湖南省2016届高三数学(文)上学期期中(第四次月考)试题word版
2016届高三上学期第一次月考数学(文)试题Word版含答案
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
【名师解析】湖南省长沙市重点中学2014届高三上学期第四次月考数学(文)试题 Word版含解析
湖南省长沙市重点中学 2014届高三上学期第四次月考试卷文科数学 第Ⅰ卷(共45分)一、选择题:本大题共9个小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知,,x y R i ∈为虚数单位,且1xi y i -=-+,则(1)x y i +-的值是 ( ).2A .2B i - .4C - .2D i2.已知集合1{|0,},A x x x R x=-=∈则满足{1,0,1}A B =-的集合B 个数是 ( ) .2A .3B .4C .8D3.1a =-是直线1:0l ax y +=与直线2:20l x ay ++=平行的( ).A 充分不必要条件 B.必要不充分条件 .C 充要条件 D.既不充分也不必要条件【答案】A 【解析】试题分析:直线1:0l ax y +=,易知其斜率为a -.直线2:20l x ay ++=,若0a ≠,则其斜率为1a-.当1a =-时,11a a -=-=,所以两直线平行.此外当1a =时,11a a-=-=-,两直线也平行.故1a =-可推出直线1:0l ax y +=与直线2:20l x ay ++=平行,但直线1:0l ax y +=与直线2:20l x ay ++=平行不一定能推出1a =-.所以1a =-是直线1:0l ax y +=与直线2:20l x ay ++=平行的充分不必要条件. 考点:充分条件与必要条件、直线平行的判定4.若非零向量,,a b c 满足a //b ,且0b c ⋅=,则a b c +⋅=()( ).4A .3B .2C .0D【答案】D 【解析】试题分析:非零向量a //b ,若所以存在实数λ使得a b λ=.又 0b c ⋅=,所以()(1)0a b c b c λ+⋅=+⋅=. 考点:共线向量基本定理、向量的数量积5.函数()sin(),()(0,||)2f x x x R πωϕωϕ=+∈><的部分图像如图所示,如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()2x x f += ( )1.2A .2B .2C .1D6.已知下列四个命题,其中真命题的序号是 ( ) ① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;.A ①② .B ②③ .C ②④ .D ③④7.函数 2()4x f x x e =- 零点的个数 ( ).A 不存在 .B 有一个 .C 有两个 .D 有三个8.设函数(2),2()1()1,22x k x x f x x -≥⎧⎪=⎨-<⎪⎩,()n a f n =,若数列{}n a 是单调递减数列,则实数k 的取值范围为( ).(,2)A -∞ 13.(,]8B -∞ 7.(,)4C -∞ 13.[28D ,) 【答案】C 【解析】试题分析:依题意,(2),2()1()1,22n n k n n a f n n -≥⎧⎪==⎨-<⎪⎩,所以111122a =-=-,22(2)a k =-.若数列{}n a 是单调递减数列,则20k -<,且12a a >.由2012(2)2k k -<⎧⎪⎨->-⎪⎩得27744k k k <⎧⎪⇒<⎨<⎪⎩,即则实数k 的取值范围为7(,)4-∞.考点:数列、单调性9.函数()y f x =是定义在R 上的增函数,函数(2014)y f x =-的图象关于点(2014,0)对称.若实数,x y 满足不等式22(6)(824)0f x x f y y -+-+<,则22x y +的取值范围是 ( ).A (0,16) .B (0,36) .C (16,36) .D (0,)+∞第Ⅱ卷(共105分)二、填空题(每题5分,满分30分,将答案填在答题纸上)10.在极坐标系中,曲线2sin 4cos ρθθ=的焦点的极坐标 . 【答案】(1,0)11.如图1所示的流程图,输出的结果为 .12.若正三棱柱的三视图如图2所示,该三棱柱的体积是 .13.已知抛物线24(0)y px p =>与椭圆22221(0)x y a b a b+=>>有相同的焦点F ,点A 是两曲线的交点,且AF x ⊥轴,则椭圆的离心率为.14.已知A ,O 是原点,点(,)P x y的坐标满足0200y x y -≤-+≥⎨⎪≥⎪⎩,则||OA 的最大值为 ;的取值范围为 .则点(,)P x y 在图中阴影区域内(含边界),易知图中点C 坐标为.令目标函数为z y =+,即y z =+.则由图知当直线y z =+过点C 时,z 可取最大值为最大值||OA (Ⅱ)cos OA OP OA AOP AOP OP⋅=∠=∠.易知图中3AOB π∠=,6BOC π∠=,所以6AOC π∠=,56AOD π∠=.所以5[,]66AOP ππ∠∈,即cos [AOP ∠∈,33AOP -≤∠≤.||OP 的取值范围为[3,3]-. 考点:线性规划、平面向量的数量积15.在等差数列{}n a 中,52=a ,216=a ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,(Ⅰ)数列{}n a 的通项n a = ; (Ⅱ)若1512m S S n n ≤-+对*n N ∈恒成立,则正整数m 的最小值为 .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在ABC ∆中,角A,B,C 的对边分别为,,a b c cos 1B B -=,且1b =. (Ⅰ)若5A=12π,求边c ; (Ⅱ)若2a c =,求ABC ∆的面积.【答案】(Ⅰ)c =;(Ⅱ)因为2222cos ,2,3b ac ac B a c B π=+-==,所以22221442b c c c =+-⨯,解得b =. ……(10分) 由此得222a b c =+,故ABC ∆为直角三角形,2A c π==.其面积126s bc ==. ……(12分) 考点:1.两角和差公式;2.正弦定理;3.余弦定理.17.2013年4月14日,CCTV 财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:(Ⅰ)根据表中数据,求出s,t的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?参考数据:参考公式:22()()()()()n ad bcka b c d a c b d-=++++18.如图,四棱锥P ABCD -的底面ABCD 为矩形,且1PA AD ==,2AB =,120PAB ∠=, 90PBC ∠=,(Ⅰ)平面PAD 与平面PAB 是否垂直?并说明理由;(Ⅱ)求直线PC 与平面ABCD 所成角的正弦值.【答案】(Ⅰ)垂直;【解析】试题分析:(Ⅰ)由90PBC ∠=得BC PB ⊥,由底面ABCD 为矩形得BC AB ⊥,从而有BC ⊥平面PAB .而AD ∥BC ,所以AD ⊥平面PAB ,再由线面垂直的性质得平面PAD ⊥平面PAB ;(Ⅱ)过点P 作BA 延长线的垂线PH ,垂足为H ,连接CH .然后可以证明AD ⊥平面PAB ,从而PCH ∠为PC 与底面(Ⅱ)如图,过点P 作BA 延长线的垂线PH ,垂足为H ,连接CH .由(Ⅰ)可知AD ⊥平面PAB∵AD ⊂平面ABCD∴平面PAB ⊥平面ABCD∵PH ⊂平面PAB ,平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB∴PH ⊥平面ABCD∴CH 为PC 在平面ABCD 内的射影.∴PCH ∠为PC 与底面ABCD 所成的角.……(9分) 00120,60PAB PAH ∠=∴∠=,1PA =,∴在直角三角形PAH 中,001sin 60cos602PH PA AH PA =⨯==⨯=19.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a 元的前提下,可卖出b 件;若做广告宣传,广告费为n 千元比广告费为(1)n -千元时多卖出*()2n b n N ∈件. (Ⅰ)试写出销售量n S 与n 的函数关系式;(Ⅱ)当10,4000a b ==时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?20.已知圆锥曲线E的两个焦点坐标是12(F F,且离心率为e =(Ⅰ)求曲线E 的方程;(Ⅱ)设曲线E '表示曲线E 的y 轴左边部分,若直线1y kx =-与曲线E '相交于,A B 两点,求k 的取值范围; (Ⅲ)在条件(Ⅱ)下,如果63AB =,且曲线E '上存在点C ,使OA OB mOC +=,求m 的值.从而有:2212212210(2)802101201k k k k k x x k x x k ⎧-≠⎪∆=+>⎪⎪-⇒<-⎨+=<-⎪⎪-⋅=>⎪-⎩为所求. ……(8分)21.已知曲线C :32()3()y f x x px p R ==-∈. (Ⅰ)当13p =时,求曲线C 的斜率为1的切线方程; (Ⅱ)设斜率为m 的两条直线与曲线C 相切于,A B 两点,求证:AB 中点M 在曲线C 上;(Ⅲ)在(Ⅱ)的条件下,又已知直线AB 的方程为:1y x =--,求,p m 的值.【答案】(Ⅰ)51,27y x y x =-=+;(Ⅱ)详见解析;(Ⅲ)1,3p m ==. 【解析】试题分析:(Ⅰ)当13p =时,先求导,通过斜率为1得到切点.然后利用点斜式得到所求切线方程;(Ⅱ)先将,A B 两点的坐标设出,其中纵坐标用相应点的横坐标表示.再由导数的几何意义,得到,A B 两点横坐标满足122x x p +=.从而得到AB 中点3(,2)M p p -,又AB 中点M 在曲线C 上33223p p p p ⇔-=-⋅,显然成立.得证;(Ⅲ)由AB 中点在直线1y x =--,又在曲线C ,从而得1p =,再反代如直线与曲线联立得方程,得到,A B 两点的坐标,代入导函数中得到斜率,从而得到3m =. 试题解析:(Ⅰ)当13p =时,322()()32y f x x x y f x x x ''==-⇒==-, 设切点为00(,)x y ,由20000011()321,3f x x x x x '==-⇒==-,切点为14(1,0),(,)327-- 故51,27y x y x =-=+为所求. ……(4分)(Ⅲ)由(Ⅱ)知,AB 中点M 的横坐标为p ,且M 在AB 上,(,1)M p p ⇒--,又M 在曲线C 上,323213210(1)(221)0p p p p p p p p p ⇒--=-⋅⇒--=⇒-++=, 所以1p =.由323233101y x x x x x y x ⎧=-⇒-++=⎨=--⎩,3222()(22)10(1)(21)0x x x x x x x x ⇒----+=⇒---=由于12122,11x x x x +=∴==故2211363(16(13m x x =-=-=.综上,1,3p m ==为所求. ……(13分)考点:1.导数的几何意义;2.直线的方程;3.直线与曲线的位置关系.。
湖南省长沙市2024-2025学年高三上学期调研考试(一)数学试题(解析版)
2025届高三第一次调研考试数学(答案在最后)本试题卷共4页.时量120分钟,满分150分.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}320,20A x x xB x x x =-==--<∣∣,则A B = ()A.{}0,1 B.{}1,0- C.{}0,1,2 D.{}1,0,1-【答案】A 【解析】【分析】由因式分解分别求出高次方程和二次不等式的解集,再由集合的运算得出两个集合的交集。
【详解】∵()()3110x x x x x -=+-=∴{}1,0,1A =-∵()()22210x x x x --=-+<∴()1,2B =-∴{}0,1A B = 故选:A2.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则m ∥α的一个充分条件是()A.m ∥,n n ∥αB.m ∥,βα∥βC.,,m n n m αα⊥⊥⊄D.,m n A n ⋂=∥,m αα⊄【答案】C 【解析】【分析】根据题意,由空间中线面关系以及线面平行的判定定理逐一判断,即可得到结果.【详解】对于A ,由m ∥,n n ∥α可得m α⊂或m ∥α,故A 错误;对于B ,由m ∥,βα∥β可得m α⊂或m ∥α,故B 错误;对于C ,由,,m n n m αα⊥⊥⊄可得m ∥α,故C 正确;对于D ,由,m n A n ⋂=∥,m αα⊄可得,m α相交或m ∥α,故D 错误;故选:C3.20252x ⎫-⎪⎭的展开式中的常数项是()A.第673项B.第674项C.第675项D.第676项【答案】D 【解析】【分析】根据题意,求得展开式的通项公式,结合通项公式,即可求解.【详解】由二项式20252x ⎫-⎪⎭的展开式为20253202521202520252C ()(2)C rrrr r rr T x x--+=-=-⋅,令202530r -=,解得675r =,此时()67567567620252C T =-⋅,所以二项式20252x ⎫⎪⎭的展开式的常数项为第676项.故选:D.4.铜鼓是流行于中国古代南方一些少数民族地区的礼乐器物,已有数千年历史,是作为祭祀器具和打击乐器使用的.如图,用青铜打造的实心铜鼓可看作由两个具有公共底面的相同圆台构成,上下底面的半径均为25cm ,公共底面的半径为15cm ,铜鼓总高度为30cm.已知青铜的密度约为38g /cm ,现有青铜材料1000kg ,则最多可以打造这样的实心铜鼓的个数为()(注:π 3.14≈)A .1B.2C.3D.4【答案】C【解析】【分析】先根据圆台的体积公式计算求解铜鼓的体积,然后根据材料体积求解即可.【详解】依题意圆台的上底面半径为15cm ,下底面半径为25cm ,高为15cm ,所以铜鼓的体积()221215251525π153V =⨯⨯++⨯⨯≈38465()3cm,又10000003.25384658≈⨯,故可以打造这样的实心铜鼓的个数为3.故选:C5.已知定义在()0,∞+上的函数()f x 满足()()()1f x x f x <-'(()f x '为()f x 的导函数),且()10f =,则()A.()22f <B.()22f >C.()33f <D.()33f >【答案】D 【解析】【分析】由已知可得()()21xf x f x x x ->',令()()ln f x g x x x=-,可得()g x 在(0,)+∞上单调递增,进而可得()n 33l 3f >,()n 22l 2f >,可得结论.【详解】由题意可得()()xf x f x x '->,即()()21xf x f x x x->',令()()ln f x g x x x=-,则()()()210xf x f x g x x x-'=->',所以()g x 在(0,)+∞上单调递增,因为()10f =,所以()()11ln10g f =-=,所以()()310g g >=,所以()3ln 303f ->,所以()3ln 333f >>,所以()()210g g >=,所以()2ln 202f ->,所以()n 22l 2f >,又2ln 22<,故()2f 与2的大小关系不确定.故选:D.6.已知过抛物线2:2(0)C y px p =>的焦点F 且倾斜角为π4的直线交C 于,A B 两点,M 是AB 的中点,点P 是C 上一点,若点M 的纵坐标为1,直线:3230l x y ++=,则P 到C 的准线的距离与P 到l 的距离之和的最小值为()A.26 B.26C.13D.26【答案】D 【解析】【分析】首先联立AB 与抛物线方程,结合已知、韦达定理求得p ,进一步通过抛物线定义、三角形三边关系即可求解,注意检验等号成立的条件.【详解】由题得C 的焦点为,02p F ⎛⎫⎪⎝⎭,设倾斜角为π4的直线AB 的方程为2p y x =-,与C 的方程22(y px =联立得2220y py p --=,设1,1,2,2,则1222,1y y p p +===,故C 的方程为212,,02y x F ⎛⎫=⎪⎝⎭.由抛物线定义可知点P 到准线的距离等于点P 到焦点F 的距离,联立抛物线2:2C y x =与直线:3230l x y ++=,化简得291090x x ++=,由Δ1004992240=-⨯⨯=-<得C 与l 相离.,,Q S R 分别是过点P 向准线、直线:3230l x y ++=以及过点F 向直线:3230l x y ++=引垂线的垂足,连接,FP FS ,所以点P 到C 的准线的距离与点P 到直线l 的距离之和PQ PS PF PS FS FR +=+≥≥,等号成立当且仅当点P 为线段FR 与抛物线的交点,所以P 到C 的准线的距离与P 到l 的距离之和的最小值为点1,02F ⎛⎫⎪⎝⎭到直线:323l x y ++=0的距离,即26FR ==.故选:D.7.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,对于任意的x ∈R ,ππ1212f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()π02f x f x ⎛⎫+-= ⎪⎝⎭都恒成立,且函数()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,则ω的值为()A.3B.9C.3或9D.【答案】A 【解析】【分析】根据正弦型函数的单调性先确定周期的取值范围,从而缩小ω的取值范围,结合正弦型三角函数的对称性可得符合的ω的取值为3ω=或9,分类讨论验证单调性即可得结论.【详解】设函数()f x 的最小正周期为T ,因为函数()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,所以π0102T⎛⎫--≤ ⎪⎝⎭,得2ππ5T ω=≥,因此010ω<≤.由ππ1212f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭知()f x 的图象关于直线π12x =对称,则11πππ,122k k ωϕ⋅+=+∈Z ①.由()π02f x f x ⎛⎫+-= ⎪⎝⎭知()f x 的图象关于点π,04⎛⎫⎪⎝⎭对称,则22ππ,4k k ωϕ⋅+=∈Z ②.②-①得()2112πππ,,62k k k k ω⋅=--∈Z ,令21k k k =-,则63,k k ω=-∈Z ,结合010ω<≤可得3ω=或9.当3ω=时,代入①得11ππ,4k k ϕ=+∈Z ,又π2ϕ<,所以π4ϕ=,此时()π2sin 34f x x ⎛⎫=+⎪⎝⎭,因为πππ32044x -<+<,故()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,符合题意;当9ω=时,代入①得1ππ4k ϕ=-+,1k ∈Z ,又π2ϕ<,所以π4ϕ=-,此时()π2sin 94f x x ⎛⎫=- ⎪⎝⎭,因为23πππ92044x -<-<-,故()f x 在π,010⎛⎫-⎪⎝⎭上不是单调递增的,所以9ω=不符合题意,应舍去.综上,ω的值为3.故选:A .8.如图,已知长方体ABCD A B C D -''''中,2AB BC ==,AA '=,O 为正方形ABCD 的中心点,将长方体ABCD A B C D -''''绕直线OD '进行旋转.若平面α满足直线OD '与α所成的角为53︒,直线l α⊥,则旋转的过程中,直线AB 与l 夹角的正弦值的最小值为()(参考数据:4sin535︒≈,3cos535︒≈)A.310B.410- C.310+ D.310+【答案】A 【解析】【分析】求出直线OD '与C D ''的夹角,可得C D ''绕直线OD '旋转的轨迹为圆锥,求直线OD '与l 的夹角,结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,利用三角函数知识求解即可.【详解】在长方体ABCD A B C D -''''中,//AB C D '',则直线AB 与l 的夹角等于直线C D ''与l 的夹角.长方体ABCD A B C D -''''中,2AB BC ==,AA '=,O 为正方形ABCD 的中心点,则2OD OC =='',又2C D ''=,所以OC D '' 是等边三角形,故直线OD '与C D ''的夹角为60︒.则C D ''绕直线OD '旋转的轨迹为圆锥,如图所示,60C D O ∠=''︒.因为直线OD '与α所成的角为53︒,l α⊥,所以直线OD '与l 的夹角为37︒.在平面C D O ''中,作D E ',D F ',使得37OD E OD F '∠=∠='︒.结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,为603723C D E ∠=︒-︒=''︒,易知603797C D F ∠=︒+︒=''︒.设直线C D ''与l 的夹角为ϕ,则2390ϕ︒≤≤︒,故当23ϕ=︒时sin ϕ最小,而()sin23sin 6037sin60cos37cos60sin37︒=︒-︒=︒︒-︒︒433sin60sin53cos60cos5310-=︒︒-︒︒≈,故直线AB 与l 的夹角的正弦值的最小值为43310-.故选:A【点睛】关键点点睛:解题中在平面C D O ''中,作D E ',D F ',使得37OD E OD F '∠=∠='︒,结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,为603723C D E ∠=︒-︒=''︒是关键.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某机械制造装备设计研究所为推进对机床设备的优化,成立,A B 两个小组在原产品的基础上进行不同方向的研发,A 组偏向于智能自动化方向,B 组偏向于节能增效方向,一年后用简单随机抽样的方法各抽取6台进行性能指标测试(满分:100分),测得A 组性能得分为:91,81,82,96,89,73,B 组性能得分为:737096799488,,,,,,则()A.A 组性能得分的平均数比B 组性能得分的平均数高B.A 组性能得分的中位数比B 组性能得分的中位数小C.A 组性能得分的极差比B 组性能得分的极差大D.B 组性能得分的第75百分位数比A 组性能得分的平均数大【答案】AD 【解析】【分析】根据计算公式分别计算,A B 两个小组的平均数、中位数、极差、第75百分位数,再对各选项逐一判断即可.【详解】由题意可得A 组性能得分的平均数为91818296897385.36+++++≈,B 组性能得分的平均数为73709679948883.36+++++≈,所以A 组性能得分的平均数比B 组性能得分的平均数高,A 说法正确;A 组性能得分738182899196,,,,,的中位数为828985.52+=,B 组性能得分707379889496,,,,,的中位数为798883.52+=,所以A 组性能得分的中位数比B 组性能得分的中位数大,B 说法错误;A 组性能得分的极差为967323-=,B 组性能得分的极差为967026-=,所以A 组性能得分的极差比B 组性能得分的极差小,C 说法错误;B 组性能得分707379889496,,,,,共6个数据,60.75 4.5⨯=,所以B 组性能得分的第75百分位数为94,比A 组性能得分的平均数大,D 说法正确;故选:AD10.嫁接,是植物的人工繁殖方法之一,即把一株植物的枝或芽,嫁接到另一株植物的茎或根上,使接在一起的两个部分长成一个完整的植株.已知某段圆柱形的树枝通过利用刀具进行斜辟,形成两个椭圆形截面,如图所示,其中,AC BD 分别为两个截面椭圆的长轴,且,,,A C B D 都位于圆柱的同一个轴截面上,AD 是圆柱截面圆的一条直径,设上、下两个截面椭圆的离心率分别为12,e e ,则能够保证CD ≥的12,e e 的值可以是()A.12,32e e == B.121,25e e == C.12340,27e e == D.1232,34e e ==【答案】AD 【解析】【分析】根据勾股定理,结合离心率公式可得22222212111,1r r e n e m -=-=,即可根据n ≥得222111211e e -≥-,逐一代入即可求解.【详解】设2,2,2,AD r AB m CD n ===且n ≥,故BD AC ===故12e e ==,故22222212111,1r r e n e m-=-=,由于n ≥,故222n m ≥,故222222222111211r e n m r m e n -==≥-,即222111211e e -≥-,对于A,12,32e e ==,满足2221112211e e -=≥-,故A 正确,对于B,121,25e e ==,22211142131e e -=<-,故B 错误,对于B,12,27e e ==,2221112721401e e -=<-,故C 错误,对于D,12,34e e ==,22211172121e e -=>-,故D 正确,故选:AD11.对于任意实数,x y ,定义运算“⊕”x y x y x y ⊕=-++,则满足条件a b b c ⊕=⊕的实数,,a b c 的值可能为()A.0.5log 0.3a =-,0.30.4b =,0.5log 0.4c =B.0.30.4a =,0.5log 0.4b =,0.5log 0.3c =-C.0.09a =,0.10.1b =e ,10ln 9c =D.0.10.1e a =,10ln 9b =,0.09c =【答案】BD 【解析】【分析】由a b b c ⊕=⊕,可得a b a b b c b c -++=-++,可得,b a b c ≥≥,故只需判断四个选项中的b 是否为最大值即可,利用函数函数0.5log y x =为减函数,0.4x y =为减函数可判断AB ;构造函数()()[)1e ,0,1x f x x x =-∈,利用单调性可得0.10.10.09e <,进而再构造函数()()[)ln 1,0,1ex x h x x x =+-∈,求导可得()()()21e e 1x xx h x x --'=-,再构造函数()()21e xx x ω=--,利用单调性可判断CD .【详解】由a b b c ⊕=⊕,可得a b a b b c b c -++=-++,即a b b c c a ---=-,若,a b c b ≤≤,可得a b b c c a ---=-,符合题意,若,a b c b ≤>,可得2a b b c b a c ---=--,不符合题意,若,a b c b >≤,可得a b b c a c ---=-,不符合题意,若a b c b >>,,可得2a b b c c a b ---=+-,不符合题意,综上所述0a b -≤,0b c -≥,可得,b a b c ≥≥,故只需判断四个选项中的b 是否为最大值即可.对于A ,B ,由题知0.50.50.510log 0.3log log 103-=<=,而0.3000.40.41<<=,0.50.5log 0.4log 0.51>=,所以0.30.50.5log 0.30.4log 0.4-<<.(点拨:函数0.5log y x =为减函数,0.4x y =为减函数),对于A ,a b c <<;对于B ,c a b <<,故A 错误,B 正确.对于C ,D ,()0.10.10.10.090.9e 10.1e 0.1e ==-,(将0.9转化为10.1-,方便构造函数)构造函数()()[)1e ,0,1x f x x x =-∈,则()e xf x x '=-,因为[)0,1x ∈,所以()()0,f x f x '≤单调递减,因为()01f =,所以()0.11f <,即0.10.9e 1<,所以0.10.10.09e <.(若找选项中的最大值,下面只需判断0.10.1e 与10ln 9的大小即可)()10.10.10.10.10.1100.190.190.1ln ln ln ln 10.1e 9e 10e 10e -⎛⎫-=-=+=+- ⎪⎝⎭,构造函数()()[)ln 1,0,1e x x h x x x =+-∈,则()()()21e 11e 1e 1x x xx x h x x x ---=--'=-,因为[)0,1x ∈,所以()e 10xx ->,令()()21e x x x ω=--,则()()21e xx x ω=---',当[)0,1x ∈时,()()0,x x ωω'<单调递减,因为()00ω=,所以()0x ω≤,即()()0,h x h x '≤单调递减,又()00h =,所以()0.10h <,即()0.10.1ln 10.10e+-<,所以0.10.110ln e 9<.综上,0.10.1100.09ln e 9<<.对于C ,a b c <<;对于D ,c a b <<,故C 错误,D 正确.(提醒:本题要比较0.09与10ln 9的大小关系的话可以利用作差法判断,即()11090.09ln 0.10.9ln 10.90.9ln0.9910-⎛⎫-=⨯-=-⨯+ ⎪⎝⎭,构造函数()()(]1ln ,0,1g x x x x x =-+∈,则()()()221112112x x x x g x x x x x+-+-++='=-+=,因为(]0,1x ∈,所以()()0,g x g x '≥单调递增,因为()10g =,所以()0.90g <,即100.09ln 09-<,所以100.09ln 9<)故选:BD.【点睛】方法点睛:本题考查定义新运算类的题目,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,构造函数,利用函数的单调性与最值比较数的大小.三、填空题:本题共3小题,每小题5分,共15分.12.在复平面内,复数z 对应的点为()1,1,则21zz-=+______.【答案】13i 55-【解析】【分析】根据复数的几何意义可得1i z =+,即可由复数除法运算求解.【详解】由于复数z 对应的点为()1,1,所以1i z =+,故()()()()1i 2i 21i 13i 13i12i 2i 2i 555z z -----=+++-===-,故答案为:13i55-13.写出一个同时满足下列条件①②③的数列的通项公式n a =______.①m na a m n--是常数,*,m n ∈N 且m n ≠;②652a a =;③的前n 项和存在最小值.【答案】4n -(答案不唯一)【解析】【分析】根据等差数列的特征,不妨选择等差数列,然后根据题目条件利用等差基本量的运算求解通项公式,即得解.【详解】由题意,不妨取数列为等差数列,设其首项为1a ,公差为d ,由②可知()61515224a a d a a d =+==+,则13a d =-,又m na a d m n-=-是常数,满足①,由③的前n 项和存在最小值,故等差数列单调递增,取1d =,则13a =-,故4n a n =-,此时当3n =或4n =时,的前n 项和取到最小值为6-,所以同时满足条件①②③的数列的一个通项公式4n a n =-.故答案为:4n -(答案不唯一)14.清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家欧仁・查理・卡特兰的名字命名).有如下问题:在n n ⨯的格子中,从左下角出发走到右上角,每一步只能往上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),则共有多少种不同的走法?此问题的结果即卡特兰数122C C nn n n --.如图,现有34⨯的格子,每一步只能往上或往右走一格,则从左下角A 走到右上角B 共有__________种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方,但可以到达直线AC ,则有__________种不同的走法.【答案】①.35②.14【解析】【分析】根据题意,由组合数的意义即可得到结果,结合卡特兰数的定义,即可得到结果.【详解】从左下角A 走到右上角B 共需要7步,其中3步向上,4步向右,故只需确定哪3步向上走即可,共有37C 35=种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方(不能穿过,但可以到达该连线),则由卡特兰数可知共有4388C C 14-=种不同的走法,又到达右上角D 必须最后经过B ,所以满足题目条件的走法种数也是14.故答案为:35;14四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知M 为圆229x y +=上一个动点,MN 垂直x 轴,垂足为N ,O 为坐标原点,OMN 的重心为G .(1)求点G 的轨迹方程;(2)记(1)中的轨迹为曲线C ,直线l 与曲线C 相交于A 、B 两点,点(0,1)Q ,若点)3,0H 恰好是ABQ的垂心,求直线l 的方程.【答案】(1)()22104x y xy +=≠(2)1635y x =-【解析】【分析】(1)设()()00,,,G x y M x y ,根据G 为OMN 的重心,得00233x x y y ⎧=⎪⎪⎨⎪=⎪⎩,代入22009x y +=,化简即可求解.(2)根据垂心的概念求得l k =l 方程,与椭圆联立韦达定理,利用AH BQ ⊥得2211y x -=-,将韦达定理代入化简即可求解.【小问1详解】设()()00,,,G x y M x y ,则()0,0N x ,因G 为OMN 的重心,故有:00233x x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得003,32x x y y ==,代入22009x y +=,化简得2214x y +=,又000x y ≠,故0xy ≠,所以G 的轨迹方程为()22104x y xy +=≠.【小问2详解】因H 为ABQ 的垂心,故有,AB HQ AH BQ ⊥⊥,又33HQ k ==-,所以l k =,故设直线l的方程为()1y m m =+≠,与2214x y +=联立消去y得:2213440++-=x m ,由2Δ208160m =->得213m <,设()()1122,,,A x y B x y,则2121244,1313m x x x x --+==,由AH BQ ⊥2211y x -=-,所以()211210x x mm -+++-=,所以)()21212410x x m x x m m +-++-=,所以()()()22444241130m m m m m ---+-=,化简得2511160m m +-=,解得1m =(舍去)或165m =-(满足Δ0>),故直线l 的方程为165y =-.16.如图,四边形ABDC 为圆台12O O 的轴截面,2AC BD =,圆台的母线与底面所成的角为45°,母线长,E 是 BD的中点.(1)已知圆2O 内存在点G ,使得DE ⊥平面BEG ,作出点G 的轨迹(写出解题过程);(2)点K 是圆2O 上的一点(不同于A ,C ),2CK AC =,求平面ABK 与平面CDK 所成角的正弦值.【答案】(1)答案见解析(2)47035【解析】【分析】(1)利用线面垂直的判定定理,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于1G ,2G ,即可求出结果;(2)建立空间直角坐标系,根据条件,求出平面ABK 和平面CDK ,利用面面角的向量法,即可求出结果.【小问1详解】E 是 BD的中点,DE BE ∴⊥.要满足DE ⊥平面BEG ,需满足DE BG ⊥,又DE ⊂ 平面BDE ,∴平面BEG ⊥平面BDE 如图,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于1G ,2G ,则线段12G G 即点G 的轨迹.【小问2详解】易知可以2O 为坐标原点,2O C ,21O O 所在直线分别为y ,z 轴建立如图所示的空间直角坐标系2O xyz -,,母线与底面所成角为45°,2AC BD =,22O A ∴=,11O B =,121O O =,取K 的位置如图所示,连接2O K,2CK AC = ,260CO K ∴∠=︒,即230xO K ∠=︒,则)K,()0,2,0A -,()0,1,1B -,()0,2,0C ,()0,1,1D ,则)AK =,)2,1BK =-,)1,0CK =-,)1DK =-.设平面ABK 的法向量为()111,,n x y z =,则00n AK n BK ⎧⋅=⎪⎨⋅=⎪⎩,即111113020y y z +=+-=,令1x =11z =,11y =-,)1,1n ∴=-.设平面CDK 的法向量为()222,,m x y z =,则00m CK m DK ⎧⋅=⎪⎨⋅=⎪⎩,即222200y z -=-=,令2x =,则23z =,23y =,)m ∴=.设平面ABK 与平面CDK 所成的角为θ,则cos 35n mn mθ⋅===⋅ ,470sin 35θ∴==.17.素质教育是当今教育改革的主旋律,音乐教育是素质教育的重要组成部分,对于陶冶学生的情操、增强学生的表现力和自信心、提高学生的综合素质等有重要意义.为推进音乐素养教育,培养学生的综合能力,某校开设了一年的音乐素养选修课,包括一个声乐班和一个器乐班,已知声乐班的学生有24名,器乐班的学生有28名,课程结束后两个班分别举行音乐素养过关测试,且每人是否通过测试是相互独立的.(1)声乐班的学生全部进行测试.若声乐班每名学生通过测试的概率都为p (01p <<),设声乐班的学生中恰有3名通过测试的概率为()fp ,求()f p 的极大值点0p .(2)器乐班采用分层随机抽样的方法进行测试.若器乐班的学生中有4人学习钢琴,有8人学习小提琴,有16人学习电子琴,按学习的乐器利用分层随机抽样的方法从器乐班的学生中抽取7人,再从抽取的7人中随机抽取3人进行测试,设抽到学习电子琴的学生人数为ζ,求ζ的分布列及数学期望.【答案】(1)18(2)分布列见解析,()127E ζ=【解析】【分析】(1)根据独立重复试验求出概率,再利用导数求极值;(2)先借助分层抽样确定随机变量ζ的所有可能取值,求出其分布列,最后求期望.【小问1详解】24名学生中恰有3名通过测试的概率()()213324C 1f p p p =⋅-,则()()()()()212020323322424C 31211C 3118f p p p p p p pp '⎡⎤=---=⋅--⎣⋅⎦,01p <<,令()0f p '=,得18p =,所以当108p <<时,()0f p '>,()f p 单调递增;当118p <<时,()0f p '<,()f p 单调递减,故()f p 的极大值点018p =.【小问2详解】利用分层随机抽样的方法从28名学生中抽取7名,则7名学生中学习钢琴的有1名,学习小提琴的有2名,学习电子琴的有4名,所以ζ的所有可能取值为0,1,2,3,()3337C 10C 35P ζ===,()213437C C 121C 35P ζ===,()123437C C 182C 35P ζ===,()3437C 43C 35P ζ===,则随机变量ζ的分布列为ζ0123P13512351835435()112184120123353535357E ζ=⨯+⨯+⨯+⨯=.18.已知数列为等比数列,为等差数列,且112a b ==,858a a =,48a b =.(1)求,的通项公式;(2)数列()1122241n n b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦⎧⎫-⋅⎨⎬⎩⎭的前n 项和为n S ,集合*422N n n n S b A nt n n a ++⎧⎫⋅⎪⎪=≥∈⎨⎬⋅⎪⎪⎩⎭,共有5个元素,求实数t 的取值范围;(3)若数列{}n c 中,11c =,()22log 2114nn n a c n b =≥-,求证:1121231232n c c c c c c c c c c +⋅+⋅⋅++⋅⋅< .【答案】(1)2n n a =,2n b n =(2)147(25,]4.(3)证明见解析【解析】【分析】(1)设数列的公比为q ,数列的公差为d ,由已知易得38q =,82716b d =+=,可求n a ,n b ;(2)设数列()1122241n nn d b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦=-⋅,可求得441424312848n n n n d d d d n ---+++=-,4nS =(6416)n n +,进而可得422(328)(2)2n n nn S b n n na ++++= ,可得(1)(2)(3)(4)()f f f f f n <>>>> ,可求t 的取值范围为147(25,]4.(3)123n c c c c ⋅⋅ 112[]!(1)!n n =-+,进而计算可得不等式成立.【小问1详解】设数列的公比为q ,数列的公差为d ,则由858a a =,38q =,所以2q =,所以112n nn a a q -==,416a =,即82716b d =+=,所以2=d ,所以1(1)2(1)22n b b n d n n =+-=+-⨯=;【小问2详解】设数列()1122241n nn d b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦=-⋅,则22224414243441424312848n n n n n n n n d d d d b b b b n ------+++=+--=-,所以412344342314(1284880)()()2n n n n n n n S d d d d d d d d ----+=++++++++=(6416)n n =+,4222(6416)2(2)(328)(2)22n n n nn S b n n n n na +++++++== ,令(328)(2)()2n n n f n ++=,1(3240)(3)(328)(2)(1)()22n nn n n n f n f n ++++++-=-()22144113288822n nn n n n +--+---==,可得(1)(2)(3)(4)()f f f f f n <>>>> ,故当2n =时,()f n 最大,且147(1)60(5)(6)254f f f ===,,所以147254t <≤,即t 的取值范围为147(25,4.【小问3详解】由11,c =222log (2)11(1)(1)14n n n a n nc n n n n b ===≥-+--,则当2n ≥时,()()()1232311324113451n n n c c c c n n n n ⋅⋅=⨯⨯⨯⨯=⨯⨯-+⨯⨯⨯⨯⨯+ 211112[]2[](1)!(1)!!(1)!n n n n n n +-===-+++,当1n =时,11c =也满足上式,所以12*3112[](N )!(1)!n n n c n c c c =-⋅⋅∈+ ,1121231231111112[1]222!2!3!!(1)!(1)!n c c c c c c c c c c n n n =-+-++-=-⋅<++⋅+⋅⋅+⋅++ ,所以原不等式成立.19.设有n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,12n b b b b ⎛⎫⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,称1122,n n a b a b a b a b ⎡⎤=++⋅⋅⋅+⎣⎦ 为向量a 和b 的内积,当,0a b ⎡⎤=⎣⎦ ,称向量a 和b 正交.设n S 为全体由1-和1构成的n 元数组对应的向量的集合.(1)若1234a ⎛⎫⎪⎪= ⎪⎪⎝⎭,写出一个向量b ,使得,0a b ⎡⎤=⎣⎦.(2)令[]{},,n B x y x y S =∈.若m B ∈,证明:m n +为偶数.(3)若4n =,()4f 是从4S 中选出向量的个数的最大值,且选出的向量均满足,0a b ⎡⎤=⎣⎦ ,猜测()4f 的值,并给出一个实例.【答案】(1)1110b ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(答案不唯一)(2)证明见解析(3)()44f =,答案见解析.【解析】【分析】(1)根据定义写出满足条件的即可;(2)根据,n x y S ∈,结合定义,求出[],x y ,即可得证;(3)利用反证法求证.【小问1详解】由定义,只需满足13420234b b b b +++=,不妨取1110b ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(答案不唯一).【小问2详解】对于m B ∈,1i =,2,⋅⋅⋅,n ,存在12n x x x x ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,{}1,1i x ∈-,12n y y y y ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭,{}1,1i y ∈-,使得[],x y m = .当=i i x y 时,1i i x y =;当≠i i x y 时,1=-i i x y .令1,0,i i i ii x y x y λ=⎧=⎨≠⎩,1λ==∑n i i k .所以[]()1,2n i i i x y x y k n k k n ===--=-∑ .所以22+=-+=m n k n n k 为偶数.【小问3详解】当4n =时,可猜测互相正交的4维向量最多有4个,即()44f =.不妨取11111a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,21111a -⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ ,31111a -⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭ ,41111a ⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,则有[]12,0a a = ,[]13,0a a = ,[]14,0a a = ,[]23,0a a = ,[]24,0a a = ,[]34,0a a = .若存在5a ,使[]15,0a a = ,则51111a -⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 或1111⎛⎫ ⎪- ⎪ ⎪ ⎪-⎝⎭或1111⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭.当51111a -⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭时,[]45,4a a =- ;当51111a ⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭时,[]25,4a a =- ;当51111a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭时,[]35,4a a =- ,故找不到第5个向量与已知的4个向量互相正交.。
湖南省湖南师范大学附属中学2025届高三上学期月考(二)语文+答案
炎德·英才大联考长郡中学2025届高三月考试卷(二)语文本试卷共四道大题,23道小题。
时量150分钟,满分150分。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:我们要理解中国传统的山水眼光,进而用这种眼光观看我们周围的真山真水。
什么是山水的眼光? 中国画家画一座山,通常先在山脚下住一段时间,在山腰又住一段时间,山前山后来回跑,又无数次登上山岭远望,最后整座山了然于心,待要画时,和盘托出。
一画之中,山脚与山体俱见,山前和山后齐观,巅顶与群峦并立,这就是所谓的“高远、深远、平远”。
不为透视所拘,不受视域所限,山水草木一例相看,烟云山壑腾挪反转。
古人把这种方法称为饱游而饫看,游目而骋怀。
山水眼光是一种不唯一时一侧的观看,更是将观看化入胸壑,化成天地综观的感性方式。
山止川行,风禾尽起。
中国人的内心始终有一种根深蒂固的山水依恋。
何谓“山”?山者,宣也。
宣气散,万物生。
山代表着大地之气的宣散,代表着宇宙生机的根源,故而山主生,呈现为一种升势。
何谓“水”? 水者,准也。
“上善若水,水善利万物而不争。
”相对山,水主德,呈现为平势、和势。
正是这种山水之势在开散与聚合之中,在提按与起落之中,起承转合,趋背相异,从而演练与展现出万物的不同情态、不同气韵。
山水非一物,山水是万物,它本质上是一个世界观,是一种关于世界的综合性的“谛视”。
所谓“谛视”,就是超越一个人瞬间感受的意念,依照生命经验之总体而构成的完整世界图景。
这种图景是山水的人文世界,是山水的“谛视”者将其一生的历练与胸怀置入山水云霭的聚散之中,将现实的起落、冷暖、抑扬、明暗纳入内心的观照之中,形成“心与物游”的存在。
多年前,我曾在台北故宫博物院欣赏北宋郭熙的《早春图》。
我在这里看到一片奇幻的山壑被一层层的烟云包裹着,宁静而悠远,峻拔而生机勃勃。
这是早春即将来临之时的山中景象——冬去春来,大地苏醒,山间浮动着淡淡的雾气,传出春天的消息。
湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案
湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案常德市2017-2018学年度上学期高三数学(文科)检测考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合$A=\{1,2,3\},B=\{2,3,4,5\}$,则$A\cap B$中元素的个数为()。
A.2.B.3.C.4.D.5.2.在复平面内,复数$z=1+2i$($i$为虚数单位)对应的点所在的象限为()。
A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限。
3.在某学校图书馆的书架上随意放着有编号为1,2,3,4,5的五本史书,若某同学从中任意选出两本史书,则选出的两本史书编号相连的概率为()。
A.$\frac{1}{10}$。
B.$\frac{1}{5}$。
C.$\frac{2}{5}$。
D.$\frac{1}{2}$。
4.元朝著名数学家XXX《四元玉鉴》中有一首诗:“我有一壶酒,携着XXX走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”其意思为:“诗人带着装有一倍分酒的壶去春游,先遇到酒店就将酒添加一倍,后遇到朋友饮酒一斗,如此三次先后遇到酒店和朋友,壶中酒恰好饮完,问壶中原有多少酒?”用程序框图表达如图所示,即最终输出的$x=$,那么在这个空白框中可以填入()。
A.$x=x-1$。
B.$x=2x-1$。
C.$x=2x$。
D.$x=2x+1$。
5.已知向量$a=(x,y),b=(1,2),c=(-1,1)$,若满足$a\parallel b,b\perp(a-c)$,则向量$a$的坐标为()。
A.$(\frac{5}{11},\frac{5}{11})$。
B.$(-\frac{5}{11},-\frac{5}{11})$。
C.$(\frac{6}{11},\frac{3}{11})$。
D.$(\frac{5}{11},\frac{6}{11})$。
湖南省长沙市湖南师范大学附属中学2024届高三上学期月考卷(四)数学
湖南师大附中2024届高三月考试卷(四)数学时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12i z =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为( )A.(4,5)- B.(4,3)C.(3,4)- D.(5,4))2.若随机事件A ,B 满足1()3P A =,1()2P B =,3()4P A B = ,则(|)P A B =( )A.29B.23C.14D.168.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且1tan tan cos αβα+=,则( )A.22παβ+=B.22παβ-=C.22πβα-=D.22πβα+=5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是( )A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=6.函数1()2cos[(2023)]|1|f x x x π=++-在区间[3,5]-上所有零点的和等于( )A.2B.4C.6D.87.点M 是椭圆22221x y a b+=(0a b >>)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM △是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.⎛ ⎝C.⎫⎪⎪⎭D.(2-8.已知函数22,0,()4|1|4,0,x x f x x x ⎧=⎨-++<⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( )A.{2,1,0,1}-- B.{2,1,0}-- C.{1,0,1}- D.{2,1}-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已.知双曲线C过点且渐近线为y x =,则下列结论正确的是( )A.C 的方程为2213x y -= B.CC.曲线2e1x y -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点10.已知向量a ,b满足|2|||a b a += ,20a b a ⋅+= 且||2a = ,则( )A.||8b = B.0a b += C.|2|6a b -=D.4a b ⋅= 11.如图、正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是()A.存在点P ,M ,使得二面角M DC P --大小为23πB.存在点P ,M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD -12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b +…和()G x kx b +…恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数2()f x x =(x ∈R ),1()g x x=(0x <),()2eln h x x =(e 2.718≈),则下列选项正确的是( )A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭时单调递增B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为–4C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[4,1]-D.()f x 和()h x之间存在唯一的“隔离直线”ey =-三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f +'=___________.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,sin ACF ∠=,则DEF △的面积为___________.15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a ++++< ,则n 的最大值为___________.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数2()2cos 2xf x x m ωω=++(0ω>)的最小值为–2.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位长度,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上单调递增,求ω的最大值.18.(12分)为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。
2020-2021学年湖南省常德一中高三(上)第四次月考数学试卷(解析版)
2020-2021学年湖南省常德一中高三(上)第四次月考数学试卷一、单项选择题(每小题5分).1.已知集合M={x|﹣1<x<4},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣1<x<4}B.{x|﹣1<x<3}C.{x|﹣2<x<3}D.{x|﹣2<x<4} 2.已知复数z1,z2在复平面内对应的点分别为(1,1),(0,1),则=()A.1+i B.﹣1+i C.﹣1﹣i D.1﹣i3.设函数f(x)=log2|x|,若a=f(log2),b=f(log52),c=f(e0.2),则a,b,c的大小为()A.b<a<c B.c<a<b C.b<c<a D.a<b<c4.在平面直角坐标系xOy中,已知点A(0,﹣2),N(1,0).若动点M满足=,则的取值范围是()A.[0,2]B.[0,2]C.[﹣2,2]D.[﹣2,2] 5.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0]B.(﹣∞,﹣]∪[0,+∞)C.[﹣,]D.[﹣,0]6.已知△ABC的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()A.B.C.D.7.5G技术的数学原理之一便是著名的香农公式:,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内所传信号的平均功率S、信道内部的高斯噪声功率N的大小,其中叫做信噪比.按照香农公式,在不改变W的情况下,将信噪比从1999提升至λ,使得C:大约增加了20%,则λ的值约为()(参考数据:lg2≈0.3,103.96≈9120)A.7596B.9119C.11584D.144698.已知直线l1:kx+y=0(k∈R)与直线l2:x﹣ky+2k﹣2=0相交于点A,点B是圆(x+2)2+(y+3)2=2上的动点,则|AB|的最大值为()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列不等式成立的是()A.若a<b<0,则a2>b2B.若ab=4,则a+b≥4C.若a>b,则ac2>bc2D.若a>b>0,m>0,则10.在正三棱锥A﹣BCD中,侧棱长为3,底面边长为2,E,F分别为棱AB,CD的中点,则下列命题正确的是()A.EF与AD所成角的正切值为B.EF与AD所成角的正切值为C.AB与面ACD所成角的余弦值为D.AB与面ACD所成角的余弦值为11.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e﹣x(x﹣1).则下列结论正确的是()A.当x<0时,f(x)=e x(x+1)B.函数f(x)有五个零点C.若关于x的方程f(x)=m有解,则实数m的取值范围是f(﹣2)≤m≤f(2)D.对∀x1,x2∈R,|f(x2)﹣f(x1)|<2恒成立12.设{a n}是无穷数列,若存在正整数k,使得对任意n∈N+,均有a n+k>a n,则称{a n}是间隔递增数列,k是{a n}的间隔数,下列说法正确的是()A.公比大于1的等比数列一定是间隔递增数列B.已知,则{a n}是间隔递增数列C.已知,则{a n}是间隔递增数列且最小间隔数是2D.已知,若{a n}是间隔递增数列且最小间隔数是3,则4≤t<5三、填空题:本题共4小题,每小题5分,共20分.13.平面向量与的夹角为90°,,则=.14.点(2,1)关于直线x﹣y+1=0对称点的坐标为.15.函数y=a1﹣x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣1=0(mn>0)上,则的最小值为.16.如图,矩形ABCD中,,AD=2,Q为BC的中点,点M,N分别在线段AB,CD上运动(其中M不与A,B重合,N不与C,D重合),且MN∥AD,沿MN将△DMN折起,得到三棱锥D﹣MNQ,则三棱锥D﹣MNQ体积的最大值为;当三棱锥D﹣MNQ体积最大时,其外接球的表面积的值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)已知在平面直角坐标系中,O(0,0),A(2,4),B(6,2),求△OAB的外接圆的方程;(2)已知直线l在两坐标轴上的截距相等,且点A(1,3)到直线l的距离为,求直线l的方程.18.已知.(Ⅰ)求函数f(x)的最小正周期及单调递减区间;(Ⅱ)求函数f(x)在区间的取值范围.19.在①a2,a3,a4﹣4成等差数列.②S1,S2+2,S3成等差数列中任选一个,补充在下列的问题中,并解答.在公比为2的等比数列{a n}中,______.(1)求数列{a n}的通项公式;(2)若b n=(n+1)log2a n,求数列{}的前n项和T n.20.如图,已知三棱柱ABC﹣A1B1C1中,△ABC与△B1BC是全等的等边三角形,(1)求证:BC⊥AB1;(2)若,求二面角C﹣B1B﹣A的余弦值.21.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F1作直线l与椭圆C交于A,B两点,△ABF2的周长为8.(1)求椭圆C的标准方程;(2)问:△ABF2的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.22.已知函数f(x)=x sin x+cos x.(1)求f(x)的单调递增区间;(2)记x i为函数y=f(x)(x>0)的从小到大的第i(i∈N*)个极值点,证明:(n≥2,n∈N).参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<4},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣1<x<4}B.{x|﹣1<x<3}C.{x|﹣2<x<3}D.{x|﹣2<x<4}解:∵M={x|﹣1<x<4},N={x|﹣2<x<3},∴M∩N={x|﹣1<x<3}.故选:B.2.已知复数z1,z2在复平面内对应的点分别为(1,1),(0,1),则=()A.1+i B.﹣1+i C.﹣1﹣i D.1﹣i解:∵复数z1,z2在复平面内对应的点分别为(1,1),(0,1),∴z1=1+i,z2=i.∴=.故选:D.3.设函数f(x)=log2|x|,若a=f(log2),b=f(log52),c=f(e0.2),则a,b,c的大小为()A.b<a<c B.c<a<b C.b<c<a D.a<b<c解:因为f(﹣x)=f(x)即f(x)为偶函数,且x>0时,函数单调递增,a=f(log2)=f(log32),b=f(log52),c=f(e0.2),因为e0.2>1>log32>log52,所以c>a>b.故选:A.4.在平面直角坐标系xOy中,已知点A(0,﹣2),N(1,0).若动点M满足=,则的取值范围是()A.[0,2]B.[0,2]C.[﹣2,2]D.[﹣2,2]解:设M(x,y),由动点M满足=,得,化简得:x2+(y﹣2)2=8,由圆的参数方程得:M(2cosθ,2sinθ),则=2cosθ∈[﹣2,2],故选:D.5.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0]B.(﹣∞,﹣]∪[0,+∞)C.[﹣,]D.[﹣,0]解:设圆心(3,2)到直线y=kx+3的距离为d,由弦长公式得,MN=2≥2,故d≤1,即≤1,化简得8k(k+)≤0,∴﹣≤k≤0,故k的取值范围是[﹣,0].故选:A.6.已知△ABC的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()A.B.C.D.解:设三边依次是x﹣1,x,x+1,其中x是自然数,且x≥2,令三角形的最小角为A,则最大角为2A,由正弦定理,有:==,∴cos A=,由余弦定理,有:cos A=,∴=,即==,整理得:(x+1)2=(x﹣1)(x+4),解得:x=5,三边长为4,5,6,则cos A==.故选:A.7.5G技术的数学原理之一便是著名的香农公式:,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内所传信号的平均功率S、信道内部的高斯噪声功率N的大小,其中叫做信噪比.按照香农公式,在不改变W的情况下,将信噪比从1999提升至λ,使得C:大约增加了20%,则λ的值约为()(参考数据:lg2≈0.3,103.96≈9120)A.7596B.9119C.11584D.14469解:由题意得:≈20%,则≈1.2,1+λ≈20001.2,∵lg20001.2=1.2lg2000=1.2(lg2+3)≈1.2(0.3+3)=3.96,故20001.2≈103.96≈9120,∴λ≈9119,故选:B.8.已知直线l1:kx+y=0(k∈R)与直线l2:x﹣ky+2k﹣2=0相交于点A,点B是圆(x+2)2+(y+3)2=2上的动点,则|AB|的最大值为()A.B.C.D.解:因为线l1:kx+y=0恒过定点O(0,0),直线l2:x﹣ky+2k﹣2=0恒过定点C(2,2)且l1⊥l2,故两直线的交点A在以OC为直径的圆上,且圆的方程D:(x﹣1)2+(y﹣1)2=2,要求|AB|的最大值,转化为在D:(x﹣1)2+(y﹣1)2=2上找一点A,在E:(x+2)2+(y+3)2=2上找一点B,使AB最大,根据题意可得两圆的圆心距=5,则|AB|max=5+2.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列不等式成立的是()A.若a<b<0,则a2>b2B.若ab=4,则a+b≥4C.若a>b,则ac2>bc2D.若a>b>0,m>0,则解:A.a<b<0,则a2>b2,正确;B.若ab=4,则a+b可能小于0,例如,a=b=﹣2,因此不正确;C.若a>b,则ac2≥bc2,c=0时取等号,因此不正确;D.若a>b>0,m>0,则a(b+m)﹣b(a+m)=m(a﹣b)>0,∴正确.故选:AD.10.在正三棱锥A﹣BCD中,侧棱长为3,底面边长为2,E,F分别为棱AB,CD的中点,则下列命题正确的是()A.EF与AD所成角的正切值为B.EF与AD所成角的正切值为C.AB与面ACD所成角的余弦值为D.AB与面ACD所成角的余弦值为解:取BD中点M,BC中点N,连结EM,FM,AN,DN,∵在正三棱锥A﹣BCD中,侧棱长为3,底面边长为2,E,F分别为棱AB,CD的中点,∴AN⊥BC,DN⊥BC,又AN∩DN=N,∴BC⊥平面ADN,∵AD⊂平面ADN,∴AD⊥BC,EM∥AD,且EM==,MF∥BC,MF==1,∴EM⊥MF,EF与AD所成角为∠FEM,∴EF与AD所成角的正切值为tan∠FEM===,故A错误,B正确;连结BF,AF,则AF⊥CD,BF⊥CD,又AF∩BF=F,∴CD⊥平面ABF,过点B作BP⊥AF,交AF于P,则BP⊥CD,∵CD∩AF=F,∴BP⊥平面ACD,∴∠BAF是AB与面ACD所成角,∵AB=3,AF==2,BF=,∴cos∠BAF===.∴AB与面ACD所成角的余弦值为,故C正确,D错误.故选:BC.11.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e﹣x(x﹣1).则下列结论正确的是()A.当x<0时,f(x)=e x(x+1)B.函数f(x)有五个零点C.若关于x的方程f(x)=m有解,则实数m的取值范围是f(﹣2)≤m≤f(2)D.对∀x1,x2∈R,|f(x2)﹣f(x1)|<2恒成立解:根据题意,函数f(x)定义在R上的奇函数,当x>0时,f(x)=e﹣x(x﹣1),依次分析选项:对于A,当x<0时,则﹣x>0,所以f(﹣x)=e x(﹣x﹣1),整理得f(x)=﹣f(﹣x)=e x(x+1),A正确;对于B,当x>0时,f(x)=e﹣x(x﹣1),此时有1个零点x=1,f(x)为定义在R上的奇函数,则f(0)=0,f(﹣1)=﹣f(1)=0,f(x)有3个零点,B错误;对于C,当x>0时,f(x)=e﹣x(x﹣1),其导数f′(x)=e﹣x(2﹣x),在区间(0,2)上,f′(x)>0,函数f(x)为增函数,在区间(2,+∞)上,f′(x)<0,函数f(x)为减函数,则在区间(0,+∞)上有极大值f(2)=e﹣2,而x→0,f(x)→﹣1,则在区间(0,+∞)上,有﹣1<f(x)≤e﹣2,又由f(x)为奇函数,则在区间(﹣∞,0)上,由﹣e﹣2≤f(x)<1,综合可得:f(x)的值域为(﹣1,1),若关于x的方程f(x)=m有解,则实数m的取值范围是﹣1<m<1,C错误;对于D,当x<0时,f′(x)=e x(x+2),得到x<﹣2时,f′(x)<0,﹣2<x<0,时,f′(x)>0,所以函数f(x)在(﹣∞,0)上单调递减,在(﹣2,0)上单调递增,所以x=﹣2时f(x)取得最小值,﹣e﹣2,且x<﹣2时,f(x)<0,所以f(x)<f(0)=1,即﹣e﹣2<f(x)<1,当x>0时,f′(x)=e﹣x(2﹣x),所以f(x)在(0,2)上单调递增,在(2,+∞)上单调递减,x=2时,f(x)取最大值e﹣2,且x>2时,f(x)>0,所以f(x)>f(0)=﹣1,所以﹣1<f(x)≤e﹣2,所以f(x)的值域为(﹣1,e﹣2]∪[﹣e﹣2,1).故∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2,D正确;故选:AD.12.设{a n}是无穷数列,若存在正整数k,使得对任意n∈N+,均有a n+k>a n,则称{a n}是间隔递增数列,k是{a n}的间隔数,下列说法正确的是()A.公比大于1的等比数列一定是间隔递增数列B.已知,则{a n}是间隔递增数列C.已知,则{a n}是间隔递增数列且最小间隔数是2D.已知,若{a n}是间隔递增数列且最小间隔数是3,则4≤t<5解:,因为q>1,所以当a1<0 时,a n+k<a n,故错误;B.,令t=n2+kn﹣4,t在n∈N*单调递增,则t(1)=1+k﹣4>0,解得k>3,故正确;C.,当n为奇数时,2k﹣(﹣1)k+1>0,存在k≥1 成立,当n为偶数时,2 k+(﹣1)k﹣1>0,存在k≥2 成立,综上:{a n} 是间隔递增数列且最小间隔数是2,故正确;D.若{a n} 是间隔递增数列且最小间隔数是3,则,n∈N*成立,则k2+(2﹣t)k>0,对于k≥3 成立,且k2+(2﹣t)k≤0对于k≤2 成立,即k+(2﹣t)>0,对于k≥3 成立,且k+(2﹣t)≤0,对于k≤2 成立,所以t﹣2<3,且t﹣2≥2,解得4≤t<5,故正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.平面向量与的夹角为90°,,则=2.解:∵平面向量与的夹角为90°,∴•=0,又∵,∴2==4+4=8,∴=2,故答案为:214.点(2,1)关于直线x﹣y+1=0对称点的坐标为(0,3).解:设所求对称点的坐标为(m,n),则由对称关系可得,解方程组可得,即所求点的坐标为(0,3)故答案为:(0,3)15.函数y=a1﹣x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣1=0(mn>0)上,则的最小值为4.解:∵函数y=a1﹣x(a>0,a≠1)的图象恒过定点A,∴A(1,1),∵点A在直线mx+ny﹣1=0上(mn>0),∴m+n=1(mn>0),∴=(m+n)()=2+≥2+2=4,当且仅当m=n=时取等号,∴m=n=时,的最小值为4.故答案为:4.16.如图,矩形ABCD中,,AD=2,Q为BC的中点,点M,N分别在线段AB,CD上运动(其中M不与A,B重合,N不与C,D重合),且MN∥AD,沿MN将△DMN折起,得到三棱锥D﹣MNQ,则三棱锥D﹣MNQ体积的最大值为1;当三棱锥D﹣MNQ体积最大时,其外接球的表面积的值为.解:设MB=t,则AM=DN=2﹣t,∵沿MN将△DMN折起,当DN⊥平面MNQ时,三棱锥D﹣MNQ的体积最大,此时V D﹣MNQ===﹣,∴当t=时,V D﹣MNQ取最大值,最大值为1,此时MB=,DN=,∴MQ=NQ=2,∴△MNQ为等边三角形,∴当三棱锥D﹣MNQ体积最大时,三棱锥D﹣MNQ是正三棱柱的一部分,如图所示:则三棱柱MNQ﹣EDF的外接球即是三棱锥D﹣MNQ的外接球,设点G,H分别是上下底面正三角形的中心,∴线段GH的中点即是三棱柱MNQ﹣EDF的外接球的球心O,∴OH=又,∴△MNQ是边长为2的等边三角形,∴HQ=,∴三棱柱MNQ﹣EDF的外接球的半径R=OQ==,∴三棱锥D﹣MNQ的外接球的表面积为4πR2=,故答案为:1;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)已知在平面直角坐标系中,O(0,0),A(2,4),B(6,2),求△OAB的外接圆的方程;(2)已知直线l在两坐标轴上的截距相等,且点A(1,3)到直线l的距离为,求直线l的方程.解:(1)∵O(0,0),A(2,4),B(6,2),∴k OA=2,OA的中点坐标为(1,2),则OA的垂直平分线方程为,即x+2y﹣5=0;,OB的中点坐标为(3,1),则OB的垂直平分线方程为y﹣1=﹣3(x﹣3),即3x+y﹣10=0.联立,解得,故圆心坐标为(3,1),半径r=.∴△OAB的外接圆的方程为(x﹣3)2+(y﹣1)2=10;(2)当直线过原点时,设直线方程为y=kx,即kx﹣y=0.由,解得k=﹣7或k=1.∴直线方程为7x+y=0或x﹣y=0;当直线不过原点时,设直线方程为x+y﹣a=0,由已知可得,解得a=2或a=6.∴直线方程为x+y﹣2=0或x+y﹣6=0.综上可得,直线方程为:7x+y=0或x﹣y=0或x+y﹣2=0或x+y﹣6=0.18.已知.(Ⅰ)求函数f(x)的最小正周期及单调递减区间;(Ⅱ)求函数f(x)在区间的取值范围.解:(Ⅰ)由题意,化简得==,所以函数f(x)的最小正周期π.∵y=sin x的减区间为,由,得,所以函数f(x)的单调递减区间为.(Ⅱ)因为∵,所以.所以.所以函数f(x)在区间上的取值范围是.19.在①a2,a3,a4﹣4成等差数列.②S1,S2+2,S3成等差数列中任选一个,补充在下列的问题中,并解答.在公比为2的等比数列{a n}中,______.(1)求数列{a n}的通项公式;(2)若b n=(n+1)log2a n,求数列{}的前n项和T n.【解答】方案一:选条件①解:(1)由题意,a2=2a1,a3=4a1,a4﹣4=8a1﹣4,∵a2,a3,a4﹣4成等差数列,∴2a3=a2+a4﹣4,即8a1=2a1+8a1﹣4,解得a1=2,∴a n=2•2n﹣1=2n,n∈N*.(2)由(1)知,b n=(n+1)log2a n=(n+1)log22n=n(n+1),记c n=,则c n===2[﹣],∴T n=c1+c2+…+c n=2(﹣)+2(﹣)+…+2[﹣]=2[﹣+﹣+…+﹣]=2[﹣]=2﹣.方案二:选条件②解:(1)由题意,S1,=a1,S2+2=3a1+2,S3=7a1,∵S1,S2+2,S3成等差数列,∴2(S2+2)=S1+S3,即2(3a1+2)=a1+7a1,解得a1=2,∴a n=2•2n﹣1=2n,n∈N*.(2)同方案一第(2)题解答过程.20.如图,已知三棱柱ABC﹣A1B1C1中,△ABC与△B1BC是全等的等边三角形,(1)求证:BC⊥AB1;(2)若,求二面角C﹣B1B﹣A的余弦值.解:(1)证明:取BC中点O,连接AO,B1O,由于△ABC与△B1BC是全等的等边三角形,∴AO⊥BC,B1O⊥BC,且AO∩B1O=O,∴BC⊥平面B1AO,又AB1在平面B1AO内,∴BC⊥AB1;(2)设AB=a,△ABC与△B1BC是全等的等边三角形,则BB1=AB=BC=AC=B1C=a,又,由余弦定理可得,在△AB1C中,有,所以以OA,OB,OB1分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,设平面ABB1的一个法向量为,则,可取,又平面BCB1的一个法向量为,∴二面角C﹣B1B﹣A的余弦值为.21.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F1作直线l与椭圆C交于A,B两点,△ABF2的周长为8.(1)求椭圆C的标准方程;(2)问:△ABF2的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.解:(1)∵离心率为,∴a=2c,∵△ABF2的周长为8,∴4a=8,得a=2,∴c=1,b2=a2﹣c2=3,因此,椭圆C的标准方程为.(2)设△ABF2的内切圆半径为r,∴,又∵|AF2|+|AB|+|BF2|=8,∴,要使△ABF2的内切圆面积最大,只需的值最大.设A(x1,y1),B(x2,y2),直线l:x=my﹣1,联立消去x得:(3m2+4)y2﹣6my﹣9=0,易得△>0,且,,所以=,设,则,设,,所以在[1,+∞)上单调递增,所以当t=1,即m=0时,的最大值为3,此时,所以△ABF2的内切圆面积最大为.22.已知函数f(x)=x sin x+cos x.(1)求f(x)的单调递增区间;(2)记x i为函数y=f(x)(x>0)的从小到大的第i(i∈N*)个极值点,证明:(n≥2,n∈N).解:(1)f′(x)=sin x+x cos x﹣sin x=x cos x,由f′(x)>0可知,当x>0时,x∈(0,)∪(2kπ+,2kπ+π)(k∈N),当x<0时,x∈(﹣2kπ﹣π,﹣2kπ﹣π)(k∈N),∴f(x)的递增区间是(﹣2kπ﹣π,﹣2kπ﹣π)(k∈N),(0,),(2kπ+,2kπ+π)(k∈N);(2)证明:由f′(x)=0,x>0,得x i=(n∈N*),∵=<•=(﹣)(n≥2,n∈N*),∴++•••+<[(﹣)+(﹣)+•••+(﹣)]=(﹣)<•=<.。
长郡中学2024届高三上学期月考(五)数学试题(原卷版)
英才大联考长郡中学2024届高三月考试卷(五)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2|60Ax xx =−−<,集合{}2|lo 1g Bx x =<,则A B ∪=A.()2,3− B.(),3−∞ C.()2,2− D.()0,2(2022.广州二模)2.下列函数中,既是偶函数又在()0,+∞上单调递增的是( )A.12xy =B.2yx x =−C.1y x =− D.1y x x=−3.已知像2,3,5,7这样只能被1和它本身整除的正整数称为素数(也称为质数),设x 是正整数,用()x π表示不超过x 的素数个数,事实上,数学家们已经证明,当x 充分大时,()ln xx xπ≈,利用此公式求出不超过10000的素数个数约为(lg e 0.4343)≈( ) A.1086B.1229C.980D.10604.2021年10月12日,习近平总书记在《生物多样性公约》第十五次缔约方大会领导人峰会视频讲话中提出:“绿水青山就是金山银山.良好生态环境既是自然财富,也是经济财富,关系经济社会发展潜力和后劲.”某工厂将产生废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为()0e 0ktP P t −=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前4个小时废气中的污染物恰好被过滤掉90%,那么再继续过滤2小时,废气中污染物的残留量约为原污染物的( )A.5%B.3%C.2%D.1%(2022.苏北七市三模) 5.函数()()2,,R ax bf x a b c x c+=∈+的图象可能是()的AB.C. D.6. 现有长为89cm 的铁丝,要截成n 小段(2)n >,每段的长度为不小于1cm 的整数,如果其中任意三小段都不能拼成三角形,则n 的最大值为( ) A. 8B. 9C. 10D. 117. 已知函数211()sin sin (0)222xf x x ωωω=+−>,x R ∈.若()f x 在区间(,2)ππ内没有零点,则ω的取值范围是 A. 10,8B. 150,,148∪C. 50,8D. 1150,,848∪8. 已知函数22()42af x x x x =−−−在区间(),2−∞−,)+∞上都单调递增,则实数a 的取值范围是( )A. 0a <≤B. 04a <≤C. 0a <≤D. 0a <≤二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 同学们,你们是否注意到;自然下垂的铁链;空旷田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.这些曲线在数学上常常被称为悬链线.悬链线相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数表达式可以为()x x f x ae be −=+(其中a ,b 是非零常数,无理数e=2.71828…),对于函数()f x ,以下结论正确的是( )A. 如果a=b ,那么()f x 奇函数B. 如果0ab <,那么()f x 为单调函数C. 如果0ab >,那么()f x 没有零点D. 如果1ab =,那么()f x 的最小值为2.为10. 由两个全等的正四棱台组合而得到的几何体1如图1,沿着1BB 和1DD 分别作上底面的垂面,垂面经过棱,,,EP PH HQ QE 的中点,,,F G M N ,则两个垂面之间的几何体2如图2所示,若2EN AB EA ===,则()A. 1BB =B. //FG ACC. BD ⊥平面1BFB GD. 几何体2的表面积为811. 已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A. 120x x +> B. 120x x < C. 12ln 0xe x +=D. 12121x x x x −+<12. 已知0ab ≠,函数()2e axf x x bx =++,则( ) A. 对任意a ,b ,()f x 存在唯一极值点B. 对任意a ,b ,曲线()y f x =过原点的切线有两条C. 当2a b +=−时,()f x 存在零点D. 当0a b +>时,()fx 最小值为1三、填空题:本题共4小题,每小题5分,共20分.13. 已知sin 3cos 0αα−=,则cos 2tan αα+=________. 14. 函数()1293xxf x −=+的最小值是___________.15. 写出一个同时具有下列性质①②③的函数()f x =___________.①()f x 是定义域为R 的奇函数;②()()11f x f x +=−;③()12f =.16. 函数()sin ln 23f x x x π=−−的所有零点之和为__________.的四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()222(sin sin sin )1cos2.a A c C b B a C +−=− (1)求B.(2)是否存在()0,A π∈,使得2a c b +=,若存在,求;A 若不存在,说明理由.18. 已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最大? 19. 函数22()ln ,()(2) 2.71828...x f x a x x g x x e x m x e =−=−−+=+(其中). (1)当0a ≤时,讨论函数()f x 的单调性;(2)当1a =−时,(0,1]x ∈时,()()f x g x >恒成立,求正整数m 最大值.20. 已知函数()()ln f x a x a x =+−.(1)讨论()f x 的单调性;(2)证明:当0a >时,()2e af x a <.21. 已知函数()ln 1f x x x x =−−. (1)证明:()0;f x ≤ (2)若e 1x ax ≥+,求a .22. 设函数()()2e sin 1xf x a x ax a x =+−−+.(1)当0a ≤时,讨论()f x 的单调性; (2)若()f x 在R 上单调递增,求a.的。
数学文卷·2014届湖南省株洲市二中高三第四次月考(2014.01)
株洲市二中2014届高三第四次月考数学(文科)试题命题:高三文科数学备课组 时量:120分钟 分值:150分一、选择题共9小题,每小题5分,共45分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合P={x ︱x 2≤1},M={}a .若P ∪M=P ,则a 的取值范围是( ) A. (-∞, -1] B. [1, +∞) C. [-1,1] D.(-∞,-1] ∪[1,+∞) 2.某程序框图如图所示,若输出的S=57,则判断框内为( ) A. k >4? B. k >5? C. k >6? D. k >7?3.曲线24x +212y 1=的离心率为( ) ABCD .2由222()110(40302030)7.8()()()()60506050n ad bc K Ka b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:A . 有99%以上的把握认为“爱好该项运动与性别有关”B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 5.若a ,b 是非零向量,“a ⊥b ”是“函数()()()f x xa b xb a =+⋅-为一次函数”的( )A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 6.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .14 B .12 C .2D . 1 7.设函数⎪⎩⎪⎨⎧<-≥-=)2(1)21()2()2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,813]C .(0,2)D .[813,2)8.设56)(2+-=x x x f ,且实数x 、y 满足条件⎩⎨⎧≤≤≥-;51,0)()(x y f x f 则x y 的最大值是( ) A .549-B .3C .4D .59.已知直线2-=x y 与圆03422=+-+x y x 及抛物线x y 82=依次 交于D C B A 、、、四点,则||||CD AB +等于 ( )A.10B.12C.14D.16二、填空题:本大题共7小题,每小题5分,共35分。
湖南省长沙2025届高三上学期月考(一)数学试题含答案
2025届高三月考试卷(一)数学(答案在最后)本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合[),A a =+∞,()1,2B =-,若A B =∅ ,则()A.1>-aB.2a > C.1a ≥- D.2a ≥【答案】D 【解析】【分析】根据题意,结合集合的交集的运算,即可求解.【详解】由集合[),A a =+∞,()1,2B =-,因为A B =∅ ,则满足2a ≥.故选:D.2.已知复数z 满足22z -=,z 的取值范围为()A.[]0,2 B.()0,2 C.[]0,4 D.()0,4【答案】C 【解析】【分析】根据题意,利用复数模的几何意义,得到复数z 在复平面内对应的轨迹,进而结合圆的性质,即可求解.【详解】由题意知复数z 满足22z -=,可得复数z 在复平面内对应的轨迹为以(2,0)A 为圆心,2r =为半径的圆,且z 表示圆上的点到原点(0,0)O 的距离,则max min 224,220z OA r z OA r =+=+==-=-=,所以z 的取值范围为0,4.故选:C.3.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC=A.1B.2C.2D.2【答案】C 【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v .【点睛】本题主要考查平面向量的线性运算.4.若函数()2211x x f x x ++=+的最大值为M ,最小值为N ,则M N +=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】将函数解析式化为()211xf x x =++,令()21xg x x =+,判断()g x 的奇偶性,然后利用函数的奇偶性求解即可.【详解】()2222221111111x x xf x x x x x x x +==+=+++++++,令()21x g x x =+,则其定义域为R ,又()()()2211x x g x g x x x --==-=-+-+,所以()21xg x x =+为奇函数,则()()max min 0g x g x +=,所以()()()()max min max min 112f x f x g x g x +=+++=,则2M N +=.故选:B.5.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面AB,是线段ED 的中点,则A.BM EN =,且直线,BM EN 是相交直线B.BM EN ≠,且直线,BM EN 是相交直线C.BM EN =,且直线,BM EN 是异面直线D.BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF , 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.6.tan10tan503tan50︒+︒+︒︒的值为()A.3B.3C.3D.33【答案】B 【解析】【分析】利用正切的和角公式,逆用即可求出结果.【详解】tan10tan503tan10tan50︒+︒︒︒()()tan 10501tan10tan 503tan 50=︒+︒-︒︒+︒︒)31tan10tan503tan 50=-︒︒+︒︒33tan10tan503tan50=-︒︒︒︒3=故选:B.7.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A.第一次朝上面的数字是偶数B.第一次朝上面的数字是1C.两次朝上面的数字之和是8D.两次朝上面的数字之和是7【答案】D 【解析】【分析】根据题意,由相互独立事件的定义,对选项逐一判断,即可得到结果.【详解】抛掷骰子两次,共有6636⨯=个基本事件数,则()()()()()()()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,3,1,3,2,3,3,3,4,3,5,3,6M =,()()()()()()}5,1,5,2,5,3,5,4,5,5,5,6共18个基本事件,则()181362P M ==,设事件E 为第一次朝上面的数字是偶数,则事件M 与事件E 是对立事件,故A 错误;设事件F 为第一次朝上面的数字是1,则F M ⊆,故B 错误;设事件N 为两次朝上面的数字之和是8,则()()()()(){}2,6,3,5,4,4,5,3,6,2N =共5个基本事件,则()536P N =,且()(){}3,5,5,3MN =,则()213618P MN ==,()()()P MN P M P N ≠⋅,所以C 错误;设事件Q 两次朝上面的数字之和是7,则()()()()()(){}1,6,2,5,3,4,4,3,5,2,6,1Q =,则()61366P Q ==,且()()(){}1,6,3,4,5,2MQ =,则()313612P MQ ==,因为()()()P MQ P M P Q =⋅,所以事件M 与事件Q 相互独立.故选:D8.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房,…,以此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数,则10a =()A.10B.55C.89D.99【答案】C 【解析】【分析】根据给定条件,求出数列{}n a 的递推公式,再依次计算求出10a .【详解】依题意,12n n n a a a --=+(*n ∈N ,3n ≥),11a =,22a =,所以34567893,5,8,13,21,34,55,a a a a a a a =======1089a =.故选:C二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知一组样本数据1x ,2x ,…,()201220x x x x ≤≤≤ ,下列说法正确的是()A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差D.若1x ,2x ,…,10x 的均值为2,方差为1,11x ,12x ,…,20x 的均值为6,方差为2,则1x ,2x ,…,20x 的方差为5【答案】BC 【解析】【分析】由百分位数的定义即可判断A ;由极差的定义即可判断C ,由频率分布直方图中中位数、平均数的求法画出图形即可判断B ;由方差计算公式即可判断D.【详解】对于A ,由2060%12⨯=,所以样本数据的第60百分位数为12132x x +,故A 错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如下图,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,故B 正确;对于C ,剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差,故C 正确;对于D ,由10102642020x =⨯+⨯=,则()()22210101112426420202s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦,所以则1x ,2x ,…,20x 的方差为112,故D 错误.故选:BC.10.在平面直角坐标系中,O 为坐标原点,抛物线()220y px p =>的焦点为F ,点()1,2M ,()11,A x y ,()22,B x y 都在抛物线上,且0FA FB FM ++=ruu r uu r uuu r ,则下列结论正确的是()A.抛物线方程为22y x= B.F 是ABM 的重心C .6FA FM FB ++= D.2223AFO BFO MFO S S S ++=△△△【答案】BCD 【解析】【分析】把点代入可得抛物线的方程,结合向量运算可得F 是ABM 的重心,利用抛物线的定义可得6FA FM FB ++= ,利用三角形面积公式及122x x +=,可得2223AFO BFO MFO S S S ++=△△△.【详解】对于A ,由()1,2M 在抛物线上可得42p =,即抛物线方程为24y x =,错误;对于B ,分别取,AB AM 的中点,D E ,则2FA FB FD +=uu u u r uu r u r ,2FM FD =-uuu r uu u r,即F 在中线MD 上,同理可得F 也在中线BE 上,所以F 是ABM 的重心,正确;对于C ,由抛物线的定义可得121,2,1FA x FM FB x =+==+uu r uuu r uu r,所以124++=++FA FM FB x x uu r uuu r uu r.由()10F ,是ABM 的重心,所以12113x x ++=,即122x x +=,所以1246++=++=FA FM FB x x uu r uuu r uu r,正确;对于D ,112AFO S OF y =△,221114AFO S y x ==△;同理222214BFOSy x ==△,21MFO S =△,所以2221213AFO BFO MFO S S S x x ++=++=△△△,正确.故选:BCD.11.已知函数()()()322,,R ,f x x ax bx c a b c f x =-++'∈是()f x 的导函数,则()A.“0a c ==”是“()f x 为奇函数”的充要条件B.“0a b ==”是“()f x 为增函数”的充要条件C.若不等式()0f x <的解集为{1xx <∣且1}x ¹-,则()f x 的极小值为3227-D.若12,x x 是方程()0f x '=的两个不同的根,且12111x x +=,则0a <或3a >【答案】ACD 【解析】【分析】根据函数的奇偶性和充分、必要条件的判定方法,可判定A 正确;结合导数和函数的单调性间的关系,结合充分、必要条件的判定方法,可判定B 错误;利用导数求得函数()f x 的单调性,进而求得()f x 的极小值,可判定C 正确;结合二次函数的性质,结合0∆>,列出不等式,可判定D 正确.【详解】对于A 中,当0a c ==时,函数()3f x x bx =+,则满足()()3f x x bx f x -=--=-,所以()f x 为奇函数,所以充分性成立;若()f x 为奇函数,则()322f x x ax bx c -=---+=()322f x x ax bx c -=-+--,则24ax -20c =恒成立,所以0a c ==,所以必要性成立,所以A 正确;对于B 中,当0a b ==时,()3f x x c =+,可得()230f x x '=≥,所以()f x 为增函数;由()234f x x ax b =-+',当()f x 为增函数时,216120a b ∆=-≤,所以“0a b ==”是“()f x 为增函数”的充分不必要条件,所以B 错误;对于C 中,由()234f x x ax b =-+',若不等式()0f x <的解集为{|1x x <且1}x ¹-,则()f x 在R 上先增后减再增,则()1f '-=()()0,110f f =-=,解得21a b c ===-,故()()()232111f x x x x x x =+--=+-,可得()()()2321311f x x x x x '=+-=-+,令()0f x '=,解得=1x -或13x =,当(),1x ∈-∞-内,()0f x '>,()f x 单调递增;当11,3x ⎛⎫∈- ⎪⎝⎭内,()0f x '<,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭内,()0f x '>,()f x 单调递增,所以()f x 的极小值为2111321133327f ⎛⎫⎛⎫⎛⎫=+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 正确.对于D 中,由()234f x x ax b =-+',因为12,x x 是方程()0f x '=的两个不同的根,所以216120a b ∆=->,即2430a b ->,且1x +2124,33a bx x x ==,由12111x x +=,可得1x +212x x x =,所以433a b =,即4b a =,联立方程组,可得230a a ->,解得0a <或3a >,所以D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分.)12.点M 在椭圆221259x y +=上,F 是椭圆的一个焦点,N 为MF 的中点,3ON =,则MF =_________.【答案】4【解析】【分析】根据椭圆的对称性,利用三角形中位线定理求得||MF ',再由椭圆定义求解||MF 即可.【详解】如图,根据椭圆的对称性,不妨设F 为左焦点,F '为右焦点,由椭圆221259x y +=,得5a =,210a =,N Q 是MF 的中点,O 是FF '的中点,ON ∴为FMF ' 的中位线,||2||6MF ON ∴'==,∴由椭圆的定义得||2||1064MF a MF =-'=-=.故答案为:4.13.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()=E X ______.【答案】65【解析】【分析】根据题意得出X 的所有可能取值为0,1,2,3,然后分析出涂3面油漆,2面油漆,1面油漆,0面油漆的各有多少个小正方体,从而计算X 取每个值时的概率,从而求X 的均值.【详解】X 的所有可能取值为0,1,2,3,大正方体8个顶点处的8个小正方体涂有3面油漆;每一条棱上除了两个顶点处的小正方体外剩余的都涂有两面油漆,所以涂有两面油漆的有31236⨯=个;每个表面去掉四条棱上的16个小正方体,还剩9个小正方体,这9个都是一面涂漆,所以一共有9654⨯=个小正方体涂有一面油漆;剩余的()1258365427-++=个内部的小正方体6个面都没有涂油漆,所以()270125P X ==,()541125P X ==,()362125P X ==,()83125P X ==,()()()()()00112233E X P X P X P X P X =⨯=+⨯=+⨯=+⨯=2754368150601231251251251251255=⨯+⨯+⨯+⨯==.故答案为:65.14.若函数()()52cos sin 2f x a x x x =-+在R 上单调递增,则a 的取值范围是_________.【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】【分析】求导,根据()0f x '≥在R 上恒成立,即可结合二次函数的性质求解.【详解】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+,()f x 在R 上单调递增,()0f x '∴≥在R 上恒成立,令cos x t =,[]1,1t ∈-,则()f x '可写为()2942g t at t =-+,[]1,1t ∈-,根据题意()g t 在[]1,1-上的最小值非负,∴()()10,10,g g ⎧-≥⎪⎨≥⎪⎩解得1122a -≤≤.故答案为:11,22⎡⎤-⎢⎥⎣⎦四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知向量(),sin m b a C =-- ,(),sin sin n c b A B =++,满足//m n u r r .(1)求A ;(2)若角A 的平分线交边BC 于点D ,AD 长为2,求△ABC 的面积的最小值.【答案】(1)23A π=(2)【解析】【分析】(1)由//m n u r r 得出等式,再由正、余弦定理即可解出;(2)把ABC 的面积用等积法表示可得,b c 关系,再利用基本不等式得出bc 的最小值,即得面积最小值.【小问1详解】因为//m n u r r ,所以()()()()sin sin sin b a A B c b C -+=+-,由正弦定理得()()()()b a a b c b c -+=+-,所以222b c a bc +-=-,所以2221cos 222b c a bc A bc ab +--===-,因为()0,A π∈,故23A π=.【小问2详解】∵AD 平分∠BAC ,∴123BAD CAD BAC π∠=∠=∠=,∵ABD ACD ABC S S S +=△△△,∴1sin 2AB AD BAD ⋅⋅∠11sin sin 22AC AD CAD c A +⋅⋅∠=⋅⋅,即22sin 2sin sin 333c b bc πππ+=,∴22c b bc+=由基本不等式可得:22bc b c =+≥,∴16bc ≥,当且仅当4b c ==时取“=”,∴1sin 2ABC S bc A ==≥ 即ABC V的面积的最小值为.16.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=o ,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A 到平面1A PO 的距离;(2)求二面角1A PB O --的余弦值大小.【答案】(1)32;(2)277.【解析】【分析】(1)根据等体积法,由11A AOP A A OP V V --=即可求出点A 到平面1A PO 的距离;(2)先证明PB AP ⊥,1PB AA ⊥,由线面垂直的判定定理可得PB ⊥面1AA P ,进而可得1A PA ∠即为所求二面角的平面角,在1Rt A PA 中,计算11cos AP A PA A P∠=即可求解.【详解】(1)因为113AA OO ==,122AO AB ==,所以1AO ===在AOP中,由余弦定理可得:AP ===所以1A P ==,2OP =,在1AOP中,由余弦定理可得222111121cos 27A P OP A O A PO A P OP +-∠===⋅,所1sin7A PO∠==,所以11227A OPS=⨯=,设点A到平面1A PO的距离为d,由11A AOP A A OPV V--=,得111133AOP AO PS AA S d⋅⋅=⋅⋅,即1111233223d⨯⨯⨯⨯=,解得:32d=,所以点A到平面1A PO的距离为32;(2)二面角1A PB O--即二面角1A PB A--,因为AB是圆O的直径,点P在圆柱1OO的底面圆O上,所以PB AP⊥,因为1AA⊥面ABP,PB⊂面ABP,可得1PB AA⊥,因为1AP AA A⋂=,所以PB⊥面1AA P,因为1A P⊂面1AA P,AP⊂面1AA P,所以PB⊥AP,PB⊥1A P,所以1A PA∠即为二面角1A PB O--的平面角,在1Rt A PA中,1A P=,AP=所以11cos7APA PAA P∠===,所以二面角1A PB O--的余弦值为7.17.双曲线()2222:10,0x yC a ba b-=>>的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且ABD△是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为1k、2k,若122k k=-,求点A到直线MN的距离d的取值范围.【答案】(1)2213y x -=(2)(⎤⎦【解析】【分析】(1)根据等腰直角三角形的性质,转化为,,a b c 的方程,即可求解;(2)首先设直线MN 的方程为x my n =+,与双曲线方程联立,利用韦达定理表示122k k =-,并根据2m 的取值范围,求点到直线的距离的取值范围.【小问1详解】依题意,90BAD ∠=,焦半径2c =,由AF BF =,得2b ac a+=,得22222a a a +=-,解得:1a =(其中20a =-<舍去),所以222413b c a =-=-=,故双曲线C 的方程为2213y x -=;【小问2详解】显然直线MN 不可能与轴平行,故可设直线MN 的方程为x my n =+,联立2233x my n x y =+⎧⎨-=⎩,消去x 整理得()()222316310m y mny n -++-=,在条件2310Δ0m ⎧-≠⎨>⎩下,设()11,M x y ,()22,N x y ,则122631mn y y m +=--,()21223131n y y m -=-,由122k k =-,得()()12122110y y x x +++=,即()()12122110y y my n my n +++++=,整理得()()()()2212122121210m y y m n y y n ++++++=,代入韦达定理得,()()()()()22222312112121310n m m n n n m -+-+++-=,化简可消去所有的含m 的项,解得:5n =或1n =-(舍去),则直线MN 的方程为50x my --=,得d =又,M N 都在双曲线的右支上,故有2310m -<,2103m ≤<,此时1≤<,(d ⎤=⎦,所以点A 到直线MN 的距离d的取值范围为(⎤⎦.18.已知函数()()e xf x x a =-,a ∈R .(1)当1a =时,求()f x 的极值;(2)若函数()()ln g x f x a x =-有2个不同的零点1x ,2x .(i )求a 的取值范围;(ii )证明:12112e x x a x x +->.【答案】(1)极小值为0,无极大值(2)(i )()e,+∞;(ii )证明见解析【解析】【分析】(1)将1a =代入函数解析式,求导,判断其单调性,进而得出极值;(2)(i )化简函数()g x 的解析式,令e x t x =,问题可转化为()ln h t t a t =-在(0,)t ∈+∞有2个零点1t ,2t ,再利用导数研究函数()h t 的性质即可得出答案;(ii )等价于证明21e a t t >,再利用极值点偏移法即可得证.【小问1详解】1a =时,()()e 1xf x x =-,()()1e 1x f x x =+'- ,令()()()(),2e xm x f x m x x ''=∴=+,(),2x ∞∴∈--,()0m x '<;()2,x ∞∈-+,()0m x '>,()f x ∴'在(),2∞--单调递减,()2,∞-+单调递增,x →-∞ 时,10x +<,e 0x >,则′<0,()21210ef '--=-<,()00f '=,x →+∞时,()f x ∞'→+,(),0x ∞∴∈-时,′<0;∈0,+∞,′>0,∴在(),0∞-单调递减,在0,+∞单调递增,∴的极小值为()00f =,无极大值.【小问2详解】(i )()()()()ln e ln e ln e x x x g x f x a x x a x x x a x =-=-+=-,∈0,+∞,令e x t x =,()0,t ∞∈+,()1e 0x t x =+'> ,e x t x ∴=在0,+∞单调递增,令()ln h t t a t =-,即()h t 在()0,t ∞∈+有2个零点1t ,2t ,且111e x t x =,222e xt x =,()1a t a h t t t-='-= ,0a ∴≤时,()0h t '>,()h t 在()0,t ∞∈+单调递增,不存在2个零点,0a ∴>,()0,t a ∈ 时,()0h t '<;(),t a ∞∈+时,()0h t '>,()h t ∴在()0,a 单调递减,在(),a ∞+单调递增,0t → 时,()h t ∞→+;t →+∞时,()h t ∞→+,()()()min 1ln 0h t h a a a ∴==-<,()e,a ∞∴∈+.(ii )设12t t <,()110h => ,()e e 0h a =-<,∴由(i )知,121e t a t <<<<,即证:12e t t a >,即证:21e a t t >,2t a > ,1e a a t >,()h t 在(),a ∞+单调递增,∴即证:()21e 0a h t h t ⎛⎫=> ⎪⎝⎭,11ln t a t = ,()1111111e e e e e e ln ln ln ln 1ln a a a h a a a t t t t t t t ⎛⎫⎛⎫⎡⎤∴=-=-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令()()111e ln ln 1p t t t =+-,()11,e t ∈,即证:()10p t <,()1112211111eln e 1ln ln t t p t t t t t t -=='-+,令()111eln q t t t =-,()11,e t ∈,()1111e e 10t q t t t -=-='< ,()1q t ∴在()1,e 单调递减,()()1e 0q t q >=,()10p t ∴'>,()1p t ∴在()1,e 单调递增,()()1e 0p t p ∴<=,【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知集合{}()1,2,3,,,3A n n n =∈≥ N ,W A ⊆,若W 中元素的个数为()2m m ≥,且存在u ,()v W u v ∈≠,使得()2k u v k +=∈N ,则称W 是A 的()P m 子集.(1)若4n =,写出A 的所有()3P 子集;(2)若W 为A 的()P m 子集,且对任意的s ,()t W s t ∈≠,存在k ∈N ,使得2k s t +=,求m 的值;(3)若20n =,且A 的任意一个元素个数为m 的子集都是A 的()P m 子集,求m 的最小值.【答案】(1){}{}1,2,3,1,3,4;(2)2;(3)13.【解析】【分析】(1)根据()P m 子集的定义,即可容易求得;(2)取{}1,3W =,求得2m =,再利用反证法假设3m ≥,推得10a <与11a ≥矛盾即可;(3)令{}020,19,18,17,11,10,9,3,16,8,4,2W =,讨论12m ≤时不满足题意,再验证13m ≥时的情况满足题意,即可求得m 的最小值.【小问1详解】当4n =时,{}1,2,3,4A =,A 的所有()3P 子集为{}{}1,2,3,1,3,4.【小问2详解】当3n ≥时,取{}1,3W =,因为2132+=,所以W 是A 的()2P 子集,此时2m =;若3m ≥,设123,,a a a W ∈且1231a a a ≤<<,根据题意,3121213232,2,2kk k a a a a a a +=+=+=,其中123,,N k k k ∈;因为121323a a a a a a +<+<+,所以312222k k k <<,所以123k k k <<;又因为123,,N k k k ∈,所以321k k ≥+;因为()3121232222k k k a a a ++=++,所以()31212312222k k k a a a ++=++,所以()()3331212111222222222k k k k k k k a =++-=+-;因为3122221222222k k k k k k ++<+=≤,所以3122220k k k +-<,所以10a <,与11a ≥矛盾.综上所述,2m =.【小问3详解】设{}{}{}{}{}1234520,12,19,13,18,14,17,15,11,5,A A A A A ====={}{}{}{}{}{}{}678123410,6,9,7,1,3,2,4,8,16A A AB B B B =======,设W 的元素个数为m ,若W 不是A 的()P m 子集,则W 最多能包含1238,,,,A A A A 中的一个元素以及1234,,,B B B B 中的元素;令{}020,19,18,17,11,10,9,3,16,8,4,2W =,易验证0W 不是A 的()12P 子集,当12m ≤时,0W 的任意一个元素个数为m 的子集都不是A 的()P m 子集,所以,若A 的任意一个元素个数为m 的子集都是A 的()P m 子集,则13m ≥;当13m ≥时,存在{}1,2,3,4,5,6,7,8i ∈,使得W 中必有两个元素属于i A ,同时i A 中两个元素之和为2的某个正整数指数幂,P m子集;所以W是A的()所以,m的最小值为13.P m子集的定义,【点睛】关键点点睛:本题考查集合新定义问题,处理问题的关键是充分把握题中对()同时要熟练的使用证明方法,属综合困难题.。
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(解析版)
2024-2025学年高一上学期第一次月考数学试卷(基础篇)参考答案与试题解析第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生【解题思路】根据集合的定义依次判断各个选项即可.【解答过程】对于A:2023年参加“两会”的代表具有确定性,能构成集合,故A正确;对于B:北京冬奥会上受欢迎的运动项目,没有明确的标准,即对象不具有确定性,不能构成集合,故B 错误;对于C:π的近似值,没有明确的标准,即对象不具有确定性,不能构成集合,故C错误;对于D:我校跑步速度快的学生,没有明确的标准,即对象不具有确定性,不能构成集合,故D错误;故选:A.2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤0【解题思路】全称量词命题的否定为存在量词命题,求解即可.【解答过程】因为命题pp:∀xx>2,xx2−1>0,所以¬pp:∃xx>2,xx2−1≤0.故选:C.3.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<1【解题思路】利用必要不充分条件的意义,逐项判断即得.【解答过程】对于A,1<xx<3是xx<2的不充分不必要条件,A不是;对于B,xx<3是xx<2的一个必要不充分条件,B是;对于C,xx<1是xx<2的一个充分不必要条件,C不是;对于D,0<xx<1是xx<2的一个充分不必要条件,D不是.故选:B.4.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.4【解题思路】根据元素与集合、集合与集合之间的关系分析判断.【解答过程】对于①:因为0是{0}的元素,所以0∈{0},故①正确;对于②:因为空集是任何非空集合的真子集,所以∅ {0},故②正确;对于③:因为集合{0,1}的元素为0,1,集合{(0,1)}的元素为(0,1),两个集合的元素全不相同,所以{0,1},{(0,1)}之间不存在包含关系,故③错误;对于④:因为集合{(aa,bb)}的元素为(aa,bb),集合{(bb,aa)}的元素为(bb,aa),两个集合的元素不一定相同,所以{(aa,bb)},{(bb,aa)}不一定相等,故④错误;综上所述:正确的个数为2.故选:B.5.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-4【解题思路】利用整体法,结合不等式的性质即可求解.【解答过程】设zz=xx+2yy=mm(2xx+yy)+nn(xx−yy),故2mm+nn=1且mm−nn=2,所以mm=1,nn=−1,故zz=xx+2yy=(2xx+yy)−(xx−yy),由于3≤2xx+yy≤9,6≤xx−yy≤9,所以3+(−9)≤2xx+yy−(xx−yy)≤9+(−6),−6≤xx+2yy≤3,故最小值为−6,此时xx=4,yy=−5,故选:B.6.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}【解题思路】先求出MM,∁UU NN,再求MM∩(∁UU NN),【解答过程】因为UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},所以MM={5,7,9},因为UU={1,3,5,7,9},NN={3,7,9},所以∁UU NN={1,5},所以MM∩(∁UU NN)={5}.故选:B.7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}【解题思路】根据给定的解集求出aa,bb,再解一元二次不等式即得.【解答过程】由不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},得−2,−1是方程aaxx2+bbxx+2=0的两个根,且aa>0,因此−2+(−1)=−bb aa,且−2×(−1)=2aa,解得aa=1,bb=3,不等式2xx2+bbxx+aa<0化为:2xx2+3xx+1<0,解得−1<xx<−12,所以不等式2xx2+bbxx+aa<0为{xx|−1<xx<−12}.故选:C.8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6【解题思路】根据题意可知2aa+bb=32(aa+bb)+12(aa−bb),根据乘1法结合基本不等式运算求解. 【解答过程】因为aa>bb≥0,则aa+bb>0,aa−bb>0,且2aa+bb=32(aa+bb)+12(aa−bb),则2aa+bb=�32(aa+bb)+12(aa−bb)��6aa+bb+2aa−bb�=10+3(aa−bb)aa+bb+3(aa+bb)aa−bb≥10+2�3(aa−bb)aa+bb⋅3(aa+bb)aa−bb=16,当且仅当3(aa−bb)aa+bb=3(aa+bb)aa−bb,即aa=8,bb=0时,等号成立,所以2aa+bb的最小值为16.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
2023-2024学年湖南省长沙市雅礼中学高三上学期月考试卷(二)数学试卷及答案
大联考雅礼中学2024届高三月考试卷(二)数学得分:___________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若12z i =+,则()1z z +⋅=( )A. 24i-- B. 24i-+ C. 62i- D. 62i+2. 全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是( )A. {2,3,5,7,9}B. {2,3,4,5,6,7,8,9}C. {4,6,8}D. {5}3. 函数()2log 22x x xx f x -=+部分图象大致是( )A. B.C. D.4. 在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=( )A. 3B. 3- C. 4- D. 45. 某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(1.5 4.7π≈)A. 3045.6gB. 1565.1gC. 972.9gD. 296.1g6. 已知数列{}n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为( )A.4πB. 2πC.34π D.54π8. 已知函数()f x 定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A. ()()2,04,∞-⋃+B. ()(),15,∞∞--⋃+C. ()(),24,-∞-+∞ D. ()()1,05,∞-⋃+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于实数a ,b ,c ,下列选项正确的是( )A. 若a b >,则2a ba b +>> B. 若0a b >>,则a b>>C. 若11a b>,则0a >,0b < D. 若0a b >>,0c >,则b c ba c a+>+10. 已知函数()2sin cos f x x x x =+,则下列说法正确的是( )A ()πsin 23f x x ⎛⎫=-⎪⎝⎭的.B. 函数()f x 的最小正周期为πC. 函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D. 函数()f x 的图象可由sin 2y x =的图象向右平移π3个单位长度得到11. 设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( )A. 若0d <,则1S 是数列{}n S 的最大项B. 若数列{}n S 有最小项,则0d >C. 若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D. 若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列12. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是( )A. 四面体11A D MN 的体积为定值B. 当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C. 直线MN 与平面ABCDD. 当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.14. 在平面直角坐标系xOy 中,圆O 与x 轴正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分的AOC ∠,34,55B ⎛⎫ ⎪⎝⎭,则点C 的坐标为__________.15. 已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.16. 已知菱形ABCD中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c)sin a C C =-.(1)求A ;(2)若8a =,ABCABC 的周长.19. 如图,在三棱柱111ABC A B C -中,11BC B C O = ,12BC BB ==,1AO =,160B BC ∠=︒,且AO ⊥平面11BB C C .(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.20. 如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF交椭圆于B 点,且满足||2||AF FB =,||AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.21. 如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -体积大于14,求三棱锥A MPC -体积的取值范围.22. 混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()Nf X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.的大联考雅礼中学2024届高三月考试卷(二)数学得分:___________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若12z i =+,则()1z z +⋅=( )A. 24i --B. 24i-+ C. 62i- D. 62i+【答案】C 【解析】【分析】根据复数的乘法运算和共轭复数的定义求解.【详解】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2. 全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是( )A. {2,3,5,7,9}B. {2,3,4,5,6,7,8,9}C. {4,6,8}D. {5}【答案】C 【解析】【分析】根据给定的条件利用韦恩图反应的集合运算直接计算作答.【详解】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3. 函数()2log 22x xxx f x -=+的部分图象大致是( )A. B.C. D.【答案】A 【解析】【分析】利用函数的奇偶性和特殊点即得.【详解】易知()2log 22x xxx f x -=+的定义域为{}0x x ≠,因为()()22log log 2222x x x xx x x f x x f x-----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4. 在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=( )A. 3 B. 3- C. 4- D. 4【答案】A 【解析】【分析】建立直角坐标系,写出相关点的坐标,得到AC ,DE,利用数量积的坐标运算计算即可.【详解】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =--,所以()()()32333AC DE ⋅=⨯-+-⨯-=.故选:A.5. 某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(1.5 4.7π≈)A. 3045.6gB. 1565.1gC. 972.9gD. 296.1g【答案】C 【解析】【分析】由题意可知所需要材料的体积即为半球体积与圆台体积之和,先求出圆台的体积,再利用组合体的体积乘以打印所用原料密度可得结果.【详解】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g ⨯≈⨯=故选:C6. 已知数列{}n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据等比数列的通项公式以及前n 项和公式,分别验证充分性以及必要性即可得到结果.详解】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n nn n a S a a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A7. 若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为( )A.4πB. 2πC.34π D.54π【答案】C 【解析】【分析】根据已知不等式得到,要求y =sin x 和y =cos x 图象不在y =a的同一侧,利用正弦函数、余弦函数图象的性质进行解答即可.【详解】在同一坐标系中,作出y =sin x 和y =cos x 的图象,【的当m =4π时,要使不等式恒成立,只有a ,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a 的同一侧.∴由图可知m 的最大值是34π.故选:C.8. 已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A. ()()2,04,∞-⋃+B. ()(),15,∞∞--⋃+C. ()(),24,-∞-+∞D. ()()1,05,∞-⋃+【答案】D 【解析】【分析】根据()()2f x f x +=-可得()f x 关于直线1x =对称,根据()()24f f -=-可得()()240f f -==,结合函数()f x 的单调性可得函数图象,根据图象列不等式求解集即可.【详解】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x 的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于实数a ,b ,c ,下列选项正确的是( )A. 若a b >,则2a ba b +>> B. 若0a b >>,则a b>>C. 若11a b>,则0a >,0b < D. 若0a b >>,0c >,则b c ba c a+>+【答案】ABD 【解析】【分析】利用比较法、特例法逐一判断即可.【详解】对选项A ,因为a b >,所以022a b a b a +--=>,022a b a bb +--=>,所以2a ba b +>>,故A 正确;对选项B ,0a b >>1=>,所以a >,1=>b >,即a b >>,故B 正确;对选项C ,令2a =,3b =1b>,不满足0a >,0b <,故C 错误;对选项D ,因为0a b >>,0c >,所以()()()()()0a b c b a c c a b b c b a c a a a c a a c +-+-+-==>+++,故D 正确.故选:ABD .10. 已知函数()2sin cos f x x x x =+,则下列说法正确的是( )A. ()πsin 23f x x ⎛⎫=-⎪⎝⎭B. 函数()f x 的最小正周期为πC. 函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D. 函数()f x 图象可由sin 2y x =的图象向右平移π3个单位长度得到【答案】AB的【解析】【分析】利用二倍角公式及辅助角公式化简函数,再结合正弦函数的图像性质逐项判断.【详解】()211cos 21πsin cos sin 2sin 22sin 22223x f x x x x x x x x +⎛⎫=-+==-=- ⎪⎝⎭,所以A 正确;对于B ,函数()f x 的最小正周期为2ππ2=,所以B 正确;对于C ,由ππ2π32x k -=+,k ∈Z ,得5ππ122k x =+,Z k ∈,所以函数()f x 的对称轴方程为5ππ122k x =+,Z k ∈,所以C 不正确;对于D ,sin 2y x =的图象向右平移π6个单位长度,得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到,所以D 不正确.故选:AB .11. 设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( )A. 若0d <,则1S 是数列{}n S 的最大项B. 若数列{}n S 有最小项,则0d >C. 若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D. 若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列【答案】BD 【解析】【分析】取特殊数列判断A ;由等差数列前n 项和的函数特性判断B ;取特殊数列结合数列的单调性判断C ;讨论数列{}n S 是递减数列的情况,从而证明D.【详解】对于A :取数列{}n a 为首项为4,公差为2-的等差数列,2146S S =<=,故A 错误;对于B :等差数列{}n a 中,公差0d ≠,211(1)(222n n n d dS na d n a n -=+=+-,n S 是关于n 的二次函数.当数列{}n S 有最小项,即n S 有最小值,n S 对应的二次函数有最小值,对应的函数图象开口向上,0d >,B 正确;对于C :取数列{}n a 为首项为1,公差为2-的等差数列,22n S n n =-+,122(1)2(1)(2)210n n S n n n n S n =-+++-+---=+<+,即1n n S S <+恒成立,此时数列{}n S 是递减数列,而110S =>,故C 错误;对于D :若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥,一定存在实数k ,当n k >时,之后所有项都为负数,不能保证对任意*N n ∈,均有0n S >.故若对任意*N n ∈,均有0n S >,有数列{}n S 是递增数列,故D 正确.故选:BD12. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是( )A. 四面体11A D MN 的体积为定值B. 当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C. 直线MN 与平面ABCDD. 当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形【答案】ACD 【解析】【分析】求出四面体的体积判断A ;把正方体的棱分成3类,再判断各类中的一条即可判断B ;作出线面角,并求出其正切表达式判断C ;利用线线、线面平行的性质作出截面判断D.【详解】点M ,N 在棱11B C ,CD 上运动时,M 到11A D 距离始终为2,N 到平面11A D M 的距离始终为2,所以四面体11A D MN 的体积11114222323N A MD V -=⨯⨯⨯⨯=恒为定值,A 正确;在正方体1111ABCD A B C D -中,棱可分为三类,分别是1111,,A A A B A D ,及分别与它们平行的棱,又1111,,A A A B A D 不与平面1A MN 平行,则在正方体1111ABCD A B C D -中,不存在棱与平面1A MN 平行,B 错误;正方体棱长为2,如图1,过M 作1MM BC ⊥于1M ,则有1MM ⊥平面ABCD ,于是MN 与平面ABCD 所成角即为1MNM ∠,于是11112tan MM MNM M N M N∠==,又1M N长度的最大值为MN 与平面ABCD,C 正确;如图2,取BC 中点M ',连接,AM MM '',有11////MM BB AA ',且11MM BB AA '==,则四边形1AA MM '是平行四边形,有1//AM A M ',过N 作AM '的平行线交AD 于点E ,此时14DE DA =,则1//EN A M ,即EN 为过1A ,M ,N 三点的平面与平面ABCD 的交线,连接1A E ,在BC 上取点F ,使得14CF CB =,同证1//AM A M '的方法得11//A E B F ,在棱1CC 上取点G ,使113CG CC =,连接MG 并延长交直线BC 于H ,则112CH C M CF ==,即11FH C M B M ==,而1//FH B M ,于是四边形1FHMB 是平行四边形,有11////MG B F A E ,则MG 为过1A ,M ,N 三点的平面与平面11BCC B 的交线,连接NG ,则可得五边形1A MGNE 即为正方体中过1A ,M ,N 三点的截面,D 正确.故选:ABD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.【答案】2-【解析】【分析】求导,利用()13f '=求解即可.【详解】解:因为()ln f x x a x =-,所以()1a f x x'=-,又函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则()1131af '=-=,所以2a =-.故答案为:2-14. 在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分AOC ∠,34,55B ⎛⎫⎪⎝⎭,则点C 的坐标为__________.【答案】2425⎛⎫⎪⎝⎭【解析】【详解】由题意可知圆O 1=,设AOB BOC α∠=∠=,由题意可知4sin 5α=,3cos 5α=,则点C 的横坐标为271cos 212sin 25αα⨯=-=-,点C 的纵坐标为241sin 22sin cos 25ααα⨯==.故答案为:724,2525⎛⎫-⎪⎝⎭.15. 已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.【答案】【解析】【分析】由题意可得()e 2e xxf x -=+,再结合基本不等式即可得答案.【详解】解:因为函数()e xy f x =+为偶函数,则()()e e x x f x f x --+=+,即()()ee xx f x f x ---=-,①又因为函数()3e xy f x =-为奇函数,则()()3e 3e xx f x f x ---=-+,即()()3e 3ex xf x f x -+-=+,②联立①②可得()e 2e xxf x -=+,由基本不等式可得()e 2e x x f x -=+≥=,当且仅当e 2e x x -=时,即当1ln 22x =时,等号成立,故函数()f x 的最小值为故答案为:16. 已知菱形ABCD 中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.【答案】28π【解析】【分析】将ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,得到120AEC ∠=︒,在AEC △中由余弦定理求出AE 的长,进一步求出AB 的长,分别记三角形ABD △与BCD △的重心为G 、F ,记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,证明Rt OGE △与Rt OFE 全等,求出OE ,再推出BD OE ⊥,连接OB ,由勾股定理求出OB ,即可得出外接球的表面积.【详解】将ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,则AE BD ⊥,CE BD ⊥,所以AEC ∠即为二面角A BD C --的平面角,所以120AEC ∠=︒;设AE a =,则AE CE a ==,在AEC △中2222cos120AC AE EC AE CE =+-⋅⋅︒,即2127222a a a ⎛⎫=-⨯⨯⨯- ⎪⎝⎭解得3a =,即3AE =,所以AB ==所以ABD △与BCD △是边长为.分别记三角形ABD △与BCD △的重心为G 、F ,则113EG AE ==,113EF CE ==;即EF EG =;因为ABD △与BCD △都是边长为所以点G 是ABD △的外心,点F 是BCD △的外心;记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,根据球的性质,可得OF ⊥平面BCD ,OG ⊥平面ABD ,所以 OGE 与OFE △都是直角三角形,且OE 为公共边,所以Rt OGE △与Rt OFE 全等,因此1602OEG OEF AEC ∠=∠=∠=︒,所以2cos 60EFOE ==︒;因为AE BD ⊥,CE BD ⊥,AE CE E =I ,且AE ⊂平面AEC ,CE ⊂平面AEC ,所以BD ⊥平面AEC ;又OE ⊂平面AEC ,所以BD OE ⊥,连接OB ,则外接球半径为OB ===,所以外接球表面积为2428S ππ=⨯=.故答案为:28π【点睛】思路点睛:求解几何体外接球体积或表面积问题时,一般需要结合几何体结构特征,确定球心位置,求出球的半径,即可求解;在确定球心位置时,通常需要先确定底面外接圆的圆心,根据球心和截面外接圆的圆心连线垂直于截面,即可确定球心位置;有时也可将几何体补型成特殊的几何体(如长方体),根据特殊几何体的外接球,求出球的半径.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.【答案】(1)n a n =; (2)证明见解析.【解析】【分析】(1)利用,n n a S 的关系,结合已知条件以及等差数列的通项公式即可求得结果;(2)根据(1)中所求,利用裂项求和法求得n T ,即可证明.【小问1详解】依题意可得,当1n =时,2111122S a a a ==+,0n a >,则11a =;当2n ≥时,22n n n S a a =+,21112n n n S a a ---=+,两式相减,整理可得()()1110n n n n a a a a --+--=,又{}n a 为正项数列,故可得11n n a a --=,所以数列{}n a 是以11a =为首项,1d =为公差的等差数列,所以n a n =.【小问2详解】证明:由(1)可知n a n =,所以()42222n b n n n n ==-++,()44441324352n T n n =+++⋅⋅⋅+⨯⨯⨯+22222222222222132435462112n n n n n n =-+-+-+-⋅⋅⋅+-+-+---++2221312n n =+--<++,所以3n T <成立18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c)sin a C C =-.(1)求A ;(2)若8a =,ABCABC 的周长.【答案】(1)2π3(2)18.【解析】【分析】(1)由正弦定理结合两角和的正弦公式化简可得出tan A的值,结合角A的取值范围可求得角A 的值;(2)利用三角形的面积公式可得出182b c bc++=,结合余弦定理可求得b c+的值,即可求得ABC的周长.【小问1详解】)sina C C=-,)sin sinB AC C=-,①因为πA B C++=,所以()sin sin sin cos cos sinB AC A C A C=+=+,sin sin sinA C A C=-,又因为A、()0,πC∈,sin0C≠sin0A A=-<,所以tan A=,又因为()0,πA∈,解得2π3A=.【小问2详解】解:由(1)知,2π3A=,因为ABC所以()1sin2ABCS a b c A=++=⋅△,即()8b c++=,所以,182b c bc++=②,由余弦定理2222π2cos3a b c bc=+-⋅得2264b c bc++=,所以()264b c bc+-=③,联立②③,得()()22864b c b c+-++=,解得10b c+=,所以ABC的周长为18a b c++=.19. 如图,在三棱柱111ABC A B C-中,11BC B C O=,12BC BB==,1AO=,160B BC∠=︒,且AO⊥平面11BB C C.(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.【答案】(1)证明见解析 (2【解析】【分析】(1)根据线面垂直的性质和判断定理可得1B C ⊥平面1ABC ,从而即可证明1AB B C ⊥;(2)建立以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴的空间坐标系,利用空间向量求解即可.【小问1详解】证明:因AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1AO B C ⊥,因为1BC BB =,四边形11BB C C 是平行四边形,所以四边形11BB C C 是菱形,所以11BC B C ⊥.又因为1AO BC O ⋂=,AO ⊂平面1ABC ,1BC ⊂平面1ABC ,所以1B C ⊥平面1ABC ,因为AB ⊂平面1ABC ,所以1AB B C ⊥.【小问2详解】解:以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,如图所示,则)B,()10,1,0B ,()0,0,1A,()1C ,所以()10,1,1AB =-,)11C B =,)110,1A B AB ==-,为设平面11AB C 的一个法向量为()1111,,n x y z = ,则11111111100n AB y z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11x =,可得1y =1z =,所以(11,n =u r,设平面111B C A 的一个法向量为()2222,,n x y z = ,则211221112200n A B z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取21x =,可得2y =2z =,所以(21,n = ,设二面角111A B C A --的大小为θ,因为1212121cos ,7n n n n n n ⋅〈〉===⋅ ,所以sin θ==,所以二面角111A B C A --.20. 如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF 交椭圆于B 点,且满足||2||AF FB =, ||AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.【答案】(1)22132x y +=;(2).【解析】【分析】(1)由已知得b =,由||2||AF FB =且||AB =,知||AF a ==,即可求出椭圆C 的标准方程;(2)直线AF0y +=,与椭圆联立求出3(,2B ,求出点,A B 到直线(0)y kx k =>的距离为1d =,2d =,联立直线y kx =与椭圆方程结合弦长公式求出CD ,求出四边形ACBD 的面积121()2S CD d d =+,整理化简利用二次函数求出最值.【详解】(1)A Q 为椭圆C上一点,b ∴=又 ||2||AF FB =,||AB =可得,||AF =,即a =所以椭圆C 的标准方程是22132x y +=.(2)由(1)知(1,0)F,A ,∴直线AF0y +-=,联立221320x y y ⎧+=⎪⎨+-= ,整理得:22462(3)0x x x x -=-=,解得:1230,2x x ==,∴3(,2B设点A,3(,2B 到直线(0)y kx k =>的距离为1d 和2d ,则1d =,2d = 直线(0)y kx k =>与椭圆相交于,C D 两点,联立22132x y y kx ⎧+=⎪⎨⎪=⎩,整理得:22(32)6k x +=,解得:34x x ==4CD x ∴=-=∴设四边形ACBD 面积为S,则121()2S CD d d =+=(0)k =>.设)t k =+∞,则k t =S ∴====≤当1t =,即t k ===k =ACBD面积有最大值【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -的体积大于14,求三棱锥A MPC -体积的取值范围.【答案】(1(2)【解析】【分析】(1)取OB 的中点N ,连接MN ,证明出//NP OC ,可得出3ONP π∠=,OPN θ∠=,然后在ONP △中利用正弦定理可求得sin θ的值;(2)计算得出四边形OCPB的面积364S πθ⎛⎫=+> ⎪⎝⎭,结合20,3πθ⎛⎫∈ ⎪⎝⎭可求得θ的取值范围,设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V,计算得出2361123V V πθ⎛⎫==+ ⎪⎝⎭,结合正弦型函数的基本性质可求得结果.【小问1详解】解:取OB 的中点N ,连接MN ,M 为AB 的中点,则//MN OA ,MN ⊄ 平面AOC ,AO ⊂平面AOC ,则//MN 平面AOC ,由题设,当//MP 平面AOC 时,因为MP MN M ⋂=,所以,平面//MNP 平面AOC ,NP ⊂ 平面MNP ,则//NP 平面AOC ,因为NP ⊂平面OBPC ,平面OBPC 平面AOC OC =,则//NP OC ,所以,3ONP BOC ππ∠=-∠=,OPN COP θ∠=∠=,在OPN 中,由正弦定理可得sin sin 3ON OP πθ=,故sin 3sin ON OP πθ==.【小问2详解】解:四棱锥M OCPB -的体积1111323V OA S S =⋅⋅=,其中S 表示四边形OCPB 的面积,则112111sin sin sin sin 223222S OP OC OP OB πθθθθθ⎫⎛⎫=⋅+⋅-=++⎪ ⎪⎪⎝⎭⎭3sin 46πθθθ⎛⎫=+=+ ⎪⎝⎭,所以,111364V S πθ⎛⎫==+> ⎪⎝⎭,可得sin 6πθ⎛⎫+> ⎪⎝⎭203πθ<< ,则5666πππθ<+<,故2363πππθ<+<,解得,62ππθ⎛⎫∈ ⎪⎝⎭.设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,由于M 是AB 的中点,则231112sin 2623V V OA S OB OC π⎛⎫==⋅-⋅ ⎪⎝⎭136πθ⎛⎫=+∈ ⎪⎝⎭.22. 混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()N f X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由均值的性质及基本不等式即可证明.(2)由二项分布的概率及条件概率化简即可证明.【小问1详解】由题意可得X 满足二项分布(),X B N p ,由()()E aX b aE X b +=+知,()()N NE f X K X E pN N K K K =+=+⋅≥⎡⎤⎣⋅⎦,当且仅当1Kp K=时取等号;【小问2详解】记P P =(混管中恰有1例阳性|混管检测结果为阳性),i P P =(混管中恰有i 例阳性)=()C 1K i ii K p p --,0,1,,i K = ,令()e 1xh x x =--,33210210x ---⨯<<⨯,则()e 1xh x '=-,当()3021,0x -⨯∈-时,()0h x '<,()h x 为单调递减,当()300,21x -∈⨯时,()0h x '>,()h x 为单调递增,所以()()00h x h ≥=,且()()332103210e 21010h ---⨯--⨯=--⨯-≈,()()332103210e 21010h --⨯-⨯=-⨯-≈,所以当33210210x ---⨯<<⨯,e 10x x --≈即e 1x x ≈+,两边取自然对数可得()ln 1x x ≈+,所以当4010p -<<,1020K ≤≤时,所以()()ln 11e e K K p Kp p Kp ---=≈≈-,则()()()()110111111111K K Kp K p Kp p P P K p P Kp p ---⎡⎤-⎣⎦==≈=--≈---.故某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.。
2015届湖南省长沙长郡中学高三上学期第四次月考数学(文)试题
长郡中学2015届高三上学期第四次月考数学(文)试题本试题卷包括选择题、填空题和解答题三部分。
时量120分钟。
满分150分。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.全集U={1,2,314,5,6),M={2,3,4),N={4,5},则()MN ð等于A .{1,3,5}B .{1,5}C .{l ,6}D .{2,4,6} 2.“x<0”是“1n (x+1)<0,,的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.下图所示的算法流程图中,若输出的T= 720,则正整数a 的值为A .5B .6C .7D .84.一个空间几何体的三视图如图所示,其侧视图是等边三角形,则该几何体的体积等于AB .C .D .5.在区间[一π,π]内随机取两个数分别记为a ,b ,则使得函数222()44f x x ax b π=+-+2有零点的概率为 A .4π B .1一4π C .2π D .l -2π6.已知双曲线2222:x y C a b-=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A .221205x y -=B .221520x y -=C .2218020x y -=D .2212080x y -= 7.设()1(101)xf xg ax =++是偶函数,4()2x bg x -=是奇函数,那么a 十6的值为A .1B .一1C .一12D .128.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3 9.如图,在Rt △ABC 中,∠C= 90°,AC=4,BC=2,D 、E 分别是BC 、AB 的中点,P 是△ABC (包括边界)内任一 点,则.AD EP 的取值范围是 A .[-7,7] B .[-8,8]C .[-9,9]D .[-10,J .O]10.已知函数321,(,1],12()111,0,.362x x x f x x x ⎧∈⎪+⎪=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩函数()s i n ()22(0)6g x a x a a π=-+>,若存在12,[0,1]x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是A .14,23⎡⎤⎢⎥⎣⎦B .1(0,]2C .24,33⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上. 11.已知直线l 的参数方程:12x t y t=⎧⎨=+⎩(t 为参数)和圆C的极坐标方程:)4πρθ=+,则直线l 和圆C 的位置关系为12.在复平面内,复数z 1,z 2对应的点分别是(11,-7),(1,-2),且12z x yi z =+(其中,,x y R i ∈为虚数单位),则z+y 的值为 . 13.如图,函数21()()5F x f x x =+的图象在点P (5,F (5))处的切线方程是y=ax 十8,若(5)'(5)5f f +=-,则实数a= .14.若向量a=(x 一1,2),b=(4,y )相互垂直,则9x +3y 的最小值为 15.如图,直线与抛物线y 2 =2px (p>0)交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 于D ,若点D 的坐标为(2,1),则p 的值等于.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知某单位有50名职工,从中按系统抽样....抽取10 名职工.(1)若第5组抽出的号码为22,写出所有被抽出职 工的号码;(2)分别统计这10名职工的体重(单位:公斤),获 得体重数据的茎叶图如图所示,现从这10名职工中随机抽取两名体重超过平均体重的职工,求体重为76公斤的 职工被抽取到的概率. 17.(本小题满分12分) 在△ABC 中,角A,B,C 所对的边之长依次为a ,b,c ,且2225()a b c +-= (1)求cos 2C 和角B 的值;(2)若a-c=1,求△ABC 的面积.18.(本小题满分12分)如图所示,已知圆O 的直径AB 长度为4,点D为线段AB 上一点,且AD=13DB ,点C 为圆O上一点,且.点P 在圆O 所在平面上的正投影为点D ,PD=B D . (1)求证:CD ⊥平面PAB ;(2)求PD 与平面PBC 所成的角的正弦值. 19.(本小题满分13分)已知无穷数列{a n }中,a 1、a 2、…a m 构成首项为2,公差为-2的等差数列,a m+1、a m+2、…a 2m 构成首项为12,公比为12的等比数列,其中m≥3,m ∈N *. (1)当1≤n≤2rn ,m ∈N*时求数列{a n }的通项公式;(2)若对任意的m ∈N*,都有a n+2m =a n 成立, ①当27164a =时,求m 的值; ②记数列{a n }的前n 项和为S n 判断是否存在m ,使得S 4m +3≥2成立?若存在,求出m 的值;若不存在,请说明理由,20.(本小题满分13分)如图,椭圆22221(0)x y a b a b+=>>经过点3(1,)2P ,离心率e=12直线l 的方 程为x=4.(1)求椭圆C 的方程; (2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3问:是否存在常数λ,使得k 1+k 2=λk 3若存在,求λ的值;若不存在,说明理由.21.(本小题满分13分)设函数22()(1)(x e f x k nx k x x=-+为常数,e=2.718 28…是自然对数的底数).(1)当k≤0时,求函数()f x 的单调区间;(2)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围。
湖南省长沙市雅礼中学2023-2024学年高三下学期月考(八)数学试题含答案
炎德·英才大联考雅礼中学2024届高三月考试卷(八)数学命题人李群丽审题人陈朝阳注意事顶:1.答卷前、考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时、选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后、再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上、写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分、在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义差集{}M N x x M x N -=∈∉且,已知集合{}{}2,3,5,3,5,8A B ==,则()A A B -= ()A .∅B .{}2C .{}8D .{}3,52.已知一组数据12345,,,,x x x x x 的平均数为2,方差为12,则另一组数据1234532,32,32,32,32x x x x x -----的平均数、标准差分别为()A .12,2B .2,1C .324,2D .94,23.设复数z 满足i 2,z z +=这在复平面内对应的点为(),P x y ,则()A .()2214x y -+=B .()2212x y ++=C .()2212x y +-=D .()2214x y ++=4.向量的数量积可以表示为:以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的四分之一,即如图所示,()2214a b AD BC ⋅=- ,我们称为极化恒等式、已知在ABC △中,M 是BC 中点,3,10AM BC ==,则AB AC ⋅=()A .16-B .16C .8-D .85.南丁格尔玫瑰图是由近代护理学和护士教育创始人南丁格尔(FlorenceNightingale )设计的,图中每个扇形圆心角都是相等的,半径长短表示数量大小,某机构统计了近几年中国知识付费用户数量(单位:亿人次),并绘制成南丁格尔攻瑰图(如图所示)、根据此图,以下说法错误的是()A .2015年至2022年,知识付费用户数量逐年增加B .2015年至2022年,知识付费用户数量的逐年增加量在2018年最多C .2015年至2022年,知识付费用户数量的逐年增加量逐年递增D .2022年知识付费用户数量超过2015年知识付费用户数量的10倍6.已知函数()()sin 2(0)f x x ϕϕπ=+<<的图像关于点2,03π⎛⎫⎪⎝⎭中心对称,则()A .直线76x π=是函数()f x 图象的对称轴B .()f x 在区间11,1212ππ⎛⎫-⎪⎝⎭上有两个极值点C .()f x 在区间50,12π⎛⎫⎪⎝⎭上单调递减D .函数()f x 的图象可由cos2y x =向左平移6π个单位长度得到7.已知点O 为坐标原点,椭圆22195x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,设线段1PF 的中点为M ,且2OF OM =,则12PF F △的面积为()A 15B .152C .37D .158.中国古建筑闻名于世,源远流长.如图甲所示的五脊殿是中国传统建筑中的一种屋顶形式,该屋顶的结构示意图如图乙所示,在结构示意图中,已知四边形ABCD 为矩形,,24,EF AB AB EF ADE ==∥△与BCF △都是边长为2的等边三角形,若点,,,,,A B C D E F 都在球O 的球面上,则球O 的表面积为()A .22πB .11πC .112πD .114π二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
湖南省常德市第一中学2024-2025学年高三上学期第一次月考数学试题(含答案)
常德市第一中学2025届高三第一次月水平检测数 学时量:120分钟 满分:150分命题人: 审题人:一、单选题。
(本题共8小题,每题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合,则( )A . B .C .D .2.命题“,”的否定是( )A .,B .,C .,D .,3.设,,,则( )A .B .C .D .4.近年,“人工智能”相关软件以其极高的智能化水平引起国内关注,深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示训练迭代轮数,则学习率衰减到0.2及以下所需的训练迭代轮数至少为(参考数据:)( )A .16B .72C .74D .905.“”是“函数在单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.对于三次函数给出定义: 设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,计算( )A .1010B .2020C .2023D .20247.,均有成立,则a 的取值范围为( )A .B .C .D .8.已知函数,若,使成立,则实数的取值范围是( )A .B .C .D .二、多选题(本题有3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,选错得0分)9.下列选项中正确的有( )A .若,则B .若集合,且,则实数a 的取值所组成的集合是.C .若不等式的解集为,则不等式的解集为或D .已知函数的定义域是,则的定义域是.10.已知,且,则( )A .的最小值是B .最小值为CD .的最小值是11.已知函数,下列选项中正确的是( )A .在上单调递增,在上单调递减{}{}21,24A x x B x x =-≤=-<≤A B = {}4x x ≤{}34x x ≤≤{}23x x -<≤{}24x x -<≤x ∃∈R ln e 0x x x ++>x ∃∈R ln e 0x x x ++≤x ∀∈R ln e 0x x x ++≤x ∀∉R ln e 0x x x ++≤x ∃∉R ln e 0x x x ++<5log 2a =25log 3b =0.20.6c =c b a >>c a b >>b a c >>a c b>>181425GL ⎛⎫=⨯ ⎪⎝⎭L G lg20.301≈1m £()()22log 1f x x mx =--()1,+∞()()³²0f x ax bx cx d a =+++≠()f x '()y f x =()f x ''()f x '()0f x ''=0x 00(,())x f x ()y f x =32115()33212f x x x x =-+-12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1212,[1,e]x x x x ∀∈≠122121ln ln x x x x a x x -<-(],0-∞[)1,+∞[]0,1[)0,+∞()()22e ,e xf x x x ag x x =-+=-(][]12,0,1,e x x ∞∀∈-∃∈()()12g x f x ≤a [)2e 1,-+∞12e 1,e ∞⎡⎫+-+⎪⎢⎣⎭)2e ,⎡+∞⎣21e ,e ⎡⎫++∞⎪⎢⎣⎭a b >22ac bc >{}{}20|1,2,A B x ax =-=+=B A ⊆{}1,2-20ax bx c ++>{}3|1x x <<20cx bx a ++<1{3x x <1}x >()1y f x =+[]2,3-()1y f x =-[]0,50,0a b >>1a b +=ab 14222a b +2312a a b+1+()1e ,01ln ,04x x x f x x x +⎧-≤⎪=⎨->⎪⎩()f x (),1-∞-()1,0-B.有极大值C.无最小值D.若函数恰有6个零点,则实数的取值范围是三、填空题(本题共3小题,每小题5分,共15分)12.已知命题“,使得”是假命题,则实数的取值范围是.13.已知函数,分别是定义在上的奇函数,偶函数,且,则.14.设函数,若在上满足的正整数至多有两个,则实数的取值范围是.四、解答题(本题共5小题,共77分,解答应写出文字说明,证明过程和演算步骤)15.(13分)在中,内角所对的边分别为,已知向量满足,,且.(1)求角;(2)若是锐角三角形,且,求周长的取值范围.16.(15分)已知正方体的棱长为,,,为线段上的动点,是点关于所在直线的对称点.(1)求证:;(2)求三棱锥的体积;(3)当时,求二面角的余弦值的绝对值.17.(15分)数列满足.(1)求的通项公式;(2)若,求的前项和.18.(17分)已知椭圆的右焦点与点连线的斜率为2,且点在椭圆上(其中为的离心率).(1)求椭圆的标准方程.(2)已知点,过点的直线与交于A,B两点,直线DA,DB分别交于M,N两点,试问直线MN的斜率是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)已知(1)当时,求曲线在点处的切线方程;(2)已知有两个极值点,且满足,求的值;(3)在(2)的条件下,若在上恒成立,求的取值范围.()f x()f x()()()()2[]24h x f x af x a=-+∈R a5,2⎛⎫+∞⎪⎝⎭[]1,5x∃∈1e0x ax--<a()f x()g x R()()e xf xg x+=()()22f xg x-=⎡⎤⎡⎤⎣⎦⎣⎦()2e exf x ax x=--()0,∞+()0f x<aABCV,,A B C,,a b c,m n(2,m a=),n B b=m n⊥AABCV3a=ABCV1111ABCD A B C D-311113PD A D=11123QC C D=MBD M'M AD1MB PQ⊥1Q PMB-2BM DM=M PQ M'--{}na321212222nna aaa n-+++⋯+={}nannnba={}nb nnT2222:1(0)x yC a ba b+=>>3,12P⎛⎫⎪⎝⎭()1,eC e CC(2,0)D P l C C()2lnx ax x bf xx++=3,1a b=-=-()y f x=()()1,1f()f x12,x x()()12f x f x+=b()1f x x≥-+[)1,+∞a参考答案:1.C 2.B 3.B 4.C 5.B 6.B 7.B 8.B9.CD 10.BC 11.ABD 12. 13. 14.11.【详解】对于A ,当时,,则,当时,,当时,,所以在上单调递增,在上单调递减,所以A 正确,对于B ,由选项A 可知在上单调递增,在上单调递减,所以在处取得极大值,所以B 正确,对于C ,当时,,当时,,当时,,所以当时,,因为在上单调递增,在上单调递减,且当时,恒成立,综上,的值域为,所以有最小值0,所以C 错误,对于D ,因为在上单调递增,在上单调递减,,,所以的大致图象如图所示由,得,令,则,由的图象可知,要使有6个零点,则方程有两个不相等的实数根,不妨令,若,则由图可知有6个零点,但,所以不符合题意,所以,因为,所以,解得,即实数的取值范围是,所以D 正确,故选:ABD 14.【详解】由在上满足的正整数至多有两个,即在上满足的正整数至多有两个,设,,则,设,,则,,设,,则恒成立,则在上单调递增,即,即,所以在上单调递增,又,所以当时,,即,单调递减;当时,,即,单调递增;(],e 1∞--1-3e 3e ,9⎛⎤--∞ ⎝⎦0x ≤1()e x f x x +=-111()(e e )e (1)x x x f x x x +++'=-+=-+1x <-()0f x '>10x -<<()0f x '<()f x (),1∞--()1,0-()f x (),1∞--()1,0-()f x =1x -0x >14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩14e x ≥1ln 04x -≥140e x <<1ln 04x ->0x >()0f x ≥()f x (),1∞--()1,0-0x ≤()0f x ≥()f x [0,)+∞()f x ()f x (),1∞--()1,0-()11f -=(0)0f =14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩()f x ()0h x =()()2[]240f x af x -+=()f x t =2240t at -+=()f x ()h x 2240t at -+=12,t t 12t t <120,01t t =<<()h x 202040a -⨯+≠1201,1t t <<>2020440a -⨯+=>21240a -+<52a >a 5,2∞⎛⎫+ ⎪⎝⎭3e 3e ,9⎛⎤--∞ ⎝⎦()0,∞+()2e e 0xf x ax x =--<()0,∞+2e e x x a x ->()2e e x xg x x -=0x >()()3e 2e x x x g x x -+'=()()e 2e xh x x x =-+0x >()()e 1e x h x x '=-+0x >()()e 1e x m x x =-+0x >()e 0xm x x '=>()m x ()0,∞+()()0e 10m x m >=->()0h x '>()h x ()0,∞+()10h =()0,1x ∈()0h x <()0g x '<()g x ()1,x ∈+∞()0h x >()0g x '>()g x所以当时,取最小值,又在上满足的正整数至多有两个,则,即,故答案为:.15.(1)或.(2)【详解】(1)解:∵,∴,即.由正弦定理得.∵,∴∵,∴或.(2)∵,且三角形为锐角三角形,∴.∴由正弦定理得.∴,.∴,.又∵为锐角三角形,∴,∴,得,.,,∴,又∵,∴.∴的周长的取值范围为.16.(1)证明见解析(2) (3)【详解】(1)证明:连接.由,得,又,则有,正方体中,平面,平面,得,又正方形中,,,平面,所以平面,由平面,得.又,所以.(2),,, ,有,,∴.1x =()g x ()0,∞+()2e e x x a g x x ->=()3e 3e39a g -≤=3e 3e ,9a ⎛⎤-∈-∞ ⎥⎝⎦3e 3e ,9⎛⎤--∞ ⎥⎝⎦π3A =2π3(3+m n ⊥20a B =2a B =2sin sin A B B sin 0B ≠sin A =(0,π)A ∈π3A =2π33a =ABC π3A =sin sin sin a b cA B C ====b B =c C =)2πsin sin sin sin 3b c B C B B ⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦13sin sin sin 22B B B B B ⎫⎫=++=⎪⎪⎪⎪⎭⎭)1πcos 32cos 6sin 26B B B B B ⎫⎛⎫=+=⨯+=+⎪ ⎪⎪⎝⎭⎭ABC V π02B <<2π0π32B <-<ππ62B <<ππ2π363B <+<πsin()16B <+≤6sin 66B π⎛⎫<+≤ ⎪⎝⎭6b c <+≤3a =39a b c +<++≤ABC V (3+5217191111,A C B D 11123QC C D =11113QD C D =11113PD A D =11//PQ A C 1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 111BB A C ⊥1111D C B A 1111B D A C ⊥1111BB B D B ⋂=111,BB B D ⊂11BB D D 11A C ⊥11BB D D 1MB ⊂11BB D D 111A C MB ⊥11//PQ AC 1PQ MB ⊥111D P D Q ==PQ ==111111,A B C B A P C Q ==1111Rt Rt A B P C B Q ≅V V 222222*********B P B Q A P A B ==+=+=11B P B Q ==1115222PQB S PQ ===V 11115332Q PMB M PQB PQB V V S --==⨯⨯=V(3)如图所示,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系.则,,,,当时,有,则,,.设为平面的一个法向量,∴,令,得,可得.设为平面的一个法向量,∴,令,得,可得.设所成的角为∴.17.(1) (2)【详解】(1)数列满足,当时,,两式相减可得,,所以,当时,也满足上式,所以;(2)由(1)得,所以,则,两式相减的,,所以.18.(1) (2)是定值,定值为(1)由题意可得,解得 故椭圆的标准方程为;(2)由题意可知直线的斜率不为0,设直线的方程为,,,,,则直线DA 的方程为. 联立,整理得 则,即. D DA x DC y 1DD z (0,0,0)D (3,0,0)A (1,0,3)P (0,1,3)Q 2BM DM =(1,1,0)M (1,1,0)M -'(1,1,0)PQ =- (1,2,3)QM -'=- (0,1,3)PM =-()111,,m x y z = QPM '111110230PQ m x y QM m x y z ⎧⋅=-+=⎪⎨⋅='--=⎪⎩13x =113,1y z ==-()3,3,1m =- ()222,,n x y z = QPM 2222030PQ n x y PM n y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩23x =223,1y z ==(3,3,1)n =M PQ M '--θ17cos 19m n m n θ⋅===⋅ 2n n a =222n nn T +=-{}n a 321212222n n a a a a n -++++= 2n ≥()31212221222n n a a a a n --+++⋯+=-122nn a -=2n n a =1n =1122a ==2n n a =2n n n b =231232222nn nT =++++ 234111*********n n n n n T +-=+++++ 2311111(1)11111222112222222212n n n n n n n n n T +++-+=++++-=-=-- 222nnn T +=-2212x y +=2-22222221023211c c a a b a b c-⎧=⎪-⎪⎪⎪+=⎨⎪=+⎪⎪⎪⎩222211a b c ⎧=⎪=⎨⎪=⎩C 2212xy +=l l ()312x m y =-+()11,A x y ()22,B x y ()33,M x y ()44,N x y 1122x x y y -=+11222212x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩()()22111132220x y x y y y -+-+=2113132y y y x =-13132y y x =-代入,得. 同理可得. 因为 所以直线MN 的斜率为定值,且定值为.19.(1)(2)(3)【详解】(1)当时,,所以,所以.所以曲线在点处的切线方程为.(2)因为,所以,因为有两个极值点,所以有两个大于0的变号零点,所以方程有两个不等正根,所以,解得,又因为,即有,整理得,代入,可得,解得,又因为,所以可得,经检验,符合题意.(3)由(2)可知且,从而,因为在上恒成立,令,则有在上恒成立,易得,因为,所以,令,对称轴,①当时,,所以在单调递增,从而恒成立,所以在也恒成立,所以在单调递增,从而恒成立.②当时,,所以有两个不等实根(不妨设),所以,且当时,,从而,所以在上单调递减,所以,与“在上恒成立”矛盾,1122x x y y -=+()13112312322232x x x x -=+=---()2442231,322232y y x x x ==---()()()()21211213214312123232323211232232MNy y y x y x y y x x k x x x x x x -------===-----()()()21112112123332322222,y my m y my m m y y m y y m y y ⎡⎤⎡⎤⎛⎫⎛⎫--+---+ ⎪ ⎪⎢⎥⎢⎥-⎝⎭⎝⎭⎣⎦⎣⎦===---2-1y x =-+1b =-[)3,2--3,1a b =-=-()()13ln ,10f x x x f x =--=()2311f x x x'=-+()11f '=-()y f x =()()1,1f 1y x =-+()()ln ,0,b f x x a x x x =++∈+∞()2221a b x ax bf x x x x +-=+-='()f x 12,x x ()f x '20x ax b +-=21212Δ4000a b x x b x x a ⎧=+>⎪=->⎨⎪+=->⎩2400a bb a ⎧>-⎪<⎨⎪<⎩()()120f x f x +=112212ln ln 0b b x a x x a x x x +++++=()()12121212ln 0x x x x a x x bx x ++++=1212,x x b x x a =-+=-()()ln 0aa ab b b--+-+=-1b =-240a ba ⎧>-⎨<⎩2a <-1b =-2a <-()1ln f x x a x x=+-()1f x x ≥-+[)1,+∞()()[)112ln 1,1,g x f x x x a x x x=+-=+--∈+∞()0g x ≥[)1,+∞()12ln1110g a =+--=()2221212a x ax g x x x x ++=++='()13g a '=+()[)()221,1,,13h x x ax x h a =++∈+∞=+4a x =-32a -≤<-()3130,44a h a x =+≥=-≤()h x [)1,+∞()()130h x h a ≥=+≥()()20h x g x x ='≥[)1,+∞()g x [)1,+∞()()10g x g ≥=3a <-()130h a =+<2210x ax ++=34,x x 34x x <341x x <<()41,x x ∈()0h x <()()20h x g x x='<()g x []41,x ()()410g x g <=()0g x ≥[)1,+∞综上,的取值范围是.a [)3,2--。
湖南省邵阳市2025届高三上学期9月月考数学试题含答案
高三数学(答案在最后)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,4}A =,{|22}B x x =≥-λ,若A B ⋂=∅,则实数λ的取值范围是()A.3,2∞⎛⎫- ⎪⎝⎭B.3,2⎡⎫+∞⎪⎢⎣⎭C.(3,)+∞D.[3,)+∞【答案】C 【解析】【分析】根据A B ⋂=∅,可求得224λ->,则得3λ>,从而可求解.【详解】由题意可知A B ⋂=∅,只需224λ->,解得3λ>,故C 正确.故选:C.2.已知等差数列{}n a 的前n 项和为n S ,若21024a a +=,且36a =,则8S =()A.60B.72C.120D.144【答案】B 【解析】【分析】根据给定条件,利用等差数列性质及前n 项和公式计算即得.【详解】在等差数列{}n a 中,6210224a a a =+=,解得612a =,所以188368()4()4(612)722a a S a a +==+=⨯+=.故选:B3.已知()(2)3g x f x =+-是定义在R 上的奇函数,若(1)4f =,则(3)f =()A.10- B.4- C.2D.3【答案】C 【解析】【分析】根据给定条件,利用奇函数的性质求出函数()f x 的性质,进而求出(3)f .【详解】由()(2)3g x f x =+-是定义在R 上的奇函数,得[(2)3][(2)3]0f x f x -+-++-=,即(2)(2)6f x f x -+++=,令1x =,则(1)(3)6f f +=,而(1)4f =,所以(3)2f =.故选:C4.已知过点(1,0)A 的直线l 与圆22:(2)4C x y ++=相交于M ,N 两点,若||2MN =,则l 的斜率为()A.2±B.12±C.13±D.14±【答案】A 【解析】【分析】设出直线l 的方程,利用点到直线距离公式及圆的弦长公式列式求解即得.【详解】圆22:(2)4C x y ++=的圆心(2,0)C -,半径2r =,易知直线斜率存在,设l 的方程为(1)y k x =-,则圆心(2,0)C -到l 的距离d =,则2MN ==,解得2k =±,所以l 的斜率为2±.故选:A5.中国冶炼铸铁的技术比欧洲早2000年左右,铸铁技术的诞生标志着真正的铁器时代的开始.现将一个表面积为236πcm 的实心铁球熔化后,浇铸成一个正四棱台形状的实心铁锭,若该铁锭的上、下底面的边长分别为和,则该铁锭的高为()A.3cmB.10cm 3C.18cm 5D.27cm 7【答案】D 【解析】【分析】根据给定条件,利用球的表面积、体积公式及棱台的体积公式列式计算得解.【详解】设实心铁球的半径为cm R ,依题意,24π36πR =,解得3R =,设正四棱台形状的实心铁锭的高为cm h ,则()3144π16π8ππ36π33h R ⋅++⋅==,解得277h =,所以该铁锭的高为27cm 7.故选:D6.已知1122(,),(,)x y x y 是函数ln y x =的图象上的两个不同的点,则()A.1212e2y y x x ++> B.1212e2y y x x ++< C.122212e2y y x x ++>D.122212e2y y x x ++<【答案】D 【解析】【分析】求出已知两点的中点坐标及ln y x =的图象上纵坐标为122y y +的点,结合函数图象建立不等式,借助基本不等式即可得解.【详解】如图所示,设1,1,2,2,AB 的中点为1212(,)22x x y y M ++,点N 在ln y x =的图象上,且//MN x 轴,则12122(e,)2y y y y N ++,由图知点N 在M 的左侧,即12122e2y y x x ++<,所以122122222121212()e4422y y x x x x x x x x ++++<=<+.故选:D7.已知正方体1111ABCD A B C D -的棱长为4,11134A E AB =uuu r uuu u r ,1(,[0,1])CF CB CC =+∈uu u r uu r uuu rλμλμ,若//EF 平面11A DC ,则线段EF 的长度的取值范围为()A. B. C. D.【答案】B 【解析】【分析】根据题意作出相应平面//EGHIJK 平面11A DC ,从而可知点F 在线段GH 上,从而可得EG EF EH ≤≤,即可求解.【详解】由题可知点F 在正方形11BCC B 内(含边界).取棱11B C 上靠近点1B 的四等分点G ,棱1CC 上靠近点C 的四等分点H ,连接EG ,GH ,易得1//GH A D ,因为1A D ⊂平面11A DC ,GH ⊄平面11A DC ,所以//GH 平面11A DC ,因为//EF 平面11A DC ,所以过线段GH 且与平面11A DC 平行的截面为如图所示的平面EGHIJK ,所以EF GH F ⋂=,所以点F 在线段GH 上,所以EG EF EH ≤≤,又因为EF ==,EH =所以EF 的取值范围是,故B 正确.故选:B.8.已知1a >,若(0,)∀∈+∞x ,log a a ax x>恒成立,则a 的取值范围是()A.1e(e ,)+∞ B.e(e ,)+∞ C.1e(1,e )D.e (1,e )【答案】A 【解析】【分析】根据给定条件,换元变形并构造函数ln ()tf t t=,利用导数求出最大值即可求出范围.【详解】令函数at x =在()0,x ∞∈+上单调递减,且(0,)t ∈+∞,则log a t t >,即ln ln t t a >,而1a >,于是ln ln ta t>,令ln ()t f t t =,求导得21ln ()t f t t'-=,当(0,e)t ∈时,()0f t '>,当(e,)t ∈+∞时,()0f t '<,则函数()f t 在()0,e 上单调递增,在()e,∞+上单调递减,因此max 1()(e)e f t f ==,所以1ln ea >,即1e e a >.故选:A【点睛】关键点点睛:换元变形不等式,再分离参数并构造函数()ln tf t t=是解题的关键.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数π()sin(23f x x =-,则()A.()f x 的最小正周期为πB.()f x 在区间π(0,)2上无最大值C.()f x 在区间ππ(,26--上单调递减 D.()f x 的图象关于直线π12x =-对称【答案】ACD 【解析】【分析】根据给定条件,结合正弦函数的性质逐项分析判断即得.【详解】对于A ,()f x 的最小正周期为2ππ2=,A 正确;对于B ,当π(0,2x ∈时,ππ2π2()333x -∈-,当ππ232x -=,即5π12x =时,()f x 取得最大值1,B 错误;对于C ,当ππ(,)26x ∈--时,π4π2π2(,333x -∈--,则()f x 在区间ππ(,26--上单调递减,C 正确;对于D ,当π12x =-时,ππ232x -=-,则()f x 的图象关于直线π12x =-对称,D 正确.故选:ACD10.在平面直角坐标系xOy 中,已知点(1,0)A ,(0,3)B ,(,3)(0)C a a ≠,(1,0)D -,ABD △,BCD △的外接圆分别为圆M 、圆N ,则下列结论正确的是()A.直线BD 的方程为230x y -+=B.点C 恒在圆M 外C.若圆M 与圆N 的半径相等,则2a =-D.若1a =,则圆N 的圆心的横坐标为0【答案】BC 【解析】【分析】求出直线BD 的方程判断A ;判断点C 的轨迹与圆M 关系判断B ;求出圆N 半径及圆心坐标进而求出a 判断C ;确定圆心位置判断D.【详解】对于A ,直线BD 的方程为3030(1)y x -=+--,即330x y -+=,A 错误;对于B ,等腰ABD △的外接圆M 的圆心在y 轴上,则直线3y =与圆M 相切于点B ,而点C 在直线3y =上,且又0a ≠,因此点C 恒在圆M 外,B 正确;对于C ,设圆M 的圆心为()00,y 03y =-,解得043y =,圆M 的半径为53,线段BD 中垂线方程为311(232y x -=-+,线段BC 中垂线方程为2ax =,于是得圆N 的圆心为8(,26a a -,而圆N 的半径为53,则22825(1)(269a a -++=,整理得220a a +=,而0a ≠,因此2a =-,C 正确;对于D ,由1a =,得()1,3C ,则圆N 的圆心在线段BC 的垂直平分线12x =上,D 错误.故选:BC11.已知圆锥SO 的侧面积为3π,且母线长为底面半径的3倍,若线段MN 为底面圆O 的一条直径,P 为线段SN 的中点,Q 为圆锥底面内一动点,且1MQ =,则()A.圆锥SO 的高为B.一质点从点P 出发沿圆锥SO 的侧面运动到点M 的路径最短为2C.与圆锥SO 的侧面和底面均相切,且球心在线段SO 上的球的半径为2D.动点Q 的轨迹长度为2π3【答案】BCD 【解析】【分析】根据题意设圆锥SO 的底面半径为r ,母线长为l ,高为h ,可得π3π3rl l r =⎧⎨=⎩,可对A 判断;将圆锥SO 沿着平面SMN 切开后将侧面展开,可得侧面扇形中的SMN 为等边三角形,可对B 判断;设该球的半径为0r ,则0r 也为圆锥SO 的轴截面SMN 的内切圆半径从而可建立等式()011332222r ++=⨯⨯,可对C 判断;求出点Q 的轨迹是以点M 为圆心,1为半径的一段圆弧,作出相关图形从而可对D 判断.【详解】对于A ,设圆锥SO 的底面半径为r ,母线长为l ,高为h ,由题可知π3π3rl l r =⎧⎨=⎩,解得1r =,3l =,故h ==A 错误;对于B ,将圆锥SO 沿着平面SMN 切开后将侧面展开,设MSN α∠=,所以22l r απ=,结合1r =,3l =,求得π3α=,所以SMN 为等边三角形,故最短路径为π3sin32MP ==,故B 正确;对于C ,设该球的半径为0r ,则0r 也为圆锥SO 的轴截面SMN 的内切圆半径,由题可得()011332222r ++=⨯⨯,解得02r =,故C 正确;对于D ,由题可知,点Q 的轨迹是以点M 为圆心,1为半径的一段圆弧,如图,设该圆弧与底面圆O 交于E ,F 两点,易知OEM △与OFM △均为等边三角形,所以2π3EMF ∠=,所以弧EF 的长度为2π3,故D 正确.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.三、填空题:本题共3小题,每小题5分,共15分.12.已知复数1i()1ia z a +=∈-R 在复平面内对应的点的横坐标为2,则a =______.【答案】3-【解析】【分析】根据给定条件,利用复数的除法求出z ,再结合复数的几何意义求出a .【详解】依题意,(1i)(1i)1(1)i 11i (1i)(1i)222a a a a az ++-++-+===+-+,由复数z 在复平面内对应的点的横坐标为2,得122a-=,所以3a =-.故答案为:3-13.若α,β满足tan tan 3=+βα,且π6βα=+,则cos cos αβ=______.【答案】16【解析】【分析】根据给定条件,切化弦,再利用差角的正弦求解即得.【详解】依题意,sin sin sin cos cos sin sin()1tan tan 3cos cos cos cos cos cos 2cos cos βαβαβαβαβαβααβαβαβ---=-====,所以1cos cos 6αβ=.故答案为:1614.已知平面向量OA ,OB,OC 满足||OA =uu r ||4OB = ,5π,6OA OB 〈〉= ,且()()3OC OA OC OB -⋅-=uuu r uu r uuu r uu u r ,若||AC ≤uuu rλ恒成立,则实数λ的最小值为______.【答案】4【解析】【分析】先建立平面直角坐标系,再设(),C x y ,则点C 在圆()22116x y +-=上运动,结合三角函数范围得出4AC ≤+,即可求参.【详解】以O 为坐标原点,建立平面直角坐标系,不妨设()OA =,由题知3cos ,2OA OB =- ,则1sin ,2OA OB = ,故可设()2OB =- .设(),C x y ,则()()()()2222123OC OA OC OB x y x y x y y -⋅-=-⋅+-=+--= ,即点C 在圆()22116x y +-=上运动.令4cos 14sin x y θθ=⎧⎨-=⎩,4AC ==故4λ≥λ的最小值为4+.故答案为:4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()()30a b c a b c ab +++--=.(1)求C ;(2)若π2C A <<,求a b c +的取值范围.【答案】(1)π3C =(2)2).【解析】【分析】(1)根据给定条件,利用余弦定理求出角C .(2)利用正弦定理边化角,再利用差角的正弦及辅助角公式化简,借助正弦函数性质求出范围.【小问1详解】由()()30a b c a b c ab +++--=,得222a b c ab+-=由余弦定理得2221cos22a b cCab+-==,而(0,π)C∈,所以π3 C=.【小问2详解】由(1)及正弦定理得2sin sin() sin sin3sin sin3A A a b A Bc Cπ+-++==π1cos sin)22A A A=++π2sin()6A=+由π2C A<<,得ππ32A<<,即2263Aπππ<+<,则sin((,1)62Aπ+∈,所以a bc+的取值范围是2).16.如图,在三棱台111ABC A B C-中,1AA⊥平面ABC,1AB AC⊥,11122AB AC AA A B===,M 是棱BC的中点.(1)求证:1AB⊥平面11A MC;(2)求二面角11A MC B--的正弦值.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)取AB的中点N,由已知,结合棱台的结构特征,利用线面垂直的判定推理即得.(2)以A为原点建立空间直角坐标系,求出平面1BMC的法向量,利用面面角的向量求法求解即得.【小问1详解】如图,取棱AB 的中点N ,连接1A N ,MN ,1B N ,则11////MN AC AC ,由已知得11//A B AN ,111A B AN AA ==,且1AA AN ⊥,则四边形11A B NA 是正方形,于是11AB A N ⊥,而1AB AC ⊥,即111AB AC ⊥,又1111A C A N A =I ,且111,A A C N ⊂平面11A MC ,所以1AB ⊥平面11A MC .【小问2详解】依题意,1AC AB ⊥,1AC AA ⊥,1111,,AAAB A AA AB ⋂=⊂平面11AA B B ,则AC ⊥平面11AA B B ,而AB ⊂平面11AA B B ,则AC AB ⊥,以A 为原点,直线1,,AC AB AA 分别为,,x y z 轴建立空间直角坐标系A xyz -,不妨设2AB =,则(0,0,0)A ,(0,2,0)B ,(1,1,0)M ,1(1,0,1)C ,1(0,1,1)B ,(1,1,0)BM =- ,1(0,1,1)MC =-uuu u r ,设(,,)n x y z = 为平面1BMC 的法向量,则100n BM x y n MC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令1z =,得(1,1,1)n = ,由(1)知平面11A MC 的一个法向量为1(0,1,1)AB = ,因此111cos ,3||||n AB n AB n AB ⋅〈〉=== ,所以二面角11A MC B --的正弦值为3.17.已知F 是椭圆22:143x y C +=的右焦点,过点F 作两条相互垂直的动直线1l 和2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点.(1)若//AD x 轴,求||AD ;(2)设M ,N 分别为线段AB ,DE 的中点,求证:直线MN 过定点4,07P ⎛⎫ ⎪⎝⎭.【答案】(1)7(2)4,07⎛⎫ ⎪⎝⎭【解析】【分析】(1)由//AD x 轴,分别设A t ⎛⎫⎪ ⎪⎝⎭,D t ⎫⎪⎪⎭,根据12l l ⊥,可得0FA FD ⋅= ,从而可求解.(2)设1,1,2,2,设直线1:1(0)l x my m =+≠,与22143x y +=联立,分别求出2243,3434m M m m ⎛⎫- ⎪++⎝⎭,22243,3434m m N m m ⎛⎫ ⎪++⎝⎭,再根据12l l ⊥,从而可求解.【小问1详解】由题意知(1,0)F .因为//AD x 轴,所以A ,D 两点的纵坐标相同,设为t.由椭圆方程,不妨令A t ⎛⎫⎪ ⎪⎝⎭,D t ⎫⎪⎪⎭,因为12l l ⊥,所以221,1,14103t FA FD t t t ⎛⎫⎫⎛⎫ ⎪⎪⋅=-⋅-=--+= ⎪ ⎪⎪⎝⎭⎝⎭⎭ ,整理得2337t =,所以877AD ==.【小问2详解】设1,1,2,2.当1l 与2l 的斜率都存在时,设直线1:1(0)l x my m =+≠,与22143x y +=联立,消去x ,整理得()2234690m y my ++-=,∴122634m y y m +=-+,122934y y m =-+,()212122268223434m x x m y y m m +=++=-+=++,∴2243,3434m M m m ⎛⎫- ⎪++⎝⎭.同理,用1m -替换m ,可得22243,3434m m N m m ⎛⎫ ⎪++⎝⎭.当1m =±时,M ,N 两点的横坐标均为47,故直线MN 过点4,07P ⎛⎫ ⎪⎝⎭.当1m ≠±时,()2222223373434444441734347m mm m m m m m m ++==---++,即MP NP k k =,此时直线MN 过点4,07P ⎛⎫ ⎪⎝⎭.当1l 或2l 与x 轴重合时,MN 也与x 轴重合,此时直线MN 也经过点4,07P ⎛⎫⎪⎝⎭,综上可知,直线MN 过定点4,07P ⎛⎫ ⎪⎝⎭.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.18.已知函数21()2e ()2x f x m x =--,2()()ln 2g x f x x x x =--.(1)若32m =,求曲线()y f x =在点(0,(0))f 处的切线方程.(2)若()g x 有两个极值点a ,()b a b <.(i )证明:e 1m >-;(ii )证明:1ab <.【答案】(1)22y x =+;(2)(i )证明见解析;(ii )证明见解析.【解析】【分析】(1)求出函数()f x 的导数,再利用导数的几何意义求出切线方程即得.(2)(i )求出函数()g x 及导数,分离参数并构造函数e 1()ln x h x x x x =--,探讨函数性质即可推理得证;(ii )由(i )中信息,构造函数1()()()F x h x h x =-,探讨函数()F x 在(1,)+∞上的单调性,推理得证.【小问1详解】函数2()2e x f x x =-,求导得()2e 2x f x x '=-,则(0)2f '=,而(0)2f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为22y x =+.【小问2详解】(i)函数221()2e (ln 22x g x m x x x x =----,求导得()2e 22ln 2x g x mx x x '=---,令()0g x '=,得e 1ln x x m x x--=,设e 1()ln x h x x x x=--,求导得222e (1)1(e 1)(1)()x x x x x h x x x x ----'=-=,(0,)x ∈+∞,令()0h x '=,得1x =,当(0,1)x ∈时,()0h x '<;当(1,)x ∈+∞时,()0h x '>,函数()h x 在(0,1)上递减,在(1,)+∞上递增,于是min ()(1)e 1h x h ==-,由()g x 有两个极值点,得方程()0g x '=有两个实根,即()h x m =有两个实根,则e 1m >-.(ii )由(i )知a ,b 是方程()0g x '=的两个实根,即()()h a h b m ==,且01a b <<<,设1()()(F x h x h x =-,求导得12211(1)(e e 1)()()()()x xx x x F x h x h x x x--+-'''=-⋅-=,令1()e e 1x x x x x ϕ=-+-,则当(1,)x ∈+∞时,111()e e e 10x xx x x ϕ'=-++>,即函数()ϕx 在(1,)+∞上单调递增,则()(1)0x ϕϕ>=,即当(1,)x ∈+∞时,()0F x '>,于是函数()F x 在(1,)+∞上单调递增,则()(1)0F x F >=,因此1()()h x h x>,则1()()h b h b >,即1()()h a h b >,而101b<<,又()h x 在(0,1)上单调递减,因此101a b <<<,所以1ab <.【点睛】方法点睛:利用导数证明或判定不等式问题:①通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;③适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;④构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知P ,Q ∈Z ,若方程20x Px Q -+=有两个不相等的非零实数根a ,b ,设n n n a b u a b -=-,n v =11n n a b --+,其中*n ∈N ,称数列{}n u 和{}n v 为方程20x Px Q -+=的“特征数列”.(1)若4P =,3Q =,求特征数列{}n u 的前n 项和;(2)若1P =,1Q =-,证明:2n n nv v u ++为定值;(3)从集合{1,2,3,4}中随机取一个数作为P ,从集合{}1,2,3,4----中随机取一个数作为Q ,求事件“22u ≥且6150v ≥”的概率.【答案】(1)13342n n +--;(2)证明见解析;(3)1116.【解析】【分析】(1)根据定义求出n u ,再利用分组求和法及等比数列前n 项和公式计算即得.(2)由已知可得1,1a b ab +==-,变形2n n v v ++即可推理计算得证.(3)求出方程20x Px Q -+=有不等实根的所有可能结果,再求出22u ≥且6150v ≥含有的结果,利用古典概率计算即得.【小问1详解】当4P =,3Q =时,解方程2430x x -+=,得1x =或3,则312n n u -=,所以1212133133(333)22231242n n n n n n n u u u +--+++=+++-=⨯-=--L L .【小问2详解】依题意,1P a b =+=,1Q ab ==-,1111211(()n n n n n n n n v v a b a b a a b b a b --++++=+++=+++()()())(n n n n a a b b b a a b a b =-+-=--,因此222()(()()45)n n n n n n n v v a b a b a b a b ab a b u a b++--==-=+-=--,所以2n n nv v u ++为定值5.【小问3详解】依题意,(,)P Q 一共有4416⨯=种不同的情况,且均满足240P Q ->和0Q ≠,则方程20x Px Q -+=一定有两个不相等的非零实数根a ,b ,222a b u a b P a b-==+=-,要使22u ≥,则需2P ≥,通过特例观察可以猜想21n n n v Pv Qv ++=-,下面证明该等式:111()()()n n n n n n Pv Qv a b a b ab a b --+-=++-+11n n n n n n a b ab ba ba ab ++=+++--112n n n a b v +++=+=,显然12v =,2v a b P =+=,当2P =,1Q =-时,212n n n v v v ++=+,数列{}n v 前6项依次为2,2,6,14,34,82,不符合题意;当2P =,2Q =-时,2122n n n v v v ++=+,数列{}n v 前6项依次为2,2,8,20,56,152,符合题意;当2P =,2Q ≤-时,由21122n n n n n v Pv Qv v v +++=-≥+,得6152v ≥,符合题意;当3P =,1Q =-时,213n n n v v v ++=+,数列{}n v 前6项依次为2,3,11,36,119,393,符合题意;当3P ≥,1Q ≤-时,由2113n n n n n v Pv Qv v v +++=-≥+,得6393v ≥,符合题意,所以满足“22u ≥且6150v ≥”的(,)P Q 一共有34411++=(种)情况,所以所求概率为1116.【点睛】关键点点睛:猜想出递推公式21n n n v Pv Qv ++=-并证明,是解决本题第3问的关键.。
湖南省衡阳市衡阳县第一中学2024-2025学年高三上学期11月期中考试数学试题(含解析)
衡阳县一中2025届高三上学期期中考试数学第Ⅰ卷(选择题)一、单选题(本题共8小题,每小题5分,共40分)1.已知集合M={x|x―1x+2≤0},Q={x∈N||x|≤2},则M∩Q=()A.{―1,0,1}B.[0,1]C.(―2,1]D.{0,1}2.已知复数z=1―i2+i,则z表示的点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知命题p:∀x∈R,ax2―ax+1>0;q:∃x∈R,x2―x+a=0.均为真命题,则a的取值范围是()A.(―∞,4)B.[0,4)C.(0,14]D.[0,14]4.已知|a|=1,|b|=2,且a―b与a垂直,则a与b的夹角为()A.60°B.30°C.135°D.45°5.椭圆x29+y25=1,若椭圆上存在不同的两点M,N关于直线y=3x+m对称,则实数m的取值范围()A.(―263,223)B.(―263,263)C.(―63,263)D.(―233,233) 6.某学校组织学生开展研学旅行,准备从4个甲省景区,3个乙省景区,2个丙省景区中任选4个景区进行研学旅行,则所选的4个景区中甲、乙、丙三个省的景区都有的概率是()A.625B.47C.27D.257.沙漏是古代的一种计时仪器,根据沙子从一个容器漏到另一容器的时间来计时.如图,沙漏可视为上下两个相同的圆锥构成的组合体,下方的容器中装有沙子,沙子堆积成一个圆台,若该沙漏高为6,沙子体积占该沙漏容积的716,则沙子堆积成的圆台的高()A .1B .32C .3D .438.已知函数f (x )=sin 4ωx +cos 4ωx ―58在(0,π4]上有且仅有两个零点,则ω的取值范围是( )A .(43,83]B .[43,83)C .(83,163]D .[83,163)二、多选题(本题共3小题,每小题6分,共18分)9.造型可以做成美丽的丝带,将其看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于―1,到点F (1,0)的距离与到定直线x =a (a <0)的距离之积为1,则( )A .a =―1B .点(2,0)在C 上C .C 在第一象限点的纵坐标的可以为12D .当点(x 0,y 0)在C上时,y 20>1(x 0+1)210.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且CM =BN =a (0<a <2),则下列结论中正确的有( )A.∃a∈(0,2),使MN=12CEB.线段MN存在最小值,最小值为23C.直线MN与平面ABEF所成的角恒为45°D.∀a∈(0,2),都存在过MN且与平面BEC平行的平面11.设正项等比数列{a n}的公比为q,前n项和为S n,前n项积为T n,则下列选项正确的是()A.S9=S4+q4S5B.若T2025=T2020,则a2023=1C.若a1a9=4,则当a24+a26取得最小值时,a1=2D.若(a n+1)n>T2n,则a1<1第Ⅱ卷(非选择题)三、填空题(本题共4小题,每小题5分,共20分)12.已知2a+b=1(a>0,b>0),则3a+1+1b+1的最小值为.13.已知某三棱台的高为25,上、下底面分别为边长为43和63的正三角形,若该三棱台的各顶点都在球O的球面上,则球O的表面积为.14.已知f(x)={|ln x|,0<x≤e2―ln x,x>e,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+e2c的范围是.四、解答题(本题共5小题,共77分)15.(13分)已知数列{a n}和等比数列{b n},a n=1+1,若{a n}的最大项和2n―9最小项分别是{b n}中的b2―1和b3―9的值.(1)求数列{b n}的通项公式;(2)若c n=1⋅b n,求数列{c n}的前n项和S n.a n―116.(15分)如图,在四棱锥P―ABCD中,平面PAD⊥平面ABCD,PA⊥PD,AB ⊥AD,PA=PD,AB=1,AD=2,AC=CD=5.(1)求证:PD⊥平面PAB.(2)求直线PB与平面PCD所成角的正弦值.(3)在棱PA上是否存在点M,使得BM//平面PCD?若存在,求出AM的值;若不存在,AP请说明理由.17.(15分)在学校食堂就餐成为了很多学生的就餐选择.学校为了解学生食堂就餐情况,在校内随机抽取了100名学生,其中男生和女生人数之比为1∶1,现将一周内在食堂就餐超过3次的学生认定为“喜欢食堂就餐”,不超过3次的学生认定为“不喜欢食堂就餐”.“喜欢食堂就餐”的人数比“不喜欢食堂就餐”人数多20人,“不喜欢食堂就餐”的男生只有10人.男生女生合计喜欢食堂就餐不喜欢食堂就餐10合计100(1)将上面的列联表补充完整,并依据小概率值α=0.001的独立性检验,分析学生喜欢食堂就餐是否与性别有关;(2)该校甲同学逢星期二和星期四都在学校食堂就餐,且星期二会从①号、②号两个套餐中随机选择一个套餐,若星期二选择了①号套餐,则星期四选择①号套餐的概率为45;若星期二选择了②号套餐,则星期四选择①号套餐的概率为13,求甲同学星期四选择②号套餐的概率.参考公式:χ2=n (ad ―bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .α0.10.050.010.0050.001x α2.7063.8416.6357.87910.82818.(17分)如图,已知椭圆C:x2a2+y2b2=1(a>b>0)过点P(3,1),焦距为42,斜率为―13的直线l与椭圆C相交于异于点P的M,N两点,且直线PM,PN均不与x轴垂直.(1)求椭圆C的方程;(2)若MN=10,求MN的方程;(3)记直线PM的斜率为k1,直线PN的斜率为k2,证明:k1k2为定值.19.(17分)已知函数f(x)=x3―3mx+m2.(1)当m=1时,求f(x)在点(0,f(0))处的切线方程;(2)讨论f(x)的单调性;(3)若f(x)有三个不相等的零点x1,x2,x3,且f(x)在点(x i,f(x i))处切线的斜率为k i(i=1,2,3),求m的取值范围及1k1+1k2+1k3的值.数 学(答案)1.【答案】D【解析】由x ―1x +2≤0,可得{(x ―1)(x +2)≤0x +2≠0,解得―2<x ≤1,∴M ={x|―2<x ≤1},又Q ={0,1,2},所以M ∩Q ={0,1},故选:D .2.【答案】A【解析】z =1―i2+i=(1―i )(2―i )(2+i )(2―i )=2―i ―2i ―15=15―35i ,所以z =15+35i ,所以z 表示的点所在象限是第一象限,故选:A 3.【答案】D【解析】ax 2―ax +1>0恒成立,当a =0时,1>0,满足要求,当a ≠0时,需满足{a >0Δ=a 2―4a <0,解得0<a <4,故p 为真命题,需满足0≤a <4,∃x ∈R ,x 2―x +a =0,则Δ=1―4a ≥0,解得a ≤14,故q 为真命题,需满足a ≤14,综上,a 的取值范围为[0,4)∩(―∞,14]=[0,14]故选:D 4.【答案】D【解析】由题设(a ―b )⋅a =a 2―a ⋅b =0⇒a ⋅b =a 2=1,所以cos ⟨a ,b ⟩=a b=22,而0°≤⟨a ,b ⟩≤180°,所以⟨a ,b ⟩=45°.故选:D 5.【答案】B【解析】椭圆x 29+y 25=1,即:5x 2+9y 2―45=0,设椭圆上两点A (x 1,y 1),B (x 2,y 2)关于直线y =3x +m 对称,AB 中点为M (x 0,y 0),则5x 21+9y 21―45=0,5x 22+9y 22―45=0,所以5(x 1+x 2)(x 1―x 2)+9(y 1+y 2)(y 1―y 2)=0,所以y 1―y 2x 1―x 2=―59⋅x 0y 0=―13,所以y 0=53x 0,代入直线方程y =3x +m 得x 0=―3m 4,y 0=―5m 4,即M (―3m 4,―5m 4),因为(x 0,y 0)在椭圆内部,所以5×9m 216+9×25m 216<45,解得―263<m <263,即m 的取值范围是(―263,263).故选:B .6.【答案】B【解析】设样本空间为Ω,则n (Ω)=C 49=126,设所选的4个景区中甲、乙、丙三个省的景区都有为事件A ,则n (A )=C 24C 13C 12+C 14C 23C 12+C 14C 13C 22=72,所以P (A )=n (A )n (Ω)=72126=47.故选:B.7.【答案】B【解析】设沙漏下半部分的圆锥的容积为V ,沙子堆成的圆台体积为V 1,该圆锥内沙子上方的剩余空间体积为V 2=V ―V 1.由题意可知V 12V =716,即V 1V =78,则V 2V =18,则下半部分圆锥剩余空间的高为圆锥高的一半,即沙子堆成的圆台的高为圆锥高的一半,即圆台的高为32.故选:B 8.【答案】B【解析】因为f (x )=sin 4ωx +cos 4ωx ―58=(sin 2ωx +cos 2ωx)2―2sin 2ωx cos 2ωx ―58=―12sin 22ωx +38=―12×1―cos 4ωx2+38=14cos4ωx +18,令4ωx =t ,t ∈(0,ωπ],则y =14cos t +18,令14cos t +18=0,得到cos t =―12,所以t =2π3+2k π,k ∈Z 或t =4π3+2k π,k ∈Z ,令k =0,得到t =2π3或t =4π3,令k =1,得到t =8π3或t =10π3,又f (x )在(0,π4]上有且仅有两个零点,所以y =14cos t +18在(0,ωπ]上有且仅有两个零点,所以4π3≤ωπ<8π3,得到ω∈[43,83),故选:B.9.【答案】ABC【解析】对于A ,因为O 在曲线上,所以O 到x =a 的距离为―a ,而|OF |=1,所以有―a ⋅1=1,故a =―1,故A 正确,对于B ,因为曲线的方程为(x +1)(x ―1)2+y 2=1,代入(2,0)知满足方程;故B 正确,对于C ,由(x +1)(x ―1)2+y 2=1,将(1,12)代入方程满足,故(1,12)在曲线上,故C 正确,对于D ,曲线的方程为(x +1)(x ―1)2+y 2=1,可化为(x ―1)2+y 2=(1x +1)2,即y 2=(1x +1)2―(x ―1)2,因为y 20=(1x 0+1)2―(x 0―1)2≤(1x 0+1)2,故D 错误,故选:ABC .10.【答案】AD【解析】因为四边形ABCD 正方形,故CB ⊥AB ,而平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB ⊥BE .设MC =λAC ,则BN =λBF ,其中λ=a 2∈(0,1),由题设可得MN =MC +CB +BN =λAC +CB +λBF ,=λ(BC ―BA )+CB +λ(BA +BE )=(λ―1)BC +λBE ,对于A ,当λ=12即a =22时,→MN =―12⃗BC +12⃗BE =12⃗CE ,故A 正确;对于B , MN 2=(λ―1)2+λ2=2λ2―2λ+1=2(λ―12)2+12,故|MN |≥22,当且仅当λ=12即a =22时等号成立,故|MN |min=22,故B 错误;对于C ,由B 的分析可得MN =(λ―1)BC +λBE ,而平面ABEF 的法向量为BC 且MN ⋅BC =(λ―1)BC 2=λ―1,故cos ⟨MN ,BC ⟩=λ―12λ2―2λ+1,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得MN =(λ―1)BC +λBE ,故MN ,BC ,BE 为共面向量,而MN⊄平面BCE ,故MN //平面BCE ,故D 正确;故选:AD 11.【答案】AB【解析】因为数列{a n }为正项等比数列,则a 1>0,q >0,T n >0,对于选项A :因为S 9=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9=S 4+q 4(a 1+a 2+a 3+a 4+a 5)=S 4+q 4S 5,所以S 9=S 4+q 4S 5,故A 正确;对于选项B :若T 2025=T 2020,则T 2025T 2020=a 2021⋅a 2022⋅a 2023⋅a 2024⋅a 2025=a 52023=1,所以a 2023=1,故B 正确;对于选项C :因为a 1a 9=a 4a 6=4,则a 24+a 26≥2a 4a 6=8,当且仅当a 4=a 6=2时,等号成立,若a 24+a 26取得最小值,则a 4=a 6=2,即{a 4=a 1q 3=2a 6=a 1q 5=2,解得{a 1=2q =1,故C 错误;对于选项D :例如a 1=1,q =2,则a n =2n―1,Tn=a 1a 2⋅⋅⋅a n =20×21×⋅⋅⋅×2n―1=21+2+⋅⋅⋅+n―1=2n (n―1)2,可得(a n +1)n=(2n )n=2n 2,T 2n=(2n (n―1)2)2=2n 2―n ,因为n ∈N *,则n 2>n 2―n ,可得2n 2>2n2―n,即(a n +1)n >T 2n ,符合题意,但a 1=1,故D 错误;故选:AB.12.【答案】7+264【解析】3a +1+1b +1=14(62a +2+1b +1)(2a +2+b +1)=14[7+6(b +1)2a +2+2a +2b +1]≥7+264,当且仅当6(b +1)2a +2=2a +2b +1,即6(b +1)2=(2a +2)2,即当a =7―265,b =46―95时等号成立.故答案为:7+26413.【答案】144π【解析】依题意,该三棱台为正三棱台,设为三棱台ABC ―A 1B 1C 1,如图,上底面正△A 1B 1C 1外接圆的半径是O 1A 1=23×32×43=4,O 1为正△A 1B 1C 1外接圆圆心,下底面正△ABC 外接圆的半径是O 2A =23×32×63=6,O 2为正△ABC 外接圆圆心,由正三棱台的性质知,其外接球的球心O 在直线O 1O 2上,令该球半径为R ,R 2―42+R 2―62=25,或R 2―42―R 2―62=25,解得R 2=36,所以球O 的表面积是S =4πR 2=4π×36=144π.故答案为:144π14.【答案】(3,2e +1e)【解析】函数f (x )={―ln x,0<x ≤1ln x,1<x ≤e 2―ln x,x >e在(0,1],(e,+∞)上单调递减,在(1,e ]上单调递增,f (e 2)=0,f (1)=0,画出f (x )={|ln x |,0<x ≤e2―ln x,x >e的图象,如图,令a <b <c ,由f (a )=f (b )=f (c ),得1e <a <1,1<b <e ,e <c <e 2,由|ln a |=|ln b |,得ln a +ln b =0,即ab =1,由ln b =2―ln c ,得bc =e 2,于是a +b +e 2c =1b +b +bc c =1b +2b ,由对勾函数性质知,y =1b +2b 在(1,e )上递增,则3<1b +2b <2e +1e,所以a +b +e 2c的范围是(3,2e +1e ).故答案为:(3,2e +1e)15.【解析】(1)由题意,a n =1+12n ―9(n ∈N ∗),结合函数f (x )=1+12x ―9的单调性,可知a 5>a 6>a 7>⋯>a n >1>a 1>a 2>a 3>a 4(n ∈N ∗),所以数列{a n }中的最大项为a 5=2,最小项为a 4=0,所以b 2―1=2,b 3―9=0,即b 2=3,b 3=9,所以等比数列{b n }的公比q =b 3b 2=3,所以b n =b 2⋅q n―2=3n―1(2)c n =1a n ―1⋅b n =(2n ―9)⋅3n―1,S n =c 1+c 2+c 3+⋯+c n =(―7)×30+(―5)×31+⋯+(2n ―11)×3n―2+(2n ―9)×3n―1,3S n =(―7)×31+(―5)×32+⋯+(2n ―11)×3n―1+(2n ―9)×3n ,两式相减得:―2S n =―7+2×(31+32+33+⋯+3n―1)―(2n ―9)×3n =―7+2×3(1―3n―1)1―3―(2n ―9)×3n =―10+3n (10―2n ),故S n =5+3n (n ―5).16.【解析】(1)∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,且AB ⊥AD ,AB ⊂平面ABCD ,∴AB ⊥平面PAD ,∵PD ⊂平面PAD ,∴AB ⊥PD ,又PD ⊥PA ,且PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴PD ⊥平面PAB ;(2)取AD 中点为O ,连接CO ,PO ,又∵PA =PD ,∴PO ⊥AD .则AO =PO =1,∵CD =AC =5,∴CO ⊥AD ,则CO =AC 2―OA 2=5―1=2,以O 为坐标原点,分别以OC ,OA ,OP 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系O ―xyz ,则P (0,0,1),B (1,1,0),D (0,―1,0),C (2,0,0),则PB =(1,1,―1),PD =(0,―1,―1),PC =(2,0,―1),CD =(―2,―1,0),设n =(x,y,z )为平面PCD 的一个法向量,则由{n ⋅PD =0n ⋅PC =0,得{―y ―z =02x ―z =0,令z =1,则n =(12,―1,1).设PB 与平面PCD 的夹角为θ,则sin θ=|cos ⟨n ,PB ⟩|=n PB =|12―1―114+1+1×3|=33;(3)假设在棱PA 上存在点M 点,使得BM //平面PCD . 设AM =λAP ,λ∈[0,1],由(2)知,A (0,1,0),B (1,1,0),P (0,0,1),则AP =(0,―1,1),BA =(―1,0,0),BM =BA +AM =BA +λAP =(―1,0,0)+(0,―λ,λ)=(―1,―λ,λ),由(2)知平面PCD 的一个法向量n =(12,―1,1).若BM //平面PCD ,则BM ⋅n =―12+λ+λ=2λ―12=0,解得λ=14,又BM⊄平面PCD ,故在棱PA 上存在点M 点,使得BM //平面PCD ,此时AMAP =14.17.【解析】(1)喜欢食堂就餐的人数为100+202=60,则不喜欢的人数为60―20=40人,则不喜欢食堂就餐的女生为40―10=30人,因为男女生人数比为1∶1,则男女生各50人,则喜欢堂食就餐的女生为50―30=20人,喜欢堂食就餐的男生为50―10=40人,则列联表见图,男生女生合计喜欢食堂就餐402060不喜欢食堂就餐103040合计5050100零假设H 0:假设食堂就餐与性别无关,由列联表可得H 0:χ2=100(40×30―10×20)250×50×60×40≈16.667>10.828,根据小概率α=0.001的独立性检验推断H 0不成立,即可以得到学生喜欢食堂就餐与性别有关.(2)记事件A :小林同学星期二选择了①号套餐,事件B :小林同学星期四选择了②号套餐,P (A )=P (A )=12,P (B∣A )=1―45=15,P (B ∣A )=1―13=23,由全概率公式可得P (B )=P (A )⋅P (B |A )+P (A )⋅P (B |A )=12×15+12×23=133018.【解析】(1)由题意得{9a 2+1b2=12c =42a 2=b 2+c 2解得{a =23b =2c =22,故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =―13x +m ,M (x 1,y 1),N (x 2,y 2)由{y =―13x +mx 212+y 24=1得4x 2―6mx +9m 2―36=0,由Δ=(6m)2―144(m 2―4)>0,得―433<m <433,则x 1+x 2=3m 2,x 1x 2=9m 2―364.|MN |=1+19⋅(x 1+x 2)2―4x 1x 2=102⋅16―3m 2=10,解得m =2或m =―2当m =2时,直线l :y =―13x +2经过点P (3,1),不符合题意,舍去;当m =―2时,直线l 的方程为y =―13x ―2.(3)直线PM ,PN 均不与x 轴垂直,所以x 1≠3,x 2≠3,则m ≠0且m ≠2,所以k 1k 2=y 1―1x 1―3⋅y 2―1x 2―3=(―13x 1+m ―1)(―13x 2+m ―1)(x 1―3)(x 2―3)=19x 1x 2―13(m ―1)(x 1+x 2)+(m ―1)2x 1x 2―3(x 1+x 2)+9=19⋅9m2―364―13(m ―1)⋅3m2+(m ―1)29m 2―364―3⋅3m2+9=3m 2―6m 9m 2―18m=13为定值.19.【解析】(1)当m =1时,f (x )=x 3―3x +1,f ′(x )=3x 2―3,切点为(0,1),切线斜率f ′(0)=―3,故切线方程为y ―1=―3(x ―0),即切线方程为y=―3x+1.(2)f′(x)=3x2―3m,x∈R,当m≤0时,f′(x)≥0恒成立,所以f(x)在(―∞,+∞)上单调递增;当m>0时,令f′(x)=0,得x=±m,令f′(x)<0,得―m<x<m,令f′(x)>0,得x<―m或x>m,所以f(x)在(―m,m)上单调递减,在(―∞,―m),(m,+∞)上单调递增.(3)由(2)知,f(x)有三个零点,则m>0,且{f(―m)>0f(m)<0,即{m2+2m m>0m2―2m m<0,解得0<m<4,当0<m<4时,3m>m,且f(3m)=m2>0,所以f(x)在(m,3m)上有唯一一个零点,同理―2m―1<―m,f(―2m―1)=―8m3―5m2―3m―1<0,所以f(x)在(―2m―1,―m)上有唯一一个零点,又f(x)在(―m,m)上有唯一一个零点,所以f(x)有三个零点,综上可知m的取值范围为(0,4),由f(x)有三个不相等的零点x1,x2,x3,不妨设f(x)=a(x―x1)(x―x2)(x―x3),其中a≠0,则f′(x)=a[(x―x2)(x―x3)+(x―x1)(x―x3)+(x―x1)(x―x2)],则1k1+1k2+1k3=1a[1(x1―x2)(x1―x3)+1(x2―x1)(x2―x3)+1(x3―x1)(x3―x2)]∴1k1+1k2+1k3=x2―x3+x3―x1+x1―x2a(x1―x2)(x1―x3)(x2―x3)=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3,)b m =
湖南省桃江县第一中学2016届高三数学上学期期中(第四次月考)试
题 文(无答案)
时量:120分钟 总分:150分
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)
1.已知集合M ={5,6,7},N ={5,7,8},则( )
A .M N ⊆ B. N M ⊇ C . }{7,5=N M D .}{8,7,6=N M 2.已知复数z 满足14z i =-+,则复数z 在复平面内对应的点位于( ) A .第一象限
B .第二象限 C.第三象限 D .第四象限
3.,若向量,的夹角为m =( )
A
B
. C.0 D
.
4.椭圆2
214
x y +=的离心率为( ) A.
3
2 B .
4
3
C. 22 D .
23
5.某种产品的广告费支出x 与销售额y (单位:万元)之间有如下一组数据:
若y 与x 之间的关系符合回归直线方程ˆ 6.5y
x a =+,则a 的值是( ) A .17.5 B .27.5 C .
17 D .14
6.一个几何体的三视图如图所示,则该几何体的体积等于( ) A .π48+ B .π28+ C.π348+
D .π3
2
8+ 7.下列函数中,以
2
π
为最小正周期的偶函数是( ) A . x x y 2cos 2sin = B .x x y 2cos 2sin +=
C . x x y 2cos 2sin 22-=
D . )2
4cos(π
+
=x y
8.已知等差数列{}n a 的前n 项和为n S ,47109,a a a ++=14377S S -=,则使n S 取得最小值时n 的值为 ( )
A .4 B.5 C.6 D.7
9.若变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≤+-≤-+≥043041y x y x x ,则目标函数y x z +=3的最大值为( )
A .-4
B .0
C .4
D .8
10.函数)sin(
)(ϕω+=x A x f (其中,0,0>>ωA )2
π
ϕ<的图
象如右,为了得到)(x f 的图象,则只需将x x g 2sin )(=的图象 A .向右平移
6π个长度单位 B .向右平移3π
个长度单位 C .向左平移
6π个长度单位 D .向左平移3
π
个长度单位 11.设0,0,a b >>
33a
b
与的等比中项,则
11
a b
+的最小值为( ) A .1 B .8 C .4 D .
14
12.设函数()37f x x =-+,()()
2
lg 4g x ax x a =-+,若1R x ∀∈,2R x ∃∈,使
()()12f x g x =,则实数a 的取值范围为( )
A .[]0,2
B .[)0,2 C.()2,+∞ D .[)2,+∞ 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
13. 函数2
()ln f x x x =+的图像在点(1,1)A 处的切线方程为 .
14. 在ABC ∆中,6
B π
∠=
,1AC =
,AB =则BC 的长度为________. 15.设(0,)2
πθ∈,向量(sin 2,cos ),(1,cos )a b θθθ==-
,若a b ⊥ ,则tan θ= .
16.已知函数⎪⎩⎪
⎨⎧>≤+-=1,log 1
,)(3
12x x x x x x f ,若对任意的R x ∈,不等式23()4f x m m ≤-
恒成立,则实数m 的取值范围为
.
三、解答题:本大题共6小题,共计70分。
解答应写出文字说明.证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 各项都为正数,且11,ln ln 1().n n a e a a n N *+=-=∈ (1)求数列{}ln n a 的通项公式; (2)令11
,ln ln n n n
b a a +=
∙求数列{}n b 的前
n 项和.n S
18.(本小题满分12分)
2015年7月16日,电影《捉妖记》上映,上映至今全国累计票房已超过20亿。
某影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5
组:[20,25),[25,30),[30,35),[35,40),[40,45),根据调查结果得出年龄情况残缺的频率分布直方图如下图所示。
(1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数;
(2)现在从年龄属于[25,30)和[40,45)的两组中随机抽取2人,求他们属于同一年龄组的概率。
19.(本小题满分12分)
如图,三棱柱111C B A ABC -的侧棱1AA ⊥底面ABC , ∠︒=90ACB ,E 是棱1CC 的中点,.2,11===BC AA AC (1)求证:1BC ⊥平面C AB 1; (2)求三棱锥E AB C 1-的体积.
20.(本大题满分12分)
如图,曲线px y C 2:2
1=(
0>p )与曲线
36)6(:222=+-y x C 只有三个公共点N M O ,,,其中O 为坐标
原点,且0=⋅ (1)求曲线1C 的方程;
(2)过定点)2,3(M 的直线l 与曲线1C 交于B A ,两点,若点M 是线段AB 的中点,求线段
AB 的长.
21. (本小题满分12分) 在点))1(,1(f 处的切线方程为2=+y x .
(1)求a ,b 的值;
(2)对函数)(x f 定义域内的任一个实数x ,,求实数m 的取值范围.
22.(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C
的极坐标方程是4cos ρθ=,直线l 的参数方程是⎪⎪⎩
⎪⎪⎨
⎧+==t y t x 21223 (t 为参数). (1)写出曲线C 的直角坐标方程和直线l 的普通方程:
(2)若点N M ,分别为曲线C 和直线l 上的动点,求MN 的最小值.。