高中数学第三章圆锥曲线与方程2抛物线2.1抛物线及其标准方程课时跟踪训练北师大版选修21

合集下载

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( )A .25B .45C .15D .232.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D . 3.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2 C D .1 4.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14 D .45.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2 D .46.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .y x =B .y =C .y x =D .y =8.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.⎛ ⎝⎦ B.2] C.1⎤⎥⎝⎦D.1] 9.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A.1BCD110.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫ ⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭ C .11,162⎛⎫ ⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭ 11.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点. 12.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .16二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,且1260F PF ︒∠=,则12F PF ∆的内切圆半径等于___________15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______. 16.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m =______.17.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 18.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.19.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PF PA的最小值为 ________. 20.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.三、解答题21.已知椭圆()2222:10x y C a b a b+=>>的离心率e =,一条准线方程为x (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH ,求OG 的斜率.22.已知椭圆C :22221x y a b +=(0a b >>,焦距为2. (1)求椭圆C 的标准方程;(2)点P 为椭圆C 的上顶点,过点P 作两条相互垂直的直线1l ,2l 分别与椭圆相交于M 、N 两点,若4tan 3∠=PNM ,求直线1l 的方程. 附:多项式因式分解公式()()32238642322-+-=--+t t t t t t . 23.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8 (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.24.已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,1P ,离心率为2. (1)求椭圆C 的方程;(2)过点P 作两条互相垂直的弦PA ,PB 分别与椭圆C 交于A ,B .(i )证明直线AB 过定点;(ii )求点P 到直线AB 距离的最大值.25.我们把经过椭圆的焦点且与过焦点的轴垂直的弦称为椭圆的正焦弦.已知椭圆22221(0)x y a b a b +=>>的正焦弦长为1,且点⎛ ⎝⎭在椭圆上. (1)求椭圆的方程;(2)经过点11,28P ⎛⎫- ⎪⎝⎭作一直线交椭圆于,A B 两点如果点P 为线段AB 的中点,求直线AB 的斜率;(3)若直线l 与(2)中的直线AB 平行,且与椭圆交于M ,N 两点,试求MON △(O 为坐标原点)面积的最大值.26.在平面直角坐标系中,(10,C ,圆(222:12C x y +=,动圆P 过1C 且与圆2C 相切.(1)求动点P 的轨迹C 的标准方程; (2)若直线l 过点()0,1,且与曲线C 交于A 、B ,已知AB 的中点在直线14x =-上,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF =+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===, 设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为533,44⎛⎫- ⎪ ⎪⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+. 故选:B.【点睛】 本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.A解析:A【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解.【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=,点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+, 则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=, A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 3.A解析:A【分析】 将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=, 设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+, 结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x ,则223121k k⎛⎫+⋅= ⎪⎝⎭,由0k >,可解得k = 故选:A.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.4.B解析:B【分析】 由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】 如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=, 渐近线OA 的斜率tan 15a k AOM b =∠==,所以115b a =, 所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.5.C解析:C【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a .【详解】 椭圆22183x y +=的半焦距为c ∴双曲线中215a +=,∴2a =(∵0a >).故选:C .【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.6.D解析:D【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程.【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-, ()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =, 所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=.故选:D【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 7.C解析:C【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b,得渐近线方程.【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c =渐近线方程为b y x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C .【点睛】 关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆. 8.C解析:C【分析】 根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==,所以,四边形12PFQF 为矩形,12=QFPF ;由11QF PF ≥1m n≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-; 令=+m n t n m,令3m v n ⎫=∈⎪⎪⎣⎭,所以,12,3t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题 9.D解析:D【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率.【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos 232ME EF c c π==⨯=,2sin 3MF c π==,∴1)2MF ME c a +==,∴1c e a ===. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.10.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())()2,0,2,0,0,0A BM -,1,22FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.11.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案; 【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.12.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】由题意知由余弦定理可得由面积公式即可求解【详解】因为分别为椭圆的左右焦点为该椭圆上一点所以则由余弦定理得即所以故的面积设的内切圆半径为则解得故答案为:【点睛】本题主要考查了椭圆的定义椭圆的简解析:13- 【分析】由题意知12124,F P PF F F +==1243F PPF =‖,由面积公式12121211sin |)2602(S F P PF F P PF F F r ︒=⋅+⋅=‖+|即可求解.【详解】因为12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,所以12124,F P PF F F +==则由余弦定理得,2221212122cos 60F F F P PF F P PF ︒=+-‖,()2121212122cos602F P PF F P PF F P PF ︒=+--,即1212163F PPF =-‖,所以1243F PPF =‖, 故12PF F ∆的面积121sin 602S F P PF ︒=⋅‖=设12F PF ∆的内切圆半径为r ,则12121|)(4122(F P PF F F r r S +⋅=+⋅==+|,解得1r =-1 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,余弦定理,面积公式,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】化双曲线方程为标准方程求得的值依题意列方程解方程求得的值【详解】双曲线方程化为标准方程得故依题意可知即解得【点睛】本小题主要考查双曲线的标准方程考查双曲线的虚轴和实轴考查运算求解能力属于基础题解析:1-4【分析】化双曲线方程为标准方程,求得,a b 的值,依题意列方程,解方程求得m 的值. 【详解】双曲线方程化为标准方程得2211y x m-=-,故1,a b == 依题意可知2b a =2=,解得14m =-.【点睛】本小题主要考查双曲线的标准方程,考查双曲线的虚轴和实轴,考查运算求解能力,属于基础题.17.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.18.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果.【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭, 得:56x =,12y =, 故答案为:51,62⎛⎫⎪⎝⎭.【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.19.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(有答案解析)(2)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(有答案解析)(2)

一、选择题1.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =2.已知离心率5e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1B 2C .2D .43.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .24.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为22[,,则线段AB 的长度的取值范围是( ) A .[2,22]B .[1 , 2]C .[4 8],D .[42,82]5.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =6.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于P ,Q 两点,若1F PQ 为等边三角形,则椭圆的离心率是( )A .22B 2C 3D 37.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||3QF PF ≥,则离心率的取值范围为( ) A .610,2⎛⎤- ⎥⎝⎦B .(0,62]-C .2,312⎛⎤- ⎥ ⎝⎦D .(0,31]-9.如图所示,12FF 分别为椭圆2222x y 1a b+=的左右焦点,点P 在椭圆上,2POF 的面积为3的正三角形,则2b 的值为( )A 3B .23C .33D .4310.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 23a ,则双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .33y x =±D .3y x =±11.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .1212.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.若抛物线28y x =的准线和圆2260x y x m +++=相切,则实数m 的值是__________.14.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.15.设A 是双曲线()22210x y a a-=>上在第一象限内的点,F 为其右焦点,点A 关于原点O 的对称点为B ,若AF BF ⊥,设ABF θ∠=,且,126ππθ⎡⎤∈⎢⎥⎣⎦,则2a 的取值范围是______.16.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.17.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m =______.18.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x ya b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点. (1)若3CN ND =,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.23.已知圆22:12O x y +=,P 为圆O 上的动点,点M 在x 轴上,且M 与P 的横坐标相等,且()21PN NM =-,点N 的轨迹记为C .(1)求C 的方程;(2)设()2,2A ,()4,0B ,过B 的直线(斜率不为±1)与C 交于,D E 两点,试问直线AD 与AE 的斜率之和∑是否为定值?若是,求出该定值;若不是,求∑的取值范围. 24.椭圆2212x y +=的左、右焦点为1F 、2F ,经过1F 作倾斜角为60的直线l 与椭圆相交于A B ,两点. 求(1)线段AB 的长; (2)2ABF 的面积.25.已知圆22:1O x y +=切线l 与椭圆22:34C x y +=相交于A 、B 两点. (1)求椭圆C 的离心率; (2)求证:OA OB ⊥.26.已知椭圆C :22221x y a b += (0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)斜率为2的直线与椭圆交于P 、Q 两点OP OQ ⊥,求直线l 的方程;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.2.C解析:C 【解析】双曲线2222:1x y C a b-=的右焦点为F ,O 为坐标原点,以OF 为直径圆与双曲线C 的一条渐近线相交于O ,A 两点,所以FA OA ⊥,则FA b =,OA a =,AOF ∆的面积为1, 可得1 12ab =,双曲线的离心率5e =222225 4c a b a a +==, 即12b a=,解得1b =,2a =,故选C. 点睛:本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查了计算能力;利用双曲线的离心率求出渐近线方程,利用三角形中直径所对的圆周角为直角,可求得直角三角形AOF ∆的面积1 12ab =,结合离心率以及恒等式222c a b =+即可得到关于,,a b c 方程组求出a 即可;3.C解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.4.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSSAB =+=,2222ABF EABEBF EAF S SSSa =++=,即可得出22aAB c=⋅,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222cAB a ∴=,22a AB c ∴=⋅,2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 5.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.6.D解析:D 【分析】利用1F PQ 为等边三角形可得21222b PF PF a==,利用椭圆定义得,,a b c 的方程,消去b 后可得()22232a c a -=,从而可得离心率.【详解】不妨设椭圆的标准方程为()222210x y a b a b+=>>,半焦距为c ,左右焦点为12,F F ,设P 在第一象限,则()2,0F c .令x c =,则22221c y a b +=,解得2P b y a =,故22bPF a=,1F PQ 为等边三角形,则1PF PQ =,即21222b PF PF a==,由椭圆定义得122PF PF a +=,故232b a a⨯=,即()22232a c a -=,故213e =,解得e =故选:D. 【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x = 【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围,进而求得()2224232c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-1e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()22211e e e -<≤-,进而求解 属于中档题9.B解析:B 【分析】由2POF2=.c把(P 代入椭圆方程可得:22131a b+=,与224a b =+联立解得即可得出. 【详解】 解:2POF24∴= 解得2c =.(P ∴代入椭圆方程可得:22131a b+=,与224a b =+联立解得:2b = 故选B . 【点睛】本题考查了椭圆的标准方程及其性质、等边三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.10.D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin1202m n a c m n mn mn ⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c a b =+,所以2224,ba ab a=+=所以双曲线的渐近线方程为y =. 故选:D【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.11.C解析:C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】 由题得2222222242,4()2,22c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=, 所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.8【解析】的圆心为半径为抛物线的准线是直线所以得解析:8 【解析】2260x y x m +++=的圆心为(3,0)-28y x =的准线是直线2,x =-所以23-+=8.m =14.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切 解析:433【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示 连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为2243tan 23AF B r MT TF ∠===. 故答案为:433.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.15.【分析】设双曲线的左焦点为设则由已知条件可得进而得从而得而所以可得再由可求得结果【详解】设双曲线的左焦点为设则因为点关于原点的对称点为且所以所以所以即所以因为所以所以因为所以所以所以所以所以故答案为解析:1,13⎡⎤-⎢⎥⎣⎦【分析】设双曲线的左焦点为'F ,设',AF m AF n ==,则2n m a -=,由已知条件可得2224m n c +=,进而得2222()21mn c a b =-==,从而得12AOFS =,而21sin 22AOFSc θ=,所以可得211sin 2a θ=-,再由,126ππθ⎡⎤∈⎢⎥⎣⎦可求得结果 【详解】设双曲线的左焦点为'F ,设',AF m AF n ==,则2n m a -=,因为点A 关于原点O 的对称点为B ,且AF BF ⊥,ABF θ∠=所以'OA OB OF OF c =====2AOF θ∠=所以2224m n c +=,所以22()24m n mn c -+=,即2222()21mn c a b =-==, 所以12AOFS =, 因为21sin 22AOFSc θ=,所以21sin 2c θ=, 所以211sin 2a θ=-, 因为,126ππθ⎡⎤∈⎢⎥⎣⎦,所以632,ππθ⎡⎤∈⎢⎥⎣⎦,所以1sin 22θ≤≤12sin 2θ≤≤,1111sin 2θ≤-≤211a -≤≤,故答案为:1,1⎤-⎥⎣⎦【点睛】此题考查双曲线定义的应用,考查三角形面积公式的应用,考查了三角函数,属于中档题16.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=, 所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.17.【分析】化双曲线方程为标准方程求得的值依题意列方程解方程求得的值【详解】双曲线方程化为标准方程得故依题意可知即解得【点睛】本小题主要考查双曲线的标准方程考查双曲线的虚轴和实轴考查运算求解能力属于基础题解析:1-4【分析】化双曲线方程为标准方程,求得,a b 的值,依题意列方程,解方程求得m 的值. 【详解】双曲线方程化为标准方程得2211y x m-=-,故1,a b == 依题意可知2b a =2=,解得14m =-.【点睛】本小题主要考查双曲线的标准方程,考查双曲线的虚轴和实轴,考查运算求解能力,属于基础题.18.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为: 解析:53【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以53e =. 故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的21. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2221c b y b a a=±-=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=, 即为2222a c b ac -==,由ce a=可得2210e e +-=,解得21e =-(负的舍去). 故答案为: 21-. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的 解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.(1) 2; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以e ==== (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0. 设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b =+⎧⎨+=⎩,得()22224240m y mny n b +++-=所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t =m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)0y --=或0y +-=;(2)证明见解析. 【分析】(1)设直线l 的方程为2x my =+并联立双曲线根据韦达定理可得1y 与2y 关系,结合3CN ND =可得123y y =-,从而求得m 值得直线方程;(2)列出直线AC 与BD 方程,并求点P 坐标得12P x =,故得证. 【详解】解:设直线l 的方程为2x my =+,设()11,C x y ,()22,D x y ,把直线l 与双曲线E联立方程组,22214x my y x =+⎧⎪⎨-=⎪⎩,可得()224116120m y my -++=,则1212221612,4141m y y y y m m +=-=--, (1)()112,CN x y =--,()222,ND x y =-,由3CN ND =,可得123y y =-, 即22841m y m =-①,22212341y m -=-②, 把①式代入②式,可得22281234141m m m ⎛⎫-= ⎪--⎝⎭,解得2120m =,m =, 即直线l的方程为0y --=或0y +-=. (2)直线AC 的方程为()1111y y x x =++,直线BD 的方程为()2211y y x x =--,直线AC 与BD 的交点为P ,故()1111y x x ++()2211y x x =--,即()1113y x my ++()2211yx my =-+,进而得到122121311my y y x x my y y ++=-+,又()121234my y y y =-+,故()()122121212133391433134y y y y y x x y y y y y -++-++===----++,解得12x = 故点P 在定直线12x =上.【点晴】方法点晴:直线与圆锥曲线综合问题,通常采用设而不求,结合韦达定理求解.23.(1)221126x y +=;(2)不是定值;()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设(),N xy ,()00,P x y ,利用()21PN NM =-,根据向量的坐标运算可得00x xy =⎧⎪⎨=⎪⎩,代入圆O 方程可得C 的方程; (2)设()():41DE y k x k =-≠±,()11,D x y ,()22,E x y ,将DE 方程代入椭圆方程可得韦达定理的形式,利用0∆>可得k 的取值范围,将AD AE k k +整理为121kk --,根据k 的范围可求得∑的取值范围. 【详解】(1)设(),N x y ,()00,P x y ,则()0,0M x ,()21PN NM =-,2PM PN NM NM ∴=+=,又()00,PM y =-,()0,NM x xy =--,由2PM NM =得:))00x x y y -=-=-,则00x x y =⎧⎪⎨=⎪⎩,点P 在圆22:12O x y +=上,)2212x ∴+=,即221126x y +=, C ∴的方程为221126x y +=.(2)依题意,设()11,D x y ,()22,E x y ,过点B 的直线DE 斜率必存在, 可设直线DE 的方程为()()41y k x k =-≠±,由()2241126y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得:()2222211632120k x k x k +-+-=,其中()()()4222256421321216320k k k k ∆=-+-=->,解得:k <<,()611,11,2k ⎛⎫⎛⎫∴∈-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,21221621k x x k ∴+=+,2122321221k x x k -=+,()()121212124242222222AD AE k x k x y y k k x x x x ------∴+=+=+----()()()()121222122122k x k k x k x x --+--+=+--()121122122k k x x ⎛⎫=-++ ⎪--⎝⎭()()()121212422124x x k k x x x x +-=-+⋅-++()22222216421221321216242121k k k k k k k k -+=-+⋅--⋅+++()()2221642112221881k k k k k k k -+-=-+⋅=--. ()66,11,11,22k ⎛⎫⎛⎫∈--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()121332,464,,1122k k k -⎛⎫⎛⎫∴=--∈-∞---+∞ ⎪ ⎪--⎝⎭⎝⎭, AD AE k k ∴+不是定值,且∑的取值范围是()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】 思路点睛:本题考查直线与椭圆综合应用中的定值、取值范围问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量,将所求量转化为关于变量的函数的形式;④化简所得函数式,消元可得定值或利用函数值域的求解方法求得取值范围.24.(1)7;(2 【分析】(1)求出椭圆的左焦点1(1,0)F -,根据点斜率式可得AB 的方程,直线方程与椭圆方程消去y ,利用根与系数的关系,根据弦长公式即可算出弦AB 的长;(2)利用点到直线的距离公式求出三角形的高,结合(1)的结论,再利用三角形面积公式可得答案.【详解】 椭圆方程为2212x y +=,∴焦点分别为1(1,0)F -,2(1,0)F ,直线AB 过左焦点1F 倾斜角为60︒,∴直线AB的方程为1)y x =+,将AB 方程与椭圆方程消去y ,得271240x x ++=设1(A x ,1)y ,2(B x ,2)y ,可得12127x x +=-,1247x x =12||x x ∴-=因此,12||||AB x x =-=. (2)2F (1,0)到直线AB 的距离为:d ==212ABF S AB d == 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可. 25.(12)证明见解析. 【分析】(1)将椭圆C 的方程化为标准方程,求出a 、c ,进而可求得椭圆C 的离心率; (2)对直线l 的斜率是否存在进行分类讨论,在直线l 的斜率不存在时,求出A 、B 两点的坐标,计算出0OA OB ⋅=;在直线l 的斜率存在时,设直线l 的方程为y kx m =+,利用直线l 与圆O 相切可得出221m k =+,并将直线l 的方程与椭圆C 的方程联立,列出韦达定理,利用平面向量的数量积并结合韦达定理计算得出0OA OB ⋅=.综合可证得结论成立.【详解】(1)将椭圆C 方程化为标准形式221443x y +=, 24a ∴=,243b =,22248433c b a =-=-=,则2a =,c =,因此,椭圆C的离心率为323c e a ===; (2)若切线l 的斜率不存在,即直线l 的方程为1x =±,联立椭圆C 的方程可解得:()1,1A 、()1,1B -或者()1,1A -、()1,1B --.此时0OA OB ⋅=,即OA OB ⊥成立;若切线l 的斜率存在,设其方程为y kx m =+,设点()11,A x y 、()22,B x y ,直线l 与圆22:1O x y +=相切,则1=,化简得221k m +=,联立2234y kx m x y =+⎧⎨+=⎩,得到()222316340k x kmx m +++-=, 由韦达定理可得122631km x x k +=-+,21223431m x x k -=-+, ∴()()()2212121212y y kx m kx m k x x km x x m =++=+++, ()()22121212121OA OB x x y y k x x km x x m ∴⋅=+=++++, 将122631km x x k +=-+,21223431m x x k -=-+代入上式得: ()222222234613131m k m OA OB k m k k -⋅=+-+++, 又∵221k m +=,所以()2222424242222223463466320032323232m m k m m m m m m m OA OB m m m m m ---++-⋅=-+===----, OA OB ∴⊥.综上所述,OA OB ⊥一定成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.26.(1)2214x y +=;(2)220x y -±=. 【分析】(1)根据条件建立关于,,a b c 的方程,解椭圆C 的方程;(2)法一:设直线2y x m=+与椭圆方程联立,利用根与系数的关系表示12120x x y y +=,求m 的值;法二:设直线l的方程为2y x t =+,联立方程后,构造22224x y x y t -⎛⎫+= ⎪⎝⎭,再转化为关于y x 的一元二次方程,利用根与系数的关系求t .【详解】(1)由已知,112c ab a ==, 又222a b c =+,解得2,1,a b c ===,∴椭圆的方程为2214x y +=. (2)法一:设1122(,),(,)P x y Q x y ,PQ 方程为2y x m =+,与椭圆方程联立,得 221716440x mx m ++-=, 所以212121644,1717m m x x x x -+=-= ∵OP OQ ⊥,∴12120x x y y +=即2121252()0x x m x x m +++=,解得2m =±∴直线l 的方程为22y x =±即220x y -±=. 法二:设直线l 的方程为2y x t =+,则由22142x y y x t ⎧+=⎪⎨⎪=+⎩可得22224x y x y t -⎛⎫+= ⎪⎝⎭, 即()()2224416160y y t t x x ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭ ∵OP OQ ⊥,∴2221614244t t t t -=-⇒=⇒=±- ∴直线l 的方程为22y x =±即220x y -±=. 【点睛】方法点睛:求直线方程常用待定系数法,先定式,后定量.先定式,指的是根据已知从直线的5种形式里选择恰当的一种作为直线的方程,再通过联立直线与曲线方程,利用根与系数的关系,表示方程,解方程求出待定系数.。

高中数学第三章圆锥曲线与方程2.1抛物线及其标准方程课时作业北师大版选修2110150430

高中数学第三章圆锥曲线与方程2.1抛物线及其标准方程课时作业北师大版选修2110150430

§2 抛物线 2.1 抛物线及其标准方程课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F)的距离________的点的集合叫做抛物线,点F 叫做抛物线的________,直线l 叫做抛物线的________. 2.抛物线的标准方程(1)方程y 2=±2px,x 2=±2py(p>0)叫做抛物线的标准方程.(2)抛物线y 2=2px(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(3)抛物线y 2=-2px(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(4)抛物线x 2=2py(p>0)的焦点坐标是__________,准线方程是__________,开口方向________.(5)抛物线x 2=-2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.一、选择题1.抛物线y 2=ax(a≠0)的焦点到其准线的距离是( )A .|a|4 B .|a|2 C .|a| D .-a 22.与抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0)B .(116,0)C .(0,0)D .(0,116)3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p 2),则点M 的横坐标是( )A .a +p 2B .a -p 2C .a +pD .a -p4.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P(-3,m)到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x5.方程2[(x +3)2+(y -1)2]=|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .直线 D .抛物线6.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A.172B.3 C. 5 D.92二、填空题7.抛物线x2+12y=0的准线方程是__________.8.若动点P在y=2x2+1上,则点P与点Q(0,-1)连线中点的轨迹方程是__________.9.已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是______________.三、解答题10.已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.11.平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,求动点P的轨迹方程.能力提升12.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为( )A.12B.1 C.2 D.413.AB为抛物线y=x2上的动弦,且|AB|=a (a为常数且a≥1),求弦AB的中点M离x 轴的最近距离.1.理解抛物线定义,并能判定一些有关抛物线的点的轨迹问题.2.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.3.焦点在y轴上的抛物线的标准方程x2=2py通常又可以写成y=ax2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax2来求其焦点和准线时,必须先化成标准形式.§2抛物线2.1 抛物线及其标准方程知识梳理1.相等焦点准线2.(2)(p 2,0) x =-p 2 向右 (3)(-p 2,0) x =p 2 向左 (4)(0,p 2) y =-p2 向上(5)(0,-p 2) y =p2向下作业设计1.B [因为y 2=ax ,所以p =|a|2,即该抛物线的焦点到其准线的距离为|a|2.]2.D [y 2=14x 关于直线x -y =0对称的抛物线为x 2=14y ,∴2p=14,p =18,∴焦点为⎝ ⎛⎭⎪⎫0,116.]3.B [由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.]4.B [点P(-3,m)在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px(p>0).由抛物线定义知|PF|=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x.] 5.D [原方程变形为(x +3)2+(y -1)2=|x -y +3|2,它表示点M(x ,y)与点F(-3,1)的距离等于点M 到直线x-y +3=0的距离.根据抛物线的定义,知此方程表示的曲线是抛物线.] 6.A [如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF|.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M(0,2)到点F ⎝ ⎛⎭⎪⎫12,0的距离,则距离之和的最小值为 4+14=172.] 7.y =3解析 抛物线x 2+12y =0,即x 2=-12y ,故其准线方程是y =3.8.y =4x 29.(-∞,-3]∪[1,+∞)解析 由题意知,设P(x 1,x 21-1),Q(x 2,x 22-1),又A(-1,0),PA⊥PQ,∴PA →·PQ →=0,即(-1-x 1,1-x 21)·(x 2-x 1,x 22-x 21)=0,也就是(-1-x 1)·(x 2-x 1)+(1-x 21)·(x 22-x 21)=0.∵x 1≠x 2,且x 1≠-1,∴上式化简得x 2=11-x 1-x 1=11-x 1+(1-x 1)-1,由基本不等式可得x 2≥1或x 2≤-3.10.解 设抛物线方程为y 2=-2px (p>0),则焦点F ⎝ ⎛⎭⎪⎫-p 2,0, 由题意,得⎩⎪⎨⎪⎧m 2=6p , m 2+⎝ ⎛⎭⎪⎫3-p 22=5,解得⎩⎨⎧p =4,m =26,或⎩⎨⎧p =4,m =-2 6.故所求的抛物线方程为y 2=-8x ,m =±2 6. 抛物线的焦点坐标为(-2,0),准线方程为x =2. 11.解 方法一 设P 点的坐标为(x ,y),则有(x -1)2+y 2=|x|+1,两边平方并化简得y 2=2x +2|x|.∴y 2=⎩⎪⎨⎪⎧4x , x≥0,0, x<0,即点P 的轨迹方程为y 2=4x (x≥0)或y =0 (x<0).方法二 由题意,动点P 到定点F(1,0)的距离比到y 轴的距离大1,由于点F(1,0)到y 轴的距离为1,故当x<0时,直线y =0上的点适合条件;当x≥0时,原命题等价于点P 到点F(1,0)与到直线x =-1的距离相等,故点P 在以F 为焦点,x =-1为准线的抛物线上,其轨迹方程为y 2=4x.故所求动点P 的轨迹方程为y 2=4x (x≥0)或y =0 (x<0).12.C [方法一 由抛物线的标准方程得准线方程为x =-p2.∵准线与圆相切,圆的方程为(x -3)2+y 2=16,∴3+p2=4,∴p=2.方法二 作图可知,抛物线y 2=2px (p>0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-p2=-1,p =2.]13.解设A 、M 、B 点的纵坐标分别为y 1、y 2、y 3.A 、M 、B 三点在抛物线准线上的射影分别为A′、M′、B′,如图所示. 由抛物线的定义,知|AF|=|AA′|=y 1+14,|BF|=|BB′|=y 3+14,∴y 1=|AF|-14,y 3=|BF|-14.又M 是线段AB 的中点,∴y 2=12(y 1+y 3)=12⎝⎛⎭⎪⎫|AF|+|BF|-12≥12×⎝⎛⎭⎪⎫|AB|-12=14(2a -1).等号在AB 过焦点F 时成立,即当定长为a 的弦AB 过焦点F 时,M 点与x 轴的距离最近,最近距离为14(2a -1).。

高中数学 第三章 圆锥曲线与方程 3.2.2 抛物线的简单性质课时作业(含解析)北师大版选修2-1-

高中数学 第三章 圆锥曲线与方程 3.2.2 抛物线的简单性质课时作业(含解析)北师大版选修2-1-

课时作业15 抛物线的简单性质时间:45分钟 ——基础巩固类——一、选择题1.顶点在原点,焦点为F (32,0)的抛物线的标准方程是( C )A .y 2=32xB .y 2=3x C .y 2=6xD .y 2=-6x解析:顶点在原点,焦点为F (32,0)的抛物线的标准方程可设为y 2=2px (p >0),由题意知p 2=32,故p =3.因此,所求抛物线的标准方程为y 2=6x . 2.过抛物线y 2=16x 的焦点的最短弦长为( A ) A .16 B .8 C .32D .4解析:过抛物线焦点的最短弦长即通径长,故长度为2p =16.3.过抛物线x 2=4y 的焦点F 作直线交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|的值为( C )A .5B .6C .8D .10解析:由焦点弦公式易知|P 1P 2|=y 1+y 2+2=8.4.已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM ||MN |=( C )A .2 5B .1 2C .15D .1 3解析:如图,过M 作准线的垂线MH ,设∠FAO =∠MNH =α,则sin α=|OF ||AF |=|MH ||MN |=|MF ||MN |=15.5.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( C )A .2B .2 2C .2 3D .4解析:考查了抛物线的焦半径公式、焦点三角形的面积,设点P 的坐标为(x 0,y 0),则由抛物线的焦半径公式得|PF |=x 0+2=42,x 0=32代入抛物线的方程,得|y 0|=26,S △POF =12|y 0|·|OF |=23,选C.6.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( B )A .4B .4或-4C .-2D .2或-2解析:由题意,设抛物线的标准方程为:x 2=-2py ,由题意得,p2+2=4,∴p =4,x2=-8y .又点(k ,-2)在抛物线上,∴k 2=16,k =±4.7.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B两点,若MA →·MB →=0,则k =( D )A.12B.22C. 2D .2解析:抛物线y 2=8x 焦点坐标为(2,0),直线方程为y =k (x -2),由⎩⎪⎨⎪⎧y 2=8x ,y =k x -2,得k 2(x -2)2=8x ,即k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1-2),MB →=(x 2+2,y 2-2),由MA →·MB →=0得(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,将y 1=k (x 1-2),y 2=k (x 2-2),x 1+x 2=4k 2+8k2,x 1·x 2=4代入上式中,整理得(k -2)2=0,∴k =2.8.等腰直角三角形ABO 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是( B )A .8p 2B .4p 2C .2p 2D .p 2解析:不妨设点A 在x 轴上方,则由抛物线的对称性及OA ⊥OB 知,直线OA 的方程为y=x .由⎩⎪⎨⎪⎧y =x ,y 2=2px ,得A (2p,2p ),∴B (2p ,-2p ),|AB |=4p . ∴S △ABO =12×4p ×2p =4p 2.二、填空题9.若抛物线y 2=mx 与椭圆x 29+y 25=1有一个共同的焦点,则m =±8.解析:椭圆焦点为(-2,0)和(2,0),因为抛物线与椭圆有一个共同焦点,故m =±8. 10.一个正三角形的两个顶点在抛物线y 2=ax 上,另一个顶点是坐标原点,如果这个三角形的面积为363,则a =±2 3.解析:设正三角形边长为x .363=12x 2sin60°,∴x =12.当a >0时,将(63,6)代入y 2=ax 得a =23, 当a <0时,将(-63,6)代入y 2=ax 得a =-23, 故a =±2 3.11.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.则该抛物线的方程为y 2=8x .解析:易知直线AB 的方程是y =22(x -p2),与y 2=2px 联立,消去y 得4x 2-5px +p2=0,则x 1+x 2=5p4①.由焦点弦长公式得|AB |=x 1+x 2+p =9 ②. 由①②解得p =4,从而抛物线的方程是y 2=8x . 三、解答题12.已知圆x 2+y 2-9x =0,与顶点在原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△OAB 的垂心恰为抛物线的焦点,求抛物线的方程.解:依题意设所求抛物线方程为y 2=2px (p >0),焦点F ⎝ ⎛⎭⎪⎫p2,0,A (x 0,y 0),B (x 0,-y 0),则⎩⎪⎨⎪⎧y 20=2px 0,x 20+y 20-9x 0=0,∴x 20+(2p -9)x 0=0.①∵OA ⊥BF ,∴k OA ·k BF =-1. ∴y 0x 0·y 0p 2-x 0=-1,即2px 0x 0⎝ ⎛⎭⎪⎫p 2-x 0=-1.∴x 0=52p .②把②代入①得p =2. ∴所求抛物线方程为y 2=4x .13.设抛物线C :y 2=4x ,O 为C 的顶点,F 为C 的焦点,过F 的直线l 与C 相交于A ,B 两点.(1)设l 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →是一个定值. 解:(1)∵焦点坐标为F (1,0),∴直线l 的方程为y =x -1,与y 2=4x 联立消去y 可得x 2-6x +1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6,从而焦点弦长|AB |=x 1+x 2+p =6+2=8. (2)证明:设直线l 的方程为x =ky +1,与y 2=4x 联立消去x 可得y 2-4ky -4=0.设A (x A ,y A ),B (x B ,y B ),则y A +y B =4k ,y A y B =-4.∴x A x B =(ky A +1)(ky B +1)=k 2y A y B +k (y A +y B )+1=-4k 2+4k 2+1=1. ∴OA →·OB →=x A x B +y A y B =1-4=-3. 即OA →·OB →是一个定值.——能力提升类——14.已知抛物线y 2=2px (p >0)有一内接△OAB ,O 为坐标原点,OA →·OB →=0,直线OA 的方程为y =2x ,且|AB |=413,则抛物线的方程为y 2=165x .解析:由⎩⎪⎨⎪⎧y =2x ,y 2=2px ,得A (p2,p ).又OA →·OB →=0,∴OA ⊥OB ,∴直线OB 的方程为y =-12x ,与y 2=2px 联立可得B (8p ,-4p ).∵|AB |=413,∴(p2-8p )2+(p +4p )2=208, 解得p =85.故抛物线的方程为y 2=165x .15.已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322. 设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程.(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程. 解:(1)依题意d =|0-c -2|2=322,解得c =1(负根舍去), ∴抛物线C 的方程为x 2=4y .(2)设点A (x 1,y 1),B (x 2,y 2) ,P (x 0,y 0), 由x 2=4y ,即y =14x 2,得y ′=12x .∴抛物线C 在点A 处的切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x +y 1-12x 21.∵y 1=14x 21,∴y =x 12x -y 1.∵点P (x 0,y 0)在切线l 1上, ∴y 0=x 12x 0-y 1. ① 同理,y 0=x 22x 0-y 2 . ②综合①②得,点A (x 1,y 1),B (x 2,y 2)的坐标都满足方程y 0=x2x 0-y .∵经过A (x 1,y 1),B (x 2,y 2)两点的直线是唯一的, ∴直线 AB 的方程为y 0=x2x 0-y ,即x 0x -2y -2y 0=0.。

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .3B 3C .13-D .134.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( ) A .(2,)+∞B .2)C .(3,)+∞D .3)6.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9167.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C 23D 438.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .2121B .22121C .42121D 219.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥,则离心率的取值范围为( ) A .61⎛- ⎝⎦B .62]C .231⎤⎥⎝⎦D .31]10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[B .5[C .2[31] D .[31,1)12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.18.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.19.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________20.双曲线221916x y -=的左焦点到渐近线的距离为________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常25(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由3c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 11()123m m +-=⇒=-, 故选C.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B.【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.7.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.8.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥,可得13mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()22222a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为11225O l d -==,圆C 面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.19.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.20.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而2000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y .联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-.由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k ++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时2222333636122MNkk k k k k k k +-==++--所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-=设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题。

2018版高中数学北师大版选修2-1学案:第三章 圆锥曲线

2018版高中数学北师大版选修2-1学案:第三章 圆锥曲线

2.1 抛物线及其标准方程[学习目标] 1.掌握抛物线的定义及其焦点、准线的概念.2.会求简单的抛物线方程.知识点一 抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 知识点二 抛物线标准方程的几种形式思考 (1)2(2)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线吗? 答案 (1)焦点到准线的距离.(2)不一定.当直线l 经过点F 时,点的轨迹是过定点F 且垂直于定直线l 的一条直线;l 不经过点F 时,点的轨迹是抛物线.题型一 求抛物线的标准方程例1 分别求满足下列条件的抛物线的标准方程. (1)焦点为(-2,0); (2)准线为y =-1; (3)过点A (2,3); (4)焦点到准线的距离为52.解 (1)由于焦点在x 轴的负半轴上,且p2=2,∴p =4,∴抛物线的标准方程为y 2=-8x .(2)∵焦点在y 轴正半轴上,且p2=1,∴p =2,∴抛物线的标准方程为x 2=4y .(3)由题意,抛物线方程可设为y 2=mx (m ≠0)或x 2=ny (n ≠0), 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3, ∴m =92或n =43.∴所求抛物线的标准方程为y 2=92x 或x 2=43y .(4)由焦点到准线的距离为52,可知p =52.∴所求抛物线的标准方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .反思与感悟 求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0). 跟踪训练1 分别求满足下列条件的抛物线的标准方程. (1) 过点(3,-4);(2) 焦点在直线x +3y +15=0上.解 (1)方法一 ∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y , 得(-4)2=2p ·3,32=-2p 1·(-4),即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .方法二 ∵点(3,-4)在第四象限,∴抛物线的方程可设为y 2=ax (a ≠0)或x 2=by (b ≠0). 把点(3,-4)分别代入,可得a =163,b =-94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x . 题型二 抛物线定义的应用例2 如图,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求此时P 点坐标.解 如图,作PQ ⊥l 于Q ,由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d ,由图可知,求|P A |+|PF |的最小值的问题可转化为求|P A |+d 的最小值的问题. 将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部.设抛物线上动点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d .由图可知,当P A ⊥l时,|P A |+d 最小,最小值为72.即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2.∴点P 坐标为(2,2).反思与感悟 抛物线的定义在解题中的作用,就是灵活地对抛物线上的点到焦点的距离与到准线距离进行转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.跟踪训练2 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线的准线的距离之和的最小值为( ) A.172 B.2C.5D.92答案 A解析 如图,由抛物线定义知|P A |+|PQ |=|P A |+|PF |, 则所求距离之和的最小值转化为求|P A |+|PF |的最小值, 则当A 、P 、F 三点共线时,|P A |+|PF |取得最小值. 又A (0,2),F (12,0),∴(|P A |+|PF |)min =|AF | =(0-12)2+(2-0)2=172.题型三 抛物线的实际应用例3 如图所示,一辆卡车高3m ,宽1.6m ,欲通过断面为抛物线形的隧道,已知拱口AB 宽恰好是拱高CD 的4倍,若拱口宽为a m ,求能使卡车通过的a 的最小整数值.解 以拱顶为原点,拱高所在直线为y 轴,建立如图所示的平面直角坐标系. 则点B 的坐标为⎝⎛⎭⎫a 2,-a4, 设抛物线方程为x 2=-2py (p >0), ∵点B 在抛物线上,∴⎝⎛⎭⎫a 22=-2p ·⎝⎛⎭⎫-a 4,解得p =a 2, ∴抛物线方程为x 2=-ay .将点E (0.8,y )代入抛物线方程,得y =-0.64a .∴点E 到拱底AB 的距离为a 4-|y |=a 4-0.64a >3.解得a >12.21,∵a 取整数, ∴a 的最小整数值为13.反思与感悟 以抛物线为数学模型的实例很多,如拱桥、隧道、喷泉等,抛物线的应用主要解题步骤:(1)建立平面直角坐标系,求抛物线的方程;(2)利用方程求点的坐标.跟踪训练3 如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以隧道的顶点为原点O ,其对称轴所在的直线为y 轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)? 解 (1)依题意,设该抛物线的方程为x 2=-2py (p >0),如图所示,因为点C (5,-5)在抛物线上,解得p =52,所以该抛物线的方程为x 2=-5y . (2)设车辆高h 米,则|DB |=h +0.5, 故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05, 所以车辆通过隧道的限制高度为4.0米.1.抛物线y =-18x 2的准线方程是( )A.x =132B.x =12C.y =2D.y =4答案 C解析 将y =-18x 2化为标准形式x 2=-8y ,由此可知准线方程为y =2.2.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为( ) A.8B.16C.32D.61 答案 B解析 由y 2=8x 得焦点坐标为(2,0), 由此直线方程为y =x -2,由⎩⎪⎨⎪⎧y 2=8x ,y =x -2联立得x 2-12x +4=0, 设交点为A (x 1,y 1),B (x 2,y 2), 由方程知x 1+x 2=12,∴弦长|AB |=x 1+x 2+p =12+4=16.3.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=±8x答案 D解析 由题意知,抛物线的焦点为双曲线x 24-y 22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .4.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.2B.3C.115D.3716答案 A解析 易知直线l 2:x =-1恰为抛物线y 2=4x 的准线, 如图所示,动点P 到l 2:x =-1的距离可转化为PF 的长度, 其中F (1,0)为抛物线y 2=4x 的焦点. 由图可知,距离和的最小值, 即F 到直线l 1的距离 d =|4+6|(-3)2+42=2.5.若双曲线x 23-16y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p =________.答案 4解析 由双曲线x 23-16y 2p 2=1得标准形式为x 23-y 2p216=1,由此c 2=3+p 216,左焦点为(-3+p 216,0), 由y 2=2px 得准线为x =-p2,∴-3+p 216=-p 2, ∴p =4.1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型.因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论,有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).。

高中数学第三章圆锥曲线与方程3.2.1抛物线及其标准方程北师大版选修

高中数学第三章圆锥曲线与方程3.2.1抛物线及其标准方程北师大版选修

[名师妙点] 求抛物线方程的方法: (1)定义法 直接利用抛物线的定义求解. (2)待定系数法 尽管抛物线标准方程有四种,但方程中都只有一个 待定系数,一是利用好参数p的几何意义,二是给抛 物线定好位,即求抛物线方程遵循先定位,后定量 的原则.
2y.
(3)

x=0, x-2y-4=0,

x=0, y=-2.

y=0, x-2y-4=0,
得yx==04,.
所以所求抛物线的焦点坐标为(0,-2)或(4,0).
当焦点为(0,-2)时,由p2=2,得 p=4, 所以所求抛物线方程为 x2=-8y. 当焦点为(4,0)时,由p2=4,得 p=8, 所以所求抛物线方程为 y2=16x. 综上所述,所求抛物线方程为 x2=-8y 或 y2=16x.
_0_,__-__p2_ __y=__p2___
[强化拓展] 四种不同形式的标准方程的异同 (1)数形共同点 ①原点在抛物线上; ②对称轴为坐标轴; ③准线与对称轴垂直,垂足与焦点关于原点对称, 它们与原点的距离都等于一次项系数的绝对值的14, 即24p=p2; ④焦点到准线的距离均为 p.
(2)数形不同点 ①对称轴为x轴时,方程的右端为±2px,左端为y2, 对称轴为y轴时,方程的右端为±2py,左端为x2. 注意:形如y=ax2,x=by2不是拋物线的标准方程, 在应用时需将其转化为标准方程. ②开口方向与x轴(或y轴)的正半轴相同,焦点在x轴( 或y轴)的正半轴上,方程的右端取正号;开口方向与x 轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴 上,方程的右端取负号.
1.已知抛物线的焦点是0
A.x2=-y
B.x2=y
C.y2=x
D.y2=-x

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标准方程课时作业 北师大版选修21

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标准方程课时作业 北师大版选修21

3.2.1 抛物线及其标准方程[基础达标]1.已知抛物线的焦点坐标是F (0,-2),则它的标准方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8yD .x 2=-8y解析:选D.p2=2,∴p =4,焦点在y 轴负半轴上,故其标准方程为x 2=-8y .2.抛物线x 2=8y 的准线方程为( ) A .y =-2 B .x =-2 C .y =-4D .x =-4解析:选A.其焦点为(0,2),故准线方程为y =-2.3.点P 为抛物线y 2=2px 上任一点,F 为焦点,则以P 为圆心,以|PF |为半径的圆与准线l ( )A .相交B .相切C .相离D .位置由F 确定解析:选B.圆心P 到准线l 的距离等于|PF |,∴相切. 4.如图,南北方向的公路L ,A 地在公路正东2 km 处,B 地在A 北偏东60 °方向2 3 km 处,河流沿岸曲线PQ 上任意一点到公路L 和到A 地距离相等.现要在曲线PQ 上某处建一座码头,向A ,B 两地运货物,经测算,从M 到A ,B 修建公路的费用都为a 万元/km ,那么,修建这两条公路的总费用最低是( )A .(2+3)a 万元B .(23+1)a 万元C .5a 万元D .6a万元解析:选C.依题意知曲线PQ 是以A 为焦点、L 为准线的抛物线,根据抛物线的定义知:欲求从M 到A ,B 修建公路的费用最低,只需求出B 到直线L 的距离即可.∵B 地在A 地北偏东60°方向2 3 km 处,∴B 到点A 的水平距离为3 km ,∴B 到直线L 的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a 万元,故选C.5.一个动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(0,2)B .(0,-2)C .(2,0)D .(4,0)解析:选C.由抛物线定义知圆心到准线x +2=0的距离等于到焦点F (2,0)的距离,∴动圆必过定点(2,0).6.经过点P (4,-2)的抛物线的标准方程为________.解析:设抛物线的标准方程为y 2=2px 或x 2=-2py ,把P (4,-2)分别代入得(-2)2=8p 或16=-2p ×(-2);∴p =12或p =4,故对应的标准方程为y 2=x 和x 2=-8y .答案:y 2=x 或x 2=-8y7.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 解析:圆方程可化为(x -3)2+y 2=16,圆心为(3,0),半径为4,由题意知1=p2,∴p=2.答案:28.过点A (0,2)且和抛物线C :y 2=6x 相切的直线l 方程为________.解析:当直线l 的斜率不存在时,l 的方程为x =0,与抛物线C 相切;当直线l 的斜率存在时,设其方程为y -2=kx ,与y 2=6x 联立,消去x 得y -2=k6y 2,即ky 2-6y +12=0,由题意可知k ≠0,Δ=(-6)2-48k =0,∴k =34,∴y -2=34x .即为3x -4y +8=0. 答案:x =0或3x -4y +8=09.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、抛物线方程及其准线方程.解:设所求抛物线方程为x 2=-2py (p >0),则焦点F 的坐标为⎝ ⎛⎭⎪⎫0,-p 2.因为M (m ,-3)在抛物线上,且|MF |=5,故⎩⎨⎧m 2=6p ,m 2+⎝⎛⎭⎪⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6.所以所求的抛物线方程为x 2=-8y ,m =±26,准线方程为y =2.10.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线形的隧道,已知拱口AB 宽恰好是拱高CD 的4倍,若拱宽为a m ,求能使卡车通过的a 的最小整数值.解:以拱顶为原点,拱高所在直线为y 轴,建立如图所示的直角坐标系.设抛物线方程为x 2=-2py (p >0),则点B 的坐标为(a 2,-a4),由点B 在抛物线上,∴(a2)2=-2p ·(-a 4),p =a2,∴抛物线方程为x 2=-ay .将点E (0.8,y )代入抛物线方程,得y =-0.64a.∴点E 到拱底AB 的距离为a 4-|y |=a 4-0.64a>3.解得a >12.21,∵a 取整数,∴a 的最小整数值为13.[能力提升]1.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42, ∴x 0=32,∴y 20=42x 0=42×32=24,∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.2.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为________.解析:∵抛物线方程为y 2=4x ,则准线方程为x =-1. 令P 点坐标为P (x 0,y 0),由图可知,|PM |=x 0+1=5.∴x 0=4.把x 0=4代入y 2=4x ,解得y 0=±4, ∴△MPF 的面积为12|PM |×|y 0|=12×5×4=10.答案:103.已知抛物线的方程为x 2=8y ,F 是焦点,点A (-2,4),在此抛物线上求一点P ,使|PF |+|PA |的值最小.解:∵(-2)2<8×4,∴点A (-2,4)在抛物线x 2=8y 的内部.如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,由抛物线的定义可知:|PF |+|PA |=|PQ |+|PA |≥|AQ |≥|AB |,当且仅当P ,Q ,A 三点共线时,|PF |+|PA |取得最小值,即为|AB |.∵A (-2,4),∴不妨设|PF |+|PA |的值最小时,点P 的坐标为(-2,y 0),代入x 2=8y 得y 0=12,故使|PF |+|PA |的值最小的抛物线上的点P 的坐标为(-2,12).4.已知点A (3,2),点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12.(1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由.解:(1)由于动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等,由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线,其方程应为y 2=2px (p >0)的形式,而p 2=12,∴p =1,2p =2,故轨迹方程为y 2=2x . (2)如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值,这时M 的纵坐标为2,可设M (x 0,2)代入抛物线方程得x 0=2,即M (2,2).。

高中数学第三章圆锥曲线与方程2.1抛物线及其标准方程学案北师大版选修2_11

高中数学第三章圆锥曲线与方程2.1抛物线及其标准方程学案北师大版选修2_11

2.1抛物线及其标准方程学习目标 1. 掌握抛物线的定义及焦点、准线的观点.2.掌握抛物线的标准方程及其推导.3.明确抛物线标准方程中p 的几何意义,并能解决简单的求抛物线标准方程的问题.知识点一抛物线的定义思虑 1平面内,到两定点距离相等的点的轨迹是什么?思虑 2平面内,到两个确立平行直线l 1, l 2距离相等的点的轨迹是什么?思虑 3到定点的距离与到定直线的距离相等的点的轨迹是什么?梳理 (1)平面内与一个定点F 和一条定直线l(l可是) 的距离 ______的点的会合叫作抛物F线 . 点F叫作抛物线的 ______,直线l叫作抛物线的 ______.(2) 定义的本质可概括为“一动三定”:一个动点,设为M;一个定点 F(抛物线的焦点);一条定直线 ( 抛物线的准线 ) ;一个定值 ( 即点M到点F的距离与它到定直线l 的距离之比等于1∶1).知识点二抛物线的标准方程思虑抛物线的标准方程有何特色?梳理因为抛物线焦点地点不一样,方程也就不一样,故抛物线的标准方程有以下几种形式:y2=2px( p>0),y2=-2px( p>0), x2=2py( p>0), x2=-2py( p>0).现将这四种抛物线对应的图形、标准方程、焦点坐标及准线方程列表以下:图形标准方程y2=2px( p>0)y2=-2px( p>0)x2=2py( p>0)x2=-2py( p>0)种类一抛物线的定义及理解焦点坐标准线方程p p ( ,0)x=-22p p ( -2, 0)x=2p p (0 ,2)y=-2py=p (0 ,-2)2例 1 (1) 动点M的坐标知足方程5x2+ y2=|3 x+4y-12|,则动点 M的轨迹是()A. 椭圆B. 双曲线C. 抛物线D. 以上都不对(2)已知点 P( x, y)在以原点为圆心的单位圆 x2+ y2=1上运动,则点 Q( x+ y, xy)的轨迹所在的曲线是 ________.( 在圆、抛物线、椭圆、双曲线中选择一个作答)反省与感悟抛物线的判断方法(1) 能够看动点能否切合抛物线的定义,即到定点的距离等于到定直线( 直线可是定点) 的距离 .(2) 求出动点的轨迹方程,看方程能否切合抛物线的方程.追踪训练1平面上动点P 到定点 F(1,0)的距离比点P 到 y 轴的距离大1,求动点P的轨迹方程 .种类二抛物线标准方程及求解命题角度1抛物线的焦点坐标或准线方程的求解例 2求以下抛物线的焦点坐标和准线方程.(1) y2=40x; (2)4 x2=y; (3)3 y2= 5x;(4)6 y2+ 11x= 0.反省与感悟依据抛物线方程求准线方程或焦点坐标时,应先把抛物线的方程化为标准方程,即等式左端是二次项且系数是1,等式右端是一次项,这样才能正确写出抛物线的准线方程.追踪训练 2若抛物线 y2=2px 的焦点坐标为(1,0),则 p=________;准线方程为________.命题角度 2求解抛物线的标准方程例 3 依据以下条件分别求抛物线的标准方程.(1)已知抛物线的准线方程是3 x=-;2(2)抛物线的焦点 F 在 x 轴上,直线 y=-3与抛物线交于点 A,| AF|=5.反省与感悟抛物线标准方程的求法(1) 定义法:成立合适坐标系,利用抛物线的定义列出动点知足的条件,列出方程,进行化简,依据定义求出p,最后写出标准方程.(2)待定系数法:因为标准方程有四种形式,因此在求方程时应第一确立焦点在哪一个半轴上,从而确立方程的形式,而后再利用已知条件确立p 的值.追踪训练3已知抛物线的极点在原点,对称轴为x 轴,抛物线上的点M(-3,m)到焦点的距离等于 5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.种类三抛物线在本质生活中的应用例 4河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽 4 m、高 2 m,载货后船露出水面上的部分高0.75 m,问:水面上升到与抛物线拱桥拱顶相距多少米时,小船开始不可以通航?反省与感悟波及拱桥、地道的问题,往常需成立合适的平面直角坐标系,利用抛物线的标准方程进行求解 .追踪训练4喷灌的喷头装在直立管柱OA的极点 A处,喷出水流的最高点 B 高5 m,且与 OA 所在的直线相距 4 m,水漂泊在以O为圆心,半径为9 m 的圆上,则管柱OA的长是多少?1. 抛物线y=41x2的准线方程是 ()A. y=- 1B. y=- 2C. x=- 1D. x=- 22. 已知抛物线的极点在原点,焦点在y 轴上,抛物线上的点( ,- 2) 到焦点的距离为4,则P mm的值为()A.4B. -2C.4 或- 4D.12 或- 23.若抛物线 y2=2px( p>0)上的动点Q到焦点的距离的最小值为1,则p= ________.4.过 (2,4) 点,极点在原点,焦点在y 轴上的抛物线的标准方程为________.5.已知 M为抛物线 y2=4x 上一动点, F 为抛物线的焦点,定点N(2,3),则| MN|+| MF|的最小值为 ________.2m1. 焦点在x轴上的抛物线,其标准方程能够统设为y= mx( m≠0),此时焦点为F(4,0),准m2线方程为 x=-4;焦点在 y 轴上的抛物线,其标准方程能够统设为x= my( m≠0),此时焦点m m为 F(0,),准线方程为y=-.442. 设是抛物线上一点,焦点为,则线段叫作抛物线的焦半径. 若 (0,0)在抛物线y2 M F MF M x y= 2px( p>0) 上,则依据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离能够互相转变,所以焦半径 | MF|p =x0+.23.对于抛物线上的点,利用定义能够把其到焦点的距离转变为到准线的距离,也能够把其到准线的距离转变为到焦点的距离,所以能够解决相关距离的最值问题.提示:达成作业第三章§2 2.1答案精析问题导学知识点一思虑 1连结两定点所得线段的垂直均分线.思虑 2一条直线.思虑 3抛物线.梳理(1) 相等焦点准线知识点二思虑(1) 以方程的解为坐标的点在抛物线上;(2) 对称轴为坐标轴;(3) p为大于 0 的常数,其几何意义表示焦点到准线的距离;(4) 准线与对称轴垂直,垂足与焦点对于原点对称;(5)p焦点、准线到原点的距离都等于.2题型研究例 1 (1)C (2) 抛物线追踪训练 1解方法一设点 P 的坐标为( x, y),则有x-2+ y2=| x|+1,两边平方并化简得y2=2x+2| x|.∴ y2=4x,x≥0,0,<0.x即点 P的轨迹方程为 y24x,x≥0,=x<0.0,方法二由题意,动点P到定点 F(1,0)的距离比到 y 轴的距离大1,因为点F(1,0)到 y 轴的距离为1,故当<0 时,直线y = 0 上的点合适条件;x当 x≥0时,原命题等价于点P 到点 F(1,0)与到直线 x=-1的距离相等,故点 P的轨迹是以 F 为焦点, x=-1为准线的抛物线,方程为2=4 .y x故所求动点P 的轨迹方程为y2=4x,x≥0,0,x<0.例 2解(1) 焦点坐标为 (10,0) ,准线方程为x=-10.(2)由 4x2=y得x2=1y. ∵2p=1,1∴ p =8.11∴焦点坐标为 (0 , 16) ,准线方程为 y =- 16.225 (3) 由 3y= 5x ,得 y = x .355∵2p =3,∴ p =6.5∴焦点坐标为 ( 12, 0) ,5准线方程为 x =- 12.221111 11(4) 由 6y + 11x =0,得 y =- 6 x ,故焦点坐标为 ( - 24, 0) ,准线方程为 y =24.追踪训练 2 2x =- 1例3 解 (1)设抛物线的标准方程为y 2=2 ( > 0).px p其准线方程为x3p3= 3.=- ,由题意有-=-,故222 p所以标准方程为 y 2= 6x .(2) 设所求焦点在x 轴上的抛物线的方程为 2= 2( p ≠0) , ( ,- 3) ,由抛物线定义得 5ypx A mp= | AF | = m + 2 .又 ( - 3) 2= 2pm ,∴ p =±1或 p =± 9,故所求抛物线的标准方程为y 2=±2x 或 y 2=± 18x .追踪训练 3解 设抛物线方程为y 2=- 2px ( p >0) ,p则焦点 F -2,0 ,2m =6p ,由题意,得2p2m +3-= 5,2 p = 4, p = 4, 解得或m =- 2 6.m = 2 6,故所求的抛物线方程为y 2=- 8x ,m =±2 6.抛物线的焦点坐标为 ( - 2,0) ,准线方程为 x = 2.角坐标系 .28设抛物线方程为 x =- 2py ( p >0) ,由题意可知,点 B (4 ,- 5) 在抛物线上,故 p = 5,2 16 A得 x =- 5 y . 当船面双侧和抛物线接触时, 船不可以通航, 设此时船面宽为 AA ′,则 A (2 ,y ) ,216 5 0.75 m ,所以 h = | y A | + 0.75 = 由 2=- y A ,得 y A =- . 又知船面露出水面上的部分高为5 42(m). 所以水面上升到与抛物线形拱桥拱顶相距 2 m 时,小船开始不可以通航 .追踪训练4 解以下图,成立直角坐标系,设水流所形成的抛物线的方程为x 2 =-2py ( p >0) ,因为点 C (5 ,- 5) 在抛物线上,所以 25=- 2p ·( - 5) ,所以 2p = 5,所以抛物线的方程为x 2=- 5y ,点 A ( - 4, y 0) 在抛物线上,16所以 16=- 5y 0,即 y 0=-,16所以 OA 的长为 5- 5 = 1.8(m).所以管柱 OA 的长为 1.8 m.当堂训练1.A2.C3.24. x 2= y5. 10。

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标准方程训练案 北师大版选修21

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标准方程训练案 北师大版选修21

3.2.1 抛物线及其标准方程[A.基础达标]1.已知点P 为抛物线y 2=2px 上任一点,F 为焦点,则以P 为圆心,以|PF |为半径的圆与准线l ( )A .相交B .相切C .相离D .位置由F 确定 解析:选B.圆心P 到准线l 的距离等于|PF |,所以相切.2.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离是( ) A .12 B .8 C .6 D .4解析:选B.由抛物线定义知:P 到焦点的距离等于P 到准线的距离,故P 到焦点距离=6-(-2)=8.3.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )解析:选D.a 2x 2+b 2y 2=1其标准方程为x 21a 2+y 21b 2=1,因为a >b >0,所以1a 2<1b2,表示焦点在y 轴上的椭圆;ax +by 2=0其标准方程为y 2=-abx ,表示焦点在x 的负半轴的抛物线.4.一个动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(0,2)B .(0,-2)C .(2,0)D .(4,0)解析:选C.由抛物线定义知圆心到准线x +2=0的距离等于到焦点F (2,0)的距离,所以动圆必过定点(2,0).5.当a 为任意实数时,直线(2a +3)x +y -4a +2=0恒过定点P ,则过点P 的抛物线的标准方程是( )A .x 2=32y 或y 2=-12xB .x 2=-32y 或y 2=12xC .y 2=32x 或x 2=-12yD .y 2=-32x 或x 2=12y解析:选C.该直线可化为(2x -4)a +(3x +y +2)=0,令⎩⎪⎨⎪⎧2x -4=0,3x +y +2=0,得⎩⎪⎨⎪⎧x =2,y =-8,故该直线恒过定点P (2,-8),经验证C 符合要求.6.准线方程为x =-1的抛物线的标准方程为________. 解析:由题意可设该抛物线的标准方程为y 2=2px (p >0),其准线为x =-p2=-1,得p=2.故该抛物线的标准方程为y 2=4x .答案:y 2=4x7.已知O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点, 若OA →·AF →=-4,则点A 的坐标是________.解析:因为抛物线y 2=4x 的焦点为F (1,0),设A 的坐标为(y 204,y 0),则OA →=(y 204,y 0),AF →=(1-y 204,-y 0),由OA →·AF →=-4得y 40+12y 20-64=0,即y 0=±2,所以点A 的坐标为(1,2)或(1,-2). 答案:(1,2)或(1,-2)8.设抛物线y 2=2x 的准线为l ,P 为抛物线上的动点,定点A (2,3),则|AP |与点P 到准线l 的距离之和的最小值为________.解析:设该抛物线的焦点为F ,连接AF 交抛物线于点P 0,由抛物线定义可知P 到准线l 的距离等于|PF |,故|AP |与点P 到l 距离之和=|AP |+|PF |≥|AP 0|+|P 0F |=|AF |=(2-12)2+32=352.答案:3529.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、抛物线方程及其准线方程.解:设所求抛物线方程为x 2=-2py (p >0),则焦点F 的坐标为⎝⎛⎭⎪⎫0,-p 2.因为M (m ,-3)在抛物线上,且|MF |=5,故⎩⎨⎧m 2=6p ,m 2+⎝⎛⎭⎪⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6. 所以所求的抛物线方程为x 2=-8y ,m =±26,准线方程为y =2. 10.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线形的隧道,已知拱口AB 宽恰好是拱高CD 的4倍,若拱宽为a m ,求能使卡车通过的a 的最小整数值.解:以拱顶为原点,拱高所在直线为y 轴,建立如图所示的直角坐标系.设抛物线方程为x 2=-2py (p >0),则点B 的坐标为(a 2,-a4),由点B 在抛物线上,所以(a2)2=-2p ·(-a 4),p =a2,所以抛物线方程为x 2=-ay .将点E (0.8,y )代入抛物线方程,得y =-0.64a.所以点E 到拱底AB 的距离为a 4-|y |=a 4-0.64a>3.解得a >12.21,因为a 取整数,所以a 的最小整数值为13.[B.能力提升]1.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .4B .2C .1D .8 解析:选C.如图,F (14,0),过A 作AA ′⊥准线l ,所以|AF |=|AA ′|,所以54x 0=x 0+p2=x 0+14,所以x 0=1. 2.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45πB.34π C .(6-25)π D.54π解析:选A.因为∠AOB =90°,所以点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,所以点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上, 所以当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.又|OD |=|2×0+0-4|5=45,所以圆C 的最小半径为25,所以圆C 面积的最小值为π(25)2=45π.3.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,P 为抛物线上一点,过点P 作直线l 的垂线PM ,垂足为M ,已知△PFM 为等边三角形,则△PFM 的面积为________.解析:设l 与x 轴交于点A ,则|AF |=p ,因为∠AFM =60°,所以|MF |=2|AF |=2p ,所以S △PFM =34(2p )2=3p 2.答案:3p 24.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为________.解析:设(0,2)为点A ,因为|MF |=5,所以M (5-p 2,10p -p 2),由题意可得:AM →·AF→=0,AM →=(5-p 2,10p -p 2-2),AF →=(p 2,-2),AM →·AF →=(5-p 2)·p 2+(10p -p 2-2)(-2)=0,得p =2或p =8,故C 的方程为y 2=4x 或y 2=16x .答案:y 2=4x 或y 2=16x5.过抛物线焦点F 的直线交该抛物线于P 、Q 两点,弦PQ 的垂直平分线交抛物线的对称轴于R 点.求证:|FR |=12|PQ |.证明:建立直角坐标系,如图所示.设R 点坐标为(x ,0),P 点坐标为(x 1,y 1),Q 点坐标为(x 2,y 2),所以|FR |=x -p2.由题设,知|RP |=|RQ |,即(x -x 1)2+y 21=(x -x 2)2+y 22,①因为y 22=2px 2,y 21=2px 1,代入方程①,得(x -x 1)2-(x -x 2)2=2p (x 2-x 1).因为x 1≠x 2,所以x =x 1+x 22+p .所以|FR |=x 1+x 22+p2, |PQ |=|PF |+|FQ |=(x 1+p 2)+(x 2+p2)=(x 1+x 2)+p ,所以|FR |=12|PQ |.6.(选做题)已知点A (3,2),点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由.解:(1)由于动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等,由抛物线的定义知动点M 的轨迹是以F 为焦点,l为准线的抛物线,其方程应为y 2=2px (p >0)的形式,而p 2=12,所以p =1,2p =2,故轨迹方程为y 2=2x .(2)存在M .理由如下:由题意得A (3,2)在抛物线内部,如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值,这时M 的纵坐标为2,可设M (x 0,2),代入抛物线方程得x 0=2,即M (2,2).。

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标

高中数学 第三章 圆锥曲线与方程 3.2.1 抛物线及其标

3.2.1 抛物线及其标准方程1.理解抛物线的定义及其标准方程的形式.(重点) 2.了解抛物线的焦点、准线.(重点)3.掌握抛物线标准方程的四种形式,并能说出各自的特点,从而培养用数形结合的方法处理问题的能力及分类讨论的数学思想.(难点)[基础·初探]教材整理1 抛物线的定义阅读教材P 71“动手实践”与“思考交流”之间的部分,完成下列问题.平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线,定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线.到直线x =2与定点P (2,0)的距离相等的点的轨迹是( ) A .抛物线 B .双曲线 C .椭圆D .直线【解析】 ∵点(2,0)在直线x =2上,∴所求的点的轨迹应是一条直线. 【答案】 D教材整理2 抛物线的标准方程阅读教材P 71“思考交流”以下~P 72“例1”以上的部分 ,完成下列问题.图形标准 方程 y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)焦点 坐标⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0⎝ ⎛⎭⎪⎫0,p 2⎝ ⎛⎭⎪⎫0,-p 2准线 方程x =-p 2x =p 2y =-p 2y =p 21.抛物线x 2=-3y 的准线方程是( ) A .y =-34B .y =34C .x =-112D .x =112【解析】 由已知得p =32,又∵该抛物线开品向下,∴其准线方程为y =34.【答案】 B2.焦点坐标为(0,-1)的抛物线的标准方程为________.【导学号:32550073】【解析】 由题意知p2=1,开口向下,∴抛物线方程为x 2=-4y . 【答案】 x 2=-4y[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________ 解惑:________________________________________________ 疑问2:________________________________________________ 解惑:________________________________________________ 疑问3:________________________________________________ 解惑:________________________________________________[小组合作型]求抛物线的标准方程(1)过点(-3,2);(2)焦点在直线x -2y -4=0上;(3)已知抛物线焦点在y 轴上,焦点到准线的距离为3.【精彩点拨】 确定p 的值和抛物线的开口方向,写出标准方程.【自主解答】 (1)设所求的抛物线方程为y 2=-2p 1x (p 1>0)或x 2=2p 2y (p 2>0),∵过点(-3,2),∴4=-2p 1(-3)或9=2p 2·2. ∴p 1=23或p 2=94.故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)令x =0得y =-2,令y =0得x =4, ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程y 2=16x ; 当焦点为(0,-2)时,p2=|-2|,∴p =4,此时抛物线方程为x 2=-8y . 故所求的抛物线的方程为y 2=16x 或x 2=-8y .(3)由题意知,抛物线标准方程为x 2=2py (p >0)或x 2=-2py (p >0)且p =3,∴抛物线标准方程为x 2=6y 或x 2=-6y .求抛物线标准方程的方法有:(1)定义法,求出焦点到准线的距离p ,写出方程.(2)待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论.另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).[再练一题]1.(1)过点A (3,0)且与y 轴相切的圆的圆心轨迹为( ) A .圆 B .椭圆 C .直线D .抛物线【解析】 如图,设P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,以y 轴为准线的抛物线上,故点P 的轨迹为抛物线,即所求圆心的轨迹为抛物线.【答案】 D(2)已知抛物线的准线方程为y =23.则抛物线的标准方程为________.【解析】 ∵准线在y 轴正半轴上且p 2=23∴p =43,∴标准方程为x 2=-83y .【答案】 x 2=-83y抛物线的焦点坐标和准线求下列抛物线的焦点坐标和准线方程. (1)y 2=4x ; (2)x 2=-3y ; (3)4x +5y 2=0;(4)x =ay 2(a ≠0).【精彩点拨】 (1)(2)由抛物线方程确定开口方向及p 值;(3)(4)需将方程化为标准方程,再求解.【自主解答】 (1)抛物线y 2=4x 的开口向右,且2p =4,则p =2,所以抛物线的焦点坐标为(1,0),准线方程为x =-1.(2)抛物线x 2=-3y 的开口向下,且2p =3,则p =32,所以抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,-34,准线方程为y =34.(3)将抛物线方程化为标准方程y 2=-45x ,可知抛物线的开口向左,且2p =45,则p =25,所以抛物线的焦点坐标为⎝ ⎛⎭⎪⎫-15,0,准线方程为x =15.(4)将抛物线方程化为标准方程y 2=1ax ,其焦点坐标为⎝ ⎛⎭⎪⎫14a ,0,准线方程为x =-14a .已知抛物线方程求焦点坐标和准线方程时,先看抛物线方程是否是标准方程,若不是,需化方程为标准方程.依据标准方程,(1)由一次项的符号确定抛物线的开口方向,可得焦点和准线的位置;(2)由一次项的系数确定2p (大于0)的值,求出p ,进而得到p2.由此可得焦点坐标和准线方程.[再练一题]2.将本例(4)的方程改为“x 2=ay (a ≠0)”, 求其焦点坐标和准线方程.【解】 抛物线x 2=ay (a ≠0)的焦点为⎝ ⎛⎭⎪⎫0,a 4,准线方程为y =-a4.抛物线的实际应用一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.【精彩点拨】 本题主要考查抛物线知识的实际应用.解答本题首先建系,转化成抛物线的问题,再利用解抛物线的方法解决问题.【自主解答】 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a4,如图所示.设隧道所在抛物线方程为x 2=my , 则⎝ ⎛⎭⎪⎫a 22=m ·⎝ ⎛⎭⎪⎫-a 4,∴m =-a . 即抛物线方程为x 2=-ay .将(0.8,y )代入抛物线方程,得0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -⎝ ⎛⎭⎪⎫-a 4>3,即a 4-0.82a >3.∵a >0,∴a >12.21.∴a 应取13.1.解答本题的关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.[再练一题]3.某抛物线形拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.【解】如图,建立直角坐标系,设抛物线方程为x2=-2py(p>0).依题意知,点P(10,-4)在抛物线上,∴100=-2p×(-4),2p=25.即抛物线方程为x2=-25y.∵每4米需用一根支柱支撑,∴支柱横坐标分别为-6、-2、2、6.由图知,AB是最长的支柱之一,点B的坐标为(2,y B),代入x2=-25y,得y B=-425.∴|AB|=4-425=3.84,即最长支柱的长为3.84米.[探究共研型]抛物线的定义与标准方程探究1【提示】不一定是抛物线.当直线l经过点F时,点的轨迹是过定点F且垂直于定直线l的一条直线;当l不经过点F时,点的轨迹是抛物线.探究2 抛物线的定义经常被归纳为“一动三定”,其指的是什么?【提示】一个动点,设为M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线的距离之比等于1),定值实现了距离间的转化.即涉及到抛物线上的点与焦点之间的距离可转化为到准线的距离;抛物线上的点到准线的距离可化为与焦点之间的距离,这样可使问题简单化.探究3 抛物线标准方程中的参数P的几何意义是什么?它有什么作用?【提示】(1)抛物线标准方程中参数P的几何意义是:抛物线的焦点到准线的距离.所以参数P称为焦准距或焦参数,P的值永远大于0.当抛物线标准方程中一次项的系数为负值时,不要出现P<0的情况.(2)可根据P求出抛物线的焦点坐标和准线方程;求抛物线的标准方程时,也只需确定参数P .探究4 如何记忆抛物线的四种标准方程?【提示】 (1)方程特点:焦点在x 轴上,x 是一次项,y 是平方项;焦点在y 轴上,y 是一次项,x 是平方项.(2)一次项表明焦点所在轴,它的符号表明开口方向,有如下口诀: 焦点轴一次项,符号确定开口向; 若y 是一次项,负时向下正向上; 若x 是一次项,负时向左正向右.(3)焦点在x 轴上的抛物线方程为y 2=mx (m ≠0),m >0时焦点在x 轴正半轴上,m <0时焦点在x 轴负半轴上.(4)焦点在y 轴上的抛物线方程为x 2=my (m ≠0),m >0时焦点在y 轴正半轴上,m <0时焦点在y 轴负半轴上.平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程.【精彩点拨】 设P (x ,y )则|PF |=|x |+1,直接化简求解或转化为距离相等,利用抛物线定义求解.【自主解答】 法一:设P 点的坐标为(x ,y ), 则有x -12+y 2=|x |+1.两边平方并化简得y 2=2x +2|x |.∴y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.即点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y =0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x =-1的距离相等,故点P 的轨迹是以F 为焦点,x =-1为准线的抛物线,方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).[构建·体系]1.判断(正确的打“√”,错误的打“×”)(1)标准方程y 2=2px (p >0)中的p 的几何意义是焦点到准线的距离.( ) (2)抛物线的焦点位置由一次项及一次项系数的正负决定.( )(3)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线.( ) 【解析】 (1)由定义知p 的几何意义是焦点到准线的距离. (2)√.(3)若定点在定直线上其轨迹是直线而不是抛物线. 【答案】 (1)√ (2)√ (3)× 2.抛物线y =2x 2的焦点坐标是( ) A .(1,0)B .⎝ ⎛⎭⎪⎫0,14 C.⎝ ⎛⎭⎪⎫14,0 D .⎝ ⎛⎭⎪⎫0,18 【解析】 把y =2x 2化为x 2=12y ,∴焦点坐标为⎝ ⎛⎭⎪⎫0,18. 【答案】 D3.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( ) A .y 2=4x B .y 2=6x C .y 2=8xD .y 2=10x【解析】 由题意得2+p2=4,∴p =4,故抛物线的标准方程为y 2=8x .【答案】 C4.抛物线y =ax 2的准线方程是y =2,则a 的值是________.【导学号:32550074】【解析】 把抛物线方程y =ax 2化为标准方程x 2=1ay ,∴-14a =2,∴a =-18.【答案】 -185.分别求满足下列条件的抛物线的标准方程. (1)焦点在直线x +3y +15=0上. (2)焦点到准线的距离为52.【解】 (1)令x =0,得y =-5;令y =0,得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x . (2)由焦点到准线的距离为52,可知p =52.∴所求抛物线的标准方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .我还有这些不足:(1)________________________________________________ (2)________________________________________________ 我的课下提升方案:(1)________________________________________________ (2)________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第三章圆锥曲线与方程2抛物线2.1抛物线及其标准方
程课时跟踪训练北师大版选修21
[A 组 基础巩固]
1.抛物线y 2
=-8x 的焦点坐标( ) A .(2,0) B .(-2,0) C .(4,0)
D .(-4,0)
解析:抛物线的开口向左,焦点在x 轴的负半轴上,2p =8,得p
2=2,故焦点坐标为(-
2,0).
答案:B
2.抛物线x 2
=4y 上一点P 的纵坐标为4,则点P 到抛物线焦点的距离为( ) A .2 B .3 C .4
D .5
解析:∵x 2=4y ,设P (x p,4),故|PF |=4+1=5. 答案:D
3.抛物线y =-4x 2
的焦点到准线的距离为( ) A .1 B.18 C.14
D.12
解析:将抛物线方程y =-4x 2化为标准方程,为x 2
=-y 4=-2×18y ,则p =18
,所以焦点
到准线的距离为1
8
.
答案:B
4.若抛物线y 2
=2px 的焦点与椭圆x 26+y 2
2=1的右焦点重合,则p 的值为( )
A .4
B .2
C .6
D .8
解析:∵a 2
=6,b 2=2, ∴c 2
=a 2
-b 2=4,c =2.
椭圆的右焦点为(2,0),∴p
2=2,p =4.
答案:A
5.当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 的抛物线的标准方程是( )
A .y 2=-92x 或x 2
=43y
B .y 2=92x 或x 2
=43y
C .y 2=92x 或x 2
=-43y
D .y 2=-92x 或x 2
=-43
y
解析:直线方程可化为a (x +2)-x -y +1=0,由⎩
⎪⎨
⎪⎧
x +2=0
-x -y +1=0,得P (-2,3),经检
验知A 正确.
答案:A
6.抛物线y 2
=2px 过点M (2,2),则点M 到抛物线准线的距离为________.
解析:因为y 2
=2px 过点M (2,2),于是p =1,所以点M 到抛物线准线的距离为2+p 2=52
.
答案:52
7.过抛物线y 2
=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,则|AB |的值为________.
解析:∵y 2
=4x ,∴p =2.
∴|AB |=|AF |+|BF |=x 1+x 2+p =6+2=8. 答案:8
8.已知抛物线顶点为坐标原点,焦点在y 轴上,抛物线上的点M (m ,-2)到焦点的距离为4,则m =________.
解析:由已知,可设抛物线方程为x 2
=-2py .由抛物线定义有2+p
2=4,∴p =4,∴x 2

-8y .将(m ,-2)代入上式,得m 2
=16.∴m =±4.
答案:±4
9.根据下列条件求抛物线的标准方程: (1)已知抛物线的焦点坐标是F (0,-2);
(2)准线方程为y =2
3

(3)焦点在x 轴负半轴上,焦点到准线的距离是5; (4)过点P (-2,-4).
解析:(1)因为抛物线的焦点在y 轴的负半轴上,且-p
2=-2,则p =4,所以,所求抛物
线的标准方程为x 2
=-8y .
(2)因为抛物线的准线在y 轴正半轴上,且p 2=23,则p =4
3
,所以,所求抛物线的标准方程
为x 2
=-83
y .
(3)由焦点到准线的距离为5,知p =5,又焦点在x 轴负半轴上,所以,所求抛物线的标准方程为y 2
=-10x .
(4)如图所示,因为点P 在第三象限,所以满足条件的抛物线的标准方程为y 2
=-2p 1x (p 1
>0)或x 2
=-2p 2y (p 2>0).
分别将点P 的坐标代入上述方程,解得p 1=4,p 2=1
2.因此,满足条件的抛物线有两条,
它们的方程分别为y 2
=-8x 和x 2
=-y .
10.已知点P 是抛物线y 2
=2x 上的动点,点P 到准线的距离为d ,点A (72,4),求|PA |
+d 的最小值.
解析:设抛物线y 2
=2x 的焦点为F ,则F (12,0).又点A (72,4)在抛物线的外侧,且点P
到准线的距离为d ,所以d =|PF |,则|PA |+d =|PA |+|PF |≥|AF |=5.∴|PA |+d 的最小值是5.
[B 组 能力提升]
1.若动圆与圆(x -2)2
+y 2
=1外切,又与直线x +1=0相切,则动圆圆心的轨迹方程是( )
A .y 2
=8x B .y 2
=-8x C .y 2=4x
D .y 2
=-4x
解析:设动圆的半径为r ,圆心O ′(x ,y ),且O ′到点(2,0)的距离为r +1,O ′到直线
x =-1的距离为r ,所以O ′到(2,0)的距离与到直线x =-2的距离相等,由抛物线的定义知y 2=8x .
答案:A
2.设M (x 0,y 0)为抛物线C :x 2
=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )
A .(0,2)
B .[0,2]
C .(2,+∞)
D .[2,+∞)
解析:∵x 2
=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2
+(y -2)2
=(y 0+2)2
.
由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.
答案:C
3.已知点P (6,y )在抛物线y 2
=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于________.
解析:抛物线y 2
=2px (p >0)的准线为x =-p
2,因为P (6,y )为抛物线上的点,所以P 到
焦点F 的距离等于它到准线的距离,所以6+p
2=8,所以p =4,故焦点F 到抛物线准线的距
离等于4.
答案:4
4.设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A ,B 两点,若点P 恰为线段AB 的中点,则|AF |+|BF |=__________.
解析:过点A ,B ,P 分别作抛物线的准线y =-3的垂线,垂足分别为C ,D ,Q ,根据抛物线的定义,得|AF |+|BF |=|AC |+|BD |=2|PQ |=8.
答案:8
5.河上有一座抛物线形拱桥,当水面距拱顶5 m 时,水面宽为8 m ,一条小船宽4 m ,高2 m ,载货后船露出水面的部分高3
4 m ,问水面上涨到与抛物线拱顶相距多高时,小船不能
通航?
解析:如图,建立直角坐标系,设拱桥抛物线方程为x 2
=-2py (p >0).
由题意,将B (4,-5)代入方程得p =8
5
.
∴x 2
=-165
y .
当船两侧和抛物线相接触时,船不能通航,设此时船面宽为AA ′,则A (2,y A ).由22
=-165y A ,得y A =-54.又知船面露出水面部分为34 m ,∴h =|y A |+3
4=2(m).故水面上涨到距抛物线顶2 m 时,小船开始不能通航.
6.已知点A (12,6),点M 到F (0,1)的距离比它到x 轴的距离大1. (1)求点M 的轨迹方程G ;
(2)在G 上是否存在一点P ,使点P 到点A 的距离与点P 到x 轴的距离之和取得最小值?若存在,求此时点P 的坐标;若不存在,请说明理由.
解析:(1)点M 到点F (0,1)的距离比它到x 轴的距离大1,即“点M 到点F (0,1)的距离等于它到直线y =-1的距离”,所以点M 的轨迹是以F 为焦点,直线y =-1为准线的抛物线,此时,p =2,
故所求抛物线方程G 为x 2
=4y .
(2)如图,易判断知点A 在抛物线外侧,设P (x ,y ),则P 到x 轴的距离即y 值,
设P 到准线y =-1的距离为d , 则y =d -1.
故|PA |+y =|PA |+d -1, 由抛物线定义知|PF |=d . 于是|PA |+d -1 =|PA |+|PF |-1.
由图可知,当A 、P 、F 三点共线且P 在AF 之间时,
|PA |+|PF |取得最小值13.此时直线AF 的方程为y =5
12
x +1,
由⎩⎪⎨⎪⎧
x 2
=4y y =5
12
x +1,得P 点坐标为(3,94)或(-43,4
9
)(舍去).
∴在抛物线G 上存在点P (3,9
4),使得所求距离之和最小.。

相关文档
最新文档