全国各地2012年中考数学分类解析-专题54-图形的旋转变换
全国各地2012年中考数学分类解析(159套)24 方程、不等式和函数的综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x -④2y=3x A .1个B .2个C .3个D . 4个 【答案】B 。
【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k >0,∴当x <0时,函数值y 随x 的增大而增大;②∵y=-2x +1的k <0,∴当x <0时,函数值y 随x 的增大而减小;③∵1y=x-的k <0,∴当x <0时,函数值y 随x 的增大而增大; ④∵2y=3x 的a >0,对称轴为x=0,∴当x <0时,函数值y 随x 的增大而减小。
∴正确的有2个。
故选B 。
2. (2012四川广元3分) 已知关于x 的方程22(x 1)(x b)2++-=有唯一实数解,且反比例函数1b y x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为【 】 A. 3y x =- B. 1y x = C. 2y x = D. 2y x=- 【答案】D 。
【考点】一元二次方程根的判别式,反比例函数的性质。
【分析】关于x 的方程22(x 1)(x b)2++-=化成一般形式是:2x 2+(2-2b )x +(b 2-1)=0,∵它有唯一实数解,∴△=(2-2b )2-8(b 2-1)=-4(b +3)(b -1)=0,解得:b=-3或1。
∵反比例函数1b y x+= 的图象在每个象限内y 随x 的增大而增大, ∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13y x -=,即2y x=-。
故选D 。
3. (2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】C 。
全国各地2012年中考数学分类解析(159套)专题5分式
2012年全国中考数学试题分类解析汇编(159套63专题)专题5:分式一、选择题1. (2012安徽省4分)化简xx x x-+-112的结果是【 】A.x +1B. x -1C.—xD. x 【答案】D 。
【考点】分式的加法运算【分析】分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减:222(1)111111xx xx x x x x x x xx x x x --+=-===------。
故选D 。
2. (2012浙江湖州3分)要使分式1x有意义,x 的取值范围满足【 】A .x=0B .x≠0 C.x >0 D .x <0 【答案】B 。
【考点】分式有意义的条件。
【分析】根据分式分母不为0的条件,要使1x在实数范围内有意义,必须x≠0。
故选B 。
3.(2012浙江嘉兴、舟山4分)若分式x 1x+2-的值为0,则【 】A . x=﹣2B . x=0C . x=1或2D .x=1 【答案】D 。
【考点】分式的值为零的条件。
【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。
故选D 。
4. (2012浙江绍兴4分)化简111xx --可得【 】 A .21x x- B . 21x x--C .221x x x+- D .221x x x--【答案】B 。
【考点】分式的加减法。
【分析】原式=211(1)x x x x x x--=---。
故选B 。
5. (2012浙江义乌3分)下列计算错误的是【 】 A .0.2a b 2a b 0.7a b7a b++=-- B .3223x y x yx y=C .a b 1b a-=-- D .123ccc+=【答案】A 。
【考点】分式的混合运算。
【分析】根据分式的运算法则逐一作出判断:A 、0.2a b 2a 10b 0.7a b 7a 10b++=--,故本选项错误;B 、3223x y x yx y=,故本选项正确;C 、a b b a 1b a b a--=-=---,故本选项正确;D 、123ccc+=,故本选项正确。
2012届中考数学往年考点分类解析汇编:图形的变换
2012届中考数学往年考点分类解析汇编:图形的变换江苏13市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题 1. (无锡3分) 已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是 A.20 cm2 8.20 cm2 C.10 cm2 D.5 cm2 【答案】B。
【考点】图形的展开。
【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果:圆的周长= ,圆柱的侧面积=圆的周长×高= 。
故选B。
2.(常州、镇江2分)已知某几何体的一个视图(如图),则此几何体是 A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱【答案】C。
【考点】几何体的三视图。
【分析】从基本图形的三视图可知:俯视图为圆的几何体为球,圆锥,圆柱,所以A和B选项错误;圆柱的主视图和俯视图是长方形,所以D选项错误;圆锥的主视图和俯视图是三角形,正确。
故选C。
3.(南京2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B。
【考点】图形的展开与折叠。
【分析】根据三棱柱及其表面展开图的特点.三棱柱上、下两底面都是三角形得:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱。
故选B。
4.(南通3分)下列水平放置的几何体中,俯视图是矩形的为【答案】B。
【考点】几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于A和D的俯视图是圆,B的俯视图是矩形,C的俯视图是三角形。
故选B。
5.(泰州3分)下图是一个几何体的三视图,则这个几何体是 A.圆锥 B.圆柱 C.长方体 D.球体【答案】A。
【考点】由三视图判断几何体。
【分析】从基本图形的三视图可知:圆锥的三视图是两个三角形,一个圆;圆柱的三视图是两个长方形,一个圆;长方体的三视图是三个长方形;球体的三视图是三个圆。
【中考12年】浙江省杭州市-中考数学试题分类解析 专题4 图形的变换
【中考12年】浙江省杭州市-中考数学试题分类解析专题4 图形的变换一、选择题1. (年浙江杭州3分)在时刻8∶30,时钟上的时针和分针之间的夹角为【】.(A)85°(B)75°(C)70°(D)60°【答案】B。
【考点】钟面角。
【分析】∵时针走一圈(3600)要12小时,即速度为003603600.5/121260==⨯分小分钟时钟;分针走一圈(3600)要1小时,即速度为000 3603606/160==分小分钟时钟。
∴时针从数字8开始到8点30分,走过的角度为30×0.50=150,即时针在8点30分的位置离开数字6的角度为300×2+15=750 (钟面360度被分成了12等份,每份是300)。
又∵分针从8点(数字12)开始到8点30分时,分针指向数字6,所以8点30分时,时钟上时针和分针夹角750。
故选B。
2. (年浙江杭州3分)为解决四个村庄用电问题,政府在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是【】.(A)19.5 (B)20.5 (C)21.5 (D)25.5【答案】B。
3. (年浙江杭州大纲卷3分)边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等于【】A.16 B.16πC.32πD.64π【答案】C。
【考点】圆柱的计算。
【分析】边长为4的正方形绕一条边旋转一周,所得几何体是圆柱体,根据圆柱的侧面积公式圆柱侧面积=底面周长×高可得:π×4×2×4=32π。
故选C。
4. (年浙江杭州大纲卷3分)如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′是【】A.12B2C.1 D21-【答案】D。
2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。
【考点】算术平方根,估算无理数的大小。
【分析】∵一个正方形的面积是15,∵9<15<16<4。
故选B 。
2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。
【考点】抛物线与x 轴的交点。
【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。
设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。
∴能使△ABC 为等腰三角形的抛物线的条数是3条。
故选B 。
3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。
【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。
浙江省温州市2001-2012年中考数学试题分类解析 专题4 图形的变换
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (2001年浙江温州3分)圆柱的底面半径是2,高线长是5,则它的侧面积是【 】 A .10 B .20 C .10π D .20π 【答案】D 。
【考点】圆柱的侧面积。
【分析】根据圆柱的侧面积公式计算即可:侧面积=225=20ππ⨯⨯。
故选D 。
2. (2002年浙江温州4分)圆锥的高线长是8㎝,底面直径为12㎝,则这个圆锥的侧面积是【 】A .48πcm 2B .cm 2C .cm 2D .60πcm 2【答案】D 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面直径为12㎝,∴圆锥的底面周长为12π㎝。
∵圆锥的高线长是8。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×10=60π(cm 2)。
故选D 。
3. (2003年浙江温州4分)圆锥的母线长为8cm ,底面半径为6cm ,则圆锥的侧面积是【 】 A .96πcm 2B .60πcm 2C .48πcm 2D .24πcm 2【答案】C 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面半径为6 cm ,∴圆锥的底面周长为12πcm 。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×8=48π(cm 2)。
故选C 。
4. (2004年浙江温州4分)如图,点B 在圆锥母线VA 上,且VB=31VA ,过点B 作平行与底面的平面 截得一个小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是【 】(A) 1S S 13= (B) 1S S 14= (C) 1S S 16= (D) 1S S 19=【答案】D 。
【考点】圆锥的计算。
【分析】两个圆锥的展开图都是扇形,这两个扇形圆心角相等,小圆锥半径是大圆锥半径的13。
2012年中考数学试题分类解析汇编专题5:数量和位置变化
2012年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (2012湖北武汉3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m , 先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是【 】A .①②③B .仅有①②C .仅有①③D .仅有②③ 【答案】A 。
【考点】函数的图象。
【分析】∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s 。
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s 。
∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒。
因此①正确。
∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m 。
因此②正确。
∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=123 s 。
因此③正确。
终上所述,①②③结论皆正确。
故选A 。
2. (2012湖北黄石3分)有一根长40m m 的金属棒,欲将其截成x 根7m m 长的小段和y 根9m m 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为【 】A. x 1=,y 3=B. x 3=,y 2=C. x 4=,y 1=D. x 2=,y 3= 【答案】B 。
【考点】网格问题,一次函数的应用。
【分析】根据金属棒的长度是40mm ,则可以得到7x +9y≤40,即740y x+99≤-。
如图,在网格中作()740y=x+x 0y 099>>-,。
则当线段AB 上有整数点时,是废料为0,该点即为所求。
但从图中可见,线段AB 上没有整数点,故在△ABC 区域内离线段AB 最近的整数点即为所求,图中可见,点(3,2)离线段AB 最近。
∴使废料最少的正整数x ,y 分别为x=3,y=2。
无锡新领航教育辽宁省各市2012年中考数学分类解析 专题4:图形的变换
- 1 - 辽宁各市2012年中考数学试题分类解析汇编
专题4:图形的变换
锦元数学工作室 编辑
一、选择题
1. (2012辽宁鞍山3分)如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是【 】
A .
B .
C .
D .
【答案】C 。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,找到几何体从正面看所得到的图形即可:从正面可看到从左往右3列小正方形的个数依次为:1,1,1。
故选C 。
2. (2012辽宁本溪3分)如图所示的几何体的俯视图是【 】
A 、错误!未找到引用源。
B 、 错误!未找到引用源。
C 、错误!未
找到引用源。
D 、错误!未找到引用源。
【答案】B 。
【考点】简单组合体的三视图。
【分析】根据俯视图是从上面向下看得到的识图解答:
从上向下看,从左向右共3列,左边一列3个正方形,向右依次是一个正方形,且上齐。
故选B 。
3. (2012辽宁本溪3分)下列各网格中的图形是用其图形中的一部分平移得到的是【 】
A 、错误!未找到引用源。
B 、 错误!未找到引用源。
C 、错误!未找到引用源。
D 、错误!未找到引用源。
【答案】C 。
【考点】网格问题,利用平移设计图案。
【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.
A 、是利用图形的旋转得到的,故本选项错误;。
全国各地2012年中考数学分类解析(159套)专题3 整式
2012年全国中考数学试题分类解析汇编(159套63专题)专题3:整式一、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . .x 3yD ..3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
故选A 。
2. (2012重庆市4分)计算)2ab 的结果是【 】 A .2ab B .2a b C .22a b D .2ab【答案】C 。
【考点】幂的乘方与积的乘方。
【分析】根据幂的乘方与积的乘方运算法则直接得出结果:原式=22a b 。
故选C 。
3. (2012安徽省4分)计算32)2(x -的结果是【 】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
【考点】积的乘方和幂的运算【分析】根据积的乘方和幂的运算法则可得:233236(2)(2)()8x x x -=-=-。
故选B 。
4. (2012安徽省4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是【 】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
【考点】列代数式。
【分析】根据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%)。
故选B 。
5. (2012山西省2分)下列运算正确的是【 】A .B .C . a 2a 4=a 8D . (﹣a 3)2=a 6 【答案】D 。
【考点】算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方。
全国181套中考数学试题分类汇编54图形的旋转变换
54:图形的旋转变换一、选择题1.(浙江湖州3分)如图,△AOB 是正三角形,OC ⊥OB ,OC =OB ,将△AOB绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD,则旋转角度是A .150ºB .120ºC .90ºD .60º【答案】A 。
【考点】旋转的性质,等边三角形的性质,等腰直角三角形的性质。
【分析】由题意,∠AOC 就是旋转角,根据等边三角形每个角都是60°的性质和OC ⊥OB ,即可求得旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°。
故选A 。
2.(浙江宁波3分)如图,Rt△ABC 中,∠ACB=90°,AC=BC=Rt△绕边AB 所在直线旋转一周,则所得几何体的表面积为(A)4π (B) (C)8π (D) 【答案】D 。
【考点】圆锥的计算,勾股定理,【分析】所得几何体的表面积为2个底面半径为2,母线长为∵Rt△ABC 中,∠ACB=90°,AC=BC=4=。
∴所得圆锥底面半径为2,∴几何体的表面积=2³π³2³。
故选D 。
3.(黑龙江哈尔滨3分)如罔,在Rt△ABC 中,∠BAC=900,∠B=600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转900得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC’,则∠CC’B’的度数是。
(A) 450 (B) 300 (C) 250 (D) 150 【答案】D 。
【考点】旋转的性质,等腰直角三角形的性质,三角形内角和定理。
【分析】由∠BAC=900,∠B=600可知,∠ACB=300。
由旋转的性质可知,AC=AC ′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,∴∠CC′A=45°。
也由旋转的性质可知,∠A C′ B′=∠ACB=300。
无锡新领航教育福建省各市2012年中考数学分类解析 专题4:图形的变换
- 1 - 无锡新领航教育
福建9市2012年中考数学试题分类解析汇编
专题4:图形的变换
一、选择题
1. (2012福建龙岩4分)左下图所示几何体的俯视图是【 】
【答案】C 。
【考点】简单几何体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是一个圆,中间一点。
故选C 。
2. (2012福建龙岩4分)如图,矩形ABCD 中,AB=1,BC=2,把矩形ABCD 绕AB 所
在直线旋转一
周所得圆柱的侧面积为【 】
A .10π
B .4π
C .2π
D .2
【答案】B 。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB 所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1
为高。
所以,它
的侧面积为221=4ππ⋅⋅。
故选B 。
3. (2012福建南平4分)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于【 】。
天津市2001-2012年中考数学试题分类解析 专题4 图形的变换
2001-2012年天津市中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (天津市2003年3分)在下列图形中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开的是【 】(A ) (B ) (C ) (D )【答案】C 。
【考点】几何体的展开图【分析】利用正方体及其表面展开图的特点解题:A 、出现了“田”字格,故不能;B 、折叠后上面两个面无法折起来,而且下边没有面,不能折成正方体;C 、折叠后能围成一个正方体;D 、折叠后,上面的两个面重合,不能折成正方体。
故选C 。
2.(天津市2003年3分)在△ABC 中,已知AB =2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14,有如下结论:①AC 边的长可以等于a ; ②折叠前的△ABC 2; ③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等。
其中,正确结论的个数是【 】(A )0个 (B )1个 (C )2个 (D )3个 【答案】D 。
【考点】翻折变换(折叠问题)【分析】①若AC=a 成立,根据等腰三角形的性质及图形折叠的性质可求出四边形AB 1DC 为平行四边形,再根据平行四边形的性质及三角形的面积公式求解:若AC=a 成立,如图(1),在△ACD 中,由∠CAD=30°,AD=a , ∴∠ADC=12(180°-∠CAD)=75°,∠CDB=180°-∠ADC=105°, 而∠CDB 1=∠CDB,∴∠B 1DA=105°-75°=30°,∴AC∥B 1D 。
∵B 1D=BD=a =AC ,∴四边形AB 1DC 为平行四边形。
∴S △CED =12S △ACD =14S △ABC ,满足条件,即AC 的长可以等于a ,故①正确。
【中考12年】福建省福州市2001-2012年中考数学试题分类解析 专题4 图形的变换
的渐开线”,其中 DA1、A1B1、B1C1、C1D1 …的圆心依次按 A、B、C、D 循环,它依次连接.取 AB=1,则曲线 DA1B1C2D2A2 的长是 ▲ (结果保留 π).
【答案】18 。
【考点】新定义,正方形的性质。
【分析】根据“正方形的渐开线”的定义,DA1、A1B1、B1C1、C1D1 C2D2 分别为半径为 1,
2,…7,8
的
1 4
圆弧,因此,曲线
DA B …C D
11
22
的长是
1 4
2+4+6+8+10+12+14+16 =18
。
6 / 29
word
2. (2004 年某某某某 3 分)图中是一幅“苹果图”,第一行有 1 个苹果,第二行有 2 个, 第三行有 4 个,第四行有 8 个,…,你是否发现苹果的排列规律?猜猜看,第六行有 ▲ 个苹果、第十行有
D.15+ 5 5
【答案】C。
【考点】动点问题,圆心角、弧、弦的关系,勾股定理。
【分析】∵由于 AC 和 BC 值固定,点 P 在弧 AD 上,而 B 是圆心,所以 PB 的长也是定值,因
此,只要 AP 的长为最大值。
∴当 P 的运动到 D 点时,AP 最长为 5 2 。
∴四边形 ACBP 周长的最大值是 5×3+5 2 =15+5 2 。故选 C。 10. (2010 年某某某某 4 分)下面四个立体图形中,主视图是三角形的是【 】
2
∵这三个数中 36 最大,∴使花坛面积最大的图案是圆。故选 C。
2. (2004 年某某某某 4 分)下列图形中能够用来作平面镶嵌的是【 】
全国各地2012年中考数学分类解析(159套)专题29:投影与视图
2012年全国中考数学试题分类解析汇编(159套63专题)专题29:投影与视图一、选择题1. (2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。
故选D。
2. (2012天津市3分)右图是一个由4个相同的正方体组成的立体图形,它的三视图是【】【答案】A。
【考点】简单组合体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2。
故选A。
3. (2012安徽省4分)下面的几何体中,主(正)视图为三角形的是【】A. B. C.D.【答案】C。
【考点】判断立体图形的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形。
故选C。
4. (2012山西省2分)如图所示的工件的主视图是【】A. B. C. D.【答案】B。
【考点】简单组合体的三视图。
【分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形。
故选B。
5. (2012海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是圆。
故选C。
6. (2012陕西省3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是【】A. B. C. D.【答案】C。
专题54 一次函数中的45°角问题(解析版)-中考数学解题大招复习讲义
例题精讲【例1】.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为(5,﹣6).解:如图所示,将线段AB绕点B顺时针旋转90°得到线段BC,则点C的坐标为(﹣4,﹣8),由于旋转可知,△ABC为等腰直角三角形,令线段AC和线段BP交于点M,则M为线段AC的中点,所以点M的坐标为(4,﹣4),又B为(0,4),设直线BP为y=kx+b,将点B和点M 代入可得,解得k=﹣2,b=4,可得直线BP为y=﹣2x+4,由于点P为直线BP和直线y=﹣x﹣1的交点,则由解得,所以点P的坐标为(5,﹣6),故答案为(5,﹣6).变式训练【变1-1】.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为y=3x+4.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴令x=0,得y=4,令y=0,则x=2,∴A(2,0),B(0,4),∴OA=2,OB=4,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,在△ABO和△FAE中,∴△ABO≌△FAE(AAS),∴AE=OB=4,EF=OA=2,∴F(﹣2,﹣2),设直线BC的函数表达式为:y=kx+4,把F的坐标代入得,﹣2=﹣2k+4,解得k=3,∴直线BC的函数表达式为:y=3x+4,故答案为:y=3x+4.【变1-2】.如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q的坐标为(,﹣).解:过Q作QE⊥AQ交AB于E,过Q作FG∥y轴,过A作AF⊥FG于F,过E作EG ⊥FG于G,将点A的坐标代入y=2x+b中,得﹣5=2×2+b,解得:b=﹣9,∴直线l1的解析式为y=2x﹣9,将x=8代入y=2x﹣9中,解得:y=7,∴点B的坐标为(8,7),将点B的坐标代入y=kx﹣1中,得7=8k﹣1,解得:k=1,∴直线l2的解析式为y=x﹣1,∵∠G=∠F=∠EQA=90°,∴∠EQG+∠AQF=90°,∠QAF+∠AQF=90°,∴∠EQG=∠QAF,∵∠EQA=90°,∠QAE=45°,∴△AQE是等腰直角三角形,∴EQ=QA,在△EGQ和△QFA中,,∴△EGQ≌△QFA(AAS),∴EG=QF,QG=AF,设Q(a,a﹣1),∵A(2,﹣5),∴AF=2﹣a,FQ=a+4,GE=a+4,QG=2﹣a,∴点E坐标(2a+4,1),把E(2a+4,1)代入y=2x﹣9中,得4a+8﹣9=1,解得:a=,∴点Q的坐标为(,﹣).故答案为:(,﹣).【例2】.如图,在平面直角坐标系中,一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.将直线AB绕点A逆时针旋转45°后,与y轴交于点C,则点C的坐标为(0,﹣6).解:一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.∴A(﹣2,0),B(0,4),∴OA=2,OB=4,作DB⊥AB交直线AC于D,过点D作DE⊥y轴与E,∵∠BAD=45°,∴△BAD是等腰直角三角形,∴AB=DB,∵∠OAB+∠ABO=∠ABO+∠DBE=90°,∴∠OAB=∠DBE,在△ABO和△BDE中∴△ABO≌△BDE(AAS),∴BE=OA=2,DE=BO=4,∴D(﹣4,6),设直线AC的函数表达式为:y=kx+4,把A、D的坐标代入得,解得,∴直线AC的函数表达式为:y=﹣3x﹣6,∴点C的坐标为(0,﹣6).故答案为:(0,﹣6).变式训练【变2-1】.如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与x轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2B.y=x﹣2C.y=x﹣2D.y=﹣x﹣2解:∵一次函数y=2x﹣2的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(1,0),B(0,﹣2),∴OA=1,OB=2,如图,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=2,EF=OA=1,∴F(3,﹣1),设直线BC的函数表达式为:y=kx+b,,∴,∴直线BC的函数表达式为:y=x﹣2,故选:B.【变2-2】.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.1.如图,直线y=x+1与坐标轴交于A、B两点,点C在x轴上,若∠ABO+∠ACO=45°,则点C的坐标为(﹣2,0)(2,0).解:∵直线y=x+1与坐标轴交于A、B两点∴当x=0时,y=1;当y=0时,x=﹣3∴点A(0,1),点B(﹣3,0)如图:取点D(﹣1,0),当点C在原点右边,设点C(a,0)∵点A(0,1),点D(﹣1,0),点B(﹣3,0)∴OA=OD=1,OB=3,BD=2∴∠ADO=∠DAO=45°,AB==∴∠ABO+∠BAD=45°又∵∠ABO+∠ACO=45°∴∠ACO=∠BAD,且∠ABO=∠ABO∴△ABD∽△CBA∴即∴a=2∴点C坐标为(2,0)若点C在原点左边,记为点C1,∵∠ABO+∠ACO=45°,∠ABO+∠AC1O=45°∴∠ACO=∠AC1O且∠AOC=∠AOB=90°,AO=AO∴△ACO≌△AC1O(AAS)∴OC=OC1=2∴点C1(﹣2,0)故答案为:(2,0),(﹣2,0)2.如图,在平面直角坐标系xOy中,直线y=﹣x+m(m≠0)分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接PA,PC,若∠CPA=45°,则m的值是12.解:作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).∴OA=OB,∴∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.∴m>0.∵∠CPA=∠ABO=45°,∴∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,∴△PCD∽△APB,∴,即=,解得m=12.故答案是:12.3.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC =1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.解:方法一:在x轴负半轴截取OF=,过点F作FH⊥AF交AD的延长线于点H,过点H作HP⊥x轴于点P,∵OC:OB=1:4,OF:OA=÷3=1:4,∴将△BOC逆时针旋转90°时,再将点B平移到与点A重合时,此时的∠FAO和∠CBO 重合,∴∠FAO=∠CBO,∵FH⊥AF,∴∠AFO+∠HFP=90°,而∠AFO+∠FAO=90°,∴∠FAO=∠HFP=∠CBO,∴BC∥FH,∴∠FHA=∠BED=45°,∴△AFH为等腰直角三角形,∴AF=FH,而∠AOF=∠FPH,∠FPH=∠AFO,∴△AOF≌△FPH(AAS),∴PF=AO=3,PH=OF=,故OP=FP﹣OF=3﹣=,故点H(,﹣),设直线AH的表达式为y=kx+b,则,解得,故直线AH的表达式为y=﹣x+3,令y=0,则y=﹣x+3=0,解得:x=,故点D(,0),故OD=,故答案为.方法二:过点A作x轴的平行线MN,交过点E与y轴的平行线于点M,交过点F与y 轴的平行线于点N,由点B、C的坐标得,直线BC的表达式为y=﹣x+1,同理可证:△EMA≌△ANF(AAS),则AN=ME=3+m﹣1=m+2,NF=AM=m,则点F的坐标为(﹣m﹣2,3﹣m),将点F的坐标代入直线BC的表达式并解得m=,故点E的坐标为(,),由点A、E的坐标得,直线AE的表达式为y=﹣x+3,令y=﹣x+3=0,解得x=,故OD=,故答案为.4.如图,直线y=4x+4交x轴于点A,交y轴于点B,直线BC:y=﹣x+4交x轴于点C,点P为线段BC上一点,∠PAB=45°,求点P的坐标.解:由题可得A(﹣1,0),B(0,4),C(4,0),设P(m,4﹣m),过点P做PD⊥AB,∴AB=,AC=5,△ABC的面积==+××PD,∴PD=m,∵∠PAB=45°,∴AP=m,∴(m)2=(4﹣m)2+(m+1)2,∴m=,∴P(,);5.如图,正比例函数y=kx经过点A,点A在第二象限,过点A作AC⊥y轴于点C,AC=2,且△AOC的面积为5.(1)求正比例函数的解析式;(2)若直线y=ax上有一点B满足∠AOB=45°,且OB=AB,求a的值.解:(1)∵AC⊥y轴.∴∠ACO=90°∵△AOC的面积为5,=AC•OC=5,∴S△AOC又∵AC=2,∴OC=5.∴A(﹣2,5),将点A(﹣2,5)代入y=kx,解得k=﹣,∴正比例函数的解析式为y=﹣x;(2)①当点B在第二象限时,如图,∵∠AOB=45°,且OB=AB,∴△AOB是等腰直角三角形.∴∠ABO=90°,∴∠ABF+∠EBO=90°,如图,过B作BE⊥x轴于E,交CA延长线于点F.∵∠FEO=∠EOC=∠ACO=90°,∴四边形CFEO是矩形,∠CFB=90°,∴∠ABF+∠FAB=90°,∴∠EBO=∠FAB,∴△EBO≌△FAB(AAS).∴BE=AF,EO=FB.又∵OC=FE=FB+BE=5,AC=CF﹣AF=2,∴EO+BE=5,EO﹣BE=2,解得:EO=,BE=.∴B(﹣,),将B(﹣,)代入y=ax,解得a=﹣.∴a=﹣.②当点B在第一象限时,OB1=OB,过点O作OB1⊥OB,则∠AOB1=45°,如图所示,过点B1作B1G⊥x轴于点G,则∠B1GO=∠BEO=90°,又∵∠B1OB=90°,∴∠B1OG+∠BOE=90°,∵∠BOE+∠OBE=90°,∴∠OBE=∠B1OG,∴△OBE≌△B1OG(AAS),∴OE=B1G=,BE=OG=,∴B1(,),将B1(,)代入y=a1x,解得a1=.综上,a的值为﹣或.6.如图,在平面直角坐标系中,A、B、C为坐标轴上的三个点,且OA=OB=OC=6,过点A的直线AD交直线BC于点D,交y轴于点E,△ABD的面积为18.(1)求点D的坐标.(2)求直线AD的表达式及点E的坐标.(3)过点C作CF⊥AD,交直线AB于点F,求点F的坐标.解:(1)由题可得,B(6,0),C(0,6),设BC为y=kx+b(k≠0),则,解得,∴BC的解析式为y=﹣x+6,∵OA=OB=6,∴AB=12,∵△ABD的面积为18,∴12×y D=18,解得y D=3,当y=3时,3=﹣x+6,解得x=3,∴点D的坐标为(3,3).(2)由题可得,A(﹣6,0),设直线AD的表达式为y=mx+n(m≠0),则,解得,∴直线AD的表达式为y=x+2,令x=2,则y=2,∴点E的坐标为(0,2).(3)∵CF⊥AD,CO⊥AB,∴∠FCO+∠AFC=90°,∠EAO+∠AFC=90°,∴∠FCO=∠EAO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴FO=EO=2,∴F(2,0).7.如图1,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3分别交x、y轴于点B、A.(1)如图1,点C是直线AB上不同于点B的点,且CA=AB.则点C的坐标为(﹣4,6);(2)点C是直线AB外一点,满足∠BAC=45°,求出直线AC的解析式;(3)如图3,点D是线段OB上一点,将△AOD沿直线AD翻折,点O落在线段AB上的点E处,点M在射线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、B为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)如图1,直线y=﹣x+3,当x=0时,y=3;当y=0时,由﹣x+3=0,得x =4,∴A(0,3),B(4,0);∵CA=AB,且点C不同于点B,∴点A是线段BC的中点,即点C与点B关于点A对称,∴点C的横坐标为﹣4,当x=﹣4时,y=﹣×(﹣4)+3=6,∴C(﹣4,6),故答案为:(﹣4,6).(2)如图2,射线AC在直线AB的上方,射线AC′在直线AB的下方,∠BAC=∠BAC′=45°;作线段AB的垂直平分线交AC于点G,交AC′于点H,交AB于点Q,连接BG、BH,则Q(2,);作GP⊥y轴于点P,GF⊥x轴于点F,则AG=BG,AH=BH,∵BG=AG,BH=AH,∴∠GBA=∠BAC=45°,∠HBA=∠BAC′=45°,∴∠BGA=∠GAH=∠AHB=90°,∴四边形AHBG是正方形;∵∠AGB+∠AOB=180°,∴∠GBF+∠OAG=180°,∵∠GAP+∠OAG=180°,∴∠GBF=∠GAP,∵∠GFB=∠GPA=90°,∴△GBF≌△GAP(AAS),∴BF=AP,GF=GP,∵∠FOP=∠OPG=∠GFO=90°,∴四边形OFGP是正方形,∴OF=OP,∵OB=4,OA=3,∴4﹣BF=3+AP,∴4﹣AP=3+AP,解得AP=,∴OP=OF=3+=,∴G(,);∵点H与点G关于点Q(2,)对称,∴H(,);设直线AC的解析式为y=kx+b,则,解得,∴y=x+3;设直线AC′的解析式为y=mx+n,则,解得,∴y=﹣7x+3,综上所述,直线AC的解析式为y=x+3或y=﹣7x+3.(3)存在,如图3,平行四边形AMBN以AB为对角线,延长ED交y轴于点R,设OD=r,由折叠得,∠AED=∠AOD=90°,ED=OD,∴ED=r,ED⊥AB;∵AB==5,AE=AO=3,∴BE=5﹣3=2,=×3×4=6,且S△AOD+S△ABD=S△AOB,∵S△AOB∴×3r+×5r=6,解得r=,∴ED=OD=,∴D(,0);∵∠DOR=∠DEB=90°,∠ODR=∠EDB,∴△ODR≌△EDB(ASA),∴RO=BE=2,∴R(0,﹣2),设直线DE的解析式为y=px﹣2,则p﹣2=0,解得p=,∴y=x﹣2;∵点N在x轴上,且AM∥BN,∴AM∥x轴,∴点M与点A的纵坐标相等,都等于3,当y=3时,由x﹣2=3,得x=,∴M(,3),∵BN=AM=,∴ON=4﹣=,∴N(,0);如图4,平行四边形ABNM以AB为一边,则AM∥x轴,且AM=BN=.∵ON=4+=,∴N(,0),综上所述,点N的坐标为(,0)或(,0).8.直角坐标系中,点A的坐标为(9,4),AB⊥x轴于点B,AC垂直y轴于点C,点D为x轴上的一个动点,若CD=2.(1)直接写出点D的坐标;(2)翻折四边形ACOB,使点C与点D重合,直接写出折痕所在直线的解析式;(3)在线段AB上找点E使∠DCE=45°.①直接写出点E的坐标;②点M在线段AC上,点N在线段CE上,直接写出当△EMN是等腰三角形且△CMN是直角三角形时点M的坐标.解:(1)如图1,∵点A的坐标为(9,4),AC⊥y轴于点C,∴OC=4,∵点D为x轴上的一个动点,CD=2,由勾股定理得:OD===2,∴D(2,0)或(﹣2,0);(2)分两种情况:①当D(2,0)时,如图2,连接ED,设ED=x,由翻折得CD⊥EF,CE=ED=x,∴OE=4﹣x,Rt△OED中,由勾股定理得:x2=22+(4﹣x)2,解得:x=,∴OE=4﹣=,∵∠OCD+∠CEF=∠OCD+∠CDO=90°,∴∠CEF=∠CDO,∵∠ECF=∠COD=90°,∴△FCE∽△COD,∴,即,∴FC=5,∴F(5,4),设直线EF的解析式为:y=kx+b,则,解得,∴直线EF的解析式为:y=;②当D(﹣2,0)时,如图3,连接ED,同理得:E(0,),∵△DOC∽△EOF,∴=,∴OF=2OE=3,∴F(3,0),同理得EF:y=﹣x+,综上,折痕所在直线的解析式是y=或y=﹣x+;(3)①当D(2,0)时,如图4,过E作EF⊥CD,交CD的延长线于F,过F作FH ⊥y轴于H,延长AB,HF交于点G,∵∠DCE=45°,∴△CFE是等腰直角三角形,∴CF=EF,∵∠HCF+∠CFH=∠CFH+∠EFG=90°,∴∠HCF=∠EFG,∵∠CHF=∠FGE=90°,∴△CHF≌△FGE(AAS),∴CH=FG,∵OD∥FH,∴,即,∴,设FH=a,则CH=FG=2a,∵GH=OB=9,即2a+a=9,∴a=3,∴CF==3,∴CE=CF=3,Rt△ACE中,AE===3,∴BE=4﹣3=1,∴E(9,1);当D(﹣2,0)时,如图5,∠DCB>90°,此种情况不存在符合条件的点E,综上,点E的坐标是(9,1);②i)当∠CMN=90°,MN=EN时,如图6,由①知:AE=3,∵MN∥AE,∴,即,∴,设MN=b,则CM=3b,EN=,∴CN=b,∵CE=3,∴3=b+b,解得:b=,∴CM=3b=10﹣,∴M(10﹣,4);ii)当∠CNM=90°,MN=EN时,如图7,∵∠CNM=∠CAE=90°,∠MCN=∠ACE,∴△MCN∽△ECA,∴=3,设MN=m,则CN=3n,EN=n,∴CE=3n+n=3,∴n=,∴CM=n=,∴M(,4);综上,点M的坐标是(10﹣,4)或(,4).9.如图,在平面直角坐标系中,A(0,4)、B(6,0)为坐标轴上的点,点C为线段AB 的中点,过点C作DC⊥x轴,垂足为D,点E为y轴负半轴上一点,连接CE交x轴于点F,且CF=FE.(1)直接写出E点的坐标;(2)过点B作BG∥CE,交y轴于点G,交直线CD于点H,求四边形ECBG的面积;(3)直线CD上是否存在点Q使得∠ABQ=45°,若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵CD⊥x轴,∴∠CDF=90°=∠EOF,又∵∠CFD=∠EFO,CF=EF,∴△CDF≌△EOF(AAS),∴CD=OE,又∵A(0,4),B(6,0),∴OA=4,OB=6,∵点C为AB的中点,CD∥y轴,∴CD=OA=2,∴OE=2,∴E(0,﹣2);(2)设直线CE的解析式为y=kx+b,∵C为AB的中点,A(0,4),B(6,0),∴C(3,2),∴,解得,∴直线CE的解析式为y=x﹣2,∵BG∥CE,∴设直线BG的解析式为y=x+m,∴×6+m=0,∴m=﹣8,∴G点的坐标为(0,﹣8),∴AG=12,=S△ABG﹣S△ACE∴S四边形ECBG=×AE×OD=×6×3=27.(3)直线CD上存在点Q使得∠ABQ=45°,分两种情况:如图1,当点Q在x轴的上方时,∠ABQ=45°,过点A作AM⊥AB,交BQ于点M,过点M作MH⊥y轴于点H,则△ABM为等腰直角三角形,∴AM=AB,∵∠HAM+∠OAB=∠OAB+∠ABO=90°,∴∠HAM=∠ABO,∵∠AHM=∠AOB=90°,∴△AMH≌△BAO(AAS),∴MH=AO=4,AH=BO=6,∴OH=AH+OA=6+4=10,∴M(4,10),∵B(0,6),∴直线BM的解析式为y=﹣5x+30,∵C(3,2),CD∥y轴,∴C点的横坐标为3,∴y=﹣5×3+30=15,∴Q(3,15).如图2,当点Q在x轴下方时,∠ABQ=45°,过点A作AN⊥AB,交BQ于点N,过点N作NG⊥y轴于点G,同理可得△ANG≌△BAO,∴NG=AO=4,AG=OB=6,∴N(﹣4,﹣2),∴直线BN的解析式为y=x﹣,∴Q(3,﹣).综上所述,点Q的坐标为(3,15)或(3,﹣).10.在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC的两边始终与x 轴交于B、C两点(B在C BAC=45°.(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.解:(1)∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°.过点A作AE⊥OB于E,如图1,∵A(﹣6,6),∴△AEO是等腰直角三角形,∠AOB=45°,∴∠BAO=67.5°=∠ABC,∴OA=OB.(2)设OM=x,当点C在点D右侧时,如图2,连接CM,过点A作AE⊥y轴于点E,由∠BAM=∠DAE=90°,可知:∠BAD=∠MAE;∴在△BAD和△MAE中,,∴△BAD≌△MAE.∴BD=EM=6﹣x.又∵AC=AC,∠BAC=∠MAC,∴△BAC≌△MAC.∴BC=CM=8﹣x.在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即42+x2=(8﹣x)2,解得:x=3,∴M点坐标为(0,3).当点C在点D左侧时,如图3,连接CM,过点A作AF⊥y轴于点F,同理,△BAD≌△MAF,∴BD=FM=6+x.同理,△BAC≌△MAC,∴BC=CM=4+x.在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即82+x2=(4+x)2,解得:x=6,∴M点坐标为(0,﹣6).综上,M的坐标为(0,3)或(0,﹣6).11.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.易证:△BEC≌△CDA模型应用:如图2,已知直线l1:y=x+4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2.(1)在直线l2上求点C,使△ABC为直角三角形;(2)求l2的函数解析式;(3)在直线l1、l2分别存在点P、Q,使得点A、O、P、Q四点组成的四边形是平行四边形?请直接写出点Q的坐标.(1)解:过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图2①,∵∠BAC=45°,∴△ABC为等腰Rt△,∵△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4,∴A(0,4),B(﹣3,0),①当∠ABC=90°时,∵△CDB≌△BAO,∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(﹣7,3);②当∠ACB=90°时,如图2②,同理:△CDB≌△AEC,∴AE=CD,BD=CE,∴AE=OA﹣BD=OB+BD,即4﹣BD=3+BD,∴BD=,∴OD=CD=3.5∴C(﹣3.5,3.5),综上,在直线l2点C的坐标为(﹣7,3)或(﹣3.5,3.5)时,△ABC为直角三角形;(2)设l2的解析式为y=kx+b(k≠0),∵A(0,4),C(﹣7,3);∴,∴,∴l2的解析式:y=x+4;(3)如图2,①当AO为边时,∵A(0,4),∴OA=4,设Q1的横坐标为x,则Q1(x,x+4),P(x,x+4),∵四边形AOPQ是平行四边形,∴PQ1=OA=4,即x+4﹣(x+4)=4,或x+4﹣(x+4)=4,解得x=﹣或∴Q1(﹣,)或(,).②当AO为对角线时,Q3与Q2重合.综上,存在符合条件的平行四边形,且Q点的坐标为(﹣,)或(,).12.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.解:(1)i)、∵m=﹣6,∴B(0,﹣6),∴设直线AB的表达式为y=kx﹣,∵点M(﹣2,﹣2)在直线AB上,∴﹣2=﹣2k﹣6,∴k=﹣2,∴直线AB的表达式为y=﹣2x﹣6;ii)、如图1,由i)知,直线AB的表达式为y=﹣2x﹣6,令y=0,则﹣2x﹣6=0,∴x=﹣3,∴A(﹣3,0),∴直线l为x=﹣3,∴设N(﹣3,t),∴AN=|t|,∵A(﹣3,0),B(0,﹣6),∴OA=3,OB=6,=OA•OB=×3×6=9,∴S△AOB=S△ABO,∵S△MBN=S△ABO=,∴S△MBN过点M作MF⊥AN于F,过点B作ME⊥AN于E,∴MF=1,BE=3,=S△BAN﹣S△AMN=AN•BE﹣AN•FM=(BE﹣MF)=|t|(3﹣1)=|t|∴S△MBN=,∴t=±,∴N(﹣3,)或(﹣3,﹣);(2)如图2,∵∠ABC=45°,∠BCD=90°,∴∠ADC=45°=∠ABC,∴CD=CB,∴△BDC是等腰直角三角形,∵M(﹣2,﹣2),B(0,m),∴直线AB的表达式为y=x+m,设点C(a,0),分别过点D,B作y轴的垂线,过点C作x的垂线,交前两条直线和y 轴于点G,H,L,则∠H=∠G=∠OCH=∠OBH=90°,∴四边形OBHC是矩形,∴OC=BH,∵∠G=∠BCD=90°,∴∠CDG+∠DCG=∠DCG+∠BCH=90°,∴∠CDG=∠BCH,∴△DCG≌△CBH(AAS),∴BH=OC=CG=|a|,CH=DG=|m|,∴D(m+a,a),∴a=•(m+a)+m,∴m2+ma+4m=0,∵m≠0,∴m+a=﹣4,即点D的横坐标为﹣4,保持不变.13.在平面直角坐标系中,直线y=﹣2x﹣4与x轴,y轴分别交于点A、B,与直线y=3交于点C,点D为直线y=3上点C右侧的一点.(1)如图1,若△ACD的面积为6,则点D的坐标为(,3);(2)如图2,当∠CAD=45°时,求直线AD的解析式;(3)在(2)的条件下,点E为直线AD上一点,设点E的横坐标为m,△ACE的面积为S,求S关于m的函数关系式,并直接写出自变量m的取值范围.解:(1)如图1,对于直线y=﹣2x﹣4,当y=0时,由﹣2x﹣4=0得,x=﹣2,∴A(﹣2,0);当y=3时,由﹣2x﹣4=3得,x=﹣,∴C(﹣,3),设D(r,3),∵点D在点C右侧,∴CD=r+,由题意,得×3(r+)=6,解得,r=,∴D(,3),故答案为:D(,3).(2)如图2,过点D作DG⊥AC于点G,过点G作MN⊥x轴于点N,交直线y=3于点M,则∠AGD=∠GNA=90°,∵直线y=3与x轴平行,∴∠DMG=180°﹣∠GNA=90°=∠GNA,∵∠GAD=45°,∴∠GDA=45°=∠GAD,∴DG=GA,∵∠DGM=90°﹣∠AGN=∠GAN,∴△DGM≌△GAN(AAS),∴GM=AN,DM=GN,设AN=t,则N(﹣2﹣t,0),∵点G在直线y=﹣2x﹣4上,∴y G=﹣2(﹣2﹣t)﹣4=2t,∴G(﹣2﹣t,2t),∵M(﹣2﹣t,3),∴GM=3﹣2t,由GM=AN得,3﹣2t=t,解得t=1,∴N(﹣3,0),M(﹣3,3),∵DM=GN=2t=2,∴D(﹣1,3),设直线AD的解析式为y=kx+b,则,解得,∴y=3x+6.(3)由(1)、(2)得,C(﹣,3),D(﹣1,3),∴CD=﹣1﹣(﹣)=,=××3=,∴S△ACD过点E作直线y=3的垂线,垂足为点F,∵点E在直线y=3x+6上,且点E的横坐标为m,∴E(m,3m+6),如图3,点E在线段AD上,则﹣2<m≤﹣1,此时,EF=3﹣(3m+6)=﹣3m﹣3,=S△ACD﹣S△ECD得,由S△ACES=﹣×(﹣3m﹣3)=m+;如图4,点E在线段AD的延长线上,则m>﹣1,此时,EF=3m+6﹣3=3m+3,=S△ACD+S△ECD得,由S△ACES=+×(3m+3)=m+,∴当m>﹣2时,S=m+;如图5,点E在线段DA的延长线上,则m<﹣2,此时,EF=3﹣(3m+6)=﹣3m﹣3,=S△ECD﹣S△ACD得,由S△ACES=×(﹣3m﹣3)﹣=﹣m﹣,综上所述,.14.(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.(1)证明:∵在△ABE和△ECD中,,∴△ABE≌△ECD(SAS),∴AE=DE,∠AEB=∠EDC,在Rt△EDC中,∠C=90°,∴∠EDC+∠DEC=90°.∴∠AEB+∠DEC=90°.∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°.∴△AED是等腰直角三角形;(2)解:过点C作CH⊥x轴于点H,如图2,则∠AHC=90°.∴∠AOB=∠BAC=∠AHC=90°,∴∠OAB=180°﹣90°﹣∠HAC=90°﹣∠HAC=∠HCA.在△AOB和△CHA中,,∴△AOB≌△CHA(AAS),∴AO=CH,OB=HA,∵A(2,0),B(0,3),∴AO=2,OB=3,∴AO=CH=2,OB=HA=3,∴OH=OA+AH=5,∴点C的坐标为(5,2);(3)解:如图3,过点B作BE⊥AB,交AD于点E,过点E作EF⊥OD,交OD于点F,把x=0代入y=﹣2x+2中,得y=2,∴点A的坐标为(0,2),∴OA=2,把y=0代入y=﹣2x+2,得﹣2x+2=0,解得x=1,∴点B的坐标为(1,0),∴OB=1,∵AO⊥OB,EF⊥BD,∴∠AOB=∠BFE=90°,∵AB⊥BE,∴∠ABE=90°,∠BAE=45°,∴AB=BE,∠ABO+∠EBF=90°,又∵∠ABO+∠OAB=90°,∴∠OAB=∠EBF,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA=2,EF=OB=1,∴OF=3,∴点E的坐标为(3,1),设直线AC的解析式为y=kx+b,由题意可得,解得,∴直线AC的解析式为y=﹣x+2,令y=0,解得x=6,∴D(6,0).15.【模型建立】:(1)如图①,在Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】:(2)如图②,已知直线l1:y=﹣2x+4与x轴交于点A、与y轴交于点B,将直线l1绕点A顺时针旋转45°至直线l2,求直线l2的函数表达式;(3)如图③,平面直角坐标系内有一点B(﹣4,﹣6),过点B作BA⊥x轴于点A、BC ⊥y轴于点C,点P是线段AB上的动点,点D是直线y=3x+3上的动点且在第三象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.(1)证明:如图①,∵∠ACB=90°,AD⊥ED于点D,BE⊥ED于点E,∴∠BEC=∠CDA=∠DCA=90°,∴∠DCE=∠CAD=90°﹣∠ACD,∵BC=CA,∴△BEC≌△CDA(AAS).(2)解:如图②,作BF⊥AB交直线l2于点F,作FE⊥x轴于点E,∵∠BEF=∠AOB=∠BAF=90°,∴∠EBF=∠OAB=90°﹣∠OBA,由旋转得∠BAF=45°,∴∠BFA=∠BAF=45°,∴BF=AB,∴△BEF≌△AOB(AAS),直线y=﹣2x+4,当y=0时,则﹣2x+4=0,解得x=2;当x=0时,y=4,∴A(2,0),B(0,4),∴EB=OA=2,EF=OB=4,∴OE=OB+EB=6,∴F(4,6),设直线l2的函数表达式为y=kx+b,把A(2,0),F(4,6)代入y=kx+b,得,解得∴直线l2的函数表达式为y=3x﹣6.(3)解:△CPD能成为等腰直角三角形,∵B(﹣4,﹣6),BA⊥x轴于点A、BC⊥y轴于点C,∴A(﹣4,0),C(0,﹣6),四边形OABC为矩形,设P(﹣4,m),如图③,∠PDC=90°,则PD=DC,过点D作DH⊥y轴于点H,交AB的延长线于点G,∵∠G=∠ABC=90°,∠DHC=90°,∴∠G=∠DHC,∴∠PDG=∠DCH=90°﹣∠CDH,∴△PDG≌△DCH(AAS),∴DG=CH=BG,PG=DH,∵BP=m﹣(﹣6)=m+6,∴m+6+DG=4﹣DG,∴DG=BG=,∴x D=﹣4+=,y D=﹣6﹣=,将D(,)代入y=3x+3,得=3×+3,解得m=﹣,∴D(﹣,﹣);如图④,∠PCD=90°,则CD=PC,∵作DJ⊥y轴于点J,PI⊥y轴于点I,∵∠DJC=∠CIP=90°,∴∠DCJ=∠CPI=90°﹣∠PCI,∴△DCJ≌△CPI(AAS),∴CJ=PI=4,DJ=CI=BP=m+6,∴OJ=6+4=10,∴D(﹣m﹣6,﹣10),将D(﹣m﹣6,﹣10)代入y=3x+3,得过且过﹣10=3(﹣m﹣6)+3,解得m=﹣,∴D(﹣,﹣10);如图⑤,∠CPD=90°,且点D在PC上方,则DP=PC,作DK⊥AB交射线BA于点K∵∠K=∠B=90°,∴∠PDK=∠CPB=90°﹣∠DPK,∴△PDK≌△CPB(AAS),∴KP=BC=4,KD=BP=m+6,∴x D=﹣4+m+6=m+2,y D=m+4,∴D(m+2,m+4),将D(m+2,m+4)代入y=3x+3,得m+4=3(m+2)+3,解得m=﹣,∴D(﹣,),∵D(﹣,)不在第三象限,∴D(﹣,)不符合题意,舍去;如图⑥,∠CPD=90°,且点D在PC下方,则DP=PC,作DL⊥AB交AB的延长线于点L,则∠DLP=∠PBC,∴∠DPL=∠PCB=90°﹣∠BPC,∴△PDL≌△CPB(AAS),∴LP=BC=4,LD=BP=m+6,∴x D=﹣4﹣(m+6)=﹣10﹣m,y D=m﹣4,∴D(﹣10﹣m,m﹣4),将D(﹣10﹣m,m﹣4)代入y=3x+3,得m﹣4=3(﹣10﹣m)+3,解得m=﹣,D(﹣,﹣),综上所述,点D的坐标为(﹣,﹣)或(﹣,﹣10)或(﹣,﹣).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国中考数学试题分类解析汇编专题54:图形的旋转变换一、选择题1. (2012市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形【答案】D 。
【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。
故选D 。
2. (20123分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .π B.3 C .33+4π D .113+12π 【答案】D 。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。
∴22AC AB BC 3=-=。
∴ABC 13S BC AC 2∆=⨯⨯=。
设点B 扫过的路线与AB 的交点为D ,连接CD ,∵BC=DC ,∴△BCD 是等边三角形。
∴BD=CD=1。
∴点D 是AB 的中点。
∴ACD ABC 1133S S 22∆∆==⨯=S 。
∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积229036013331133604612πππππ⨯⨯⨯⨯=++=++=+()故选D。
3. (20124分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【】A.110° B.80° C.40° D.30°【答案】B。
【考点】旋转的性质,三角形角和定理。
【分析】根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°。
∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°。
∴∠ACB=30°。
∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选B。
4. (20123分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是【】BA'AB'A.25°B.30°C.35°D. 40°【答案】B。
【考点】旋转的性质。
【分析】根据旋转的性质,旋转前后图形全等以及对应边的夹角等于旋转角,从而得出答案:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB=45°-15°=30°。
故选B。
5. (20124分)如图,矩形ABCD 中,A B=1,BC=2,把矩形ABCD 绕AB 所在直线旋转一周所得圆柱的侧面积为【 】A .10πB .4πC .2πD .2 【答案】B 。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB 所在直线旋转一周所得圆柱是以BC=2为底面半径,A B=1为高。
所以,它 的侧面积为221=4ππ⋅⋅。
故选B 。
6. (20123分)如图,O 是正△ABC 一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边;⑤AOC AOB 93SS 6++=.其中正确的结论是【 】A .①②③⑤ B.①②③④ C.①②③④⑤ D .①②③【答案】A 。
【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。
【分析】∵正△ABC,∴AB=CB,∠ABC=600。
∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。
∴∠O′BA=600-∠ABO=∠OBA。
∴△BO′A≌△BOC。
∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。
故结论①正确。
连接OO′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。
∴OO′=OB=4。
故结论②正确。
∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,∴△AOO′是直角三角形。
∴∠AOB=∠AOO′+∠O′OB =900+600=150°。
故结论③正确。
AOO OBO AOBO 11S S S 34+4236+4322∆'∆''=+=⋅⋅⋅⋅=四形边。
故结论④错误。
如图所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形。
则AOC AOB AOCO COO AOO 113393S S S S S 34+3=6+2224∆∆"∆"∆"+==+=⋅⋅⋅⋅。
故结论⑤正确。
综上所述,正确的结论为:①②③⑤。
故选A 。
7. (20123分)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是【 】A .B .C .D .【答案】B 。
【考点】旋转问题的函数图象,正方形的性质,旋转的性质,全等三角形的判定和性质。
【分析】如图,过点E 作EM⊥BC 于点M ,EN⊥AB 于点N ,∵点E 是正方形的对称中心,∴EN=EM,EMBN 是正方形。
由旋转的性质可得∠NEK=∠MEL,在Rt△ENK 和Rt△EML 中,∠NEK=∠MEL,EN=EM ,∠ENK=∠EML,∴△ENK≌△ENL(ASA )。
∴阴影部分的面积始终等于正方形面积的14,即它们重叠部分的面积S 不因旋转的角度θ的改变而改变。
故选B 。
8. (20123分)如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=【 】。
A .1:2B .1:2C .3:2D .1:3【答案】B 。
【考点】旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理。
【分析】如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP=BP ′,∠ABP+∠ABP ′=90°。
又∵△ABC 是等腰直角三角形,∴AB=BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP=∠CBP ′。
在△ABP 和△CBP ′中,∵ BP=BP ′,∠ABP=∠CBP ′,AB=BC ,∴△ABP ≌△CBP ′(SAS )。
∴AP=P ′C 。
∵P ′A :P ′C=1:3,∴AP=3P ′A 。
连接PP ′,则△PBP ′是等腰直角三角形。
∴∠BP ′P=45°,PP ′= 2 PB 。
∵∠AP ′B=135°,∴∠AP ′P=135°-45°=90°,∴△APP ′是直角三角形。
设P ′A=x ,则AP=3x ,在Rt △APP ′中,()2222PP AP P A 3x x 2 2 x '=-'=-=。
在Rt △APP ′中,PP 2PB '=。
∴2PB=2 2 x ,解得PB=2x 。
∴P ′A :PB=x :2x=1:2。
故选B 。
9. (20122分)将如图所示的直角梯形绕直线l 旋转一周,得到的立体图形是【 】【答案】D 。
【考点】点、线、面的关系,旋转的性质。
【分析】将如图所示的直角梯形绕直线l 旋转一周得到圆台。
故选D 。
10. (20122分)如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A′B′C′D′,图中阴影部分的面积为【 】A 、21a 2B 、23a 3C 、23a ⎛⎫ ⎪ ⎪⎝⎭1- D 、23a ⎛⎫ ⎪ ⎪⎝⎭1- 【答案】D 。
【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,三角形角和定理,锐角三角函数定义,特殊角的三角函数值。
【分析】设B′C′与CD 交于点E ,连接AE.在△AB′E 与△ADE 中,∠AB′E=∠ADE=90°,AE=AE, AB′=AD,∴△AB′E≌△ADE(HL )。
∴∠B′AE=∠DAE。
∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°。
∴DE=AD •tan∠DAE=33a 。
∴2ADE AB ED 133S 2S 2a a a 2∆'==⋅⋅⋅=四边形。
∴2ABCD AB ED 3S S 1 a '=-=-正方形四边形阴影部分的面积()。
故选D 。
11. (2012黔东南4分)点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于【 】A .75° B.60° C.45° D.30°【答案】C 。
【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质。
【分析】过点E 作EF⊥AF,交AB 的延长线于点F ,则∠F=90°,∵四边形ABCD 为正方形,∴AD=AB,∠A=∠ABC=90°。
∴∠ADP+∠APD=90°。
由旋转可得:PD=PE ,∠DPE=90°,∴∠APD+∠EPF=90°。
∴∠ADP=∠EPF。
在△APD 和△FEP 中,∵∠ADP=∠EPF,∠A=∠F,PD=PE ,∴△APD≌△FEP(AAS )。