station application.Power-Supply Sequencing andOvervoltage ProtectionCaution:Do not exceed the absolute maximum ratings.Stresses beyond the listed ratings may cause perma-nent damage to the device.Proper power-supply sequencing is recommended for all CMOS devices. Always apply V DD before applying analog signals, especially if the analog signal is not current limited.Power-Supply BypassingBypass at least one V DD input to ground with a 0.1µF or larger ceramic capacitor as close to the device as pos-sible. Use the smallest physical size possible for optimal performance (0603 body size is recommended).It is also recommended to bypass more than one V DD input. A good strategy is to bypass one V DD input with a 0.1µF capacitor, and at least a second V DD input with a 10nF capacitor (use 0603 or smaller physical size ceramic capacitor).LayoutH igh-speed switches require proper layout and design procedures for optimum performance. Keep design-con-trolled-impedance PCB traces as short as possible.Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.Chip InformationPROCESS:BiCMOSMAX49271000 Base-T , ±15kV ESD Protection LAN Switch_______________________________________________________________________________________9Figure 5a. Human Body ESD Test ModelFigure 5b. Human Body Current WaveformFigure 5c. ICE 61000-4-2 ESD Test ModelFigure 5d. IEC 61000-4-2 ESD Generator Current WaveformM A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 10______________________________________________________________________________________Typical Operating CircuitMAX49271000 Base-T , ±15kV ESD Protection LAN Switch______________________________________________________________________________________11Functional DiagramM A X 49271000 Base-T , ±15kV ESD Protection LAN Switch 12______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX4927 1000 Base-T, ±15kV ESD Protection LAN SwitchMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc. Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to /packages.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe MAX9025–MAX9028 nanopower comparators in space-saving chip-scale (UCSP™) packages feature Beyond-the-Rails™ inputs and are guaranteed to oper-ate down to +1.8V. The MAX9025/MAX9026 feature an on-board 1.236V ±1% reference and draw an ultra-low supply current of only 1µA, while the MAX9027/MAX9028 (without reference) require just 0.6µA of supply current. These features make the MAX9025–MAX9028family of comparators ideal for all 2-cell battery-monitoring/management applications.The unique design of the output stage limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9025/MAX9027 have a push-pull output stage that sinks and sources rge internal-output drivers allow rail-to-rail output swing with loads up to 5mA. The MAX9026/MAX9028have an open-drain output stage that makes them suit-able for mixed-voltage system design. All devices are available in the miniature 6-bump UCSP packages.Refer to the MAX9117 data sheet for similar comparators in 5-pin SC70 packages and the MAX9017 data sheet for similar dual comparators in 8-pin SOT23 packages.Applications2-Cell Battery Monitoring/Management Ultra-Low-Power Systems Mobile Communications Notebooks and PDAsSensing at Ground or Supply Line Telemetry and Remote Systems Medical InstrumentsFeatures♦Space-Saving UCSP Package (1mm x 1.52mm)♦Ultra-Low Supply Current0.6µA (MAX9027/MAX9028)1µA with Reference (MAX9025/MAX9026) ♦Guaranteed to Operate Down to +1.8V♦Internal 1.236V ±1% Reference (MAX9025/MAX9026)♦Input Voltage Range Extends 200mV Beyond-the-Rails ♦CMOS Push-Pull Output with ±5mA Drive Capability (MAX9025/MAX9027) ♦Open-Drain Output Versions Available (MAX9026/MAX9028) ♦Crowbar-Current-Free Switching ♦Internal Hysteresis for Clean Switching ♦No Phase Reversal for Overdriven InputsMAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference________________________________________________________________Maxim Integrated Products 1Typical Application Circuit appears at end of data sheet.Pin ConfigurationsSelector GuideOrdering InformationBeyond-the-Rails and UCSP are trademarks of Maxim Integrated Products, Inc.19-3241; Rev 0; 5/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without Reference 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—MAX9025/MAX9026 (WITH REF)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC to V EE )..................................................+6V Voltage Inputs (IN+, IN-, REF).........(V EE - 0.3V) to (V CC + 0.3V)Output VoltageMAX9025/MAX9027....................(V EE - 0.3V) to (V CC + 0.3V)MAX9026/MAX9028..................................(V EE - 0.3V) to +6V Current into Input Pins........................................................20mA Output Current..................................................................±50mAOutput Short-Circuit Duration.................................................10s Continuous Power Dissipation (T A = +70°C)6-Bump UCSP (derate 3.9mW/°C above +70°C)........308mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Bump Temperature (soldering) Reflow............................+235°CMAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—MAX9027/MAX9028 (WITHOUT REF)ELECTRICAL CHARACTERISTICS—MAX9025/MAX9026 (WITH REF) (continued)M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without Reference 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX9027/MAX9028 (WITHOUT REF) (continued)by design, not production tested.Note 2:V OS is defined as the center of the hysteresis band at the input.Note 3:The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center ofthe band (i.e., V OS ) (Figure 2).Note 4:Specified with an input overdrive (V OVERDRIVE ) of 100mV, and load capacitance of C L = 15pF. V OVERDRIVE is definedabove and beyond the offset voltage and hysteresis of the comparator input. For the MAX9025/MAX9026, reference voltage error should also be added.MAX9025/MAX9026SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (n A ) 4.53.52.5800100012006001.55.5SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (n A )4.53.52.54005006007008003001.55.5MAX9027/MAX9028SUPPLY CURRENT vs. SUPPLY VOLTAGETEMPERATURE (°C)S U P P L Y C U R R E N T (n A )603510-1580010001200600-4085MAX9025/MAX9026SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (n A )603510-15400500600700800300-4085MAX9027/MAX9028SUPPLY CURRENT vs. TEMPERATUREOUTPUT VOLTAGE LOW vs. SINK CURRENTSINK CURRENT (mA)O U T P U T V O L T A G E L O W (m V )86422004006008000010TRANSITION FREQUENCY (kHz)S U P P L Y C U R R E N T (µA )10151015202530354000.1100MAX9025/MAX9026SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCYTRANSITION FREQUENCY (kHz)S U P P L Y C U R R E N T (µA )1015101520253035400.1100MAX9027/MAX9028SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCYOUTPUT VOLTAGE LOW vs. SINK CURRENTSINK CURRENT (mA)O U T P U T V O L T A G E L O W (m V )86422004006008000010MAX9025/MAX9027OUTPUT VOLTAGE HIGH vs. SOURCE CURRENTSOURCE CURRENT (mA)O U T P U T V O L T A G E H I G H (V C C - V O H , m V )86422004006008000010MAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +5V, V EE = 0V, C L = 15pF, V OVERDRIVE = 100mV, T A = +25°C, unless otherwise noted.)Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, C L = 15pF, V OVERDRIVE = 100mV, T A = +25°C, unless otherwise noted.)M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without Reference 6_______________________________________________________________________________________MAX9025/MAX9027OUTPUT VOLTAGE HIGH vs. SOURCE CURRENTSOURCE CURRENT (mA)O U T P U T V O L T A G E H I G H (V C C - V O H , m V )86422004006008000010SHORT-CIRCUIT SINK CURRENT vs. TEMPERATURETEMPERATURE (°C)S H O R T -C I R C U I T S I N K C U R R E N T (m A )603510-15102030400-4085MAX9025/MAX9027 SHORT-CIRCUIT SOURCECURRENT vs. TEMPERATURETEMPERATURE (°C)S H O R T -C I R C U I T S I N K C U R R E N T (m A )603510-15102030400-4085OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O F F S E T V O L T A G E (m V )603510-150.30.50.81.00-4085HYSTERESIS VOLTAGE vs. TEMPERATURETEMPERATURE (°C)H Y S T E R E S I S V O L T A G E (m V )603510-152.53.03.54.02.0-4085-1.000-0.6000.200-0.2000.6001.000-0.51.50.52.53.54.55.5INPUT BIAS CURRENT vs. INPUT BIAS VOLTAGEINPUT BIAS VOLTAGE (IN-) (V)I N P U T B I A S C U R R E N T (I N -) (n A )MAX9025/MAX9026REFERENCE VOLTAGE vs. TEMPERATURETEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-151.23401.23501.23601.23701.2330-4085MAX9025/MAX9026REFERENCE VOLTAGE vs. TEMPERATURETEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-151.2331.2351.2371.2391.231-4085MAX9025/MAX9026REFERENCE VOLTAGE vs. SUPPLY VOLTAGEM A X 9025-28 t o c 18SUPPLY VOLTAGE (V)R E F E R E N C E V O L T A G E (V )4.53.52.51.2351.2361.2371.2381.2341.55.5Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, C L = 15pF, V OVERDRIVE = 100mV, T A = +25°C, unless otherwise noted.)MAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference_______________________________________________________________________________________7403020100.0110.110100MAX9025/MAX9027PROPAGATION DELAY (t PD+)vs. CAPACITIVE LOADCAPACITIVE LOAD (nF)t P D + (µs )10203040506070801020304050PROPAGATION DELAY (t PD-)vs. INPUT OVERDRIVEINPUT OVERDRIVE (mV)t P D - (µs )020104030506002010304050MAX9025/MAX9027PROPAGATION DELAY (t PD+)vs. INPUT OVERDRIVEINPUT OVERDRIVE (mV)t P D + (µs )MAX9026/MAX9028PROPAGATION DELAY (t PD+)vs. PULLUP RESISTANCEPULLUP RESISTANCE (k Ω)t P D + (µs )10001002550751001251501752000101000020µs/divPROPAGATION DELAY (V CC = 5V)+100mV MAX9025 toc27-100mVOUT 2V/div 0VIN+MAX9025/MAX9026REFERENCE VOLTAGE vs. REFERENCE CURRENTREFERENCE CURRENT (nA)R E F E R E N C E V O L T A G E (V )50-501.2341.2361.2381.2401.232-100100PROPAGATION DELAY (t PD-)vs. TEMPERATURETEMPERATURE (°C)t P D - (µs )603510-1551015200-4085MAX9025/MAX9027PROPAGATION DELAY (t PD+)vs. TEMPERATURETEMPERATURE (°C)t P D + (µs )603510-1510203040500-4085201510500.0110.110100PROPAGATION DELAY (t PD-)vs. CAPACITIVE LOADCAPACITIVE LOAD (nF)t P D - (µs )Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, C L = 15pF, V OVERDRIVE = 100mV, T A = +25°C, unless otherwise noted.)M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without Reference 8_______________________________________________________________________________________20µs/divPROPAGATION DELAY (V CC = 1.8V)+100mV MAX9025 toc29-100mVOUT 1V/div 0VIN+200µs/div1kHz FREQUENCY RESPONSE(V CC = 5V)+100mV MAX9025 toc30-100mVOUT 2V/div 0VIN+20µs/divPROPAGATION DELAY (V CC = 3V)+100mV MAX9025 toc28-100mVOUT 1V/div 0VIN+1ms/div REFERENCE RESPONSE TO SUPPLY VOLTAGE TRANSIENT (C REF = 10nF)REF200mV/div MAX9025 toc32V CC 1V/div1.8V5V 40µs/divPOWER-UP/POWER-DOWN RESPONSEV CC MAX9025 toc330V OUT 2V/div 0V2V/div 20µs/div 10kHz FREQUENCY RESPONSE(V CC = 1.8V)+100mV MAX9025 toc31-100mVOUT 1V/div 0VIN+MAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference_______________________________________________________________________________________9Functional Diagrams±1% reference, yet draw an ultra-low supply current of 1.0µA. The MAX9027/MAX9028 (without reference)consume just 0.6µA of supply current. All four devices are guaranteed to operate down to +1.8V. Their com-mon-mode input voltage range extends 200mV beyond-the-rails. Internal hysteresis ensures clean out-put switching, even with slow-moving input rge internal output drivers allow rail-to-rail output swing with up to ±5mA loads.The output stage employs a unique design that mini-mizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX9025/MAX9027 have a push-pull output stage that sinks as well as sources current. TheMAX9026/MAX9028 have an open-drain output stage that can be pulled beyond V CC to a maximum of 5.5V above V EE . These open-drain versions are ideal for implementing wire-OR output logic functions.Input Stage CircuitryThe input common-mode voltage range extends from V EE - 0.2V to V CC + 0.2V. These comparators operate at any differential input voltage within these limits. Input bias current is typically ±0.15nA if the input voltage is between the supply rails. Comparator inputs are pro-tected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input volt-age exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct.Output Stage CircuitryThe MAX9025–MAX9028 contain a unique break-before-make output stage capable of rail-to-rail opera-tion with up to ±5mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However,with this family of comparators, the supply-current change during an output transition is extremely small.In the Typical Operating Characteristics , the Supply Current vs. Output Transition Frequency graphs show the minimal supply-current increase as the output switching frequency approaches 1kHz. This character-istic reduces the need for power-supply filter capaci-tors to reduce glitches created by comparator switching currents. In battery-powered applications,this characteristic results in a substantial increase in battery life.M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without ReferenceReference (MAX9025/MAX9026)The MAX9025–MAX9028s’ internal +1.236V reference has a typical temperature coefficient of 40ppm/°C over the full -40°C to +85°C temperature range. The reference is a very-low-power bandgap cell, with a typical 35k Ωoutput impedance. REF can source and sink up to 100nA to external circuitry. For applications needing increased drive, buffer REF with a low input-bias current op amp such as the MAX4162. Most applications require no REF bypass capacitor. For noisy environments or fast V CC transients, connect a 1nF to 10nF ceramic capacitor from REF to GND.Applications InformationLow-Voltage, Low-Power OperationThe MAX9025–MAX9028 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX9025–MAX9028, assuming nominal conditions.Internal HysteresisMany comparators oscillate in the linear region of opera-tion because of noise or undesired parasitic feedback.This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9025–MAX9028 have internal 4mV hysteresis to counter parasitic effects and noise.The hysteresis in a comparator creates two trip points:one for the rising input voltage (V THR ) and one for the falling input voltage (V THF ) (Figure 2). The difference between the trip points is the hysteresis (V HB ). When the comparator’s input voltages are equal, the hystere-sis effectively causes one comparator input to movequickly past the other, thus taking the input out of the region where oscillation occurs. Figure 2 illustrates the case in which IN- has a fixed voltage applied, and IN+is varied. If the inputs were reversed, the figure would be the same, except with an inverted output.Adding External HysteresisIn applications requiring more than the internal 4mV hysteresis of the MAX9025–MAX9028, additional hys-teresis can be added with external components.Because the MAX9025–MAX9028 are intended for very low-power systems, care should be taken to minimize power dissipation in the additional circuitry.Regardless of which approach is taken, the external hysteresis will be V CC dependent. Over the full discharge range of battery-powered systems, the hysteresis can change as much as 40%. This must be considered during design.Table 1. Battery Applications Using MAX9025–MAX9028MAX9025–MAX9028UCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without Reference______________________________________________________________________________________11Figure 2. Threshold Hysteresis BandFigure 3. MAX9025/MAX9027 External HysteresisSimplest CircuitThe simplest circuit for adding external hysteresis is shown in Figure 3. In this example, the hysteresis is defined by:where R S is the source resistance and R FB is the feed-back resistance. Because the comparison threshold is 1/2 V CC , the MAX9027 was chosen for its push-pull out-put and lack of reference. This provides symmetrical hysteresis around the threshold.Output ConsiderationsIn most cases, the push-pull outputs of the MAX9025/MAX9027 are best for external hysteresis.The open-drain output of the MAX9026/MAX9028 can be used, but the effect of the feedback network on the actual output high voltage must be ponent SelectionBecause the MAX9025–MAX9028 are intended for verylow power-supply systems, the highest impedance cir-cuits should be used wherever possible. The offset error due to input-bias current is proportional to the total impedance seen at the input. For example, select-ing components for Figure 3, with a target of 50mV hys-teresis, a 5V supply, and choosing an R FB of 10M Ωgives R S as 100k Ω. The total impedance seen at IN+ is therefore 10M Ω|| 100k Ω, or 99k Ω. The maximum I B of the MAX9025–MAX9028 is 2nA; therefore, the error due to source impedance is less than 400µV.Asymmetrical HysteresisWhen the input threshold is not set at 1/2 V CC , the hys-teresis added to the input threshold will not be symmet-rical. This is typical of the MAX9025/MAX9026 where the internal reference is usually used as the threshold.If the asymmetry is unacceptable, it can be corrected by adding resistors to the circuit.Board Layout and BypassingPower-supply bypass capacitors are not typically need-ed, but use 100nF bypass capacitors close to the device’s supply pins when supply impedance is high,supply leads are long, or excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance. A ground plane and surface-mount components are recommended. If the REF pin is decoupled, use a new low-leakage capacitor.Zero-Crossing DetectorFigure 4 shows a zero-crossing detector application.The MAX9027’s inverting input is connected to ground,and its noninverting input is connected to a 100mV P-P signal source. As the signal at the noninverting input crosses 0V, the comparator’s output changes state.Logic-Level TranslatorThe Typical Application Circuit shows an application that converts 5V logic to 3V logic levels. The MAX9028is powered by the +5V supply voltage, and the pullup resistor for the MAX9028’s open-drain output is con-nected to the +3V supply voltage. This configuration allows the full 5V logic swing without creating overvolt-age on the 3V logic inputs. For 3V to 5V logic-level translations, simply connect the +3V supply voltage to V CC and the +5V supply voltage to the pullup resistor.M A X 9025–M A X 9028UCSP , 1.8V , Nanopower, Beyond-the-Rails Comparators With/Without Reference 12______________________________________________________________________________________UCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommended reflow temperature profiles, as well as the latest information on reliability testing results, go to Maxim’s web site at /ucsp to find the Application Note:UCSP—A Wafer-Level Chip-Scale Package .Chip InformationTRANSISTOR COUNT: 209PROCESS: BiCMOSFigure 4. Zero-Crossing DetectorUCSP , 1.8V , Nanopower, Beyond-the-RailsComparators With/Without ReferenceMAX9025–MAX9028Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.6L , U C S P .E P SPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Note:The MAX9025EBT–MAX9028EBT use Package Code B6-1.。

相关文档
最新文档