烟气零价汞去除研究

合集下载

烟气脱汞新思路

烟气脱汞新思路

烟气脱汞新思路煤炭是我国的主要燃料能源,其平均含汞量在0.10 ug/g。

虽然其含汞量较低,但由于其消耗量巨大,我国每年因燃煤向大气中排放的汞达到数百吨之多。

汞及其化合物大多有剧毒,可通过呼吸道、皮肤和消化道等不同途径侵入人体,会造成神经性中毒和深部组织病变,而且其在生物和人体中具有累积性。

2011年2月国务院正式批复《重金属污染综合防治“十二五”规划》以及正在编制的《“十二五”重点区域大气污染联防联控规划》都对燃煤电厂烟气汞排放控制工作做了安排,相关试点已启动。

目前,燃煤电厂还没有一项成熟的脱汞技术,最常用的是烟气中喷入活性炭,但该技术费用过高。

因此,开发出一种价廉脱汞效率高、联合脱除NOx、SO2的方法显得尤为重要。

烟气中的汞有气态单质汞(Hg0)、气态二价汞(Hg 2+)、颗粒态汞(Hg p)3种形态。

现有大气污染控制技术协同脱汞1)、除尘装置目前,我国火电厂主要使用电除尘器(ESP)和布袋除尘器(FF)。

有研究表明,电除尘器和布袋除尘器同时使用,烟气汞脱除效率为34%~87%。

布袋除尘器由于在脱除高比电阻粉尘和亚微米级颗粒方面有独特效果,从而可以有效减少气态汞的排放量,对气态汞的排放量可减少70%-90%。

但是,袋式除尘器自身存在滤袋材质差、寿命短、压力损失大、运行费用高等局限性,限制了其使用。

2)、湿法脱硫装置(WFGD)烟气脱硫装置温度较低,有利于Hg0的氧化和Hg2+的吸收,是目前除汞最有效的净化设备。

特别是在WFGD中,由于Hg2+易溶于水,容易与石灰石或石灰吸收剂反应,因此WFGD可以将烟气中80%~95%的Hg2+除去,但对于不溶于水的Hg0捕捉效果不显著。

3)、烟气脱硝装置选择性催化还原(SCR)和选择性非催化还原(SNCR)是两种常用的脱硝工艺。

该两种工艺能够将Hg0氧化成Hg2+,而增加后续烟气脱硫设施对汞的去除率,一般前者应用较多。

目前,我国火电行业基本已全部完成SCR脱硝改造。

燃煤烟气中零价汞的催化氧化理论研究进展

燃煤烟气中零价汞的催化氧化理论研究进展

燃煤烟气中零价汞的催化氧化理论研究进展赵莉1,刘宇1,吴洋文1,庄柯2,陆强1(1. 生物质发电成套设备国家工程实验室(华北电力大学)北京 102206;2. 国电环境保护研究院,江苏 南京 210031)摘 要:汞是燃煤锅炉烟气重金属污染元素之一,主要存在形态为零价汞(Hg 0)、氧化态汞(Hg 2+)和颗粒态汞(Hg p ),其中Hg 0难以去除,通常需将其氧化为较易脱除的Hg 2+后再脱除;催化剂可以促进Hg 0的氧化,按照催化剂来源与功能的不同,将其分为3类,即燃煤飞灰、常规Hg 0氧化催化剂及联合脱硝脱汞催化剂,综述了Hg 0在不同催化剂作用下发生氧化反应的密度泛函理论(DFT)研究现状;对各种催化剂表面Hg 0的吸附以及氧化反应机理进行了总结并比较了一些相近研究的内容与结果;指出了现有研究的不足,提出了Hg 0氧化剂DFT 理论计算研究今后的发展趋势。

关键词:燃煤电站;汞排放;汞脱除;零价汞, 汞催化氧化;密度泛函理论中图分类号:TK621;X501 文献标志码:A DOI :10.11930/j.issn.1004-9649.2016111130 引言汞(Hg ),俗称水银,是常温下唯一以液态形式存在的金属。

汞具有剧毒性、易迁移性、生物富集性,进入生物体后难以排出,对健康危害极大。

煤炭等化石燃料的燃烧是汞的主要排放源之一。

现阶段在我国的能源消耗中,煤炭仍占主要地位。

在燃煤锅炉产生的烟气中,Hg 主要以3种形态存在,即Hg 0、Hg 2+ 和Hg P [1]。

Hg 2+ 易溶于水,可通过湿法(例如燃煤电厂湿法脱硫系统)去除;Hg P 可随飞灰在除尘设备中去除;而Hg 0利用燃煤锅炉现有的污染物控制设备很难除去,几乎全部释放到大气中,且停留久、易迁移,造成全球性污染。

目前,燃煤锅炉汞污染物控制技术主要包括燃烧前脱汞、燃烧中脱汞和燃烧后脱汞3类[2-3]。

其中,燃烧前脱汞和燃烧中脱汞在效率和经济性方面都有很大的局限性,而燃烧后添加催化剂脱汞技术效率较高,是当前燃煤电厂汞污染控制技术的研究重点和热点[4-5]。

烟气脱汞技术原理

烟气脱汞技术原理

烟气脱汞技术原理随着工业化进程的加速,大量的汞排放已经成为了环境污染的主要来源之一。

汞是一种有毒有害的重金属,对人体健康和环境造成的危害不可忽视。

因此,烟气脱汞技术的研究和应用已经成为了环保领域的热点之一。

烟气脱汞技术是指通过一系列的化学反应和物理过程,将烟气中的汞元素转化为无害的物质,从而达到减少汞排放的目的。

烟气脱汞技术主要分为湿法脱汞和干法脱汞两种方式。

湿法脱汞技术是指将烟气中的汞元素转化为水溶性化合物,然后通过水的沉淀、过滤等方式将汞元素从烟气中去除。

湿法脱汞技术主要包括氧化吸收法、氯化吸收法、硫酸吸收法等。

氧化吸收法是指将烟气中的汞元素氧化为水溶性的二氧化汞,然后通过吸收剂将其吸收。

氧化吸收法的主要优点是适用范围广,可以处理高浓度的烟气,但是其缺点是吸收剂的成本较高,且需要进行后续的处理。

氯化吸收法是指将烟气中的汞元素氯化为水溶性的氯化汞,然后通过吸收剂将其吸收。

氯化吸收法的主要优点是吸收剂的成本较低,但是其缺点是需要进行后续的处理,且对烟气中的其他成分也有一定的影响。

硫酸吸收法是指将烟气中的汞元素氧化为水溶性的硫酸汞,然后通过吸收剂将其吸收。

硫酸吸收法的主要优点是吸收剂的成本较低,且对烟气中的其他成分影响较小,但是其缺点是需要进行后续的处理。

干法脱汞技术是指将烟气中的汞元素转化为固态化合物,然后通过过滤、沉淀等方式将其从烟气中去除。

干法脱汞技术主要包括活性炭吸附法、催化剂氧化法、冷凝法等。

活性炭吸附法是指将烟气中的汞元素吸附在活性炭上,然后通过过滤等方式将其从烟气中去除。

活性炭吸附法的主要优点是适用范围广,但是其缺点是需要进行后续的处理。

催化剂氧化法是指将烟气中的汞元素氧化为固态化合物,然后通过过滤等方式将其从烟气中去除。

催化剂氧化法的主要优点是处理效率高,但是其缺点是催化剂的成本较高。

冷凝法是指将烟气中的汞元素冷凝成固态化合物,然后通过过滤等方式将其从烟气中去除。

冷凝法的主要优点是处理效率高,但是其缺点是需要进行后续的处理。

高活性吸收剂烟气脱汞试验研究的开题报告

高活性吸收剂烟气脱汞试验研究的开题报告

高活性吸收剂烟气脱汞试验研究的开题报告
一、研究背景
大气污染严重影响了人类健康和环境质量。

其中,燃煤工业排放的
汞是重要的大气污染源之一。

据统计,全球每年约有2000吨汞排放到大气中,其中燃煤工业贡献了60%以上。

汞对人体具有较强的神经、免疫、内分泌等影响,长期暴露会导致神经系统、免疫系统等疾病。

同时,汞
也是大气中重要的环境问题之一。

因此,开发高效、低成本的汞排放控
制技术已经成为环保领域研究的热点问题。

二、研究内容
本研究将以高活性吸收剂为研究对象,探究其在燃煤电厂脱除烟气
汞的应用。

研究具体内容如下:
1. 调制高活性吸收剂材料并进行表征
2. 设计高效的烟气脱汞工艺实验方案,并对不同因素(吸收剂用量、烟气流速、烟气温度等)对吸附效果进行分析
3. 通过模拟工况下的实验,分析该技术对煤燃烧烟气中汞的去除效
率以及对其他污染物(如SO2、NOx等)的影响
4. 建立高活性吸收剂烟气脱汞技术的经济评价模型,并与传统技术
进行比较分析
三、研究意义
高活性吸收剂烟气脱汞技术具有以下优势:
1. 剂量少、响应快、吸附效率高
2. 更广泛适用于汞存在的各种状态(如齐墩果酸盐、元素态等)和
工况(如不同温度、压力等)
3. 对其他污染物(如SO2、NOx等)的影响小
本研究将有助于提高燃煤电厂烟气处理技术的水平,促进我国环保产业的发展。

同时,还可为其他燃料电厂的脱汞工艺提供参考和借鉴。

燃煤电厂汞减排技术研究现状

燃煤电厂汞减排技术研究现状

大 部 分 的 现 有 烟 气 处 理 设 备 对 汞 的 减 排 都 具 有 一 定 的
作用. 但不 同的设 备对 烟气 中不 同形态 的汞 的捕 捉能力 有所 不同. 因而单 独的 除汞能 力相 对有 限 . 或者 需要 比较 苛刻 的 条 件才 能保 证较好 的汞去 除效果 。因此 , 用设 备联用 的方 采

把煤 中 的汞 转移 到了废液 中 . 煤后产 生的浆 液 的处 理是个 洗 新 的问题 . 同时该 方法无 法有效 去除煤 中与有机 碳结 合在一
起 的 汞 热处理 技术 是利用汞高 挥发性 的特 点 . 高 温环 境下把 在 222 脱 硫 设 备 协 同 除 汞 ..

脱 硫设 备在 控制 燃煤 电厂烟 气 S , 0 排放 中发挥 着重 要 的作 用 。由于烟气 中的 H 极易 溶于水 或者其 他吸 收液体 ,
例 在 3 %左 右 的燃煤 烟气 .经过 E P后其 浓度 平均 可 以降 0 S 至5 %左右 。高洪 亮等 [ 8 ] 研究 发现 , 燃用 石煤 产生 的烟气通 过 E P后 气 态 汞 的 含 量 约 降低 13 ( 中 Hg 的下 降 最 为 明 S / 其  ̄ 显) .颗 粒汞 下 降 9 .%, S 65 E P对 烟气 中汞 的脱 除效 率 可 达 5 .% 可 以看 出 . S 97 E P的除汞能力 在很大程 度上受 到飞灰 含 量、 粒径 以及含 碳量 的影响 。美 国电科 院( P I对 干式 电除 E R) 器之 后增加 一个湿式 电除 器( S 的工艺进行 小 型试验后 WE P)
烧 烟煤的 电厂 飞灰可捕 捉烟气 中 3 %的汞蒸气 赵永椿等 _ 0 6 _ 在研究 燃煤 飞灰 的吸 附脱 汞能力后发 现 . T > 0 C L 10和 C S > TR

脱除烟气中气态汞的研究进展

脱除烟气中气态汞的研究进展
3.3
比较
根据实验得出[4s3:OH和CMMS方法都能得到烟气中气态汞的浓度分布,但元素汞的偏差较大,总汞的
测试结果相近。误差主要来源于烟气中的飞灰浓度以及两种方法对颗粒捕集方式的不同。现场测试条件和粉
≮蕊涵蟊菌菌赢醚。
尘浓度对两种方法的影响值得进一步关注。

实验条件对烟气中气态汞脱除的影响
活性炭基材料改性对气态汞吸附的影响
4.2
吸附温度的影响
不同的气态汞控制技术,适用于不同的温度范围。利用碳基吸附剂则能在较低的温度下(一般在343~
453
K)得到最优效果[54,553,这样就极大地节省了能源。高洪亮口6]等在吸附温度分别在353 K和398 K时进行
试验,得到活性炭在这两种温度下的穿透曲线随吸附反应温度的升高;在相同吸附时间内,烟气中单质汞的穿 透率明显升高。这说明随吸附温度的升高,活性炭吸附汞的能力降低。金峰等[563在考察颗粒活性炭(GAC)对 汞的吸附时发现,在313~473 K之间,GAC的吸附量在413 K时有最小值。曾汉才[57]等在研究活性炭纤维 脱除燃煤烟气中汞的试验研究时发现在温度343 K时活性炭的吸附量出现最大值。
展开。
2.2湿法烟气脱硫除汞法
湿法烟气脱硫(WFGD)法脱汞是利用HgCl:的水溶性,由于烟气中的二价汞大部分是HgCI:,因此脱硫 系统可通过溶解烟气中的二价汞将其捕捉,剩余的烟气中部分零价汞和部分二价汞在经过除尘器(FF或
l圄l——————————\兰!!!查堡垒窒竺堂查垒堡皇垒l
ESP)时被除去。美国有四分之·的火电厂安装了此项设备,据调查统计:此项技术可以将烟气中90%以卜的 H92+除去。但对于不溶于水的Hgo捕捉效果不显著甚至在某些电厂其浓度有轻微升高,可能是由于亚硫酸 盐在洗涤液里对二价汞的还原造成的[3 5|。在同一研究中发现,氯元素在煤中的含量极大的影响了汞的去除 率,WFGD对烟气中汞总的脱除率在45%~55%范围内口引。

基于ESP的烟气零价汞去除方法研究

基于ESP的烟气零价汞去除方法研究

基于ESP 的烟气零价汞去除方法研究周昭熠、张正帅、曹汝琼常程、杜博涵、龚逸指导老师:瞿赞汞对人体健康的影响汞是蓄积性很强的毒物,人体吸收的汞分布于全身组织和器官,但以肝、肾、脑等器官的含量最高。

汞易与体内大分子发生共价结合。

Hg由于具有高度亲电子性,故对体内的基团如巯基、羰基、羧基、羟基等均具很强的攻击力。

惨痛教训——日本水俣病汞污染来源及特点汞环境污染的来源有天然释放和人为两个方面。

火力发电、垃圾焚烧和其它以化石燃料为动力的水泥、冶金等工业过程则是现阶段全球人为汞污染的重要来源。

燃煤电厂汞排放的形式主要有三种:气态汞元素单质Hg0,气态二价离子汞Hg2 +和固态颗粒附着汞Hg(P)。

一般Hg2 +易溶于水,易于脱除;而Hg0不溶于水,且挥发性极强。

1. 吸附法脱汞(AC Injection, 活性炭喷入技术)•吸收剂特性,比如大小、形状、比表面积、微孔体积、孔径分布等等都会影响吸收剂的吸收效率。

•缺点1、必须减少吸收剂的成本。

2、吸附了Hg 的活性炭混入飞灰中会导致飞灰的品质下降,影响其销售3、汞的稳定性还需要进行研究。

2. 催化法氧化SCR 催化剂可以将元素汞氧化成二价汞,尤其是在HCl 存在的条件下。

汞的催化氧化应包含吸附和氧化两个过程。

Hg(g)→Hg(ads)Hg(ads)+MxOy →HgO(sds)+MxOy-1MxOy-1+ 1/2O2 →MxOyHgO(ads)→HgO(g)HgO(ads)+MxOy →HgMxOy+1•缺点1、催化剂成本高2、对Hg0的氧化效果不好3. 静态实验一、实验目的及原理:含汞气体进入反应器,在高压电作用下,会发生电离现象,从而使得反应器中的汞含量迅速下降。

本静态实验是为了通过不同强度的电压作用以及不同浓度的氯气作用的对比,从而找到汞电离的最优电压和氯气浓度条件,并且找出容器壁吸附等其他因素的影响。

二、实验装置在静态条件下反应汞的去除效率实验条件:100℃,施加不同强度的高压电分析:如图所示,随着施加电压的增强,汞的去除效率有明显的上升。

燃煤电厂烟气汞排放控制研究现状及进展

燃煤电厂烟气汞排放控制研究现状及进展

燃煤电厂烟气汞排放控制研究现状及进展1燃煤电厂汞的排放煤作为一次能源的主要利用方式是燃烧,其燃烧产物会对环境造成严重的破坏。

全世界发电用煤量巨大,燃煤电厂是导致空气污染的最大污染源之一。

在煤燃烧造成的污染物中,除S02、NOx和CO2外,还有各种形态的汞排放。

汞是煤中的一种有毒的重金属痕量元素, 具有剧毒性、高挥发性、生物体内沉积性和迟滞性长等特点。

全球每年排放到大气中的汞总量约为5000吨,其中4000吨是人为的结果,而燃煤过程的汞排放量占30%以上。

由于我国一次性能源以煤炭为主,原煤中汞的含量变化范用在O.1^5.5mg/kg,煤中汞的平均含量为0.22mg/kg,是世界范用内煤中平均汞含量的1.69倍。

根据相关报道,预计2010年中国电煤总需求呈:为16亿t,以煤炭含汞疑为0. 22mg/kg,电厂平均脱汞效率为30%汁,2010年燃煤电厂汞排放量约为246. 4 J因此燃煤所造成的环境汞污染形势不容乐观,对其排放控制不容忽视。

2烟气中汞的存在形式及其影响因素2.1汞的存在形式烟气中汞的存在形式主要包括3种:单质汞(Hg。

)、化合态汞(Hg+和Hg2+)和颗粒态汞。

其中单质汞(Hg。

)是烟气中汞的主要存在形式。

烟气中汞的存在形态对汞的脱除有重要影响。

不同形态汞的物理、化学性质差异较大,如化合态汞易溶于水,并且易被烟气中的颗粒物吸附,因此易被湿法脱硫设备或除尘设备脱除。

颗粒态汞也易被除尘器脱除。

相反单质汞挥发性高、水溶性低,除尘或脱硫设备很难捕获,几乎全部释放到大气中,且在大气中的平均停留时间长达半年至两年,极易在大气中通过长距离大气输送形成广泛的汞污染,是最难控制的形态,也是堰煤烟气脱汞的难点。

2.2影响汞存在形态的主要因素2.2.1燃煤种类的影响燃烧所用煤种不同,烟气中汞的形态分布也不同。

烟煤燃烧时,烟气中Hg2+含量较髙, Hgu 含量偏低;而褐煤在燃烧时,烟气中Hg。

的含量却较高。

褐煤燃烧所产生烟气中Hg。

燃煤电厂烟气脱汞介绍 共21页PPT资料

燃煤电厂烟气脱汞介绍 共21页PPT资料
• 烟气中的汞一般以零价元素汞H0和二价汞Hg+2形态存 在,H0和Hg+2之间的比率与烟气的成分、煤种、未燃 汞和协同控制
5
烟气脱汞和协同控制
电厂烟气汞排放的基本资料
• 各种煤种的元素汞和二价汞的比例:
烟煤:元素汞30% 次烟煤:元素汞85% 褐煤:元素汞90%
TOXECON工艺
17
烟气脱汞和协同控制
TOXECON 2工艺
18
烟气脱汞和协同控制
PAC喷入工艺的脱汞效率
19
总结
好消息之一:我国大部分燃煤电厂的烟气 含汞量都比0.03mg/Nm3要低;
好消息之二:烟气脱汞可以依靠现有的烟 气治理设备的协同控制能力来实现。在现 有标准要求下,一般无需新增独立的脱除 装置。
6
烟气脱汞和协同控制
7
烟气脱汞和协同控制
汞排放控制技术
• 协同控制 • 强化协同控制 • 吸收剂技术
8
烟气脱汞和协同控制
9
烟气脱汞和协同控制
10
烟气脱汞和协同控制
协同控制
• 电厂所有的大气污染控制系统(APC)除了针 对各自的主要污染物之外,对于汞都有一定程 度的协同处理能力;
• 美国EPA对电厂的APC技术的组合对汞的协同 处理能力进行了调研,其结果如下表。
3
烟气脱汞和协同控制
电厂烟气汞排放的基本资料
• 人为排放的汞中,化石燃了占67%,其中化石燃料电 厂约占50%,即化石燃料电厂的排放时人为排放的 1/3;
• 电厂烟气中的汞含量很低,约为1ppb。形象地比喻: 在300亿个乒乓球中有30个黑球。如果要求达到90% 的脱汞效率,就是必须脱除其中27个黑球!

燃煤电厂烟气中汞处理技术及监测方法探讨

燃煤电厂烟气中汞处理技术及监测方法探讨

燃煤电厂烟气中汞处理技术及监测方法探讨针对当前燃煤电厂所排放的烟气中,关于汞元素对环境的危害问题进行了论述,对目前燃煤电厂能够采用的脱汞技术进行了总结,并对如何监测燃煤电厂烟气中的汞含量值,提出了有效的改进对策。

标签:燃煤烟气;电厂;汞处理;脱汞技术0 引言我国对重金属汞有严格的管控制度,汞的剧毒性对人体危害巨大,因此为了避免汞排放对环境造成污染,要严格监测汞元素的排放问题。

超量的汞会在不同的环境层面中进行自由渗透,包括土壤、水域等。

汞可以在生物体内进行聚集,例如当空气或是自然水体中的汞元素超标时,就会在动物或鱼的内脏组织中沉淀下来,人一旦使用了这些鱼或动物,汞元素就会进入人的体内,进而毒害人的神经系统,或者是影响未成人的成长发育。

根据环境调查报告统计,由于人为因素造成汞污染的问题,主要来自于燃煤。

火电厂燃煤发电排放的烟气中,包含多种有毒重金属,例如汞、铅、镍、锌、铬等。

这些重金属一部分会随着燃煤产生的烟气、粉尘等,由烟囱排入大气中,而有一部分会被吸附在烟道中,工厂对烟道进行清理,会将这一部分灰尘收集到贮灰场,从而使得灰尘中可溶于水的重金属,随水向地下渗透,或者是被冲入地表水体,造成水环境的污染。

根据有关研究资料显示,由于电厂燃煤排放的汞污染物,占总污染物排放量的33%,居于所有行业的首位。

随着我国燃煤量的增加,汞污染呈现逐年上升的态势。

尤其是燃煤电厂的汞排放情况,还没有制定相应的监测方法和排放标准。

1 我国当前实行的脱汞技术1.1 洗煤技术煤炭中的黄铁矿的含量和重金属汞关系密切,通过磁分离法去除黄铁矿的同时,也去除了黄铁矿的伴生物汞。

此外,还有一些可以从原煤中提取汞的方法,包括微生物法、化学方法等。

据统计,采用化学洗煤技术,可以比传统的洗煤技术,多去除约25%的汞。

1.2 热处理技术利用汞的挥发性高的特性,可以对煤进行预热,煤炭中的汞经过加热进而挥发。

据研究数据表明,当煤炭加热到400摄氏度时,可以将煤炭中80%的汞进行分离。

烟气脱汞原理

烟气脱汞原理

烟气脱汞原理烟气脱汞是指通过特定的技术手段将烟气中的汞物质去除的过程。

汞是一种有害物质,对环境和人体健康造成严重影响。

因此,烟气脱汞技术的研发与应用对于保护环境和人类健康具有重要意义。

烟气脱汞技术的原理主要包括化学吸附、物理吸附和化学反应等几个方面。

其中,化学吸附是最常见也是最有效的一种方法。

化学吸附是通过在烟气中加入特定吸附剂,使汞与吸附剂发生化学反应,形成稳定的吸附产物,从而将汞从烟气中去除。

常用的吸附剂包括活性炭、硫化物和氧化物等。

活性炭是一种常用的吸附剂,其具有较大的比表面积和孔隙结构,能够有效吸附烟气中的汞物质。

硫化物是另一种常用的吸附剂,其与汞形成硫化汞的稳定化合物,具有较高的吸附能力。

氧化物则是通过与汞发生氧化还原反应,将其转化为不溶于烟气中的氧化汞或化合物,进而实现脱汞的目的。

在烟气脱汞过程中,除了吸附剂的选择外,还需要考虑其他因素的影响。

例如,烟气温度、压力和湿度等参数都会对脱汞效果产生影响。

一般来说,较高的烟气温度有利于吸附剂与汞物质之间的反应,但过高的温度可能导致吸附剂的失效。

此外,湿度对于某些吸附剂的吸附能力也具有影响,适当的湿度有助于提高脱汞效率。

除了化学吸附外,物理吸附也是烟气脱汞中常用的方法之一。

物理吸附是通过吸附剂的微孔结构和表面张力等作用,将汞物质吸附在表面上。

物理吸附具有高效、无二次污染等优点,但是相对于化学吸附来说,其吸附能力较弱。

烟气脱汞过程中还可以利用化学反应将汞物质转化为其他形式。

例如,可以通过添加氯化剂将汞气转化为氯化汞,进而使其溶解在烟气中。

这种方法可以有效降低烟气中汞的浓度,但是需要在高温下进行,同时还需要考虑氯化剂的选择和剂量等因素。

烟气脱汞是一项复杂而重要的环境保护工作。

通过选择适当的吸附剂和控制相关参数,可以有效地将烟气中的汞物质去除。

然而,在实际应用中仍需进一步研究和改进,以提高脱汞效率和降低成本。

只有不断完善烟气脱汞技术,才能更好地保护环境、维护人类健康。

烟气脱汞技术研究进展

烟气脱汞技术研究进展
3.1.4 新型吸收剂
文献[12]研究了一种新型的螯合吸收剂,可以 从烟气中直接去除气态的氯化汞。该吸收剂主要由 附着在多孔的硅胶培养基上的活性超细表层结构 构成。通过固定的鳌合团表面的熔融盐产生螯合作 用。元素分析结果表明汞的理论吸收能力非常高, 大约为 33 mg/g。该吸收剂适用于烟气处理的最后 阶段的低温区域,最高的操作温度是 135 °C。对氯 化汞的动力吸附能力评估显示该吸收剂是非常有 效的,最低的吸收能力是 Hg2+12 mg /g,通过 Far- FTIR 检测产物发现由巯基丙氨酸配体和捕集的 HgCl2 之间形成了螯合物。
流化床燃烧方式在降低 NOx 排放的同时可以 降低烟气中汞及其他微量重金属的排放,在流化床 燃烧器中进行的高氯烟煤(氯含量达到 0.42%)燃烧 试验中,汞几乎全部被氧化成了 HgCl2。在烟气中鼓 入 15%的二次风(基于最初的气/煤比)对 Hg 的捕 集十分有利。大约 55%的 Hg2+被飞灰所捕集。给煤 中 只 有 4.5% 的 汞 以 气 态 Hg0 的 形 式 散 逸 到 空 气 中[5]。究其原因有以下几个方面: (1)较长的炉内停 留时间致使微颗粒吸附汞的机会增加,对于气态汞 的沉降更为有效; (2)流化床燃烧的操作温度较低, 导致烟气中氧化态汞含量的增加,同时抑止了氧化 态汞重新转化成 Hg0; (3)氯元素的存在大大促进了 汞的氧化。
3 燃烧后脱汞
燃烧后脱汞的研究主要包括 2 个方面,一方面 是脱汞吸收剂的开发;另一方面是通过现有的烟气
治理设备,进行一定程度的改进,使其具有脱汞性 能,从而实现脱硫脱硝除汞一体化。
3.1 吸收剂脱汞
在吸收单质汞的过程中,吸收剂起到了决定性 的作用,从国内外研究状况来看,大部分研究集中在 高效、经济的吸收剂的研制,这其中包括:活性炭、飞 灰、钙基吸收剂以及一些新型吸收剂等。

燃煤烟气中汞脱除技术的研究进展

燃煤烟气中汞脱除技术的研究进展

第39卷第4期2008年7月 锅 炉 技 术BOIL ER TECHNOLO GYVol.39,No.4J ul.,2008收稿日期:2007-09-24基金项目:国家重点基础研究发展计划(973计划)资助项目(2006CB200300)作者简介:孟素丽(1981-),女,硕士研究生,主要从事燃煤大气污染物控制研究。

文章编号: CN31-1508(2008)04-0077-04燃煤烟气中汞脱除技术的研究进展孟素丽,段钰锋,杨立国,王运军,黄治军(东南大学洁净煤发电及燃烧技术教育部重点实验室,江苏南京210096)关键词: 燃煤烟气;汞;脱除技术;吸附剂;研究进展摘 要: 针对目前燃煤锅炉烟气中汞的排放状况,综述了燃煤电厂烟气中汞脱除技术的研究进展。

介绍了现有常规污染物控制设备对燃煤烟气中汞的脱除能力;探讨了活性炭、改性活性炭、飞灰、钙基吸附剂、矿物类吸附剂以及一些新型吸附剂对汞的脱除效果。

结合国内外研究经验,依靠现有污染物控制设备、改良常见吸附剂特性和开发高效廉价的吸附剂将成为今后我国脱除烟气汞的主要发展趋势。

中图分类号: T K 229.6 文献标识码: B1 前 言 汞是一种神经毒物,而且是一种生物积累物质,对人群健康威胁很大。

目前认为造成汞环境污染的来源主要是天然释放和人为因素。

2003年初,联合国环境规划署(UN EP )发表的一份调查报告指出,燃煤电厂是最大的人为汞污染源。

在燃煤过程中,汞主要是以气态形式排放,成为环境污染的主要来源之一。

烟气中汞主要以3种形态存在:元素汞(Hg 0)、氧化态汞(Hg 2+)和颗粒态汞(Hg P )。

不同形态的汞具有不同的物理和化学性质。

Hg 2+易溶于水且易附着在颗粒物上,故可用常规的污染物控制设备除去;Hg P 在大气中的停留时间很短,也可用除尘设备收集;而Hg 0易挥发且难溶于水,很难被除尘设备捕获,几乎全部排放到大气中,形态相对比较稳定且停留时间很长,平均可达1年左右,且易长距离输送而形成大范围的汞污染。

烟气脱汞技术

烟气脱汞技术

烟气脱汞技术赋存在煤中的汞经过燃烧后的烟气汞主要有3种形态:气态单质汞Hg0(g)、气态二价汞Hg2+(g)、固态颗粒汞Hg (p)。

仅就气态汞而言,气态单质汞Hg0(g)占主要存在形式。

有关研究表明,在锅炉烟气出口处(970 C)86%的气态汞为Hg0(g)。

烟气脱汞关键是Hg0的脱除,由于Hg0难溶于水,所以一般的化学脱汞技术都需要把Hg0催化氧化为能溶于水的Hg2+,然后再做进一步处理。

而吸附剂法脱汞技术通常为物理、化学混合吸附,不仅能吸附Hg2+,也能吸附Hg0。

固态颗粒汞Hg (p)易被除尘装置去除。

气态二价汞Hg2+(g)易溶于水,湿法脱硫时可去除。

一、活性炭脱汞技术活性碳脱汞脱汞属于物理吸附脱汞,对零价汞、二价汞、颗粒汞都有很好的吸附效果,其中对零价汞的脱除率可高达99%。

活性碳脱汞采用活性炭喷入技术,该技术是目前较为成熟且应用最多的一种烟气脱汞技术,脱汞率可达96%。

然而活性炭价格昂贵,这严重影响了该技术的推广。

1个500MW的燃煤电厂每年用活性炭脱汞费用约为100万美元。

活性炭主要有普通活性炭、化学改性活性炭、活性炭纤维等。

由Nucon公司生产的经过热沉淀单质硫活化改性的活性炭的脱汞效率可提高到70%以上。

经过碘化改性的活性炭,在同样条件下,吸附脱汞能力是未经改性活性炭的160倍,可以极大地减少活性炭用量。

二、多污染控制技术多污染控制技术属于化学脱汞技术。

首先采用催化氧化技术将单质汞转化为离子汞,其次利用湿法脱硫洗涤塔将离子汞溶于水,将其去除。

相关研究结果表明,电厂SCR脱硝装置可以氧化70%-80%的元素汞,可以提高汞的脱除率。

在美国密歇根州Endicott电厂进行了湿式脱硫装置脱汞工业性试验,在系统中加入了氯氧化剂,阻止了氧化态汞重新还原成单质汞,脱汞效率平均保持在77%。

在Cinergy公司Zimmer电厂进行的相同试验中,没有加入氯氧化剂,结果显示了在洗涤器中发生了化学还原反应,平均脱汞效率约50%。

烟气脱汞技术研究进展

烟气脱汞技术研究进展

第42卷第9期2013年9月热力发电T H E R M A L P O W ER G E N E R A T I O NV01.42N O.9Sep.2013[摘[关[中图[ool烟气脱汞技术研究进展程广文1,张强2,白博峰11.西安交通大学能源与动力工程学院,陕西西安7100322.西安热工研究院有限公司,陕西西安710032要]烟气脱汞技术包括吸附剂法、化学氧化法和利用现有设备与技术控制汞排放法3种。

吸附剂法是目前最成熟的一种烟气脱汞技术,常用的脱汞吸附剂有活性炭类吸附剂、飞灰、钙基吸附剂、矿物类吸附剂以及各种新型吸附剂;化学氧化法主要包括光催化氧化、金属及金属氧化物催化氧化和选择性催化还原法等,是利用氧化剂或催化剂将烟气中的H go氧化成H92+后,再进行脱除;利用现有的袋式除尘设备能除去烟气中的H gr,静电除尘器不但能除去H gr,还能有效氧化吸附H go;湿法脱硫技术可去除H92+。

键词]烟气脱汞;吸附剂法;化学氧化法;吸附剂;氧化剂;催化剂分类号]X701[文献标识码]A[文章编号]1002—3364(2013)09—0001—06编号]10.3969/J.i s sn.1002—3364.2013.09.001R e sea r c h advanc es of f l ue gas m er cur y r e m ova l t echnol ogyC H E N G G uangw enl,Z H A N G Q i a n92,B A I B of en911.School of E ner gy and P ow e r E ng i nee r i ng,X i'an Ji aot ong U ni ver si t y,X i'an710049,C hi na2.X i'an T her m al P ow er R es e ar ch I ns t i t ut e C o.,L t d.,C hi na H uane ng G r oup,X i'a n710032,C hi naA bst r act:Seve r al t echnol ogi es of c apt ur i ng m er cu r y f r om f l ue ga s s uch as ads or bent m e t hod,oxi—di zat i on m et ho d,and em pl oyi ng ex i st i ng de vi ces and t echnol ogi es t o cont r ol m er cu r y w er e i nt r o—duce d,a nd t he devel o pm ent s of t he se t e chnol ogi e s w er e al s o s um m ar i zed.T he ads or bent m e t hodi s t he m os t m at ur e m er cu r y r em oval t echnol ogy at pr e se nt.The com m on m e r cur y r em oval ads or—be nt i ncl ude s ac t i va t ed c ar bon adsor bent s,f l y ash,C a—bas ed ads or be nt,m i ne r al ads or bent andva—r i ous new ads or bent s.T he oxi da t i on m e t hod co nsi st s of phot ocat al yt i c oxi dat i on,m e t a l and m et aloxi de cat al yt i c oxi da t i on,and sel ect i v e cat al yt i c r e duct i on,by w hi c h t he H go i n f l uega s w as oxi—di zed t o H g抖by t he oxi dant or cat a l yst,t hus t he H g抖w a s r em oved.T hepr es ent bag fi l t er c ancol l ect t he H gp i n f l ue gas;t he el ect r ost at i cpr e ci pi t at or no t onl y c an col l ect t he H gP,but al s o ca n oxi di ze and a bs or b H go ef f ec t i vel y;w hi l e t he H92+can be r em ove d by w e t de sul f ur i zat i on t echnol—ogy.The r ec ent r e sea r c h pr ogr e ss and t he pr obl em s occ ur r ed dur i ng t hei r appl i cat i on of above t e chnol ogi e s w er e pr e sent ed.Fi na l l y,t he devel opm ent t r e nd of t he c apt ur i ng m er cu r y t echnol ogy w a s pr opo sed.K e y w or ds:m er cur y r e m oval;f l ue ga s;a dsor bent m et hod;oxi di za t i on m e t hod;oxi da nt;c at al yst汞是一种有毒的重金属元素,也是一种重要的大气污染物,具有挥发性、持久性和生物累积性,可通过食物链进入人体,对人的神经系统和生长发育产生致命影响。

烟气脱汞技术原理

烟气脱汞技术原理

烟气脱汞技术原理
一、烟气脱汞技术原理
1.烟气脱汞技术的原理是:通过特殊的吸附剂和清洗液的应用,将烟气中的汞烟雾转变成一种有机形式的汞,使其不具有毒性和破坏性,避免其对大气的污染。

2.烟气脱汞技术的具体过程是:烟气经过预处理后进入吸附塔,在吸附塔内,采用特殊吸附剂将汞烟雾物质吸附并转换成一种有机形态的汞,这种有机的汞后续进入清洗液系统,通过催化剂的作用,激活有机汞,使其进一步氧化为水溶性有机汞,这种水溶性有机汞在清洗液中溶解,最终通过净水系统沉淀移除。

3.烟气脱汞技术的优势:
(1)高效:烟气脱汞技术采用特殊吸附剂及清洗液,可以高效的脱除烟气中的汞,最大效果可达99%以上;
(2)省时省力:使用烟气脱汞技术可以节省大量的时间和精力,比传统的汞污染处理更加快捷;
(3)可控制:烟气脱汞技术可以控制烟气中汞的排放水平,避免大气污染;
(4)环保:烟气脱汞技术可以有效减少汞烟雾排放,满足环保要求。

- 1 -。

燃煤烟气中汞的脱除毕业论文

燃煤烟气中汞的脱除毕业论文

燃煤烟气中汞的脱除毕业论文摘要煤炭作为我国的主要能源这一现状在很长时间内难以改变,大量的煤炭消耗带来了严重的环境问题,从而引起越来越多人的关注。

我国是世界上汞排放量最大的国家之一,因此必须对其进行控制。

汞因为具有挥发性、持久性和生物积累性,难以脱除。

传统的活性炭吸附剂价格昂贵,不能再生利用,无法达到理想的工业脱汞效果。

本文用廉价的天然矿物作为活性炭的替代品,主要研究凹凸棒石及其改性凹凸棒石对燃煤烟气中汞脱除的影响。

实验中主要采用高锰酸钾,溴化铵对凹凸棒石进行改性,经浸渍,烘干,煅烧,筛选出60~100目的作为吸附剂。

在模拟烟气(N2,汞蒸气)的条件下,利用QM201H型燃煤烟气测汞仪在固定床实验台架上对吸附剂的脱汞效果进行了测试,简要探讨了改性凹凸棒石的脱汞机理。

主要研究了改性剂浓度,吸附剂温度,改性试剂等对脱汞效率的影响。

绘制了不同温度,浓度的吸附剂的脱汞效率随时间变化曲线。

通过SSA-4300孔径及表面积分析仪对改性凹凸棒石样品进行了表征测试,结合表征参数对前后脱汞效率的变化进行了简要的分析与讨论。

结果表明,经KMnO4改性后,凹凸棒石脱汞效率有很大的提升,可以达到70%左右,而且随温度的增加其脱汞效率略有上升。

凹凸棒石与KMnO4比例在1:20,吸附剂温度在140℃表现出最佳的脱汞效率,经KMnO4改性的凹凸棒石加入溴化铵后,脱汞效率没有明显上升,表明溴化铵对改性凹凸棒石的脱汞效率没有促进作用。

关键词燃煤烟气;汞控制;凹凸棒石;KMnO4AbstractCoal is still and will be the mainly energy source in a long time for China. Huge amount of coal consumption will result in serious environmental problem,this cause more and more people's attention. China is one of the largest mercury emissions countries in the word. Therefore the mercury emissions control is reasonable and necessary. Mercury is difficult to remove because of its volatile ,persistence,and biological gatz. Traditional activated carbon adsorbent is expensive,not renewable use,and can not reach the ideal effect of industry to take off the mercury. In this paper,natural mineral materials were applied as alternative to activated carbons due to their low cost. The main research is about mercury removal performance of attapulgite (Atp) and modified attapulgite in coal-fired flue gas.In the experiment, Attapulgite is modified by KMnO4or NH4Br.They are impregnated, calcited and filtered out 60 to 100 meshes as adsorbent. The mercury removal adsorbent effects of adsorbent were tested by QM201H flue gas mercury analyzer in a fixed bed on the condition of a simulated flue gas (N2, mercury vapor). The mercury removal mechanism of modified attapulgite was analyzed in a brief. Through the method of controlling the variable, This experiment studied the modifier concentration, adsorbent temperature, modified reagent for mercury removal efficiency.The curve of mercury removal efficiency was drawed. The characterization of modified attapulgite samples was tested by SSA-4300 surface area analyzer. Combining with it,analysis and discussion is necessary for the verity of mercury removal efficiency.The results showed that, after modification by KMnO4,mercury removal efficiency of the attapulgite has greatly improved, with increasing temperature, it increasedslightly and can reach an average of about 70%.The adsorbent with the proportion of attapulgite with KMnO41:20 at 140℃showed the best mercury removal efficiency.Attapulgite which was modified by KMnO4and added to NH4Br has poor performance at mercury removal. It suggests that NH4Br has no role in promoting the efficiency of mercury removal.Key Words:Coal-fired flue gas; Mercury emissions control; Attapulgite ; KMnO4目录摘要 (I)Abstract (III)1文献综述 (1)1.1 研究背景 (1)1.2燃煤汞排放特性与形态分布 (2)1.3烟气脱汞技术研究进展 (4)1.3.1活性炭吸附剂 (5)1.3.2飞灰吸附剂 (5)1.3.3 钙基吸附剂 (6)1.3.4天然矿物吸附剂 (6)1.4常用吸附剂改性方法 (8)1.4.1热活化法 (8)1.4.2微波改性法 (8)1.4.3 酸和盐溶液改性法 (9)1.5凹凸棒石简介 (9)1.5.1凹凸棒石结构 (9)1.5.2凹凸棒石成分 (10)1.6 论文研究目的及意义 (10)2 实验部分 (12)2.1 原料及所用试剂 (12)2.2 实验仪器 (12)2.3 制备方法 (13)2.4 实验装置介绍及操作步骤 (13)2.4.1实验装置 (13)2.4.2基本原理 (14)2.4.3 实验方法 (15)2.4.4脱汞效率的表示方法 (16)3 实验数据与分析 (18)3.1改性试剂对脱汞性能的影响。

烟气污染防治技术之汞污染防治技术及脱汞技术

烟气污染防治技术之汞污染防治技术及脱汞技术

烟气污染防治技术之汞污染防治技术及脱汞技术关键词:脱汞技术汞污染控制技术汞污染防治技术燃煤电厂汞污染防治技术可分为三类:燃烧前控制、燃烧中控制和燃烧后控制65377;1燃烧前汞污染控制技术燃烧前汞污染控制主要包括洗煤技术和煤低温热解技术65377;1.1洗煤技术煤中的汞与黄铁矿有密切的关系,利用磁分离法去除黄铁矿,同时也可以除去与黄铁矿结合在一起的汞。

另外,化学方法、微生物方法等也可以将汞从原煤中分离65377;1.2煤低温热解技术由于汞的高挥发性,在煤加热的过程中,汞会由于受热而挥发出来65377;2燃烧中汞污染控制技术燃烧中控制是通过改变优化燃烧和在炉膛中喷入添加剂氧化吸附等方式,结合后续设施加以控制。

通过改进燃烧方式,在降低NOx 的同时,抑制一部分汞的排放,流化床燃烧方式在降低NOx排放的同时可以降低烟气中汞及其他微量重金属的排放。

主要包括:循环流化床技术65380;低氮燃烧技术65380;炉膛喷吸附剂技术65380;添加氧化剂技术65377;3燃烧后汞污染控制技术燃烧后控制主要包括:协同控制技术65380;单项脱汞技术65380;多污染物控制技术65377;3.1协同控制技术燃煤电厂现有的脱硝装置65380;除尘器和脱硫装置等烟气处理设施对烟气中的汞具有一定的去除作用。

烟气脱硝装置可以促进烟气中零价态的汞氧化为Hg2+,以颗粒态形式存在的汞在经过电除尘器65380;电袋复合除尘或袋式除尘器时可以被去除,Hg2+易于溶于湿法脱硫浆液中而被去除。

湿式电除尘器65380;烟气循环流化床脱硫等烟气治理设施对汞及其化合物均有一定的脱除效果。

3.2单项脱汞技术单项脱汞技术是基于现有设施改进的单项控汞技术,如改性SCR 催化剂汞氧化技术65380;除尘器前喷射吸附剂(如活性炭65380;改性飞灰65380;其他多孔材料等)65380;脱硫塔内添加稳定剂65380;脱硫废水中加络合(鳌合)剂等技术,实现更高的汞控制效果。

液相烟气脱汞实验研究的开题报告

液相烟气脱汞实验研究的开题报告

液相烟气脱汞实验研究的开题报告一、研究背景烟气脱汞技术是烟气污染控制中的重要环节。

随着环保要求的提高和煤电厂的大规模建设,煤燃烧产生的汞排放已逐渐成为大气污染的主要来源之一。

因此,开展烟气脱汞技术的研究和应用具有重要意义。

当前,烟气脱汞技术主要包括吸附剂法、化学还原法、氧化吸附法和生物吸附法等。

其中,化学还原法和氧化吸附法是最为常用的两种技术。

然而,在实际应用中,这两种技术存在着一些问题,如反应时间长、反应效率低、产生的废水难以处理等。

因此,发展一种新型的高效、环保的烟气脱汞技术十分必要。

本研究将采用液相烟气脱汞技术,结合不同吸附剂和催化剂进行实验研究,以期实现对煤燃烧产生的汞排放的有效控制,为烟气污染控制提供技术支持。

二、研究内容和技术路线(一)研究内容1.确定适用的液相烟气脱汞技术反应体系。

2.合成不同吸附剂和催化剂,进行对比实验,筛选出最优方案。

3.考察吸附剂和催化剂的微观结构和表面化学性质等特性,并研究其对脱汞效率的影响。

4.考察反应条件对烟气脱汞效率的影响,确定最佳反应条件。

5.研究反应机理和动力学,探究脱汞机理和反应动力学规律。

(二)技术路线1.实验室条件下采用模拟烟气体系,确定一种适用的液相烟气脱汞技术反应体系。

2.合成不同吸附剂和催化剂,进行对比实验,筛选出最优方案。

3.使用FT-IR、XRD、SEM等对吸附剂和催化剂的微观结构和表面化学性质等特性进行表征,并研究其对脱汞效率的影响。

4.考察反应条件对烟气脱汞效率的影响,包括反应温度、反应时间、各种催化剂和吸附剂的用量等。

5.研究反应机理和动力学,包括物理和化学参数的变化、汞还原和吸附过程中产物的形成和排放等。

三、研究意义和预期成果本研究将实现液相烟气脱汞技术的开发和应用,有望成为煤燃烧汞控制的新方法。

特别是本研究涉及到的吸附剂和催化剂具有环保、高效、低成本的优点,有望在实际应用中得到推广和应用。

同时,本研究还将深入探究液相烟气脱汞反应机理和动力学规律,为汞污染控制提供科学依据。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Oxidation and Stabilization of Elemental Mercury from Coal-Fired Flue Gas by Sulfur MonobromideZ A N Q U,N A I Q I A N G Y A N,*P I N G L I U,Y O N G F U G U O,A N D J I N P I N G J I ASchool of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai200240,ChinaReceived December29,2009.Revised manuscript received March27,2010.Accepted March29,2010.Sulfur monobromide(S2Br2)was employed as a task-specific oxidant to capture and stabilize elemental mercury from coal-firedflue gas.Its performances on the removal of Hg0were investigated with respect to the gas-phase reaction and particle-involved reactions.It was found that the gas-phase reaction between Hg0and S2Br2was rapid,and the determined second-rate constant was about1.2((0.2)×10-17cm3molecules-1s-1at373K,which was about30times higher than that with sulfur monochloride.The pilot tests showed that the presence of fly ash influe gas can accelerate the removal of Hg0significantly.It was predicted that about90%of Hg0removal efficiency can be obtained with0.6ppmv S2Br2and30g/m3fly ash influe gas,and the unburned carbon infly ash playedan important role for Hg0removal.The fates of S2Br2and mercury in the process were evaluated,and the product analysis and leachingtestsindicatedthatmercuricsulfidewasthemainproduct of the converted Hg0by the direct reaction and consequent series reactions,which is more stable and less toxic than other mercury species.Also,the surplus S2Br2influe gas could be captured and neutralized effectively by the alkali components in fly ash or FGD liquor,and its hydrolysis products(elemental sulfurandsulfide)werealsohelpfultothestabilizationofmercury. The result indicated that S2Br2is a promising oxidant for elemental mercury(Hg0)oxidation and stabilization for mercury emission control.IntroductionCoal-fired power plants are one of the major anthropogenic sources for mercury emission(1).In China,nearly40%of the annual total emitted mercury has been from coal-fired utilities(2).Therefore,the control of mercury emission from coal-fired utilities is vital to mitigate global mercury pollution. There are three basic forms of mercury influe gas:oxidized mercury(Hg2+),particulate-bound mercury(Hg p,mainly Hg2+adsorbed onfly ash),and elemental mercury(Hg0)(3). The particulate-bound mercury and oxidized mercury could be captured by existing air pollution control devices(APCDs), such as the electrostatic precipitator(ESP),fabricfilters(FF), andflue gas desulfurization(FGD)(3-8).However,it is still difficult to directly remove Hg0fromflue gas with these APCDs because of its high volatility and insolubility in water(6,9). Therefore,additional methods to convert Hg0to its oxidized form in or ahead of APCDs are necessary for the effective capture of Hg0.In addition,selective catalytic reduction(SCR)catalysts for the removal of NO have been observed to be helpful to the oxidation of Hg0in the presence of enough HCl influe gas(7,10).But for the utilities without SCR installation,the injection of oxidant toflue gas is also one of the most simple and effective alternatives for the control of mercury emission (11-14).According to previous studies,Hg0conversion in the presence of added oxidant can be enhanced significantly by the entrainedfly ash or other particles influe gas.Because some mercuric compounds(e.g.,HgCl2and HgBr2)on the fly ash are readily volatile to atmosphere at higher temper-ature or leachable by water,the potential secondary pollution of the mercury on thefly ash will become a concerned issue during the utilization of thefly ash or storage in landfills (15,16).Therefore,it is necessary tofind some additives that are capable of converting Hg0to more stable products with lower volatilization and leachability.We have known that sulfur could react with Hg0and produce mercury sulfide,which is considered one of the most stable mercuric compounds(insoluble and less volatile). However,the reaction rate between sulfur and Hg0appears too slow to meet the industrial application.Recently,we have reported the results of using sulfur chlorides(e.g.,SCl2or S2Cl2)to enhance the removal of Hg0in a small experimental setup(14).Though the effectiveness of sulfur chloride on Hg0removal has been proved and HgS was one of the main products,the relatively high demand dosage of sulfur chloride and its safety issue(highly irritative)would probably weaken its technical competition.Bromine has been demonstrated to be one of the most efficient reagents to oxidize and capture elemental mercury by injecting bromine gas toflue gas or impregnated on activated carbon(5,12).However,it was expected that most elemental mercury was converted to mercuric bromide, which was still toxic and slightly volatile and leachable from fly ash or activated carbon.Considering the characteristics of bromine and sulfur on the conversion of elemental mercury,sulfur monobromide(S2Br2)might be a potential task-specific reagent used to capture and stabilize mercury from coal-firedflue gas.Meanwhile,sulfur monobromide was less irritative than Br2and sulfur chlorides,which is more convenient for storage,transportation,and application in industry considering the safety issues.Despite the fact that S2Br2has been known as one of the typical sulfur halides for a long time(17),there still lacks the necessary information on its properties because of its narrow usage in industry.Meanwhile,its performances on Hg0 capture by the gas-phase or particle-involved reaction need to be investigated,and the fates of the captured mercury and S2Br2in the processes are of interest.Therefore,these aspects will be focused on in this paper.Experimental SectionS2Br2Preparation and Properties.S2Br2is not available commercially,but it can be readily prepared and deter-mined in the laboratory(Supporting Information).Br-S-S-Br was believed to be the predominant product for the stoichiometric sulfur bromide compound according to theoretical calculation and instrumental analysis(17). Moreover,the saturation vapor pressures of S2Br2was determined to be rather low at ambient temperature,so it appeared to be much milder and less irritative compared with bromine and sulfur chlorides,but it can be readily vaporized at higher temperature for its injection toflue gas.*Corresponding author e-mail:nqyan@;phone:86-21-5474-5591;fax:86-21-5474-5591.Environ.Sci.Technol.2010,44,3889–389410.1021/es903955s 2010American Chemical Society VOL.44,NO.10,2010/ENVIRONMENTAL SCIENCE&TECHNOLOGY93889 Published on Web04/21/2010Materials and Analysis.Thefly ash employed in the study was from a600MW pulverized-coal boiler(Ash-A) and a150MW circulatingfluidized boiler(Ash-B).The loss of ignition(LOI,mainly in unburnt carbon)and BET surface area were measured to be2.1%(wt.)and2.4m2/g for Ash-A and1.8%and3.0m2/g for Ash-B.In order to test the effect of LOI,Ash-A was calcined at800°C for3h to eliminate its LOI and then employed in the tests(marked as Ash-A*).Darco-KB(AC or AC-KB)and Darco-Hg-LH(AC-LH)are the all-purpose activated carbon and the task-specific carbon for mercury capture,respectively,and both are from Norit America Company.Elemental mercury(99.99%),bromine (99.5%),and sulfur(99.99%)were from Sigma-Aldrich Co. Powder graphite(Chemical Pure,e30µm)was from the Sino-Pharm Chemical Reagent Co.,Ltd.Nitric oxide(10.0%)and sulfur dioxide(99.9%)were from Dalian Date Standard Gas Co.Halocarbon wax was from Halocarbon Product Co. Specific detecting tubes(Gastec,Japan)for H2S and SO2 measurement during hydrolysis of S2Br2were from Gastec Co.S2Br2concentration was detected with a model BRC641E UV spectrometer detector andflatbed chart recorder(B&W Tek,U.S.A.).XPS(Perkin-Elmer)was used to determine the valence of mercury on the particles.The BET technique (Brunauer,Emmett,and Teller,ASAP2010M+C,U.S.A.)was used to test the surface area of the particles.The Hg0 concentration in the reactor for gas-phase reaction tests was measured in situ by CVAAS.The pilot tests employed Lumex mercury analyzer(RA915,RU)to monitor Hg0concentration continuously.The uncertainties in the measured concentrations of Hg0 were(2and(0.05ppbv for in situ CVAAS and Lumex analyzer,respectively.The accuracy of the data reported here was estimated to be within10%for the tests.Method for Determining the Gas-Phase Reaction be-tween Hg0and S2Br2.The reaction kinetics for elemental mercury oxidation were tested with in situ monitoring of the concentration of Hg0in the reactor as a function of time by a mercury cold vapor atomic absorption spectrophotometer (CVAAS)described previously(11,12,14).The tests were performed mainly in a reactor with a volume of1100mL, and the experimental procedure was similar to our previous study(11).Pilot-Scale Tests with Particle-Involved Reaction.To test the performance of S2Br2on mercury capture from the simulatedflue gas,a pilot-scale setup was built(Figure1). It can provided150-200m3/h of the“semi-actual”flue gas with temperatures from80to140°C.The initial concentration of Hg0was kept at about20µg/m3in the pilot tests,if it was not stated clearly.In order to investigate the effect of actual flue gas components on mercury removal,SO2,NO,CO2, and water vapor in the simulated gas were supplied by injecting extra pure gases from the gas cylinders.The reactor was a stainless steel cylinder with the inner diameter of100 mm and5.0m for its valid length.The gas residence time in the reactor was about0.9s.The Hg0concentration offlue gas was continuously monitored by a Lumex mercury analyzer together with a self-assembled sampling unit and method,which can successfully minimize the interference of SO2,S2Br2,andfly ash on the continued monitoring of Hg0 (detail information about pilot-scale tests is in the Supporting Information).In addition,the mass balances of mercury in the inlet and outlet gases were evaluated by Ontario Hydro method(OHM)(13).FIGURE1.Schematic of pilot-scale setup for the removal of elemental mercury with oxidants and/or particulates injection. 38909ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.44,NO.10,2010Products Determination and Leaching Tests.The prod-ucts distribution of Hg/S 2Br 2was tentatively determined with the multistage dissolution and weighing methods,in which CS 2,alcohol,and Na 2S solutions (1M)were used as solvents to separate the residue of S 2Br 2,sulfur,HgBr 2,and HgS by steps (14).The products were defined as two kinds:primary products and secondary products.The former are the products of Hg/S 2Br 2without moisture or water involved in the reaction,and the secondary products are from the primary products and the surplus S 2Br 2,which undergoes hydrolysis in water or moisture.The preparation of the primary and secondary products has been described in the Supporting Information.In addition,the hydrolysis products of S 2Br 2in water and aqueous alkali solutions were also determined with various methods,including ionic chroma-tography for Br -and SO 42-and specific detecting tubes for H 2S and SO 2.The stabilization of mercury on fly ash or activated carbon was evaluated by a leaching test,which was subjected to the Extraction Procedure Toxicity Test Method and Structural Integrity Test (18,19).Three samples,activated carbon impregnated with 2.5%S 2Br 2(AC-S 2Br 2),Ash-A with 0.2%S 2Br 2(Ash-S 2Br 2),and Ash-A with 0.2%Br 2(Ash-Br 2)were tested in leaching tests after adsorbed about 80µg/g (AC samples)and 10µg/g (Ash-A sample)of Hg 0.The mercury soaked solids and extracted liquid were all analyzed (Sup-porting Information).Results and DiscussionGas-Phase Reaction between Hg 0and S 2Br 2.The oxidation efficiencies of elemental mercury by S 2Br 2as a function of reaction time are shown in Figure 2,and results of bromine and elemental sulfur are shown as the comparison.As is shown,S 2Br 2was more effective at oxidizing Hg 0than sulfur,but it was slightly less effective than bromine with the same concentration.In Figure 2,the depletion of Hg 0for all curves under various S 2Br 2concentrations appeared to be expo-nential to the reaction time,which indicated the reaction conformed to the pseudo first-order with respect to Hg 0(k 1).Meanwhile,the obtained k 1values for the curves were nearly linear to the concentration of S 2Br 2(k 1)k 2[S 2Br 2]),so the overall reaction can be considered as second-order with respect to Hg 0and S 2Br 2as a whole (12).where,[S 2Br 2]denotes the concentration of S 2Br 2,molecules in mL -1,and k 2is the second-order rate constant.Similar to our previous observation and speculation (12,14),Hg 0may react with S 2Br 2first to form an unstable intermediate,Hg -S 2Br 2*(Hg 0:S 2Br 2)1:1,eq 2)before it forms a stable oxidized state.The formation of intermediate was considered to be the rate-determining reaction step,so the apparent reaction between Hg 0/S 2Br 2appeared to be second-order.In addition,the rate constant from our data was 1.2((0.2)×10-17cm 3molecules -1s -1for Hg/S 2Br 2at 373(2K,which was about one-third of that for Hg/Br 2but almost 30times higher than that for Hg/S 2Cl 2(12,14).This indicated that the bromine atom became less reactive to Hg 0after the combination with sulfur,but it was still more active than chlorine.Role of Fly Ash on Hg 0Removal in the Presence of S 2Br 2.Most of flue gas from pulverized-coal boilers or cycling fluidized boiler (CFB)often entrain tens of grams of fly ash per cubic meters (e.g.,10-40g/m 3for the usual)ahead of the particulate collection devices,and the surface-induced reaction by fly ash might play an important role to Hg 0removal.As shown in Figure 3,Hg 0removal efficiency was rather low only with S 2Br 2or fly ash alone in flue gas.One ppmv of S 2Br 2in the gas without fly ash can only result in about 5%of Hg 0removal.Meanwhile,Hg 0removal efficiency was only about 4%and 6%with 20g/m 3Ash-A and Ash-B,respectively,which indicated that both the ashes showed very weak adsorption to Hg 0.However,the coexistence of fly ash and S 2Br 2in the simulated flue gas can remove Hg 0effectively.Hg 0removal efficiency was about 46%with 20g/m 3Ash-A and 1ppmv S 2Br 2in the gas,which was by far higher than the sum of these from gas-phase reaction and adsorption by original fly ash.The results indicated that fly ash showed significant synergetic with S 2Br 2for the removal of Hg 0,and it was even better than that with AC-LH (about 34%with 32mg/m 3or 2Lb/MMacf of AC-LH in the gas).In addition,the LOI and its BET surface in fly ash also played an important role on Hg 0removal in the presence of S 2Br 2.Hg 0removal efficiency decreased to about 13%if the LOI of Ash-A was burnt out (Ash-A*in Figure 3).Therefore,it was believed that the adsorption of S 2Br 2on the fly ash was the first step,and then the fly ash with adsorbed S 2Br 2can capture Hg 0efficiently by chemical adsorption,which performed like AC-LH.The presence of LOI on fly ash and its high BET were helpful to S 2Br 2adsorption on fly ash and resulted in higher Hg 0removal efficiency.Figure 4illustrates the comparison of S 2Br 2and the other oxidants for Hg 0removal in the presence of Ash-A.Hg 0removal efficiency with 1ppmv S 2Br 2was slightly lower than that with 1ppmv Br 2in the gas with the difference of about 5%,and S 2Br 2appeared to be reactive in the particle-involved reaction.In addition,the Hg 0removal efficiency with 1ppmv of S 2Br 2was apparently higher than that with 2ppmv HBr even in the same stoichiometric value of bromine atom,which indicated the bromine atom in S 2Br 2was more reactive to Hg 0than in HBr.Meanwhile,S 2Br 2appeared to be more effective than S 2Cl 2for Hg 0removal,and the efficiency was only about 21%with 1ppmv S 2Cl 2in the gas at 393K.This indicated much less dosage of S 2Br 2was demanded than that with S 2Cl 2as the oxidant for the same Hg 0removal efficiency.This result can be tentatively explained with the bond energy comparison among H -Br (363kJ/mol),S -Cl (213kJ/mol),and Br -S (176kJ/mol)in the these molecules (20,21);the weakly bonded Br or Cl atom in the molecule may show stronger affinity to chemically adsorb Hg 0on fly ash and obtain a higher Hg 0removal efficiency.Meanwhile,FIGURE 2.Depletion curves of Hg 0by gas-phase reaction with various oxidants at 373K.The concentration of Hg 0was 0.16ppmv (about 1400µg/m 3),and the performance was at 760Torrs.Elemental sulfur was attached on the reactor wall,if it was employed.-d[Hg 0]/d t )k 1[Hg 0])k 2[S 2Br 2][Hg 0](1)Hg 0+S 2Br 2f S 2Br 2-Hg ∗(unstable intermediate)(2)S 2Br 2-Hg ∗f HgBr 2,HgS,...(3)VOL.44,NO.10,2010/ENVIRONMENTAL SCIENCE &TECHNOLOGY93891bromine has been proved to be more effective at capturing Hg 0than chlorine (11,12).Accordingly,S 2Br 2showed better performance at mercury capture than S 2Cl 2and HBr.In addition,adding extra activated carbon to the gas with S 2Br 2(defined as the coinjection)can also enhance the removal of Hg 0significantly.Though the Hg 0removal efficiency was only about 5%with 32mg/m 3AC-KB alone,it dramatically increased to about 73%with the presence of 1ppmv S 2Br 2and 20g/m 3Ash-A,and the added carbon corresponded to only a 0.16%LOI increase in fly ash.In addition,about 32mg/m 3of powder graphite (e 30µm,BET <5m 2/g)was also used to increase LOI or carbon content in fly ash,and it was found that the Hg 0removal efficiency increased about 5%under the same condition.The resultsindicated that only activated carbon with higher BET surface was more effective at Hg 0removal in the presence of S 2Br 2.Meanwhile,it is observed from Figures 3and 4that Hg 0removal efficiency in the simulated flue gas (with SO 2,1000ppmv;NO,200ppmv;CO 2,2-4%;water vapor,5%;and air as the makeup)was lower than that in the “clean”hot gas.In order to identify the main components influencing Hg 0removal,the effect of NO,SO 2,water vapor,and CO 2were investigated.Despite the fact that NO showed remarkable inhibition to Hg 0oxidation through the gas-phase reaction with S 2Br 2,its effect was almost neglectable when fly ash was present in the gas.On the contrary,SO 2displayed an obviously negative impact on Hg 0removal,though it showed insig-nificant effect in the gas-phase reaction.When 1000ppmvFIGURE 3.Hg 0removal efficiencies in the presence of fly ash and/or S 2Br 2at 393K.Ash-A*is the Ash-A that was calcined at 800°C for 3h to remove the LOI.The concentration of S 2Br 2was 1ppmv.Fly ash content in the simulated flue gas was 20g/m 3,and the dosage of Darco-LH was 32mg/m 3,if it was employed.Hot gas from air meant the gas free of SO 2,CO 2,and NO,and the simulated gas was composed of SO 2(1000ppmv),NO (200ppmv),CO 2(2-4%),water vapor (5%),and air as the makeup.Initial Hg 0concentration in the gas was about 20µg/m 3,and the gas resident time was about 0.9s.FIGURE parison of Hg 0removal efficiencies in the presence of various oxidants and fly ash or other particles at 393K.The concentration of HBr,S 2Cl 2,S 2Br 2,and Br 2was 2ppmv,1ppmv,1ppmv,and 1ppmv,respectively.AC-KB and GRP represented 32mg/m 3of AC-KB and powder graphite added into the gases,respectively.The initial Hg 0concentration in the gas was about 20µg/m 3,and the gas resident time was about 0.9s.38929ENVIRONMENTAL SCIENCE &TECHNOLOGY /VOL.44,NO.10,2010SO 2was injected into the reactor,Hg 0removal efficiency decreased from 46%to 39%in the presence of 1ppmv S 2Br 2and 20g/m 3Ash-A.The effects of water vapor and CO 2were insignificant on Hg 0removal at 393K or higher.Therefore,SO 2was considered as the main component to decrease the Hg 0removal efficiency,and it can be also adsorbed on fly ash competitively with S 2Br 2or Hg 0for the activated sites and cause a decrease in Hg 0capture.The influences of the concentration of fly ash and S 2Br 2are shown in Figure 5.With an increase in concentration of Ash-A from 10to 40g/m 3,the mercury removal efficiency increased from 29%to 57%.Increasing fly ash content in flue gas can provide more gas -solid surface for S 2Br 2adsorption and Hg 0capture on fly ash,but it became flat when fly ash content was over 20g/m 3.Likewise,the mercury removal efficiency increased from 46%to 82%when S 2Br 2concentra-tion increased from 1ppmv to 4ppmv.Fly ash can adsorb more S 2Br 2at higher concentration,and it was helpful for the capture of Hg 0.Meanwhile,the balance of mercury in the inlet and outlet gases was well consistent (within (10%fluctuation)by OHM tests,and most of the converted Hg 0(over 90%)was in the form of particulate bounded in the presence of fly ash.Modeling for the Prediction of Hg 0Removal Efficiency.As is observed from Figure 5,the Hg 0removal efficiency increased with the rise of S 2Br 2concentration and fly ash content in the simulated flue gas.According to the prelimi-nary assessment of the above results for the surface-involved reaction,the reaction rate can be tentatively described with a simplified model (eq 4),mainly considering the effect of fly ash and S 2Br 2concentration and fly ash specific surface area.Hg 0removal efficiency can be calculated with eq 5.in which,k s is the apparent first-order surface-induced reaction rate constant,s -1m -2;εis the valid specific surface area of fly ash or other particles,m 2/g;M denotes the fly ash (or other particles)content,g/m 3;and S 2Br 2concentration is in ppmv.R and are the power index for the two concentrations,respectively.Therefore,k s ε,R ,and for various cases can be calculated with the data obtained above,and the results are listed in Table 1.It can be seen that k s εfor activated carbon was by far larger than that for fly ash.The larger BET surface area and its functional groups on activated carbon might make bromine species more reactive to Hg 0capture.Nevertheless,the high fly ash (with LOI)concentration in flue gas would play a substantial role on Hg 0removal in the presence of S 2Br 2.It should be noted that there may exist other important factors that affect the model (e.g.,LOI content,its property,and gas-particle contacting condition),so it can be regarded as the semiempirical equation for the prediction to the practice.On the basis of the data in Table 1,it was predicted that Hg 0removal efficiency was about 92%with 52mg/m 3(3.3Lb/MMacf)of AC-LH in flue gas and about 5s resident time,which was very close to the demonstration results in the field tests (5,14).Similarly,it was calculated that Hg 0removal efficiency was up to 90%when 30g/m 3Ash-A and 0.6ppmv S 2Br 2were present in the flue gas (393K)for 5s.In addition,the coinjection of activated carbon and S 2Br 2was also very effective at capturing Hg 0,and only about 20mg/m 3of AC and 0.3ppmv S 2Br 2were needed to obtain about 95%of Hg 0removal efficiency at 393K.Meanwhile,for the semidry FGD system with rather high recycling fly ash and sorbents (as high as 500-1000g/m 3),only about 0.06ppmv of S 2Br 2was demanded to obtain 90%of Hg 0removal efficiency.Therefore,S 2Br 2appeared to be more promising in semidry FGD systems for mercury capture and stabilization.Fates of S 2Br 2and Hg 0and Their Environmental Impacts.The products distribution of Hg/S 2Br 2was determined with the multistage dissolution and weighing method described above.The primary products of Hg/S 2Br 2were obtained under a dry environment to avoid the interference of moisture to the products distribution.It was found that about 38%and 24%of the oxidized mercury in the primary products were in the form of HgS when the mole ratios of S 2Br 2to Hg 0were at 1.0and 5.5,respectively (Table 2).The secondary products from the primary products of Hg 0/S 2Br 2and then ac-companied with surplus S 2Br 2hydrolysis were also investi-gated,and the results are also shown in Table 2.The ratio of HgS was found to increase remarkably in the secondary products,which implicated that part of HgBr 2in the primary products of Hg 0/S 2Br 2can be further converted to HgS by means of sulfide from the hydrolysis of S 2Br 2.FIGURE 5.The relationship of Hg 0removal efficiency and S 2Br 2or fly ash concentrations in flue gas at 393K.The initial Hg 0concentration in the gas was about 20µg/m 3,and the gas resident time was about 0.9s.d[Hg 0]d t)k s ε(M )R [S 2Br 2] [Hg 0](4)η)[1-exp(-k t εM R [S 2Br 2] t )]×100%(5)TABLE 1.Kinetics Parameters for Hg 0Removal for Various Cases at 373K acasesk s ε(s -1g -1)r (dimensionless) (dimensionless)AC-LH b 9.11-AC-LH9.30.94-Ash-A +S 2Br 20.140.480.86AC-KB +S 2Br 26.80.880.84a The relative errors for k s ε,R ,and were within 15%.bThe original data were from the literature (5).TABLE 2.Products Distribution from the Reaction of Hg 0/S 2Br 2primary products asecondary products b different cases Hg in HgBr 2Hg in HgS Hg in HgBr 2Hg in HgS S 2Br 2:Hg 0)1.062%38%--S 2Br 2:Hg 0)5.576%24%27%73%aProducts from the reaction without moisture.bPrimaryproducts were mixed with water (1:5).VOL.44,NO.10,2010/ENVIRONMENTAL SCIENCE &TECHNOLOGY93893The fate of the residual S 2Br 2in flue gas or adsorbed on fly ash should also be considered.S 2Br 2in flue gas was found to be readily absorbed by water or FGD liquor if a FGD system was installed downstream.S 2Br 2can be gradually hydrolyzed in moisture gas or water,especially in the aqueous alkali solutions with rather high dissolution and hydrolysis rate.The hydrolysis products of S 2Br 2in water solutions were quantitatively determined.It was found that sulfur atoms in S 2Br 2can either lose or gain electrons during the hydrolysis process.About 5-8%of the total sulfur in S 2Br 2was converted to sulfide (released in the form of H 2S after acidization)in water or weak alkali solutions,and about 50-60%of the total sulfur was converted to elemental sulfur as well.Meanwhile,sulfite and sulfate were the other sulfur species.The presence of sulfide in the products was helpful to convert the dissolved Hg 2+in aqueous solution to HgS (e.g.,in FGD liquors)and the potential secondary pollution of Hg 2+in FGD liquors could be minimized accordingly.Additionally,some of S 2Br 2adsorbed on fly ash can also be gradually neutralized by the alkali components in fly ash (such as CaO and MgO)to form the bromide salts and sulfur species,which were helpful for the further stabilization of mercury on fly ash.Therefore,the adsorbed S 2Br 2on fly ash would not bring any new undesirable problems.In the leaching tests,three samples,AC-S 2Br 2,Ash-S 2Br 2,and Ash-Br 2were employed in leaching tests after adsorbed Hg 0,and XPS analysis indicated that all the mercury on the samples were in the oxidized form (Supporting Information).According to the tests on the soaked sorbents and leaching liquids,it was found that about 20((5)%of adsorbed mercury was leached out from Ash-Br 2.However,mercury was hardly leached out from the other two samples with S 2Br 2,and mercury in the leaching liquid was not detectable.The results implicated that mercury can be fixedly captured in the presence of S 2Br 2,and the secondary pollution from mercury leaching could be minimized efficiently.In summary,we have demonstrated that S 2Br 2in flue gas with fly ash can accelerate the removal of Hg 0significantly,and it was predicted that about 90%of Hg 0removal efficiency can be obtained with 0.6ppmv S 2Br 2and 30g/m 3fly ash in flue gas at 393K.Meanwhile,for the semidry FGD system with rather high recycling fly ash and sorbents,only about 0.06ppmv of S 2Br 2was demanded to obtain 90%of Hg 0removal efficiency.Meanwhile,most of Hg 0can be converted to a more stable formation (HgS)by the direct reaction and secondary process accompanied with S 2Br 2hydrolysis.The residual S 2Br 2on fly ash or in flue gas can be readily removed and converted to a more benign species,and some of them were helpful for the further conversion of Hg 2+to HgS.Furthermore,S 2Br 2is less irritative than Br 2and sulfur chlorides,which is more convenient for preparation,storage,transportation,and application in industry considering the safety issues.There-fore,S 2Br 2appears to be a very promising and task-specific oxidant for the removal and stabilization of elemental mercury from coal-fired flue gas.AcknowledgmentsThe authors are grateful for financial support from the National High Technology Research and Development Program (2007AA06Z340)and National Natural Science Foundation of China (NSFC,50908145).Dr.Shih-Ger Chang (senior scientist at Lawrence Berkeley National Laboratory),Prof.Wei-ping Pan and Dr.Yan Cao (Institute for CombustionScience and Environmental Technology,Western KentuckyUniversity)have given us much valuable advice on this study.Supporting Information AvailableDescription of the preparation of S 2Br 2,pilot setup,leaching tests of mercury,and results sections.This material is available free of charge via the Internet at .Literature Cited(1)Sloss,L.L.Mercury:Emissions and Control;CCC/58;IEA CoalResearch:London,February 2002;ISBN 92-9029-371-3.(2)Jiang,G.B.;Shi,J.B.;Feng,X.B.Mercury pollution in China.Environ.Sci.Technol.2006,40,3672–3678.(3)Yang,H.Q.;Xu,Z.H.;Fan,M.H.;Bland,A.E.;Judkins,R.R.Adsorbents for capturing mercury in coal-fired boiler flue gas.J.Hazard.Mater.2007,146,1–11.(4)Lee,S.S.;Lee,J.Y.;Keener,T.C.Bench-scale studies of in-ductmercury capture using cupric chloride-impregnated carbons.Environ.Sci.Technol.2009,43,2957–2962.(5)Jones,A.P.;Hoffman,J.W.;Smith,D.N.;Feeley,T.J.;Murphy,J.T.DOE/NETL’s phase II mercury control technology field testing program:Preliminary economic analysis of activated carbon injection.Environ.Sci.Technol.2007,41,1365–1371.(6)Mercedes,D.S.;Sven,U.;Klaus,ing wet-FGD systemsfor mercury removal.J.Environ.Monit.2005,7,906–909.(7)Wu,Z.B.;Jiang,B.Q.;Liu,Y.;Wang,H.Q.;Jin,R.B.DRIFT studyof manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH 3.Environ.Sci.Technol.2007,41,5812–5817.(8)Dong,J.;Xu,Z.H.;Kuznicki,S.M.Mercury removal from fluegases by novel regenerable magnetic nanocomposite sorbents.Environ.Sci.Technol.2009,43,3266–3271.(9)Lee,W.J.;Bae,G.N.Removal of elemental mercury (Hg(O))bynanosized V 2O 5/TiO 2catalysts.Environ.Sci.Technol.2009,43,1522–1527.(10)Wu,Z.B.;Jiang,B.Q.;Liu,Y.Effect of transition metals additionon the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia.Appl.Catal.,B 2008,79,347–355.(11)Yan,N.Q.;Liu,S.H.;Chang,S.G.;Miller,C.Method for thestudy of gaseous oxidants for the oxidation of mercury gas.Ind.Eng.Chem.Res.2005,44,5567–5574.(12)Liu,S.H.;Yan,N.Q.;Liu,Z.R.;Qu,Z.;Wang,H.P.;Chang,S.G.;Miller,ing bromine gas to enhance mercury removal from flue gas of coal-fired power plants.Environ.Sci.Technol.2007,41,1405–1412.(13)Cao,Y.;Wang,Q.H.;Li,J.;Cheng,J.C.;Chan,C.C.;Cohron,M.;Pan,W.P.Enhancementofmercurycapturebythesimultaneousaddition of hydrogen bromide(HBr)and fly ashes in a slipstream facility.Environ.Sci.Technol.2009,43,2812–2817.(14)Yan,N.Q.;Qu,Z.;Chi,Y.;Qiao,S.H.;Dod,R.L.;Chang,S.G.;Miller,C.Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.Environ.Sci.Technol.2009,43,5410–5415.(15)Graydon,J.W.;Zhang,X.Z.;Kirk,D.W.;Jia,C.Q.Sorption andstability of mercury on activated carbon for emission control.J.Hazard.Mater.2009,168,978–982.(16)Ayuso,A.E.;Querol,X.;Tomas,A.Implications of moisturecontent determination in the environmental characterisation of FGD gypsum for its disposal in landfills.J.Hazard.Mater.2008,153,544–550.(17)Ornellas,F.R.Thiothionyl bromide (S d SBr 2):The elusive isomerof dibromodisulfane (BrSSBr).Chem.Phys.2008,344,95–100.(18)Test Methods for Evaluating Solid Waste,Physical/ChemicalMehtods,Extraction Procedure (EP)Toxicity Test Method,and Structural Integrity Test;Method 1310B,SW-846;U.S.Envi-ronmental Protection Agency:Washington,DC,2002.(19)Chen,Q.Y.;Ke,Y.J.;Zhang,L.N.;Tyrer,M.;Hills,C.D.;Xue,G.ApplicationofacceleratedcarbonationwithacombinationofNa 2CO 3andCO 2incement-basedsolidification/stabilizationofheavymetal-bearing sediment.J.Hazard.Mater.2009,166,421–427.(20)Benson,S.W.Thermochemistry and kinetics of sulfur-containingmolecules and radicals.Chem.Rev.1978,78,23–43.(21)Rauk,A.;Armstrong,D.A.Energetics of Br-H-Br-formationfrom HBr dimmer anion:An ab inito study.J.Phys.Chem.A.2000,104,7651–7658.ES903955SS 2Br 2+H 2O 98HydrolysisSO 32-,S 8,S 2-,SO 42-,Br-(6)38949ENVIRONMENTAL SCIENCE &TECHNOLOGY /VOL.44,NO.10,2010。

相关文档
最新文档