2017年高一数学(下)辅导练习(15)教师
2017年小学数学教师选调考试试题
2017年小学数学教师选调考试试题一、选择题(每题2分,共20分)1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 50B. 60C. 70D. 80答案:A2. 一个数乘以0.5,相当于把这个数缩小了多少倍?A. 2倍B. 10倍C. 5倍D. 20倍答案:A3. 以下哪个选项不是质数?A. 2B. 3C. 4D. 7答案:C4. 一个数的3倍是45,那么这个数是多少?A. 15B. 30C. 45D. 50答案:A5. 一个圆的半径是3厘米,它的周长是多少厘米?A. 18.84B. 28.26C. 37.68D. 47.1答案:B6. 一个班级有40名学生,男生占全班人数的60%,那么男生有多少人?A. 24B. 25C. 26D. 27答案:A7. 一个数除以5余3,除以7余2,这个数最小是多少?A. 23B. 33C. 43D. 53答案:A8. 一个直角三角形的两个直角边分别是3厘米和4厘米,那么斜边的长度是多少厘米?A. 5B. 6C. 7D. 8答案:A9. 一个数的4倍是24,那么这个数是多少?A. 6B. 12C. 24D. 48答案:A10. 一个数的倒数是0.5,那么这个数是多少?A. 1B. 2C. 0.5D. 0.25答案:B二、填空题(每题2分,共20分)11. 一个数的5倍加上3等于23,这个数是________。
答案:412. 一个数的8倍是64,这个数是________。
答案:813. 一个数除以6余4,除以8余6,这个数最小是________。
答案:5214. 一个数的3倍减去2等于14,这个数是________。
答案:615. 一个圆的直径是8厘米,它的面积是________平方厘米。
答案:50.2416. 一个班级有50名学生,女生占全班人数的40%,那么女生有多少人?答案:2017. 一个数的6倍是36,那么这个数是________。
陕西省榆林二中2017-2018学年高一下学期中考试数学试题(无答案)
榆林市二中2019--2019学年第二学期期中考试高一年级数学试题考试时间: 120 分钟 满分: 150 分一、选择题:在每小题给出的四个选项中,只有一项符合题目要求.(本题共12小题,每小题5分,共60分)1.把-1485°转化为α+k·360°(0°≤α<360°,k ∈Z )的形式是( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°2.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.()-1,15B.()-∞,12∪()1,+∞C .(-∞,1)∪()15,+∞ D .(-∞,-1)∪()12,+∞3.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=04.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4 B.21313 C.52613 D.72010 5.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是 ( )A .x 2+y 2=2B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=46.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=07.函数f (x )=3sin()x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π8.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法:①OP 的中点坐标为()12,1,32;②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( ) A .2 B .3 C .4 D .1 9.为了得到函数y =sin(2x -π3)的图像,只需把函数y =sin(2x +π6)的图像( )A .向左平移π4个长度单位B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 10.若sin α<0且tan α>0,则α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角11.若扇形的面积为3π8,半径为1,则扇形的圆心角为( ) A.3π2 B.3π4 C.3π8 D.3π1612.已知cos α=-513,且α为第三象限角,求tan α( )A.1213 B .-1213 C.125 D .-125二、填空题:把答案填写在相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是________. 14.已知sin()5π2+α=15,那么cos α=________.15.tan 300°+sin 450°的值为 = . 16.直线y =2x +1被圆x 2+y 2=1截得的弦长为________.三、解答题:解答应写出必要的文字说明、证明过程和重要的演算步骤(本题共6小题,共70分)17. (10分) 已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cosα.18.(12分)化简:(1)sin(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)(2)tan (π-α)cos (2π-α)sin ⎝⎛⎭⎪⎫-α+3π2cos (-α-π)sin (-π-α)19.(12分)求过点(2,3)且与两坐标轴的交点到原点的距离相等的直线方程. 20.(12分)已知函数f (x )=a sin()2ωx +π6+a2+b ()x ∈R ,a >0,ω>0的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω,a ,b 的值; (2)求出f (x )的单调递增区间.21.(12分)已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.22.(12分)) 过原点O 的圆C ,与x 轴相交于点A (4,0),与y 轴相交于点B (0,2).(1)求圆C 的标准方程;(2)直线L 过B 点与圆C 相切,求直线L 的方程,并化为一般式.。
高一(下学期)期末考试数学试卷
高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
2017下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案
D.矛盾关系
【答案】A
【解析】
交叉关系,概念a和概念b,如果有的a是b,有的a不是b,并且有的b是a,有的b不是a,那么a和b这两个概念之间就是交叉关系。题干中的“等差数列”和“等比数列”概念之间的关系是交叉关系,这是因为公比为1的等
比数列也是公差为0的等差数列,而只有这一种情形下两个概念有交叉。
③数学思维方式的渗透
在“导数”部分主要的数学思维方式有两种:观察法和归纳法。 导数及其应用部分主要培养学生的观察能力。人教版教材利用三个不同维度的观察使得学生在导数的概念、导数的运算、导数的应用之间关系的思考。
归纳法是从特殊到一般再到特殊的过程,在人教版教材中主要体现在当△x趋于0的计算。
(2)①有利于激发学生的学习兴趣
2017下半年教师资格证考试《数学学科知识与教学能力》(高级中学)
一、单项选择题
1.
A.0
B.1
C.2
D.3
【答案】D
【解析】
2.当x→时,与x-是等价无穷小的为()。A.
B.
C.
D.ln| x-|
【答案】A
【解析】
3.下列四个级数中条件收敛的是()。A.
B.
C.
D.
【答案】D
【解析】
4.下列关于椭圆的论述,正确的是()。
同一关系指两个概念间内涵不同、外延完全相同的关系。如“等边三角形”和“等角三角形”。
属种关系指一个概念的部分外延与另一个概念的全部外延重合的关系,其中,外延大的概念叫属概念,外延小的概念叫种概念。如“平行四边形”和
“矩形”。
矛盾关系是在同一个属概念下的两个种概念的外延互相排斥,其相加之和等于该属概念的外延。如对实数这个属概念而言,有理数和无理数这两个概念之间的关系就是矛盾关系。
高一不等式及其解法
个性化教学辅导教案学科:数学年级:高一任课教师:授课时间:2017 年春季班第周教学课题不等式及其解法教学目标1.不等式的性质2.不等式的解法教学重难点重点:不等式性质的应用难点:一元二次不等式恒成立问题教学过程第一节不等关系与不等式考点一比较两个数(式)的大小[必备知识] 两个实数比较大小的法则关系法则作差法则作商法则a>b a-b>0ab>1(a,b>0)或ab<1(a,b<0)a=b a-b=0ab=1(b≠0)a<b a-b<0ab<1(a,b>0)或ab>1(a,b<0)[题组练透]1.已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M >N C.M=N D.不确定2.若a=ln 22,b=ln 33,则a____b(填“>”或“<”).3.若实数a≠1,比较a+2与31-a的大小.[类题通法]比较两个数(式)大小的两种方法(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素需进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)用作商法比较代数式的大小一般适用于分式、指数式、对数式,作商只是思路,关键是化简变形,从而使结果能够与1比较大小.考点二不等式的性质(重点保分型考点——师生共研)[必备知识] 1.不等式的基本性质(1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2). 2.不等式的倒数性质(1)a >b ,ab >0⇒1a <1b . (2)a <0<b ⇒1a <1b . (3)a >b >0,0<c <d ⇒a c >bd .[提醒] 不等式两边同乘数c 时,要特别注意“乘数c 的符号”.[典题例析]1.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b[类题通法](1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.[演练冲关]1.若a >b >0,则下列不等式不成立的是( )A.1a <1bB .|a |>|b |C .a +b <2ab D.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b 2.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4考点三 不等式性质的应用(题点多变型考点——全面发掘)[一题多变][典型母题]已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围.[题点发散1] 若本例中条件变为:已知函数f (x )=ax 2+bx ,且1<f (-1)≤2,2≤f (1)<4,求f (-2)的取值范围.[题点发散2] 若本例条件不变,求2a -3b 的取值范围.[类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.一、选择题1.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B D .A >B2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m 3.(2015·西安检测)设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( )A.⎝⎛⎭⎫0,5π6B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 4.在所给的四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0中,能推出1a <1b 成立的有( )A .1个B .2个C .3个D .4个 5.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |6.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( )A .0B .1C .2D .3 二、填空题7.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确命题的序号是__________.8.若1<α<3,-4<β <2,则α-|β|的取值范围是________.9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.10.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________.第二节一元二次不等式及其解法考点一 一元二次不等式的解法(基础送分型考点——自主练透)[必备知识] 设一元二次不等式为ax 2+bx +c >0(a ≠0),其中Δ=b 2-4ac ,x 1,x 2是方程ax 2+bx +c =0(a ≠0)的两个根且x 1<x 2.(1)当a >0时,若Δ>0,则不等式的解集为{x |x <x 1,或x >x 2};若Δ=0,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,且x ≠-b 2a ; 若Δ<0,则不等式的解集为R .(2)当a <0时,若Δ>0,则不等式的解集为{x |x 1<x <x 2}; 若Δ=0,则不等式的解集为∅; 若Δ<0,则不等式的解集为∅.[题组练透]解下列不等式:(1)-3x 2-2x +8≥0; (2)x 2-4ax -5a 2>0(a ≠0).[类题通法]1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[提醒] 当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.考点二 一元二次不等式恒成立问题(常考常新型考点——多角探明)[必备知识] 一元二次不等式恒成立的条件(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.[多角探明]一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图象与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围;(2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围. 角度一:形如f (x )≥0(x ∈R )确定参数的范围1.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.角度二:形如f (x )≥0(x ∈[a ,b ])确定参数范围2.设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.角度三:形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.[类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.考点三 一元二次不等式的应用(重点保分型考点——师生共研)[典题例析]甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[类题通法]求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.[演练冲关]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成(要求售价不能低于成本价).(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.一、选择题1.不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1} 2.不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)3.已知f (x )=ax 2-x -c ,不等式f (x )>0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )4.如果关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,4,那么实数a 的取值范围是( )A .[80,125)B .(80,125)C .(-∞,80)D .(125,+∞)5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间6.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-235 二、填空题7.不等式|x (x -2)|>x (x -2)的解集是________.8.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1},则a 的值为________.9.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.。
安徽省淮北市濉溪二中2017-2018学年度高一下学期期末考试数学试题(解析版)
濉溪二中2017-2018学年度期末测试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】B【解析】分析:先化简集合B,再求.详解:由题得B={x|0<x<3},所以= ,故答案为:B.点睛:本题主要考查集合的化简和交集运算,意在考查学生对这些知识的掌握水平,属于基础题.2. 已知是等比数列,,,则()A. 1B. 2C. 4D. 8【答案】C【解析】∵是等比数列,,,∴,∴,故选C.3. 在中,角的对边分别为.已知,,,则()A. B. C. D.【答案】A故选A4. 若程序框图如图所示,则该程序运行后输出的值是()A. 5B. 6C. 7D. 8【答案】A【解析】试题分析:当输入的值为时,第一次循环,;第二次循环,;第三次循环,;第四次循环,;第五次循环,;退出循环输出结果为,故选A.考点:1、程序框图;2、条件结果及循环结构.5. 若,则()A. B. C. D.【答案】C2,即B不正确;∵a<b<0,∴,正确;,即D不正确,故选C.6. 高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是()A. 8B. 13C. 15D. 18【答案】D【解析】分析:由于系统抽样的编号是一个以13为公差的等差数列,所以还有一个学生的编号是18.详解:因为,所以系统抽样的编号是一个以13为公差的等差数列,所以还有一个学生的编号是5+13=18.故答案为:D.点睛:(1)本题主要考查系统抽样,意在考查学生对该知识的掌握水平.(2)系统抽样抽出来的编号是一个等差数列.7. 数列的通项公式,则其前项和()A. B. C. D.【答案】A【解析】分析:先化简,再利用裂项相消求和.详解:由题得,所以,故答案为:A.点睛:(1)本题主要考查裂项相消求和,意在考查学生对该知识的掌握水平.(2)类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.8. 与下列哪个值相等()A. B. C. D.【答案】A【解析】分析:按照二进制转化为十进制的法则,二进制一次乘以2的n次方,(n从0到最高位)最后求和即可.然后计算选项A、B、C、D的值.详解:1001101(2)=1×26+0×25+0×24+1×23+1×22+0×21+1×20=77.113(8)=1×82+1×81+3×80=75.114(8)=1×82+1×81+4×80=76.115(8)=1×82+1×81+5×80=77.116(8)=1×82+1×81+6×80=78.故答案为:A.点睛:(1)本题主要考查非十进制转化为十进制,意在考查学生对该知识的掌握水平.(2)非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:.9. 在“淘淘”微信群的某次抢红包活动中,所发红包被随机的分配为2.63元,1.95元,3.21元,1.77元,0.39元共五份,每人只能抢一次,若红包抢完时,则其中小淘、小乐两人抢到红包金额之和不少于5元的概率是()A. B. C. D.【答案】C【解析】由题意得所发红包的总金额为元,被随机分配为元,元,元,元,元共五份,供小淘、小乐等五人抢,每人只能抢一次,基本事件总数,其中小淘、小乐二人抢到的金额之和不少于元的概率的情况有:,,,共有种.∴小淘、小乐二人抢到的金额之和不少于元的概率是故选B.10. 设,若是与的等比中项,则的最小值为()A. B. 8 C. 9 D. 10【答案】C【解析】分析:先根据是与的等比中项得到a,b的关系,再利用常量代换求的最小值详解:因为是与的等比中项,所以,所以=当且仅当时取等.故答案为:C.点睛:(1)本题主要考查等比中项的性质和基本不等式,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 本题的解题关键是常量代换,即把化成,再利用基本不等式求函数的最小值. 利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.11. 若变量满足约束条件,则的最大值是()A. 1B. 0C. 2D.【答案】A【解析】作出束条件表示的可行域,如图,表示点与可行域内的动点连线的斜率,由可得,由图可知最大值就是,故选A.12. 已知数列满足,,,则数列的前10项和为()A. B. C. D.【答案】A【解析】试题分析:根据题意可知,数列为等差数列,所以,,所以,所以其前10项和,故选A.考点:等差数列,等比数列.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知样本数据3,2,1,的平均数为2,则样本的标准差是__________.【答案】【解析】分析:根据已知求出a的值,再利用标准差公式求标准差.详解:由题得所以标准差为.故答案为:.点睛:(1)本题主要考查平均数和标准差,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)标准差.14. 在区间上随机选取两个数和,则满足的概率为__________.【答案】【解析】概率为几何概型,如图,满足的概率为15. 已知关于的不等式的解集为,则关于的不等式的解集为__________.【答案】【解析】分析:由于关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},可知a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,利用根与系数的关系可得=﹣1,=﹣6,a<0.代入不等式cx2+bx+a <0化为﹣6x2﹣x+1>0,即可得出.详解:∵关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},∴a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,∴=﹣(﹣2+3)=﹣1,=﹣6,a<0.∴不等式cx2+bx+a<0化为﹣6x2﹣x+1>0,化为6x2+x﹣1<0,解得﹣<x<.因此不等式的解集为{x|﹣<x<}.故答案为:.点睛:(1)本题主要考查一元二次不等式的解法和一元二次方程根与系数的关系,意在考查学生对这些知识的掌握水平和计算能力.(2)本题一个易错点就是忽略了a的符号,根据已知应该得到a<0.16. 中,边上的高,角所对的边分别是,则的取值范围是__________.【答案】【解析】分析:利用基本不等式即可得出最小值2.又,可得=sinA.由余弦定理可得.可得===2cosA+sinA=,再利用三角函数的单调性即可得出.详解:∵b>0,c>0,∴≥2=2,当且仅当b=c时取等号.即的最小值为2.又,∴=sinA.又余弦定理可得.∴===2cosA+sinA=.综上可得:的取值范围是.故答案为:.点睛:(1)本题综合考查了基本不等式、余弦定理、三角形的面积计算公式、两角和差的正弦公式、三角函数的单调性有界性等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.(2)解答本题的关键是求的最大值,这里用到了解三角形的知识.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求的前项和公式.【答案】(1)(2)【解析】本试题主要是考查了等差数列的通项公式的求解和数列的前n项和的综合运用。
河南高一数学必修一教程
河南高一数学必修一教程一、教学任务及对象1、教学任务本课程的教学任务是依据《普通高中数学课程标准(2017年版)》,针对河南高一学生,进行数学必修一的教学。
内容包括集合与函数的概念、基本初等函数、导数及其应用等,旨在帮助学生构建扎实的数学基础,提高逻辑思维能力和解决实际问题的能力。
2、教学对象本课程的教学对象为河南省普通高中一年级学生,他们在初中阶段已经掌握了基本的数学知识和技能,具备一定的数学思维能力。
然而,由于个体差异,部分学生对数学学科可能存在一定的恐惧感或抵触情绪,因此,教学中需要关注学生的情感态度,激发他们的学习兴趣,提高他们的自信心。
同时,针对不同学生的学习需求,教师应制定有针对性的教学策略,确保每个学生都能在数学学科上取得进步。
二、教学目标1、知识与技能(1)理解集合的概念,掌握集合的表示方法,能够进行集合的交、并、差运算。
(2)掌握函数的定义及其性质,理解函数图像与函数解析式之间的关系,能够解决实际问题中的函数问题。
(3)掌握基本初等函数(如幂函数、指数函数、对数函数等)的定义、性质、图像及应用。
(4)理解导数的概念,掌握导数的计算方法,能够利用导数研究函数的单调性、极值和最值问题。
(5)通过数学建模,学会运用数学知识解决实际问题,提高数学应用能力。
2、过程与方法(1)培养学生自主探究、合作学习的能力,使学生学会通过查阅资料、讨论交流等方式获取知识。
(2)运用问题驱动的教学方法,引导学生主动思考、提出问题,培养他们的问题意识。
(3)通过典型例题的讲解,使学生掌握解题方法,形成自己的解题策略。
(4)鼓励学生运用数学软件、图形计算器等工具进行探索和验证,提高数学实验能力。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养他们热爱数学、追求卓越的情感态度。
(2)引导学生体验数学的美,感受数学在科学、技术、社会等领域的广泛应用,增强数学学习的价值观念。
(3)培养学生勇于探索、敢于质疑的精神,使他们形成独立思考、自主学习的能力。
高一数学(下)辅导练习(16)学生
高一数学(下)辅导练习(16)一、选择题1.已知等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为A .514B .513C .512D .5102.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .3 3.已知等比数列的前n 项和S n =4n +a ,则a 的值等于( )A .-4B .-1C .0D .14.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A .81B .120C .168D .1925.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和 为( )A .158或5B .3116或5C .3116D .1586.设等比数列{a n }的前n 项和为S n ,若S 3=9,S 6=27,则S 9=( )A .81B .72C .63D .547.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B .73C .83D .3 8.等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或129.已知等比数列前20项和是21,前30项和是49,则前10项和是( )A .7B .9C .63D .7或6310.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( ) A .16(1-4-n ) B .16(1-2-n ) C .323(1-4-n ) D .323(1-2-n ) 二、填空题11.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 12.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.13.等比数列{a n }中,若前n 项的和为S n =2n -1,则a 21+a 22+…+a 2n =________.14.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 22-S 11=________.三、解答题15.在等比数列{a n }中,已知a 6-a 4=24,a 3·a 5=64,求数列{a n }的前8项和.16.设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n .17.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .18.已知等比数列{a n }的前n 项和为S n ,S 3=72,S 6=632.(1)求数列{a n }的通项公式a n ;(2)令b n =6n -61+log 2a n ,求数列{b n }的前n 项和T n .。
高一数学(下)辅导练习(15)教师
高一数学(下)辅导练习(15)一、选择题1.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( )A .90B .30C .70D .40[答案] D [解析] ∵q 2=a 6+a 7a 4+a 5=2, ∴a 8+a 9=(a 6+a 7)q 2=20q 2=40. 2.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列[答案] D [解析] 设等比数列的公比为q ,∵a 6a 3=a 9a 6=q 3, ∴a 26=a 3a 9,∴a 3,a 6,a 9成等比数列,故选D .3.等比数列{a n }各项为正数,且3是a 5和a 6的等比中项,则a 1·a 2·…·a 10=( )A .39B .310C .311D .312[答案] B [解析] 由已知,得a 5a 6=9,∴a 1·a 10=a 2·a 9=a 3·a 8=a 4·a 7=a 5·a 6=9, ∴a 1·a 2·…·a 10=95=310. 4.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( ) A .9 B .1 C .2 D .3[答案] D [解析] a 3a 5a 7a 9a 11=a 51q 30=243, ∴a 29a 11=a 1q 82a 1q 10=a 1q 6=5243=3. 5.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16[答案] C [解析] ∵a 3a 11=a 27=4a 7,∵a 7≠0,∴a 7=4,∴b 7=4,∵{b n }为等差数列, ∴b 5+b 9=2b 7=8.6.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A .2 B .1 C .12 D .18[答案] C [解析] 解法一:根据等比数列的性质,结合已知条件求出a 4,q 后求解. ∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1), ∴a 24-4a 4+4=0, ∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2.∴a 2=a 1q =14×2=12,故选C . 解法二:直接利用等比数列的通项公式,结合已知条件求出q 后求解.∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C . 7.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么 a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215[答案] B [解析] 设A =a 1a 4a 7…a 28,B =a 2a 5a 8…a 29,C =a 3a 6a 9…a 30,则A 、B 、C 成等比数列,公比为q 10=210,由条件得A ·B ·C =230,∴B =210,∴C =B ·210=220.8.如果数列{a n }是等比数列,那么( )A .数列{a 2n }是等比数列B .数列{2a n }是等比数列C .数列{lg a n }是等比数列D .数列{na n }是等比数列 [答案] A [解析] 设b n =a 2n ,则b n +1b n =a 2n +1a 2n =(a n +1a n)2=q 2, ∴{b n }成等比数列;2a n +12a n=2a n +1-a n ≠常数; 当a n <0时lg a n 无意义;设c n =na n ,则c n +1c n =n +a n +1na n =n +q n ≠常数.9.在等比数列{a n }中,公比为q ,则下列结论正确的是( )A .当q >1时,{a n }为递增数列B .当0<q <1时,{a n }为递增数列C .当n ∈N +时,a n a n +2>0成立D .当n ∈N +时,a n a n +2a n +4>0成立[答案] C [解析] 如等比数列-1,-2,-4,-8,…,的公比q =2,而该数列为递减数列,排除A ;如等比数列1,12,14,18,…,的公比q =12,而该数列为递减数列,排除B ;如等比数列-1,1,-1,1,-1,…,中a 1a 3a 5<0,排除D ,故选C .10.已知2a =3,2b =6,2c=12,则a ,b ,c ( )A .成等差数列不成等比数列B .成等比数列不成等差数列C .成等差数列又成等比数列D .既不成等差数列又不成等比数列[答案] A [解析] 解法一:a =log 23,b =log 26=log 2 3+1, c =log 2 12=log 2 3+2.∴b -a =c -b .解法二:∵2a ·2c =36=(2b )2,∴a +c =2b ,∴选A .二、填空题11.在各项均为正数的等比数列{a n }中,a 2=1,a 8=a 6+2a 4,则a 6的值是________.[答案] 4 [解析] 本题考查等比数列的通项及性质.设公比为q ,因为a 2=1,则由a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q 2=2,所以a 6=a 2q 4=4.在等比数列中a n =a m ·q n -m .12.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于________. [答案] -3 [解析] a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=a 1+a 3+a 5+a 7a 1q +a 3q +a 5q +a 7q =1q=-3. 13.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.[答案] 16 [解析] ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0,∵b 7=a 7≠0,∴b 7=a 7=4. ∴b 6b 8=b 27=16. 14. 在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6则成等比数列, 则此未知数是__________.[答案] 3或27 [解析] 设此三数为3、a 、b ,则⎩⎪⎨⎪⎧ 2a =3+b a -2=3b ,解得⎩⎪⎨⎪⎧ a =3b =3或⎩⎪⎨⎪⎧ a =15b =27.∴这个未知数为3或27.三、解答题15.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ;(2)若a 3a 5=18,a 4a 8=72,求公比q .[解析] (1)∵a 1a 2a 3=216,∴a 2=6,∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1、a 3是方程x 2-15x +36=0的两根3和12.当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·(12)n -1. (2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.16. 已知数列{a n }为等比数列.(1)若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,求a 3+a 5的值;(2)若a 1+a 2+a 3=7,a 1a 2a 3=8,求数列{a n }的通项公式.[解析] (1)解法一:∵a n >0,∴a 1>0,q >0.又∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 1q ·a 1q 3+2a 1q 2·a 1q 4+a 1q 3·a 1q 5=36,即a 21q 4+2a 21q 6+a 21q 8=36,∴a 21q 4(1+2q 2+q 4)=36,即a 21q 4(1+q 2)2=36.又∵a n >0,∴a 1q 2(1+q 2)=6,∴a 3+a 5=a 1q 2+a 1q 4=a 1q 2(1+q 2)=6.解法二:∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,∴(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6.(2)∵a 22=a 1a 3,代入已知,得a 32=8,∴a 2=2.设数列{a n }的前三项为2q,2,2q , 则有2q +2+2q =7.整理得,2q 2-5q +2=0,∴q =2或q =12. ∴⎩⎪⎨⎪⎧ a 1=1q =2,或⎩⎪⎨⎪⎧ a 1=4q =12∴a n =2n -1,或a n =4×(12)n -1=23-n . 17.{a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11.[解析] ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64,又a 3+a 7=20, ∴a 3、a 7是方程t 2-20t +64=0的两个根.∴a 3=4,a 7=16或a 3=16,a 7=4, 当a 3=4时,a 3+a 7=a 3+a 3q 4=20,∴1+q 4=5,∴q 4=4.当a 3=16时,a 3+a 7=a 3(1+q 4)=20,∴1+q 4=54,∴q 4=14. ∴a 11=a 3q 8=64或1.18.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .[解析] 由b 1+b 2+b 3=3,得log 2(a 1· a 2·a 3)=3,∴a 1·a 2·a 3=23=8,∵a 22=a 1·a 3,∴a 2=2,又b 1·b 2·b 3=-3,设等比数列{a n }的公比为q ,得log 2(2q)·log 2(2q )=-3. ∴1-(log 2q )2=-3,∴log 2q =±2.解得q =4或14, ∴所求等比数列{a n }的通项公式为a n =a 2·qn -2=22n -3或a n =25-2n . 19.等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.[解析] 设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。
高一数学(下)辅导练习(14)学生
高一数学(下)辅导练习(14)一、选择题1.若等比数列的首项为98,末项为13,公比为23,则这个数列的项数为( ) A .3 B .4 C .5 D .62.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( )A .64B .81C .128D .2433.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且a +3b +c =10,则a=( )A .4B .2C .-2D .-44.等比数列{a n }的首项a 1=1,公比q ≠1,如果a 1,a 2,a 3依次是等差数列的第1、2、5项, 则q 为( )A .2B .3C .-3D .3或-35.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A .1-52 B .5+12 C .5-12 D .5+12或5-126.已知{a n }是公比为q (q ≠1)的等比数列,a n >0,m =a 5+a 6,k =a 4+a 7,则m 与k 的大小关 系是( )A .m >kB .m =kC .m <kD .m 与k 的大小随q 的值而变化7.数列{a n }是公差不为0的等差数列,且a 1、a 3、a 7为等比数列{b n }的连续三项,则数列{b n } 的公比为( )A . 2B .4C .2D .128.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .819.若正数a ,b ,c 成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( )A .依次成等差数列B .依次成等比数列C .各项的倒数依次成等差数列D .各项的倒数依次成等比数列二、填空题10.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =__________.11.已知等比数列前3项为12,-14,18,则其第8项是________. 12.在8和5 832之间插入5个数,使它们组成以8为首项的等比数列,则此数列的第5 项是__________.13.已知在△ABC 中,sin A 与sin B 的等差中项为710,等比中项为235,则sin C +sin(A -B ) =________.三、解答题14.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827, 证明{a n }是等比数列,并求出通项公式.15.已知:数列{a n }的首项a 1=5,前n 项和为S n ,且S n +1=2S n +n +5(n ∈N *). 求证:数列{a n +1}是等比数列.16.等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3、a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .17.已知数列{a n }满足a 1=78,且a n +1=12a n +13,n ∈N *. (1)求证:{a n -23}是等比数列; (2)求数列{a n }的通项公式.。
全国高中青年数学教师优质课课 数学高一下北师大版必修5正弦定理【课后练习】 精品
1《正弦定理》课后练习一、选择题1.在△ABC 中,下列关系中一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin AD .a ≥b sin A2.在△ABC 中,已知(b +c )(c +a )(a +b )=,则sin A BC 等于( )A . B. C.D .3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B .60° C .45°D .30°4.不解三角形,下列判断中不正确的是( ) A .a =7,b =14,A =30°,有两解 B .a =30,b =25,A =150°,有一解 C .a =6,b =9,A =45°,无解 D .b =9,c =10,B =60°,有两解5.△ABC 中,a =2,b =2,B =π6,则A 等于( )A .π3B .π4C .π4或3π4D .π3或2π36.在ΔABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223B .223C .-63D .63二、填空题7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c =________.8.在△ABC 中,A =60°,C =45°,b =2.则此三角形的最小边长为__________.三、解答题9.在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,若a =2,C =π4,cos B 2=255,求2△ABC 的面积.10.在△ABC 中,若sin A =2sin B cos C ,sin 2A =sin 2B +sin 2C ,试判定△ABC 的形状.一、选择题1.在△ABC 中,a =λ,b =3λ,∠A =45°,则满足此条件的三角形有( ) A .0个 B .1个 C .2个D .无数个2.已知△ABC 中,a =x ,b =2,∠B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <22D .2<x <2 33.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( )A .π6B .π33C .2π3D .5π64.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直二、填空题5.在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于________,AC 的取值范围为________.6.在△ABC 中,已知tan B =3,cos C =13,AC =36,则△ABC 的面积________.三、解答题7.(2014·山东文,17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C . 已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.8.在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.。
2017-2018学年高中数学 课时跟踪训练(十五)导数与函数的单调性 北师大版选修1-1
课时跟踪训练(十五) 导数与函数的单调性1.在下列命题中,正确的是( )A .若f (x )在(a ,b )内是增加的,则对任意x ∈(a ,b )都有f ′(x )>0B .若在(a ,b )内对任意x 都有f ′(x )>0,则f (x )在(a ,b )内是增加的C .若在(a ,b )内f (x )为单调函数,则f ′(x )也为单调函数D .若可导函数在(a ,b )内有f ′(x )<0,则在(a ,b )内有f (x )<02.y =8x 2-ln x 在⎝ ⎛⎭⎪⎫0,14和⎝ ⎛⎭⎪⎫12,1上分别是( ) A .增加的,增加的B .增加的,减少的C .减少的,增加的D .减少的,减少的3.已知函数f (x )=x +ln x ,则有( )A .f (2)<f (e)<f (3)B .f (e)<f (2)<f (3)C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)4.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图像如右图所示,则y =f (x )的图像最有可能是( )5.函数f (x )=(3-x 2)e x的单调递增区间是____________.6.若函数f (x )=x 3+ax +8的单调减区间为(-5,5),则a 的值为________.7.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a·b 在区间(-1,1)上是增加的,求t 的取值范围.8.已知函数f (x )=x 3-3ax -1,a ≠0,求f (x )的单调区间.答 案1.选B 由函数的单调性与导数间的关系可知选项B 正确.2.选C y ′=16x -1x =16x 2-1x ,当x ∈⎝ ⎛⎭⎪⎫0,14时,y ′<0,函数在⎝ ⎛⎭⎪⎫0,14上是减少的,当x ∈⎝ ⎛⎭⎪⎫12,1时,y ′>0,函数在⎝ ⎛⎭⎪⎫12,1上是增加的. 3.选A ∵函数f (x )的定义域为(0,+∞),且f ′(x )=12x +1x>0, ∴f (x )在(0,+∞)上为增加的,∴f (2)<f (e)<f (3).4.选C 由y =f ′(x )的图像可知,当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0, ∴函数y =f (x )在(-∞,0)和(2,+∞)上为增加的,在(0,2)上为减少的.5.解析:∵f (x )=(3-x 2)e x ,∴f ′(x )=-2x e x +(3-x 2)e x =(-x 2-2x +3)e x .令f ′(x )>0,则-x 2-2x +3>0,解得-3 <x <1.∴函数f (x )的单调递增区间是(-3,1).答案:(-3,1)6.解析:f ′(x )=3x 2+a ,∵f ′(x )<0的解为-5<x <5,∴3×52+a =0,∴a =-75.答案:-757.解:由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,∴f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增加的,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.考虑函数g (x )=3x 2-2x =3(x -13)2-13,x ∈(-1,1)显然g (x )<g (-1),故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t =5时,f ′(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增加的.故t 的取值范围是[5,+∞).8.解:f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对任意x ∈R ,都有f ′(x )>0,即a <0时,f (x )的单调递增区间为(-∞,+∞).当a >0时,f ′(x )>0时,解得x >a 或x <-a ,所以f (x )的单调递增区间为(-∞,-a ),(a ,+∞),f ′(x )<0时,解得-a <x <a ,所以f (x )的单调递减区间为(-a ,a ).即a >0时,f (x )的单调递增区间为(-∞,-a ),(a ,+∞);f (x )的单调递减区间为(-a ,a ).。
江苏省海头高级中学2016-2017学年高一下学期数学课堂训练15 Word版缺答案
课堂训练15
命题:杨建柏审题:王哈莉1.已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角θ终边上
一点,且sinθ=-25
5,则y=____________.
2.已知角α的终边在如图所示阴影表示的范围内(不包括边界),
则角α用集合可表示为________.
3.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为23,则圆C的标准方程为______________________.
4.过点P(1,1)的直线,将圆形区域{(x,y) |x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.
5.已知点A(-3,0),B(3,0),动点P满足P A=2PB.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求QM 的最小值.。
广东省广州市培才高级中学2016-2017学年高一下学期数学(理)午练练习(15-1) Word版缺答案
高一数学午练(15-1)2017.6.81.在四边形 ABCD 中,AB → =DC → ,且AC → ·BD → = 0,则四边形 ABCD 是( )A 矩形B 菱形C 直角梯形D 等腰梯形2.在△ABC 中,点P 在BC 上,且,点Q 为中点,若=(4,3),=(1,5),则=( ) ( 2,7)(6,21) C . (2,﹣7) D . (﹣6,213.已知向量a 和向量b 的夹角为120°,且||2,||5==a b ,则a b a ⋅(2-)=_________.4.已知向量a ,b 夹角为60°,且||a =1,|2|a b -=||b =__________.5. 已知4sin , ()522ππαα=-<<,则tan()4πα+的值为6.设2()6cos 2f x x x =-.(1)求()f x 的最大值及最小正周期;(2)若锐角α满足()3f α=-4tan 5α的值.高一数学晚练(15-2)2017.6.81. cos 240= cos120= ;7cos6π= ;cos (2013π)= 2.已知1cos ,(370,520),2ααα=∈︒︒则= 3. 在平面直角坐标系xOy 中,平面区域{}()00A x y x y x y =+,≤2,且≥,≥的面积为( )A.4 B.2 C.12 D.144. 设实数,x y 满足20240,230x y y x y x y --≤⎧⎪+-≥⎨⎪-≤⎩则的最大值是 . 5.(本小题满分14分)某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为1000元/分钟和400元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?。
高一数学知识点:高一数学下册同步导学练习题(含参考答案)
高一数学知识点:高一数学下册同步导学练习题(含参考答案)(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.下列关系式中一定成立的是()A.cos(α-β)=cos α-cos βB.cos(α-β)C.cos(π2-α)=sin αD.cos(π2+α)=sin α答案: C2.sin α=35,α∈π2,π,则cosπ4-α的值为()A.-25B.-210C.-7210D.-725解析:由sin α=35,α∈π2,π,得cos α=-45,∴cosπ4-α=cos π4cos α+sin π4sin α=22×(-45)+22×35=-210.答案: B3.cos 80°cos 35°+cos 10°cos 55°的值为()A.22B.6-24C.32D.12解析:cos 80°cos 35°+cos 10°cos 55°=cos 80°cos 35°+cos(90°-80°)cos(90°-35°)=cos 80°cos35°+sin 80°sin 35°=cos(80°-35°)=cos 45°=22.答案: A4.若sin(π+θ)=-35,θ是第二象限角,sinπ2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是()A.-55B.55C.11525D.5解析:∵sin(π+θ)=-35,∴sin θ=35,θ是第二象限角,∴cos θ=-45.∵sinπ2+φ=-255,∴cos φ=-255,φ是第三象限角,∴sin φ=-55,∴cos(θ-φ)=cos θcos φ+sin θsin φ=-45×-255+35×-55=55.答案: B二、填空题(每小题5分,共10分)5.若cos(α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________.解析:原式=2+2(sin αsin β+cos αcos β)=2+2cos(α-β)=83.答案:836.已知cos(π3-α)=18,则cos α+3sin α的值为________. 解析:∵cos(π3-α)=cos π3cos α+sin π3sin α=12cos α+32sin α=12(cos α+3sin α)=18.∴cos α+3sin α=14.答案:14三、解答题(每小题10分,共20分)7.已知sin α=-35,α∈32π,2π,求cos π4-α的值. 解析:∵sin α=-35,α∈32π,2π.∴cos α=1-sin2α=1-?-35?2=45.∴cosπ4-α=cos π4cos α+sin π4sinα=22×45+22×-35=210.8.已知a=(cos α,sin β),b=(cos β,sin α),0απ2,且a?b=12,求证:α=π3+β.证明:a?b=cos αcos β+sin βsin α=cos (α-β)=12,∵0απ2,∴0α-βπ2,∴α-β=π3,∴α=π3+β.尖子生题库☆☆☆9.(10分)已知sin α-sin β=-12,cos α-cos β=12,且α、β均为锐角,求tan(α-β)的值.解析:∵sin α-sin β=-12,①cos α-cos β=12.②∴①2+②2,得cos αcos β+sin αsin β=34.③即cos(α-β)=34.∵α、β均为锐角,∴-π2α-βπ2.由①式知αβ,∴-π2α-β0.∴sin(α-β)=-1-342=-74.∴tan(α-β)=sin?α-β?cos?α-β?=-73.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高一数学(下)辅导练习(15)一、选择题1.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( )A .90B .30C .70D .40[答案] D [解析] ∵q 2=a 6+a 7a 4+a 5=2, ∴a 8+a 9=(a 6+a 7)q 2=20q 2=40. 2.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列[答案] D [解析] 设等比数列的公比为q ,∵a 6a 3=a 9a 6=q 3, ∴a 26=a 3a 9,∴a 3,a 6,a 9成等比数列,故选D .3.等比数列{a n }各项为正数,且3是a 5和a 6的等比中项,则a 1·a 2·…·a 10=( )A .39B .310C .311D .312[答案] B [解析] 由已知,得a 5a 6=9,∴a 1·a 10=a 2·a 9=a 3·a 8=a 4·a 7=a 5·a 6=9, ∴a 1·a 2·…·a 10=95=310. 4.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( ) A .9 B .1 C .2 D .3[答案] D [解析] a 3a 5a 7a 9a 11=a 51q 30=243,∴a 29a 11= a 1q 8 2a 1q 10=a 1q 6=5243=3. 5.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16[答案] C [解析] ∵a 3a 11=a 27=4a 7,∵a 7≠0,∴a 7=4,∴b 7=4,∵{b n }为等差数列, ∴b 5+b 9=2b 7=8.6.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A .2 B .1 C .12 D .18[答案] C [解析] 解法一:根据等比数列的性质,结合已知条件求出a 4,q 后求解. ∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1), ∴a 24-4a 4+4=0, ∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2.∴a 2=a 1q =14×2=12,故选C . 解法二:直接利用等比数列的通项公式,结合已知条件求出q 后求解.∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C . 7.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么 a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215[答案] B [解析] 设A =a 1a 4a 7…a 28,B =a 2a 5a 8…a 29,C =a 3a 6a 9…a 30,则A 、B 、C 成等比数列,公比为q 10=210,由条件得A ·B ·C =230,∴B =210,∴C =B ·210=220.8.如果数列{a n }是等比数列,那么( )A .数列{a 2n }是等比数列B .数列{2a n }是等比数列C .数列{lg a n }是等比数列D .数列{na n }是等比数列 [答案] A [解析] 设b n =a 2n ,则b n +1b n =a 2n +1a 2n =(a n +1a n)2=q 2, ∴{b n }成等比数列;2a n +12a n=2a n +1-a n ≠常数; 当a n <0时lg a n 无意义;设c n =na n ,则c n +1c n = n +1 a n +1na n = n +1 q n≠常数. 9.在等比数列{a n }中,公比为q ,则下列结论正确的是( )A .当q >1时,{a n }为递增数列B .当0<q <1时,{a n }为递增数列C .当n ∈N +时,a n a n +2>0成立D .当n ∈N +时,a n a n +2a n +4>0成立[答案] C [解析] 如等比数列-1,-2,-4,-8,…,的公比q =2,而该数列为递减数列,排除A ;如等比数列1,12,14,18,…,的公比q =12,而该数列为递减数列,排除B ;如等比数列-1,1,-1,1,-1,…,中a 1a 3a 5<0,排除D ,故选C .10.已知2a =3,2b =6,2c=12,则a ,b ,c ( )A .成等差数列不成等比数列B .成等比数列不成等差数列C .成等差数列又成等比数列D .既不成等差数列又不成等比数列[答案] A [解析] 解法一:a =log 23,b =log 26=log 2 3+1, c =log 2 12=log 2 3+2.∴b -a =c -b .解法二:∵2a ·2c =36=(2b )2,∴a +c =2b ,∴选A .二、填空题11.在各项均为正数的等比数列{a n }中,a 2=1,a 8=a 6+2a 4,则a 6的值是________.[答案] 4 [解析] 本题考查等比数列的通项及性质.设公比为q ,因为a 2=1,则由a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q 2=2,所以a 6=a 2q 4=4.在等比数列中a n =a m ·q n -m .12.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于________. [答案] -3 [解析] a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=a 1+a 3+a 5+a 7a 1q +a 3q +a 5q +a 7q =1q=-3. 13.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.[答案] 16 [解析] ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0,∵b 7=a 7≠0,∴b 7=a 7=4. ∴b 6b 8=b 27=16. 14. 在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6则成等比数列, 则此未知数是__________.[答案] 3或27 [解析] 设此三数为3、a 、b ,则⎩⎪⎨⎪⎧ 2a =3+b a -6 2=3b ,解得⎩⎪⎨⎪⎧ a =3b =3或⎩⎪⎨⎪⎧ a =15b =27.∴这个未知数为3或27.三、解答题15.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ;(2)若a 3a 5=18,a 4a 8=72,求公比q .[解析] (1)∵a 1a 2a 3=216,∴a 2=6,∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1、a 3是方程x 2-15x +36=0的两根3和12.当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·(12)n -1. (2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.16. 已知数列{a n }为等比数列.(1)若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,求a 3+a 5的值;(2)若a 1+a 2+a 3=7,a 1a 2a 3=8,求数列{a n }的通项公式.[解析] (1)解法一:∵a n >0,∴a 1>0,q >0.又∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 1q ·a 1q 3+2a 1q 2·a 1q 4+a 1q 3·a 1q 5=36,即a 21q 4+2a 21q 6+a 21q 8=36,∴a 21q 4(1+2q 2+q 4)=36,即a 21q 4(1+q 2)2=36.又∵a n >0,∴a 1q 2(1+q 2)=6,∴a 3+a 5=a 1q 2+a 1q 4=a 1q 2(1+q 2)=6.解法二:∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,∴(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6.(2)∵a 22=a 1a 3,代入已知,得a 32=8,∴a 2=2.设数列{a n }的前三项为2q,2,2q , 则有2q +2+2q =7.整理得,2q 2-5q +2=0,∴q =2或q =12. ∴⎩⎪⎨⎪⎧ a 1=1q =2,或⎩⎪⎨⎪⎧ a 1=4q =12∴a n =2n -1,或a n =4×(12)n -1=23-n . 17.{a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11.[解析] ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64,又a 3+a 7=20, ∴a 3、a 7是方程t 2-20t +64=0的两个根.∴a 3=4,a 7=16或a 3=16,a 7=4, 当a 3=4时,a 3+a 7=a 3+a 3q 4=20,∴1+q 4=5,∴q 4=4.当a 3=16时,a 3+a 7=a 3(1+q 4)=20,∴1+q 4=54,∴q 4=14. ∴a 11=a 3q 8=64或1.18.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .[解析] 由b 1+b 2+b 3=3,得log 2(a 1· a 2·a 3)=3,∴a 1·a 2·a 3=23=8,∵a 22=a 1·a 3,∴a 2=2,又b 1·b 2·b 3=-3,设等比数列{a n }的公比为q ,得log 2(2q)·log 2(2q )=-3. ∴1-(log 2q )2=-3,∴log 2q =±2.解得q =4或14, ∴所求等比数列{a n }的通项公式为a n =a 2·qn -2=22n -3或a n =25-2n . 19.等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.[解析] 设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。