高数(一)答案(A)卷

合集下载

2020年全国大学高数考试数学一试题及解析

2020年全国大学高数考试数学一试题及解析

2021年全国大学高数考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x →= .(2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 (5) 设两两相互独立的三事件A , B 和C 满足条件:1,()()(),2ABC P A P B P C φ===<9(),16P A B C ⋃⋃=则()P A =二、选择题(本题共5小题,每小题3分,满分15分。

每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。

) (1)设()f x 是连续函数,()F x 是()f x 的原函数,则 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。

(B) 当()f x 是偶函数时,()F x 必是奇函数。

(C) 当()f x 是周期函数时,()F x 必是周期函数。

(D) 当()f x 是单调增函数时,()F x 必是单调增函数。

(2)设20()(),0x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处 ( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导(3) 设011,02(),()cos ,,1222,12n n x x a f x S x a n x x x x π∞=⎧≤≤⎪⎪==+-∞<<+∞⎨⎪- <<⎪⎩∑其中12()cos ,(0,1,2,),n a f x n xdx n π==⋅⋅⋅⎰则52S ⎛⎫- ⎪⎝⎭等于 ( )(A)12 (B)12- (C)34 (D)34- (4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线 111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合 (C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分5分)求()()sin ()cos ,xx LI ey b x y dx e y ax dy =-++-⎰其中a ,b 为正常数, L 为从点A ()2a,0沿曲线O (0,0)的弧.五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分6分)试证:当0x >时,()()221ln 1.x x x -≥-七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分7分)设S 为椭球面222122x y z ++=的上半部分,点P (,,)x y z ∈S ,π为S 在点P 处的切平面,(,,)x y z ρ为点O (0,0,0)到平面π的距离,求.(,,)SzdS x y z ρ⎰⎰九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分8分)设矩阵153,10ac A b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦其行列式1,A =-又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T α=--求,,a b c 和0λ的值.十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0k A x =有解向量α,且10k A α-≠,证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量()X,Y 联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空白处.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P t n t n p ≤=2021年全国大学高数考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →=0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds x y ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【详解】因为E A λ-11...111...1 (1)1...1λλλ---⎛⎫⎪--- ⎪=⎪⎪---⎝⎭(对应元素相减)两边取行列式,11...111...1 (1)1...1E A λλλλ-------=---1...121...1............11...1n n n n λλλλλ---⋯------把第,,列加到第列11...1111 (1)()............11 (1)n λλλ-------提取第列的公因子2111...10 031()............00...1n n λλλ------行行行行行行-1()n n λλ=-令-1()0n E A n λλλ-=-=,得12(10((1)n n λλ==-重),重),故矩阵A 的n 个特征值是n 和0((-1)n 重)(5)【答案】14 【详解】根据加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+因为()()()P A P B P C ==,设()()()P A P B P C p ===由于,,A B C 两两相互独立,所以有2()()()P AB P A P B p p p ==⨯=, 2()()()P AC P A P C p p p ==⨯=, 2()()()P BC P B P C p p p ==⨯=,又由于ABC =∅,因此有()()0,P ABC P =∅= 所以 ()()()()()()()()P AB C P A P B P C P AC P AB P BC P ABC =++---+2220p p p p p p =++---+233p p =-又9()16P AB C =,从而29()3316P A B C p p =-=,则有2933016p p --= 23016p p ⇒-+=,解得 3144p ==或p因1()()()2P A P B P C p ===<,故 14p =,即1()4P A =二、选择题 (1)【答案】( A )【详解】应用函数定义判定函数的奇偶性、周期性和单调性.()f x 的原函数()F x 可以表示为0()(),xF x f t dt C =+⎰于是()0()()().u txxF x f t dt C f u d u C =---=+=--+⎰⎰当()f x 为奇函数时,()()f u f u -=-,从而有()()()()xxF x f u du C f t dt C F x -=+=+=⎰⎰即 F (x )为偶函数. 故(A)为正确选项.(B)、(C)、(D)可分别举反例如下:2()f x x =是偶函数,但其原函数31()13F x x =+不是奇函数,可排除(B);2()cos f x x =是周期函数,但其原函数11()sin 224F x x x =+不是周期函数,可排除(C);()f x x =在区间(,)-∞+∞内是单调增函数,但其原函数21()2F x x =在区间(,)-∞+∞内非单调增函数,可排除(D).(2)【答案】( D )【详解】由于可导必连续,连续则极限必存在,可以从函数可导性入手.因为20001()(0)(0)lim lim lim 0,0x x x xf x f f x ++++→→→-'====- 2000()(0)()(0)lim lim lim ()0,0x x x f x f x g x f xg x x x----→→→-'====-从而,(0)f '存在,且(0)0f '=,故正确选项为(D).(3)【答案】( C )【详解】由题设知,应先将()f x 从[0,1)作偶延拓,使之成为区间[−1,1]上的偶函数,然后再作周期(周期2)延拓,进一步展开为傅里叶级数,5111()(2)()()2222S S S S -=--=-=而12x =是()f x 的间断点,按狄利克雷定理有, 111(0)(0)113222().2224f f S -+++===(4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立. 【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为22221(2)((1))cos ,2,1(2)((1))sin .2x y y y y z y y θθ⎧=+-⎪⎪⎪=⎨⎪⎪=+-⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四【详解】方法1:凑成闭合曲线,应用格林公式.添加从点(0,0)O 沿0y =到点()2a,0A 的有向直 线段1L , 如图,则()()1sin ()cos xx L L I ey b x y dx e y ax dy +=-++-⎰()()1sin ()cos x x L e y b x y dx e y ax dy --++-⎰利用格林公式,前一积分21()()2D DQ P I dxdy b a dxdy a b a x y π⎛⎫∂∂=-=-=- ⎪∂∂⎝⎭⎰⎰⎰⎰ 其中D 为1L +L 所围成的半圆域,后一积分选择x 为参数,得1L :(),02,0x xx a y =⎧≤≤⎨=⎩ 可直接积分 2220()2aI bx dx a b =-=-⎰,故 23122.22I I I a b a ππ⎛⎫=-=+- ⎪⎝⎭方法2:将曲线积分分成两部分,其中一部分与路径无关,余下的积分利用曲线的参数方程计算.()()sin ()cos x x LI e y b x y dx e y ax dy =-++-⎰sin cos ()x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰前一积分与路径无关,所以(0,0)(2,0)sin cos sin 0x x x a Le ydx e ydy e y+==⎰对后一积分,取L 的参数方程cos sin x a a t y a t =+⎧⎨=⎩,则sin cos dx a tdtdy a tdt=-⎧⎨=⎩,t 从0到π,得 ()Lb x y dx axdy ++⎰22223320(sin sin cos sin cos cos )a b t a b t t a b t a t a t dt π=---++⎰22311222a b a b a ππ=--+从而 22323110(2)22222I a b a b a a b a ππππ⎛⎫=---+=+- ⎪⎝⎭五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k kρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六【详解】构造函数,利用函数的单调性,证法1:令 ()()22()1ln 1.f x x x x =---易知(1)0f =又 1()2ln 2,(1)0f x x x x f x''=-+-= 21()2ln 1,(1)20f x x f x''''=++=> 232(1)()x f x x -'''=可见,当01x <<时,()0()f x f x '''<⎧⎨''⎩;当1x <<+∞时,()0()f x f x '''>⎧⎨''⎩因此,(1)2f ''=为()f x ''的最小值,即当0x <<+∞时,()(1)20f x f ''''≥=>,所以()f x '为单调增函数. 又因为(1)0f '=,所以有01x <<时()0f x '< ;1x <<+∞时()0f x '>,所以利用函数单调性可知,1f ()为()f x 的最小值,即()(1)0f x f ≥= 所以有0x >时,()()221ln 1.x x x -≥-证法2:先对要证的不等式作适当变形,当1x =时,原不等式显然成立;当01x <<时,原不等式等价于1ln ;1x x x -≤+ 当1x <<+∞时,原不等式等价于1ln ;1x x x -≥+令 1()ln 1x f x x x -=-+则 ()()()222121()0011x f x x x x x x +'=-=>>++又因为(1)0,f =利用函数单调性可知当01x <<时,()0,f x <即1ln ;1x x x -<+当1x <<+∞时,()0,f x >即1ln ;1x x x ->+ 综上所述,当0x >时,()()221ln 1.x x x -≥-七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x →∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n i πππ≤≤=⋅⋅⋅++, 于是, 111sin sin sin11n n n i i i i i i n n n n n n iπππ===≤≤++∑∑∑. 由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八【分析】先写出切平面方程,然后求(,,)x y z ρ,最后将曲面积分化成二重积分. 【详解】点(,,)P x y z S ∈,S 在点P 处的法向量为{},,2n x y z =,设(,,)X Y Z 为π上任意一点,则π的方程为()()2()0x X x y Y y z Z z -+-+-=,化简得122x yX Y zZ ++= 由点到平面的公式,(0,0,0)O 到π的距离12222(,,)44x y x y z z ρ-⎛⎫===++ ⎪⎝⎭从而(,,)S Sz dS x y z ρ=⎰⎰⎰⎰ 用投影法计算此第一类曲面积分,将S 投影到xOy 平面,其投影域为{}22(,)|2D x y x y =+≤由曲面方程知,),z x y D =∈于是zz xy ∂∂==∂∂因此dS σσ==故有(,,)S Sz dS x y z ρ=⎰⎰⎰⎰ ()222200114)44D x y d d r rdr πσθ=---⎰⎰⎰极坐标3.2π=九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十【详解】根据题设,*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),Tα=-- 根据特征值和特征向量的概念,有 *0,A αλα=把1A =-代入*AA A E =中,得*,AA A E E ==-则*AA E ααα=-=-. 把*0A αλα=代入,于是*00,AA A A αλαλα== 即0A αλα-=也即011153111011a c b c a λ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,011531(1)1a c b c a λ-++-⎡⎤⎡⎤⎢⎥⎢⎥⇒--+=--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦常数0λ乘以矩阵153(1)a c b c a -++⎡⎤⎢⎥--+⎢⎥⎢⎥---⎣⎦,需用0λ乘以矩阵的每一个元素 00001(1)153(53)1(1)[(1)]1a c a c b b c a c a λλλλ-++-++-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--+=--+=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦矩阵相等,则矩阵的对应元素都相同,可得000(1)1(1)(53)1(2)(1)1a c b c a λλλ-++= ⎧⎪--+= ⎨⎪-+-=- (3)⎩因10A =-≠, A 的特征值0λ≠,*A 的特征值*0Aλλ=≠,故00λ≠由(1),(3)两式得00(1)(1)a c c a λλ-++=--+-,两边同除0λ,得 1(1)a c c a -++=--+-整理得a c =,代入(1)中,得01λ=. 再把01λ=代入(2)中得3b =- 又由1A =-,3b =-以及a c =,有153310a a A aa-=---131533110a a -+--行行121523100a a a-+列列 3113(1)23a a +--按第行展开(其中31(1)+-的指数3,1分别是1的行数和列数)3(1)2a a =--31a =-=-故 2,a c == 因此02,3,2, 1.a b c λ==-==十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A-,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k AA αα-+===,代入上式可得100.k A λα-=由题设10k A α-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A-,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0k A α=,()2110k k AA αα-+==,可得110.k A λα-=由题设10k A α-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二【详解】离散型随机变量边缘分布律的定义:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑ {}{},,1,2,j j i j ij iip P Y y P X x Y y p j =======∑∑(通俗点说就是在求关于X 的边缘分布时,就把对应x 的所有y 都加起来,同理求关于Y 的边缘分布时,就把对应y 的所有x 都加起来)故 {}{}1111,ii iiP Y y p P X x Y y p⋅======∑∑ 即{}{}{}11121,,P Y y P X x Y y P X x Y y ====+==而由表知{}116P Y y ==,{}211,8P X x Y y ===,所以 {}{}{}11121111,,6824P X x Y y P Y y P X x Y y ====-===-=又根据X Y 和相互独立,则有:{}{}{},i j i j P X x Y y P X x P Y y ===== 即ij i j p p p ⋅⋅=因{}111,24P X x Y y ===,{}116P Y y ==,而{}{}{}1111,P X x Y y P X x P Y y ===== 所以{}{}{}11111,124146P X x Y y P X x P Y y =======再由边缘分布的定义有{}{}{}{}1111213,,,P X x P X x Y y P X x Y y P X x Y y ====+==+==所以 {}{}{}{}1311112,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==1111424812=--= 又由独立性知{}{}{}1313,P X x Y y P X x P Y y =====所以 {}{}{}13311,112134P X x Y y P Y y P X x =======由边缘分布定义有{}{}{}31323,,P Y y P X x Y y P X x Y y ====+== 所以 {}{}{}23313111,,3124P X x Y y P Y y P X x Y y ====-===-= 再由1i ip ⋅=∑,所以{}{}21131144P X x P X x ==-==-= 而 {}{}{}{}2212223,,,P X x P X x Y y P X x Y y P X x Y y ====+==+== 故 {}{}{}{}2222123,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==31134848=--= 又1jjp =∑,所以{}{}{}21311111632P Y y P Y y P Y y ==-=-==--= 所以有:十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥⎪⎝⎭⎥⎦故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。

高数一试题及答案

高数一试题及答案

《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。

A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。

A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。

A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x 'D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求⎰11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求⎰.解:13(43ln )(ln )dx x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求⎰解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。

大一第一学期高数1试题A及答案

大一第一学期高数1试题A及答案

2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。

海南大学高数答案2019A1-A卷

海南大学高数答案2019A1-A卷

《高等数学A1》一、 填空题(每题3分,共18分,在以下各小题中画有____处填上答案)1. 微分方程20y y y '''++=的通解为_12()x y C C x e -=+_______;2. 以(0,0,0),(1,1,1),(1,2,3)A B C 为顶点的三角形的面积为___62_____3. 函数u xyz =在点(1,1,1)沿着它在点(1,1,1)的梯度方向的方向导数是___3______;4.2(sin )xy y dxdydz Ω+=⎰⎰⎰___0____,其中Ω由曲面22z x y =+及平面1z =所围成的闭区域;5.(1)x y dS ∑++=⎰⎰___4π______,其中曲面2221xy z ∑++=:;6. 已知级数1nn a∞=∑收敛,则级数11()nn n aa ∞+=-∑的和为____1a _____.二、选择题(每题3分,共18分,选择正确答案的编号,填在各题的括号内)1. 方程325y y y '''-+=的通解是( C ),其中12,k k 为常数;A). 2125x x y k e k e =++ ; B)2125x xy k e k e =+-;C)21252x x y k e k e =++ ; D)21252x x y k e k e =+- .得分 阅卷教师得分 阅卷教师2. 直线1158:121x y z l --+==-与直线2:,,l x t y t z t ===,则这两条直线的夹角是( D ); A);6π B)4π; C)3π; D) 2π.3. 函数(,)f x y 在点00(,)x y 的两个偏导数存在,是(,)f x y 在点00(,)x y 连续的( D );)A 充分条件而非必要 条件; )B 必要条件而非充分条件; )C 充分必要条件; )D 既非充分条件又非必要 条件.4. 设D 为第二象限的有界闭区域,且01,y <<则31,D I yx dxdy =⎰⎰232,DI y x dxdy =⎰⎰1323,DI y x dxdy =⎰⎰的大小顺序是( D ); )A 123I I I ≤≤)B 213I I I ≤≤)C 321I I I ≤≤)D 312I I I ≤≤.5. 222()x y z dxdy ∑++=⎰⎰( B )其中222,0z r x y r ∑=-->: 取下侧.A) 4r π; B)4r π-; C )2r π; D )2r π-.6.设常数0,k >则21(1)nn k nn ∞=+-∑ ( B ); A)发散; B)条件收敛; C )绝对收敛; D )敛散性与k 有关.三 、计算题(每小题8分,共48分)().f x1、求微分方程tan sec dyy x x dx-=满足初值条件00x y ==的特解. 解:tan tan sec xdxxdx y e xe dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 2 分得分 阅卷教师()()()ln cos ln cos 1sec 1sec cos cos 1sec cos cos xxexe dx C x x dx C x x xdx C x -=+=+=+⎰⎰⎰ 11()cos x C x=+. 6分1000x y C ==⇒=, 所以特解为.cos xy x=8分 2.已知一平面与向量 (2,1,1)a =-平行,该平面在x 轴和y 轴的截距分别为3和-2, 求该平面方程.解:设该平面方程为132x y z c++=-, 2分 则该平面方程的法向量为 111(,,)32n c=-, 4分由条件知0,n a ⋅=即211032c --=,得6c =, 6分所以该平面方程为1326x y z++=-. 8分3.设(,)z z x y =是由方程ln x zz y=所确定的隐函数,求dz . 解: (,,)ln ,x z F x y z z y =-211,,,x y z x zF F F z y z+===- 4分 2,,()z z z z x x z y y x z ∂∂==∂+∂+ 6分 2,()z z dz dx dy x z y x z ∴=+++ 8分4、计算2222()Dx y dxdy a b +⎰⎰,其中{}22(,)1D x y x y =+≤.解:22222221222200cos sin ()=()Dx y r r dxdy d rdr a b a b πθθθ++⎰⎰⎰⎰ 2分222132200cos sin ()d r dr a bπθθθ=+⎰⎰ 4分222011cos 21cos 2()422d a b πθθθ+-=+⎰ 6分 2211().4a bπ=+ 8分5、计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为上半圆周22(1)1,0x y y -+=≥,沿逆时针方向.解:添加线段10,:02,L y x =→: 则 1分1(sin 2)(cos 2)2x x L L De y y dx e y dy dxdy +-+-=⎰⎰⎰ 3分,π= 5分所以 1(sin 2)(cos 2)(sin 2)(cos 2)x x x x LL e y y dx e y dy e y y dx e y dy π-+-=--+-⎰⎰ 6分.π= 8分6. 求级数21(1)21n nn x n +∞=-+∑的和函数.解:级数的收敛半径为121lim 1,123n n R n →∞+==+ 1分收敛区间为(-1,1),当1,x =01(1)21nn n ∞=-+∑收敛,当 1,x =-101(1)21n n n ∞+=-+∑收敛,所以收敛域为[]1,1.- 3分令21()(1)21n nn x S x n +∞==-+∑,则 ()S x '=221(1),1n n n x x∞=-=+∑ 5分 所以201()1xxS x dx dx x '=+⎰⎰,0()(0)arctan arctan ,xS x S x x -== 7分 因为(0)0S =,所以[]()arctan ,1,1.S x x x =∈- 8分四、 证明题(8分)得分 阅卷教师证明曲面(,)0F x az y bz --=上任意点处的法线与直线x yz a b==垂直,其中,a b 为常数, 函数(,)F u v 可微.证明:曲面上任意点处的法向量为 1212(,,)n F F aF bF ''''=-- , 2分直线的方向向量为(,,1)s a b =, 4分所以 12120n s aF bF aF bF ''''⋅=+--=, 7分所以 曲面(,)0F x az y bz --=上任意点处的法线与直线x yz a b==垂直. 8分五、 应用题(8分)求由曲面22z x y =+与平面1z =所围成的区域的整个边界表面的面积. 解:令曲面22221:,(,):1,z x y x y D x y ∑=+∈+≤平面222:1,(,):1,z x y D x y ∑=∈+≤ 则所求的面积为 1212S dS dS dS ∑+∑∑∑==+⎰⎰⎰⎰⎰⎰ 2分2222221DDx y dxdy dxdy x y x y =+++++⎰⎰⎰⎰ 5分 (21).π=+ 8分得分 阅卷教师。

高数(1)试卷答案

高数(1)试卷答案

内蒙古财经大学2014-2015学年第一学期期末考试高等数学(1)试卷(A) 答案(计科、电商、信息、软件工程、金融工程、人文城规专业)一、 选择题 (每题3分,共计15分)1. B2. C3. A4. A5.D二、填空题(每题3分,共计15分)1. (]1,1-2. 211x + 3.33 4. x x e C e C y 321+=- 5.C x x +2cos 2三、计算题(每小题6分,共48分)1. 讨论函数21()211x x f x x x ⎧≤=⎨->⎩在1x =处的的连续性与可导性。

解:(1)f =1 ………………………. 1分211lim ()lim 1x x f x x --→→== 11lim ()lim(21)1x x f x x ++→→=-= ………………………. 3分 ()f x ∴在x=1处连续'11()(1)211(1)=lim lim 211x x f x f x f x x +++→→---==-- -2'-11()(1)1(1)=lim lim 211x x f x f x f x x -→→--==-- ()f x ∴在x=1处可导. ………………………. 6分2. 求极限011lim()1x x x e →-- 解:解法一(用洛必达法则)00111lim()lim 1(1)x x x x x e x x e x e →→---=-- ………………………. 1分= 01lim (1)x x xx e e xe →--+ ………………………. 3分 = 0lim xx x xx e e e xe →++ =1/2 ………………………. 6分 解法二(利用等价无穷小量代换)00111lim()lim 1(1)x x x x x e x x e x e →→---=-- ………………………. 1分 = 201lim x x e x x→-- ………………………. 3分 = 01lim 2x x e x→- = 01lim 22x x x →= ………………………. 6分 3.设21lim()01x x ax b x →∞+--=+,求,a b 解:原式=21(1)()lim 1x x x ax b x →∞+-+++ =2(1)()lim 1x a x x a b b x →∞--+-+=0 ………………………. 2分 由极限定义及已知,得10a -=且()0a b += ………………………. 5分 故1,1a b ==- ………………………. 6分4. 求不定积分2解:设设t x sin =,2π≤t ,则tdt dx cos = ………………………. 1分原式=22sin a tdt ⎰=21cos 22t a dt -⎰=22cos 2(2)24a a t td t -⎰ ………………………. 4分 =22sin 224a a t t C -+=2(arcsin 2a x a ++C ………………………. 6分 5. 求不定积分⎰xdx e x sin解:原式cos cos cos x x x e d xe x e xdx=-=-+⎰⎰ ………………………. 2分cos sin cos sin sin x x x x x e x e d xe x e x e xdx=-+=-+-⎰⎰ ………………………. 4分移项得112sin cos sin 1sin (sin cos )()22x x x x x e xdx e x e x c c e xdx e x x c c =-++=-+=⎰⎰ ……………………….6分6.求不定积分2323x dx x x +--⎰ 解:原式=3(1)(3)x dx x x ++-⎰………………………. 1分 =131()231dx x x --+⎰ ……………………….3分 =31ln 3ln 122x x C --++ ………………………. 6分 7.已知sin (12)x y x =+,求dy 。

自考高数1试题及答案

自考高数1试题及答案

自考高数1试题及答案自考高等数学(一)试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 函数f(x) = 2x^3 - 3x^2 + 5在x = 1处的导数是()。

A. -1B. 3C. 5D. 7答案:D3. 定积分∫₀¹ x² dx的值是()。

A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 二阶常系数线性微分方程y'' - 5y' + 6y = 0的特征方程是()。

A. r² - 5r + 6 = 0B. r² + 5r + 6 = 0C. r² - 6r + 5 = 0D. r² + 6r + 5 = 0答案:A5. 利用洛必达法则计算极限lim (x->0) [sin(x)/x]的正确步骤是()。

A. 直接代入x=0B. 计算分子的导数C. 计算分母的导数D. 计算分子和分母的导数答案:D6. 方程y² = x在点(4,2)处的切线斜率是()。

A. -1B. 0C. 1D. 2答案:C7. 函数f(x) = ln(x)的值域是()。

A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:C8. 利用定积分的几何意义,圆x² + y² = 4与直线y = x所围成的图形的面积是()。

A. 2πB. πC. 1/2πD. 4/3π答案:B9. 微分方程dy/dx + 2y = 8e²x的解是()。

A. y = 4e²x + Ce⁻²xB. y = 2e²x + Ce⁻xC. y = 8e²x + Ce⁻xD. y = Ce²x + 8e⁻²x答案:A10. 函数f(x) = x³在区间[-1, 2]上的最大值是()。

高数试题A卷试题及答案

高数试题A卷试题及答案

4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)
内曲线弧y=f(x)为 ( )
①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧
5.设F'(x) = G'(x),则 ( )
① F(X)+G(X) 为常数
dp
② 设y'=p,则 y"= ───
dy
dp
③ 设y'=p,则 y"=p───
3.下列说法正确的是 ( )
①若f( X )在 X=Xo连续, 则f( X )在X=Xo可导
②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续
③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在
④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导
_______
R √R2-x2
8.累次积分∫ dx ∫ f(X2 + Y2 )dy 化为极坐标下的累次积分为
____________。
0 0
n=1 n=1000
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的( )内,
1~10每小题1分,11~20每小题2分,共30分)
(一)每小题1分,共10分

高数试题 A卷
一、填空题(每小题1分,共10分)
________ 1
1.函数y=arcsin√1-x2 + ────── 的定义域为
_________

xy
17.lim xysin ───── = ( )
x→0 x2+y2

高数A(一)第一章习题答案

高数A(一)第一章习题答案

《高等数学教程》第一章 习题答案习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2±±=+≠k k x ππ (5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++ 3.0,22,22,21 5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数6.(1)是周期函数,π2=T (2)是周期函数,4=T (3)是周期函数,4=T (4)不是周期函数7.(1)a cx b dx y -+-=(2)2arcsin 31xy = (3)21-=-x e y (4)xxy -=1log 2(5)2xx e e y --=8.(1)2,x a u u y -== (2)2,x u e y u == (3)cos ,lg ==u u y (4)x v tgv u u y 6,,2=== (5)21,,cos ,xw e v v u arctgu y w -==== (6)22,ln ,ln ,x w w v v u u y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a ,则=D Ф. 10.4)]([x x =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ. 11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h r h V <<-=π14.πααπααππ20,4)2(242223<<--=r V 15.),2(,])[(32232+∞--=r r r h h r V π16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2) ⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f 3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123x x ++ 8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0 (3)2+n n,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21 (6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim 00==+-→→x f x f x x ,1)(lim 0=→x f x 1)(lim 0-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x y cos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大. 5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103; (5)231aa -; (6)23x ; (7)34; (8)1-. 2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)n m; (4)0; (5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a (5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ; (6)2π; (7)1; (8)2; (9)1; (10)x . 2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+. 习题1-7 (A)1. 当0→x 时,34x x -比32x x +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α 4.m =α6.(1)23; (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,0; (3)21;(4)21; (5)b a ; (6)41.习题1-7 (B)1.(1)32; (2)2e ; (3)21; (4)0; (5)1; (6)41-; (7)∞; (8)1. 5.x x x x p 32)(23++=. 6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x 为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点 (4)0=x 为第二类间断点.4.(1)1=x 为可去间断点,补充32)1(=f ;(2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点. (5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x 为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a 4. ),2,1,0(22 ±±=-=n n a ππ5. 0,=-=b a π6. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x .习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(l i m 0=→x f x ,58)(lim 3-=-→x f x ,∞=→)(lim 2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1; (9) ab ; (10) 5e ; (11) -1; (12) 2. 4. 1=a 5. 1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点; (5)无间断点.2. 1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0;(5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f2. ]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7.21 8. b a = 9.56 10. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα 3. 1lim =∞→n n x 4. 4 5. 4e 6. -50 7.a ln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续. 9. 82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim 时>=∞→a a nn证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a n nn n n n n nh h h n n nh h a >++-++=+=∴ 22)1(1)1( εεan na h n ><<<∴0∴取1][+=εaN ,当N n >时,有ε<<=-nah a n n 1,即1lim =∞→n n a(ⅱ)当1=a 时,显然成立. (ⅲ)当10<<a 时,令11>=ab ∴11lim lim ==∞→∞→nn nn ab∴1lim =∞→nn a 综合(ⅰ),(ⅱ),(ⅲ),∴当0>a 时,有1lim =∞→nn a . 习题1-6 (B)3.设0,00>y x ,n n n y x x =+1,21nn n y x y +=+. 证明:n n n n y x ∞→∞→=lim lim 证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn n n n nn n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n 由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++ ∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21n n n y x y +=+,2lim lim n n n n n y x y +=∴∞→∞→ b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim . 习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=. 证明:令)1,0(,)()()(∈∀+-=l l x f x f x F )(x f 在]1,0[上连续,)(l x f +在]1,[l l --上连续, )(x F ∴在]1,0[l -上连续.又 0)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f 0)1()0(≤-⋅∴l F F(ⅰ)若0)0(=F ,取00=x ,即)()0(l f f = (ⅱ)若0)1(=-l F ,取l x -=10,即)1()1(f l f =- (ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号, 即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f )(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续. 由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。

自考高数一历年试题及答案

自考高数一历年试题及答案

自考高数一历年试题及答案自考高等数学(一)历年试题及答案一、选择题1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = x^2答案:C2. 函数f(x) = x^3在区间(-1,2)上的最大值是()。

A. 1B. 8C. -1D. 2答案:B3. 微分方程dy/dx - y = 0的通解是()。

A. y = Ce^xB. y = Cxe^xC. y = CxD. y = e^x答案:A4. 若函数f(x) = 2x - 3在点x=1处的导数为1,则该函数在此处的切线斜率为______。

答案:15. 定积分∫₀¹ x² dx的值为______。

答案:1/3三、解答题6. 求函数f(x) = 3x² - 2x + 5的极值。

解答:首先求导数f'(x) = 6x - 2。

令f'(x) = 0,解得x = 1/3。

在x = 1/3处,f(x)取得极小值,计算得f(1/3) = 14/3。

7. 已知某工厂生产函数为Q = 2L²/3 + 3K,其中L为劳动投入,K为资本投入。

求劳动对产量的边际贡献。

解答:首先求产量对劳动的偏导数,即边际贡献。

对Q关于L求偏导得:dQ/dL = 4L/3。

这就是劳动对产量的边际贡献。

四、证明题8. 证明函数f(x) = x³ - 6x在区间(-2, 2)上是增函数。

证明:求导数f'(x) = 3x² - 6。

要证明f(x)在区间(-2, 2)上是增函数,需要证明f'(x)在该区间内恒大于0。

观察f'(x) = 3x² - 6,可以发现在x = ±√2时,f'(x) = 0。

在区间(-2, -√2)和(√2, 2)内,f'(x) > 0,而在区间(-√2, √2)内,f'(x) < 0。

高数(第一学期)及参考答案

高数(第一学期)及参考答案

×××学院×××—×××学年 第一学期 ×××专业《高等数学》课程期末试卷(A 卷)系 级 专业 班 学号 姓名- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是__________。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则d y =_________。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为___________。

4. 11dx =⎰__________。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为_________。

6. 222222lim 12n nn nn n n n →∞⎛⎫+++⎪+++⎝⎭=_________。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 。

A .可去间断点B .跳跃间断点C .振荡间断点D .连续点2. 设()232x xf x =+-,则当0x →时,下列结论正确的是 。

A .是等价无穷小与x x f )( B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )( D .低阶的无穷小是比x x f )(3.1+∞=⎰。

A .不存在B .0C .2π D .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 。

高数I(一)A及答案

高数I(一)A及答案

1 ⎧ ⎪ 1+ x , x ≥ 0 ⎪ 2.设 f ( x ) = ⎨ ⎪ cos x , x < 0 ⎪ ⎩ 2 + sin x

∫π

4
f ( x )dx .
2
序号

3.设函数 y = f ( x) 由参数方程 ⎨ 班级
⎧ x = ln(1 + t 2 ) dy d 2 y 所确定,求 、 . 2 d x d x = − y t t arctan ⎩
…… 5 分 …… 6 分
sin x (cos x ln x + )dx x
= ln( 2 +
序号
sin x ) − π + ∫
2
2t dt 01+ t
2
…… 4 分 …… 6 分
= ln 2 + 4 − 2 ln 3 3、已知 f ( x) 的一个原函数是 解:
⎧ x = ln(1 + t 2 ) dy d 2 y 3、设函数 y = f ( x) 由参数方程 ⎨ 所确定,求 、 . dx d x 2 ⎩ y = t − arctan t
. .
2.设 f ( x) =
e x −1 e +1
1 x
,则 x = 0 是 f ( x) 的( B. 跳跃间断点; D. 连续点.
) .
1.函数 y = 学号
2 − x + ln( x − 1) 的定义域为
A. 可去间断点; C. 第二类间断点; 3. lim(e + x) x =(
x x →0 1
2015 年秋季学期 《高等数学 (一)》课程期末考试试卷(A 卷)
注意:1、本试卷共 3 页; 3、姓名、学号必须写在指定地方; 2、考试时间 110 分钟; 4、阅卷负责人签名: 1.设 f ( x) = x + ln(1 + x) ,当 x → 0 时,有(

中国矿业大学高数A1试题A卷参考答案

中国矿业大学高数A1试题A卷参考答案

中国矿业大学2018-2019学年第 1学期《 高等数学A (1)》试卷(A )卷答案供参考一、填空题(每题4分,共20分)1.21lim →∞⎛⎫++=+n n 2 .2.123lim 21x x x x +→∞+⎛⎫ ⎪+⎝⎭e .3.设0(),0≠=⎨⎪=⎩x f x a x 在0x =处连续,则=a 12.4.设21sin ,0(),0⎧<⎪=⎨⎪≥⎩x x f x xx x ,则(0)-'f 0 .5.设2sin =y x ,则d y 2s i n x s i n x .二、单项选择题(每题只有一个正确答案。

每题4分,共20分)1.设0>a ,则当0→x 是x 的( C )无穷小.A.等价;B.2阶;C.3阶;D.4阶2.2设 ()f x 在0x 的某个邻域有定义,且在点0x 处间断,则在点0x 必间断的函数是( D).A. ()f x ;B. 2()f x ;C. ()sinf x x ; D. ()sin +f x x3.设21,0()0,0x f x x x ≠=⎪=⎩,则()f x 在点0x =处( C ).A. 极限不存在;B. 极限存在不连续;C. 连续但不可导;D. 可导.4.函数()f x 在1x =处可导的充分条件是( B ).A. 0(cos )(1)lim cos 1x f x f x →-- 存在; B. 0(1sin )(1)lim x f x f x →-- 存在;C. 220(1)(1)lim x f x f x →+- 存在;D. (1)f -' 与 +(1)f '存在.5.设 ,0()sin 2,0⎧<=⎨+≥⎩a x e x f xb x x 在0=x 处可导,则( A ).A. 2,1==a b ;B. 1,2==a b ;C. 2,1=-=a b ;D. 2,1==-a b .三、计算题(每题9分,共54分)1.(9分) 计算极限0(1cos 2)lim tan sin →--x x x x x. 解:0(1cos 2)lim tan sin →--x x x x x 201(2)2lim tan (1cos )→=-x x x x x 3022lim 12→=⋅x x x x 4= 2.(9分) 设函数1122()22x x f x +=-,指出其间断点并判断类型.解:()f x 的间断点为0,1==x x .因为 11022lim 122-→+=--xx x11110022122lim lim 122122++-→→-++⋅==--⋅x x x x x x 所以0=x 是()f x 的第一类间断点(跳跃间断点);而 11122lim 22→+=∞-x x x故1=x 是()f x 的第二类间断点(无穷间断点).3.(9分) 设21arctan ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦y f x ,其中()f x 可导,求'y . 解: 2211112arctanarctan 11⎛⎫⎛⎫⎛⎫''=⋅⋅⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+y f f x x x x 2211arctan arctan 1⎛⎫⎛⎫'=-⋅⋅ ⎪ ⎪+⎝⎭⎝⎭f f x x x 4.(9分) 求曲线2cos cos ,sin x t t y t⎧=+⎨=⎩在对应于4t π=点处的法线方程.解:d cos d d d d d sin 2cos sin ==--y t y x t t x t t t当4t π=时,12'=+===x y y 法线斜率为111=-=k , 那么该点处的法线方程为11)()22-=-y x . 5.(8分)arctan 5yx e=,求d d x y. 解:方程两边取对数,有 221ln()ln 5arctan 2+=+y x y x, 方程两边对y 求导,得2222d d 1d d 1⋅+-⋅=⋅+⎛⎫+ ⎪⎝⎭x x x y x y y y x y x y x ,整理得d d -=+x x y y x y6.(8分) 设函数2156y x x =-+,求其n 阶导数()n y . 解:21115632==--+--y x x x x 那么()11(1)!(1)!(3)(2)++--=---n n n n n n n y x x 四、证明题(8分)设()f x 在[0,3]连续,且(0)(3)=f f ,证明:存在[0,2]ξ∈,使得()(1)ξξ=+f f .证明:令 ()()(1),[0,2]=-+∈F x f x f x x显然 ()F x 在区间[0,2]上连续. 另外(0)(0)(1)=-F f f ,(1)(1)(2)=-F f f ,(2)(2)(3)=-F f f ,上面三式相加,有(0)(1)(2)(0)(3)0++=-=F F F f f ,由介值定理可知,存在[0,2]ξ∈,使得(0)(1)(2)()03ξ++==F F F F , 也就是 ()(1)ξξ=+f f ,[0,2]ξ∈。

高数(A卷)+答案+评分标准

高数(A卷)+答案+评分标准

武夷学院期末考试试卷( 2012 级 建设 专业2012~2013 学 年 第 一 学 期) 课程名称 高等数学 A 卷 考试形式 闭卷 考核类型 考试 本试卷共 四 大题,卷面满分100分,答题时间120分钟。

一、选择题:(本大题共10小题,每小题2分,共20分。

)(注:请将选项填在下面表格里。

)1、dx x)11(⎰-=A .21x C x -+ B .21x C x++ C .ln ||x x C -+ D .ln ||x x C ++ 2、以下函数奇偶性不同于其他三项的是( )A .33)(x x x f +=;B . )1)(1()(+-=x x x x f ;C .35)(x x x f -=;D . x x e e x f -+=)(。

3、若'F (x)=f(x),则⎰=)(x dF ( )A .f(x);B .F(x); C. f(x)+C ;D .F(x)+C 。

4、3232lim x x x +∞→= ( )A .∞;B .0;C .31; D .-1。

5、设函数)(x f 在),(+∞-∞内二阶可导,且)()(x f x f -=如果当0>x 时,,0)('>x f 且,0)(">x f 则当0<x 时,曲线)(x f y =( )。

A .递减,凸的; B.递减,凹的;C. 递增,凹的;D. 递增,凸的。

6、下列命题正确的是( )A. 驻点一定是极值点;B.驻点不是极值点;C. 驻点不一定是极值点;D. 驻点是函数的零点。

7、设22z x y xy =+,则zx ∂=∂A .22xy y +B .22x xy +C .4xyD .22x y +8、下面函数相同的一组是( ) A.x y x y 2cos 1,sin -==; B. 2ln ,ln 2x y x y ==; C.x y x y lg 4,lg 4==; D.x x y y 23,3==。

考研高数1试题及答案

考研高数1试题及答案

考研高数1试题及答案一、选择题(每题5分,共20分)1. 已知函数 \( f(x) = x^3 + 2x^2 - 5x + 1 \),下列选项中,\( f(x) \) 的导数正确的是:A. \( 3x^2 + 4x - 5 \)B. \( x^3 + 2x^2 - 5 \)C. \( 3x^2 + 2x - 5 \)D. \( 3x^3 + 4x^2 - 5x \)答案:A2. 设 \( A \) 是 \( 3 \times 3 \) 矩阵,\( \det(A) = 2 \),则\( \det(2A) \) 的值是:A. 4B. 8C. 16D. 32答案:B3. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B4. 已知 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 求定积分 \( \int_{0}^{1} (2x - 1) dx \) 的值是 _______。

答案:\( \frac{1}{2} \)2. 函数 \( y = \ln(x) \) 的定义域是 _______。

答案:\( (0, +\infty) \)3. 函数 \( y = e^x \) 的导数是 _______。

答案:\( e^x \)4. 已知 \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是 _______。

答案:1三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处的切线方程。

2023成人高考专升本《高数一》真题试卷及答案解析

2023成人高考专升本《高数一》真题试卷及答案解析

2023成人高考专升本《高数一》真题试卷及答案解析2023成人高考专升本《高数一》真题试卷及答案考生回忆版成考高等数学一和二区别有哪些学习内容不同:《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等。

),《高数二》主要学概率统计、线性代数等内容。

对知识的掌握程度要求不同:《高数》(一)和《高数》(二)的区别主要是对知识的掌握程度要求不同。

《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。

《高数(二)只要求掌握正弦变换、正切变换等。

考核内容不同:高等数学(一)考核内容中有二重积分,而高等数学(二)对二重积分并不做考核要求。

高等数学(一)有无穷级数、常微分方程,高等数学(二)均不做要求。

成考高等数学一和二哪个比较简单高数一要比高数二难些,如果对于高数不太懂的话,还是建议选择考高数二的。

而高数二紧要考两个实质,分别是线性代数和概率统计。

成考专升本专业课考高数(二)的学科大类有:经济学、管理学以及生物科学类、地理科学类、心理学类、药学类等。

成人高考的入学形式是严进宽出,所以要求考生需要通过入学考试,要是基础比较差的,可能会有难度。

建议平时可以看看书,提前学习下相关的知识。

成人高考高数考什么内容?1.理工农医类考试范围包括代数、三角、平面解析几何、立体几何、概率与统计五个部分。

在实际考试中,这五个部分内容占试卷比例分别为45%、15%、20%、10%和10%。

2.文史财经类考试范围为代数、三角、平面解析几何、概率与统计四个部分。

在实际考试中,这四个部分内容占试卷比例分别为55%、15%、20%和10%。

(1)代数部分考试内容有集合和简易逻辑、函数、不等式和不等式组、数列、导数和复数等(文史财经没有复数);(2)三角部分有三角函数及其有关概念、三角函数式的变换、三角函数的图像和性质、解三角形等;(3)平面解析几何部分有平面向量、直线、圆锥曲线等。

高等数学C1-期末考试卷-A-(答案)

高等数学C1-期末考试卷-A-(答案)

一、单项选择题1.D (解释:,)2.A (解释:在处连续,所以必须存在,也就是在处有定义。

)3.B (解释:,可以这样理解:。

)4.C,见书P90。

)5.D (解释:就是,定积分是一个常数,所以它的导数为0。

)将其它选项改为正。

二、填空题1.解:由的定义,;在处连续,是指:,也就是:2.解:先回顾导数的定义本题中:可以将看作,那么原极限可以变为:其中为:。

3.解:要求法线方程,可以先计算曲线在处的导GAGGAGAGGAFFFFAFAF数(也就是切线斜率),法线的导数是切线斜率的负倒数。

在点出导数,代入,得到得法线方程为:。

4.解:函数的正负变化情况(也就是讨论函数的递增递减区间)所以极大值:。

5.解:此题可先计算不定积分GAGGAGAGGAFFFFAFAF计算定积分:GAGGAGAGGAFFFFAFAF三、求解下列各题1.解:2.解:3.解:4.解:5.解:先对原等式两侧求微分,得到:GAGGAGAGGAFFFFAFAF整理后得到再计算即:,代入,并代入点得到:6.解:GAGGAGAGGAFFFFAFAF四、应用计算题1.解:设平均成本函数为GAGGAGAGGAFFFFAFAF的点可知:当为最小值。

边际成本函数为,代入,得到。

2.解:此题需要列表讨论函数的一二阶导数,并计算渐进线。

首先计算:用使上面两式等于0或者不成立的点分割区间:我们可以看到是这样的点,因此有下表:渐进线:1.是垂直渐进线;GAGGAGAGGAFFFFAFAF由可知,是其水平渐进线;2.3.无斜渐进线。

GAGGAGAGGAFFFFAFAF3.解:先计算,并作图曲线上的点的切线斜率为,切线方程则为,此线过原点,也就是说:代入能使等式成立,即:变换为:,所以切线位于曲线的切点坐标为:。

红色区域为所围成的区域,求此区域绕轴旋转一周形成的旋转体体积。

回顾:绕轴旋转一周的旋转体体积公式为:但此题中不能直接使用该公式,原因是红色区域的上边界(不含轴)不构成一个函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数(一)答案(A )卷
一.填空题:(每空格5分,共40分) 1.连续区间是),1()1,0()0,(+∞-∞ ,
2.
2
1, 3.(1)⎩
⎨⎧==00z y 或者001z
y x ==,或者0,0,===z y t x (其中t 是参数),(2)0=x
4.1,0-==b a ,
5.(1)y x r 2-,(2)x
y
23.
1.解:令)1ln(ln 2
+-=x x x y ,(3分)
则x x x x x x x x x y )1)](1ln(1
)
12([
222
'
+-+-++--=(7分) 2.解:)43(432
'-=-=x x x x y ,驻点为3
4,021==x x (2分)
(法一)46'
'-=x y ,
04)0(''<-=y ,1)0(=y (极大值),(5分)
04)34(''>=y ,27
5
)34(-=y (极小值).(7分)
(5分)
当0=x 时,1=y (极大值),当3
4=x 时,275-=y (极小值)(7分)
3.解:利用莱布尼兹公式
x
n
n e n n nx x dx f d )]1(2[2-++=(7分) 4.解:⎰⎰⎰------=--=+-0
1
01012]11
21[)2)(1(1231dx x x dx x x dx x x (3分)
=3
4
ln
1
2
ln
1
=---x x (7分) 5.解:⎰+dx e
x
211==+-+⎰dx e e e x x
x 22211(3分) ++-=)1ln(2
1
2x e x C (其中C 是任意常数)(7分)
6.解:⎰
-+1
2)2(dx e x x x ==+--+⎰dx e x e
x x x x 1
010
2
)12()2((3分)
=2-⎰
+1
)12(dx e x x
=2-)13(-e +1
2x e
=
=e e e -=-+-12233。

(7分) 7.解:
)cos()sin(y x xy y x
z
++-=∂∂(3分) )sin()cos(sin 2y x xy xy xy y
x z
+---=∂∂∂.(7分) 8:解:
=-+
=+=
]2
111[2111x x y (2分)
])2
1()1()21()21(211[2132 +--++---+--=n n x x x x =∑∞
=+--01
2)1()1(n n n n x ,(5分) 收敛区间为(-1,3).(7分)
9.解:特征方程为0122
=+-λλ,特征值为1=λ(二重根),
齐次方程022
2=+-y dx dy dx
y d 的通解是x e x c c y )(~21+=,其中21,c c 是任意常数. (3分)
x y dx dy
dx
y d =+-22
2的特解是2+=*x y ,(6分) 所以微分方程的通解是x e x c c x y y y )(2~
21+++=+=*
,其中21,c c 是任意常数 (7分)
10.解:2
2
22b a b a -++==--+++)2()2()2()2(b a b a b a b a (3分)
=26)(222
=+b a .(7分)
四.综合题:
1.解:(法一)
⎰++π
0212sin 212sin xdx m xdx n =-dx x m n x m n ])cos()1([cos 210
--++⎰π
(4分) =⎪⎪⎩⎪⎪⎨⎧==-++-≠=---++++-⎰π
ππ0
0 ,21
]1)1[cos(21 ,0])sin(1)1sin(11[21m
n dx x m n m n x m n m n x m n m n (10分) (法二)当m n ≠时
⎰++π0212sin 212sin xdx m xdx n =-dx x m n x m n ])cos()1([cos 21
--++⎰π
(4分) =0])sin(1)1sin(11[
210=---++++-π
x m n m n x m n m n (7分) 当m n =时
⎰++π0212sin 212sin xdx m xdx n =⎰⎰=+-=+π
ππ0
00221])12cos(1[21212sin x dx x n xdx n =2
π
(10分) 2.证明:(1)考虑函数dx cx bx ax x F +++=2
34)(,(2分) )(x F 在[0,1]上连续,在(0,1)内可导,0)1()0(==F F ,
由罗尔定理知,存在)1,0(∈ξ,使得0)('
=ξF ,即
0)()('==ξξf F ,就是=)(ξf 023423=+++d c b a ξξξ, 所以函数)(x f 在(0,1)内至少有一个根.(7分)
(2)c bx ax x F x f 2612)()(2
'''++==
因为ac b 832
<,所以0)83(129636)2)(12(4)6(222<-=-=-ac b ac b c a b , )('x f 保持定号,)(x f 函数)(x f 在(0,1)内只有一个根.(10分)
声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。

如有侵权,请联系,删除处理。

相关文档
最新文档