七年级数学上册 3.3 解一元一次方程(2)课件 新人教版

合集下载

数学人教版七年级上册3.3解一元一次方程(二) ----去括号.3解一元一次方程(二) ---去-括号

数学人教版七年级上册3.3解一元一次方程(二)  ----去括号.3解一元一次方程(二)  ---去-括号
1 2
x - 4) + 2x = 7-( x - 1)
1 3
• 训练提高 :
3x-2[3(x-1)-2(x+2)]=3(18-x)
本节课学习了什么?
• 本节课学习了用去括号的方法解一元一次方 程。 • 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
3.3 解一元一次方程(二)
—— 去括号(第一课时

解方程:6x-7=4x-1 1、一元一次方程的解法我们学了 哪几步? 移项 合并同类项
系数化为1Leabharlann 2、移项,合并同类项,系数化为1, 要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的 系数相加作为所得项的系数,字母 部分不变。 ③系数化为1,也就是说方程两边同 时除以未知数前面的系数。
2(X+3)=2.5(X-3)
注:方程中有带括号的式子时,去括
号是常用的化简步骤。 例2. 解方程:3x - 7(x-1) = 3 - 2(x+3)
例3. 解方程:3(5x-1)- 2(3x+2)=6(x-1)+2
试一试:解下列方程
1、 4x + 3(2X-3) = 12- (x+4) 2、6(
× 顺航时间=逆航速 也就是:顺航速度___ 度___ ×逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时? × 逆航时间 顺航速度___ × 顺航时间=逆航速度___
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是______ (X+3) 千米/ (X-3) 千米/ 小时,船在逆水中的速度是_______ 小时.

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)
分析:设上半年每月平均用电量xkW·h,
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )

3.3 解一元一次方程(2)2

3.3 解一元一次方程(2)2

今天都学习到了什 么?
P102-5、6、7 P103-13
探 问题1:某车间22名工人生产 究 新 螺丝和螺母,每人每天平均生产 知 螺钉1200个或螺母2000个,一
个螺钉要配两个螺母,为了使每 天的产品刚好配套,应该分配多 少名工人生产螺钉,多少名工人 生产螺母?
关键问题:①设x名工人生产螺钉, 则 22-x 名工人生产螺母。 ②怎样找等量关系?
练习1:某水利工地派48 人去挖土和运土,如果每人 每天平均挖土5方或运土3 方,怎样安排工人,正好将 挖出的土及时运走?
3.3 解一元一次方程(2)
复 习 巩 固
(1) 10x-4(3x-1)-5(2+7x)=15-9(x-2) (2) 3(2x-3)-3[3(2x-3)+3]=5 (3)
1 ( x 1) ( x 2 ) 3 ( x 3) 2 3 4 1 1
课 前 导 入
1、一艘船从甲码头到乙码头 顺流行驶,用了2小时;从乙 码头返回甲码头逆流行驶, 用了2.5小时,已知水流的速 度是3千米/时,求船在静水,每张白卡纸可以做盒身2个, 或做盒底盖3个,一个盒身与两 个底盖做成一个包装盒,怎样设 计使它们刚好配套?请设计一种 分法。
练习2:用白铁皮做罐头盒,每张
铁片可制盒16个或制盒底43个,一 个盒身与两个盒底配成一套罐头盒, 现有100张白铁皮,用多少张制盒 身,多少张制盒底,可使做出的盒 身和盒底配套,又充分利用白铁皮?

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

合并同类项,得 25x=23
系数化为1,得
x= 23 . 25
练习
B
12
3(3y-1)-12=2(5y-7)
3.汛期来临前,滨海新区决定实施海堤加固工程.某 工程队承包了该项目,计划每天加固60米,在施工 前,得到气象部门的预报,近期有台风袭击滨海新区, 于是工程队改变计划,每天加固的海堤长度是原计划 的1.5倍,结果提前10天完成加固任务.若设滨海新区 要加固的海堤长x米,则下面的方程正确的是( )
2
10
5
3x 1-2=3x 2- 2x 3
2
10
5
去分母
5(3x+1)-10 2=(3x-2)-2(2x+3)
去括号
15x+5-20=3x-2-4x-6
移项
15x-3x+4x=-2-6-5+20
合并同类项
16x 7
系数化为1
x= 7 16
归纳与总结
解有分数系数的一元一次方程的步骤:
1.去分母;
2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
以上步骤是不 是一定要顺序 进行,缺一不 可?
主要依据:等式的性质和运算律等.
3.巩固新知 例题规范
解下列方程:
(1) x+1-1=2+ 2-x
2
4
解:(1)去分母(方程两边乘4),得
2( x+1)-4=8+(2-x)
去括号,得 2x+. 2-4=8+2-x
移项,得 2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得 x=4.
3.巩固新知 例题规范
(2)3x+ x-1=3- 2x-1
2
3
解:(1)去分母(方程两边乘6),得

2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件

2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件

D.x+4 2=3x
易错点 去分母时漏乘无分母的项导致错误.
自我诊断4. 方程x+2 1-1=2-33x的解为 x=97
.
1.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B ) A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
x 2
=3,解为x=2;第2个方程是
x 2

x 3

5程,是解为1x0x+=1x61;=第213个方,程其是解x3为+
x 4
=7,解为x=12,…,根据规律第10个方
x=110
.
10.解方程:
(1)2x5+3=32x-2x3-7;
(2)x-2 4+0.2x0-.5 0.3=00..0021x.
再 见!
C.12-2(5x+7)=-(x+17)
D.12-10x+14=-(x+17)
去分母解方程的应用
自我诊断3. 小华用x元买学习用品,若全买钢笔,刚好买3支,若全买笔记
本刚好买4本.已知一个笔记本比一支钢笔便宜2元,则下列方程中正确的
是( A )
A.x3=x4+2
B.x4=3x+2
C.x4=x+3 2
解:(1)x=-8; (2)x=-2116.
11.已知关于x的方程4x+m=3x+1的解比3x-
3x-m 2
=1的解小3,求m的
值. 3x-m
解:解方程4x+m=3x+1,得x=1-m,解方程3x- 2 =1,得x=
2-m
2-m
3 ,所以有1-m+3= 3 ,解得m=5.
12.某工厂第一车间人数比第二车间人数的
7.如果方程2-
x+1 3

人教版七年级数学上册《三章 一元一次方程 3.3 解一元一次方程(二)——去括号与去分母》示范课课件_10

人教版七年级数学上册《三章 一元一次方程  3.3 解一元一次方程(二)——去括号与去分母》示范课课件_10

自我检验
1.解方程
2

3x 2
1

2x 2
1
去分母和去括号后,得(
D
)
A.4 3x 1 2x 1
B.2 3x 1 2x 1
C.2 3x 1 2x 1
D.4 3x 1 2x 1
2.由 x 3 1 4x 得 x 3 2 8x 的依据是
系数化为母的最小
公倍数,则得到
42 2 x+42 1 x+42 1 x+42x=42 33
3
2
7
28x+21x+6x+42x=1 386
x=1386 97
合并同类项,得 97x=1 386
系数化为1,得 x=1386 97
四、尝试应用 3x+1-2= 3x-2- 2x+3
分析:设这个数为x. 根据题意,得
2 x+ 1 x+ 1 x+x=33 327
1
2
解法一:
2 x+ 1 x+ 1 x+x=33 327
解:合并同类项,得
97 x=33 42

系数化为1,得
x=1386 97
2

解法二:
2 x+ 1 x+ 1 x+x=33 327
解:方程两边同乘各分母的这最样小做的依
最小公倍数
3、解一元一次方程的一般步骤:
去括号 移项 合并同类项 系数化为1
二、新课引入 数学小史料
英国伦敦博物馆保存着一部极其珍贵的文物—— 纸草书.这是古代埃及人用象形文字写在一种用纸莎草 压制成的草片上的著作,它于公元前1700年左右写成. 这部书中记载了许多有关数学的问题.
问题1.一个数,它的三分之二,它的一半,它的七 分之一,它的全部,加起来总共是33,求这个数.

七年级数学上册3.3 解一元一次方程(二)

七年级数学上册3.3 解一元一次方程(二)

系数化为1得
x=
解:去括号得3x-7x+7=3-2x-6 移项得 3x-7x+2x=3-6-7
合并同类项得 -2x=-10
系数化为1得
x=5
去括号
移项
合并同类项
系数化为1
合作探究展示点拨
问题1 某工厂加强节能措施,去年下半年与上半年相比,月平 均用电量减少2000kW h(千瓦 时),全年用电15kW h
人教版七年级上册
3.3 解一元一次方程(二)
去括号
学习目标 会利用去括号法则解一元一次方程;(重点) 能根据实际问题,寻找等量关系,列出方程;(难点) 经历列方程解决实际问题的过程,渗透方程思想。
课前检测 一、我们说说看
解:=-5x+25
=-x-5
=8x+6
=2x-1
=a-b+c
=a+b+c
括号前面是“+”号,去掉括号 和它前面的“+”号,括号里的 各项的符号都不变; 括号前面是“-”号,去掉括号 和它前面的“-”号,括号里的 各项的符号都改变。
-2x=-1
活动1(1)解方程:3(x+2)-5(x+2)=-2
一个整体呦!
(2)若2(4a-2)-6=3(4a-2),求代数式
的值。
试一试
拓展延伸 问题三 如何运用一元一次方程求相关字母的取值? 链接中考
活动2 (1)当x取何值时,代数式3(2-x)与2(x+3)的值相等?
(2)当y取何值时,代数式2(3y+4)的值比与5(2y-7)的值大3?
3.如果x=3是方程4x-3(a-x)=6x-7(a-x)的解,那么a=
4.根据如图所示的程序计算代数式的值,输出的结果为23,则x的值

人教版七年级数学上册课件:3.3 解一元一次方程(二)—

人教版七年级数学上册课件:3.3 解一元一次方程(二)—
1. 已知关于x的方程3x + a = 0的解 比方程2x – 3 = x + 5的解大2,则a =。
2. 关于X的方程2-(1-X)=-2与方程mX3(5-X)=-3的解相同,则m=______

13
4、大箱子装洗衣粉36千克,把大箱子里的洗衣粉
分装在4个大小相同的小箱子里,装满后还剩余
2千克洗衣粉,则每个小箱子装洗衣粉的千克数
(1) 1+(x-y) =1+x-y (2) 1-(x-y) =1-x+y
括号前是“+”号,把括号 和它前面的“+”号去掉, 括号里各项都不变符号
(3) 3(x-2) =3x-6 (4) –2(4x-1) = -8x+2
括号前是“-”号,把括号 和它前面的“-”号去掉, 括号里各项都改变符号

3
某工厂加强节能措施,去年 下半年与上半年相比,月平均用 电量减少2000度,全年用电15万 度,这个工厂去年上半年每月平 均用电多少度?
为(

A. 6.5 D.9.5
B.7.5
C.8.5
5、某物品标价为130元, 若以9折出售,仍可获利
10%, 则该物品进价约是(
)
A. 105元 D. 118元
B. 106元
C. 108元

14ห้องสมุดไป่ตู้
练习 解方程:
4x 2 51 2x 45x 1 0
分析:这道题目可以先去小括号,再去中括号
移项,得 5x-4x=14-10
合并同类项,得 x=4

(2)3(2y+1)=2(1+y)解: 去括号,得
6y 3 2 2y 3y 9

人教版七年级数学上册第三章一元一次方程3.3解一元一次方程二_去括号与去分母第2课时用去分母解一元一次方

人教版七年级数学上册第三章一元一次方程3.3解一元一次方程二_去括号与去分母第2课时用去分母解一元一次方

3.3 解一元一次方程(二)——去括号与去分母第2课时用去分母解一元一次方程置疑导入归纳导入悬念激趣图3-3-5毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?[说明与建议] 说明:用数学小故事引入新知,激发学生的学习兴趣,让学生自然地展开对含有分数系数的一元一次方程的学习.利用列方程解决实际问题,让学生感受方程的优越性,提高学生主动使用方程的意识.建议:由学生独立完成列出方程,教师引导学生观察这个方程同上节课学习的方程有什么不同,是否能用移项、合并同类项的方法解这个方程?教师适时引导是否有办法避免烦琐的通分合并?问题1:去括号时应该注意什么?问题2:等式的性质2是怎样叙述的?问题3:(1)6,3,4的最小公倍数是多少?(2)2,4,5的最小公倍数是多少?(3)3,4,12的最小公倍数是多少?[说明与建议] 说明:通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.建议:这几个问题由学生自主完成,注意易错点.前面我们学过带括号的一元一次方程的解法.比如:4-3(x+2)=1-2(x-1),大家观察下面这个方程:x +6=14()x +72,它与以前解的方程有什么区别?你能求出它的解吗?[说明与建议] 说明:设计此环节有两个目的,既复习了上节课所学带括号方程的解法,又通过两个方程的比较,引出了新课.建议:让学生解这两个方程,然后重点比较第二个方程的解法,探究便捷的方法.教材母题——教材第97页例3 解下列方程:(1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.【模型建立】去分母解一元一次方程的步骤主要有:去分母、去括号、移项、合并同类项、系数化为1.注意以下几点:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.【变式变形】1.方程2x -12-x +13=1去分母,得(B )A .2x -1-x +1=6B .3(2x -1)-2(x +1)=6C .2(2x -1)-3(x +1)=6D .3x -3-2x -2=12.当x =__6__时,3x -28的值是2.3.若x -12+2x +16与x -13+1的值相等,则x =__2__.4.当y =__83__时,y -y +22与3互为倒数.5.解方程:17[15(x +23+4)+6]=1.[答案:x =1]6.解方程:0.1x -0.20.02-2x +10.2=5.[答案:x =-4][命题角度1] 去分母解一元一次方程去分母解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解方程的步骤不一定每次都一样,而且五个步骤也不一定全都用到,应根据具体方程的特点,灵活选用解题步骤.注意:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.例 [模拟中考] 解方程:x -x -16=2-x +23.[答案:x =1][命题角度2] 求解分母是小数的方程求解分母是小数的一元一次方程,通常利用分数的基本性质,分子分母都乘相同的倍数,把分母化成整数,此时将分子作为一个整体,需要补上括号.分子分母同乘的倍数要恰当,需要注意,不含分母的项不能乘这个倍数.例x +10.2-3x -10.4=1.[答案:135] [命题角度3] 利用解方程解决综合问题解决此类题目,首先读懂题意,列出方程,借助一元一次方程的解法,求出涉及的未知数.例 [孜州中考] 设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc.则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为__-10__.P98练习解下列方程: (1)19100x =21100(x -2); (2)x +12-2=x4; (3)5x -14=3x +12-2-x3; (4)3x +22-1=2x -14-2x +15. [答案] (1)x =21;(2)x =6;(3)x =-17; (4)x =-928. P98习题3.3 复习巩固1.解下列方程: (1)5a +(2-4a )=0; (2)25b -(b -5)=29; (3)7x +2(3x -3)=20; (4)8y -3(3y +2)=6.[答案] (1)a =-2;(2)b =1;(3)x =2;(4)y =-12. 2.解下列方程:(1)2(x +8)=3(x -1); (2)8x =-2(x +4); (3)2x -23(x +3)=-x +3; (4)2(10-0.5y )=-(1.5y +2).[答案] (1)x =19;(2)x =-45;(3)x =157;(4)x =-44. 3.解下列方程: (1)3x +52=2x -13; (2)x -3-5=3x +415; (3)3y -14-1=5y -76; (4)5y +43+y -14=2-5y -512. [答案] (1)x =-175;(2)x =56;(3)y =-1;(4)y =47.4.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y . [答案] (1)x =23;(2)y =-45.综合运用5.张华和李明登一座山,张华每分登高10 m ,并且先出发30 min(分),李明每分登高15 m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 的值,由x 的值能求出山高吗?如果能,山高多少米?[答案] 10x ÷15=x -30,x =90.山高900米. 6.两辆汽车从相距84 km 的两地同时出发相向而行,甲车的速度比乙车的速度快20 km/h ,半小时后两车相遇,两车的速度各是多少?[答案] 甲车的速度是94 km/h ,乙车的速度是74 km/h.7.在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3 h .求:(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程.解:(1)无风时这架飞机在这一航线的平均航速为696 km/h. (2)两机场之间的航程为2016 km.8.买两种布料共138 m ,花了540元.其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?[答案] 买蓝布料75米,买黑布料63米. 拓广探索9.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50 m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m 2墙面.每名一级技工比二级技工一天多粉刷10 m 2墙面,求每个房间需要粉刷的墙面面积.[答案] 52 m 2.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km.求A ,B 两地间的路程.[答案] 108 km.11.一列火车匀速行驶,经过一条长300 m 的隧道需要20 s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.(1)设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上述问题中火车的平均速度发生了变化吗? (4)求这列火车的长度.解:(1)从车头经过灯下到车尾经过灯下火车所走的路程为x m .这段时间内火车的平均速度为x 10m/s ;(2)从车头进入隧道到车尾离开隧道火车所走的路程为(x +300)m ,这段时间内火车的平均速度为x +30020m/s ; (3)火车的平均速度没有发生变化; (4)根据题意得x 10=x +30020.x =300.答:火车的长度是300 m.[当堂检测] 1. 下列解方程:312+x - 632-x = 1时,去分母正确的 是( )A .2(2x+1)–2x –3= 1 B. 2(2x+1)–2x –3= 6C. 2(2x+1)–(2x –3)= 6 D .以上都不对2. x=____时,代数式3x 比22-x 的值大1. ( ) A .0 B.5 C. -12 D. 12 3. 小玲做作业时解方程21+x - 332x-=1的步骤如下: ①去分母,得3(x+1)-2(2-3x)=1; ②去括号,得3x+3-4-6x=1; ③移项,得3x-6x=1-3+4;④合并同类项得 -3x=2; ⑤系数化为1,得x=-32.聪明的你知道小玲的解答过程正确吗? 答 _______(填“是”或“否”),如果不正确,第________步(填序号)出现了问题; 4. 一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程___________ . 5. 解方程: (1)3423+=-x x ; (2)1102552=--+x x .参考答案: 1. C 2. A3. 否 ①.②4. 51x+52x+1+1=x 5. (1)x =51(2)x=-34[能力培优]专题一 利用去括号、去分母解方程 1.下列解方程去分母正确的是( )A .由1132x x--=,得2x -1=3-3x . B .由232124x x ---=-,得2(x -2)-3x -2=-4.C .由131236y y y y +-=--,得3y +3=2y -3y +1-6y .D .由44153x y +-=,得12x -15=5y +4. 2. (1)2(4y+3)= 8(1-y); (2)61-x -3)1(2+x = 221x- - 1; (3)341187434x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦; (4) 1461x 51413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-.3. (2011·滨州)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括 号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为352123x x +-=, (___________________) 去分母,得3(3x+5)=2(2x -1), (___________________)去括号,得9x+15=4x -2, (___________________) (_____________),得9x -4x=-15-2, (___________________) 合并同类项,得5x=-17, (合并同类项) (______________),得x=175-. (_______ ________)专题二 利用方程解“总、总”问题4.(2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( ) A.17人 B.21人 C.25人 D.37人5.学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对 题.6.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.求每条船上划桨的人有多少个?专题三 利用方程解行程问题7.小李骑车从A 地到B 地,小明骑车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A 、B 两地间的路程.8.从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地55分钟.他回来时以每小时8•千米的速度通过平路,而以每小时4千米速度上山,回到甲地用了112小时,求甲、•乙两地间的距离.9.著名数学家苏步青教授在国外考察时,•一位法国朋友问了这样一个问题:甲、乙两人从相距5千米的A、B两地相向而行,速度分别为2千米/时和3千米/时,甲带了一只小狗,以5•千米/时的速度跑向乙,碰见乙又立即向甲跑去,这样反复跑,当甲、乙两人相遇时,•小狗跑了多少路程?苏教授很快就知道了答案,你呢?10.一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程.....解决的问题,并写出解答过程.专题四用方程进行说理11.魔术师为大家表演魔术. 他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是1 ,那么他告诉魔术师的结果应该是;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.12.下列图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:(1)第1个图中所贴剪纸“○”的个数为个,第2个图中所贴剪纸“○”的个数为个,第3个图中所贴剪纸“○”的个数为个.(2)第n个图中所贴剪纸“○”的个数为多少个?(3)当n=100时,所贴剪纸“○”的个数多少个?(4)如果所贴剪纸“○”的个数为2018个时,那么它是第几个图?知识要点:1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.解一元一次方程的过程是逐步向着x=a的形式转化.3.解一元一次方程的主要依据是等式的基本性质和运算律.4.总总问题中,通常根据一个等量关系设未知数,根据另一个等量关系列方程.5.行程问题中有三个基本量:路程、速度、时间.可寻找的相等关系有:路程关系、时间关系、速度关系.相遇问题中多以路程做等量关系:对于有时间差的问题常常利用时间做等量关系;航行问题中很多时候用速度做等量关系.温馨提示:1.去括号注意事项:(1)如果括号前的系数是负数,去括号后各项的符号应与原括号内相应各项的符号相反;(2)去括号时,括号外的因数要乘以括号内的每一项,不可漏乘.2.去分母注意事项:(1)去分母时不要漏乘分母是1的项.(2)转化小数分母为整数和去分母是完全不同的两回事,前者利用的是分数的基本性质,相对于其它部分是独立的,将分子、分母同时乘以一个数;后者利用的是等式的基本性质,针对所有整式而言,将方程两边同时乘以同一个数.3.列方程解应用题,若直接设元,较难与题中已知量,未知量建立联系时,可考虑间接设元.方法技巧:1.解一元一次方程时,一要按照步骤,不要跳步;二要每一步都与相应法则对应,法则怎么讲的,易错在哪里,要做到心中有数.2.除了一元一次方程的常规解法外,具体到某些特殊结构的一元一次方程,还可以灵活采用其独有的简便方法.3.行程问题中,常有相遇问题和追击问题.相遇问题中:快者路程+慢者路程=总路程;追击问题中:快者路程—慢者路程=原来相隔的路程.答案:1. C 解析:由1132x x--=,应该得2x-6=3-3x,故A选项错;由232124x x---=-,应该得2(x-2)-(3x-2)=-4,故B选项错;由131236y y yy+-=--,应该得3y+3=2y-3y+1-6y,故C选项正确;由44153x y+-=,应该得12x-15=5(y+4),故D选项错误.2. 解析:(1)去括号,得8y+6=8-8y, 移项,得8y+8y=8-6,合并同类项,得16y=2,系数化为1,得y=18;(2)去分母,得(x-1)-4(x+1)=3(1-2x)-6,去括号,得 x-1-4x-4=3-6x-6, 移项,得x-4x+6x=3-6+1+4,合并同类项,得 3x=2,系数化为1,得23x=;(3)去中括号得1167.4x⎛⎫-+=⎪⎝⎭去小括号得1167.4x-+=移项,得171 6.4x=+-合并同类项,得12.4x=系数化为1,得x=8;(4)两边同乘以2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦,移项,合并同类项得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦,两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭,移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭,两边同乘以4,得110 5x-=,移项得11 5x=,系数化为1,得5x=.3. 解析:原方程可变形为352123x x+-=, (分式的基本性质)去分母,得3(3x+5)=2(2x-1), (等式性质2)去括号,得9x+15=4x-2, (去括号法则或乘法分配律)(移项),得9x-4x=-15-2, (等式性质1)合并同类项,得5x=-17, (合并同类项)(系数化为1),得x=175-.(等式性质2)4. C 解析:设这两种实验都做对的有x人,由题意得(40﹣x )+(31﹣x )+x+4=50.解得x=25,故都做对的有25人.5. 16 解析:设小明答对了x 道题,则他答错或不答的题目有(20﹣x )道.依题意得5x ﹣1(20﹣x )=76,解得:x =16.答:小明答对了16道题.6. 解析:设每条船上划桨的有x 人,则每条船上有x+2人,根据题意,得: 15(x+2)=330.解得x=20.答:每条船上划桨的有20人.7. 解析:设A 、B 两地间的路程为x 千米,根据题意,得 1012363681036-+=--x .解得:x=108.答:A 、B 两地间的路程为108千米.8. 解析:设山路长为x 千米,由题意,得9(1112-12x )=8(32-4x ),解得x=3. 则平路长为9(1112-312)=6(千米), •∴两地距离为3+6=9(千米).答:甲、乙两地距离为9千米.9. 解析:设两人经过x 小时相遇,依题意,得:2x+3x=5.解得:x=1.所以小狗所走路程为5×1=5(千米).答:小狗跑了5千米.10. 本题答案不唯一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高度公路长为2xkm . 根据题意,得260100x x +=2.2.解得:x=60,2x=120. 答:普通公路长为60km ,高速公路长为120km .解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了(2.2-x )h .根据题意,得602100(2.2)x x ⨯=-.解得x=1,2.2-x=1.2.答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .11. 解析:(1)4;(2)88;(3)设观众想的数为a .36753a a -+=+. 因此,魔术师只要将最终结果减去5,就能得到观众想的数了.12. 解析:(1)第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花.(2)第n个图案所贴窗花数为(3n+2)个.(3)当n=100时,3n+2=302个.(4)由题意得 3n+2=2018,解得n=672.答:如果所贴剪纸“○”的个数为2018个时,它是第672个图.口诀法解一元一次方程解一元一次方程的一般步骤:去分母,去括号,移项,合并,系数化为1.解方程,很重要,字母求值常用到;如何解,有说道,方法步骤有四条;看特征,选方法,方法选准很重要;第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳,等号两边各一项;未知系数化为1,用乘用除讲技巧.口诀告诉我们:解一元一次方程十分重要,它是字母求值的重要方法和工具.接下来对一元一次方程的解法进行细致的剖析.“第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;”的意思:如果方程中含有分数,应先去分母,把各项中的分数化为整数,实现这种转化的做法是方程两边同乘以各分母的最小公倍数,同时提醒大家不要漏乘方程中的任何一项,而且在约去分母时,养成加括号的习惯,因为分数线除了表示除法的意义外,还具有括号的功能,当把分数线去掉时自觉加上括号.如:解方程2111 36x x+--=.解:两边乘以6 (这里的6取自原方程的分母3和6的最小公倍数),得6×21166136x x+--⨯=⨯.(原方程共有3项,特别注意1这一项也要乘以6)约去分母,得2(2x+1)-(1-x)=6.(如果没有养成自觉加括号的习惯,很容易把方程错误变形为4x+2-1-x=6)“第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;”的意思是:去掉分母后,接下来要做的是去括号,而去括号时要分清括号前面是正号还是负号,如果是正号,则去括号时不需要变号,只须把括号前的系数与括号内的每一项相乘就可以;如果是负号,则不仅要考虑系数的分配,同时还要考虑变号.如上述方程去分母后,接下来就是去括号,得4x+2-1+x=6.(如果得到4x+1-1-x=6,错在哪里?)“分母括号全没了,第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳;”的意思是:如果方程中没有了分母和括号,那进行第三个步骤:移项.移项的一般方法是含未知数的项移到左边,常数移到右边,不论是左边移到右边,还是右边移到左边,这些项都需要变号, 移项后,等号两边分别合并,合并时一定要认真细致,否则前面付出的艰辛就白费了,就如同旧社会的杨白劳.这里还应注意一点:在没有移项之前,如果两边有可以合并的先合并,再移项,再合并,这样可以省去许多麻烦.如上述方程去分母、去括号后,接下来可以先合并,得5x+1=6.移项,得5x=6-1.再合并,得5x=5.“未知系数化为1,用乘用除讲技巧.”这是解一元一次方程最后一个步骤,如果未知数的系数是整数,则一般用除法;如果是分数,则乘以它的倒数.如5x=5,两边除以5,得x=1.而像23x=-6,要把x的系数化为1,两边乘以23的倒数32,得x=-6×32=-9.。

数学人教版七年级上册数学课件 第3章 3.3解一元一次方程去分母

数学人教版七年级上册数学课件 第3章 3.3解一元一次方程去分母

课堂小测
解下列方程:
(1)x- x-2 = 3- x + 1 ; x=2
3
3
(2)(3x-1)- (3x-1) - 2 = 3- (3x-1) + 2 ;
2
3
x = 13 15
(3) 0.4x + 0.8 0.5
=
0.3x-0.4 0.4
+ 1.
x=-32
学习目标
会用去分母的方法解一元一次方程 会把实际问题建成数学模型
预习展示
问题1
去分母的具体做法是什么?
问题2
去分母的依据是什么?
问题3
解一元一次方程的一般步骤是什么?
预习展示
问题1
去分母的具体做法是方程两边 同时乘各分母的最小公倍数。
问题2
去分母的依据是等式的性质二。
解一元一次方程的步骤:
1.去分母; 2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
4
5
x = - 81 2
(3) x + 4 - -5x + 2 = 3 + 5x - 1 .
3
4
6
x= 8 3
练一练
碧空万里, 一群大雁在飞翔, 迎面又飞来一只小 灰雁, 它对群雁说: “你们好, 百只雁!你们百雁齐飞, 好气派!可怜我是孤雁独飞.”群雁中一只领头的 老雁说: “不对!小朋友, 我们远远不足100只.将我 们这一群加倍, 再加上半群, 又加上四分之一群, 最后 还得请你也凑上, 那才一共是100只呢, 请问这群大雁 有多少只?
去分母时须注意
1.确定各分母的最小公倍数; 2.不要漏乘不含分母的项; 3.去掉分母后, 若分子是多项式, 要加括 号, 视多项式为一整体.

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件
(2)进一步熟悉如何设未知数列方程解应用题,体 会方程思想在解决实际问题的作用.
推进新课 知识点1 去括号
某工厂加强节能措施,去年下半年与 上半年相比,月平均用电量减少2 000 kW·h (千瓦·时),全年用电15 万 kW·h.这个工厂去 年上半年每月平均用电是多少? 温馨提示: 1 kW·h的电量是指1 kW的电器1 h的用电量. 月平均用电量×n(月数)=n个月用电量
4
解:去分母(方程两边乘4),得
2(x + 1) – 4 = 8 +(2 – x).
去括号,得 2x + 2 – 4 = 8 + 2 – x.
移项,得 2x + x = 8 + 2 – 2 + 4 .
合并同类项,得 3x = 12.
系数化为1,得 x = 4.
(2)3x x- 1=3- 2x-1
2
4
5
解:去分母(方程两边乘20),得
【课本P98 练习】
10(3x + 2)– 20 = 5(2x – 1)– 4(2x + 1)
去括号,得 30x +20 – 20 = 10x –5 – 8x – 4
移项,得 30x – 10x + 8x = – 5 – 4 – 20+20
合并同类项,得 28x = – 9
4
2
3
解:去分母(方程两边乘12),得
【课本P98 练习】
3(5x – 1) = 6(3x + 1)– 4(2 – x)
去括号,得 15x – 3 = 18x + 6– 8 + 4x
移项,得 15x – 18x – 4x = 6 – 8 + 3

七年级数学上册一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版

七年级数学上册一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版

易错点二 去分母时漏乘不含分母的项 例2 解方程:
2 x 1 3x 1 - =1. 3 6
错解 去分母,得2(2x-1)-(3x+1)=1, 去括号,得4x-2-3x-1=1, 移项,得4x-3x=1+2+1, 合并同类项,得x=4. 正解 去分母,得2(2x-1)-(3x+1)=6, 去括号,得4x-2-3x-1=6, 移项,得4x-3x=6+2+1, 合并同类项,得x=9. 错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不 含分母的项.
9 系数化为1,得x=- . 7
点拨 解决本题的关键是抓住“相等”“互为相反数”两个关键性词 语,进而正确地列出方程.
题型二 利用两个一元一次方程的解相同求某个字母的值 例2 如果方程 -8=- 的解与方程4x-(3a+1)=6x+2a-1的解相同, 求式子a- 的值. 分析 先求出第一个方程的解,然后将求出的解代入第二个方程即可求 出a的值,从而求得a- 的值.
1 2
5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
易错点一 去括号时漏乘项或出现符号错误
例1 解方程:4x-3(2-x)=5x-2(9+x). 错解 错解一:去括号,得4x-6+x=5x-18-x,
移项、合并同类项,得x=-12.

人教版七年级上册3.3.1解一元一次方程(二)——去括号。 课件

人教版七年级上册3.3.1解一元一次方程(二)——去括号。 课件
17 ( x+24)=3( x-24) 6
x=840. 两城市的距离: 3 (840-24)=2 448.
答:两城市之间的距离为2 448 km.
2、下列变形对吗?若不对,请说明理由,并改正:
1 解方程 3 2(0.2 x 1) x 5
去括号,得 3 0.4 x 2 0.2 x 移项,得 0.4 x 0.2 x 3 2
6 x=8.
4 x=- . 3
(三)熟悉解法,思考辨析 例题 解下列方程:
(2)
3 x-7( x-1)=3-2( x+3)
3 x-7 x+7=3-2 x-6
解:去括号,得
移项,得
3 x -7 x+2 x=3-6-7
合并同类项,得 系数化为1,得
-2 x=-10
x=5
(四)基础训练,巩固提高
解下列方程
某工厂加强节能措施,去年下半年与上半年相比,月平均 用电量减少2000度,全年用电15万度,这个工厂去年上半 年每月平均用电多少度?
解:设上半年每月平均用电x度,则下半年每月平均用电(x2000)度,上半年共用电6x度,下半年共用电6(x-2000)度。 根据题意列方程得:
6x+ 6(x-2000)=150000 去括号法则:
系数化为1得:
解一元一次方程的步骤: 去括号
移项
合并同类项
系数化为1
(三)熟悉解法,思考辨析 例题 解下列方程: 2 x-( x+10)=5 x+2( x-1) (1)
解:去括号,得
2 x-x-10=5 x+2 x-2.
移项,得
2 x-x-5 x-2 x=-2+10.
合并同类项,得 系数化为1,得


17 x 11 4 x 32 x 3 12 ( x 4) 26 x 11 1 1 6 x 4 2 x 7 x 1 2 3

七年级数学上册第三章一元一次方程3.3解一元一次方程(二)——去括号与去分母 第1课时(图文详解)

七年级数学上册第三章一元一次方程3.3解一元一次方程(二)——去括号与去分母  第1课时(图文详解)
问题:这个方程有什么特点,和以前我们学过的方程有什么不同?怎样使这个方 程向x=a转化?
去括号
移项
合并同类项
系数化为1
人教版七年级数学上册第三章一元一次方程
6x+ 6(x-2 000)=150 000, 去括号,得 6x + 6x - 12 000 = 150 000.
移项,得 6x + 6x = 150 000 + 12 000. 合并同类项,得 12x = 162 000. 系数化为1,得 x = 13 500.
注:方程中有带括号的式子时,去括号是常用的化简步骤.
人教版七年级数学上册第三章一元一次方程
2.下列变形对吗?若不对,请说明理由,并改正.
解方程 3 2(0.2x 1) 1 x 5
去括号,得 3 0.4x 2 0.2x
去括号变形错,有一项 没变号,改正如下:
去括号,得3-0.4x-2=0.2x
5x-(20-x)=76, 解得 x=16. 答案:16
人教版七年级数学上册第三章一元一次方程
解一元一次方程 的步骤有:
去括号 移项 合并同类项 系数化为1
人教版七年级数学上册第三章一元一次方程
某轮船从A码头到B码头顺水航行3小时,返航时用4.5小时,已知轮船在静水 中的速度为4千米/小时,求水流速度为多少?
顺流航行的路程=逆流航行的路程 解:设水流速度为x千米/时,则顺流速度为 (__x_+_4_)_千米/时,逆流速度为(__4_-_x_)__千米/时, 由题意得: 3(x+4)=4.5(4-x)
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件
人教版数学七年级上册
3.2 解一元一次方程(二) ——去括号与去分母
探究新知
利用去括号解一元一次方程
化简下列各式:
(1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式= -3a+2b + 3a-3b =-b; (2) 原式=-5a+4b + 3a - b= -2a+3b.
解:去括号,得
x-2x 4=3x+5x-5. 移项,得
x-2x-5x-3x=-5-4.
合并同类项,得 9x=- 9.
系数化为1,得 x=1.
(2)7+
8
3 4
x
1 =3x-
6
1 2
2 3
x
.
解:去括号,得
7 6x 8=3x 3 4x. 移项,得
6x-3x-4x=-3-7+8.
合并同类项,得 x=- 2.
分析 找等量关系.这艘船往返的路程相等,即 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间.
解:设船在静水中的平均速度为 x km/h,则顺流速度 为(x+3) km/h,逆流速度为(x-3) km/h.
根据顺流速度×顺流时间=逆流速度 ×逆流时间
列出方程,得 2( x+3 ) = 2.5( x-3 ).
方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标 准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪 个阶段,然后列方程求解即可.
巩固练习 4.某中学计划给结成帮扶对子的农村希望小学捐赠40台电 扇(分吊扇和台扇两种).经了解,某商店每台台扇的价格 比每台吊扇的价格多80元,用1240元恰好可以买到3台台 扇和2台吊扇.每台台扇和每台吊扇的价格分别为多少元?

人教版数学七年级上册人教版数学3.3 解一元一次方程(二)去分母课件

人教版数学七年级上册人教版数学3.3 解一元一次方程(二)去分母课件

0.3
0.02
3
2
C.40 5( 3x 7 ) 2( 8 x 2 )去括号,得40 15x 7 16 x 4
D. 2 x 5,得x 25
5
2
2.解方程 x 4 x 3 1.6 0.2 0.5
答案 : x 122 15
3.将方程 0.7 0.3x 0.2 1.5 5x 变形正确的是(
分母是小数的方程的解法
例题2 解方程: x 0.17 0.2x 1
0.7 0.03
解析原:方程可以化成 10 x 17 20x 1
7
3
去分母得,30x-7(17-20x)=21
去括号,得30x-119+140x=21
移项,合并同类项,得170x=140
方程两边同除以170,得x=14 17
系数化为1,得 X=-1
如何求解方程呢?
x 0.3
=1+1.2-0.3x 0.2
解:原方程可化为
10x 1 12 3x
3
2
去分母,得 20x=6+3(12-3x)
分母化整数利 用分数的性质
去括号,得
20x=6+36-9x
移项,得
20x+9x=6+36
合并同类项,得 29x=42
化系数为1,得 x= 42 29
移项,得 18x+3x+4x=18+2+3
合并同类项,得 25x=23
系数化为1,得 x= 23 . 25
小试牛刀
1.将方程 x 2 x 1两边乘 6,得 2( x 2) 3( x 1) .
3
2
2 . 将 方 程 3x 1 x 1 两 边 乘
4
5
5(3x 1) 4( x 1).

七年级数学 3.3.1 解一元一次方程课件 人教新课标版

七年级数学 3.3.1 解一元一次方程课件 人教新课标版
15 x 8 x 4 1 5
10
ห้องสมุดไป่ตู้
这样解, 对吗?
7x 8
7 x . 8
1
1 x 7
(2)
3x 1 4x 1 解方程 1 3 6
解:去分母,得 2(3x-1)=1-4x-1 2(3x-1)=6-(4x-1) 去括号,得 6x-1=1-4x-1 6x-2=6-4x+1 移项,得 6x-4x=1-1+1 6x+4x=6+1+2 ∴10x=9 即 x=0.9 ∴2x=1 即x=0.5
你能解决这个问题吗?
问题一:你能通过列方程并 解方程求出这个数吗? 设这个数为x.则列方 为— —— 问题二:这个方程与前面学 习的方程有什么不同?
2、合作交流(先要独立思考哦!)
尝试解方程
y2 y 1 6 3
(1)运用所学的知识怎么样做才能转化为你 会解的方程呢并说明你的依据? (2)在解方程的过程中,应该注意哪些易错的 问题?
2 x 1 10 x 1 2 x 1 1 解: (2) 3 6 4
4(2x – 1 )– 2 ( 10x + 1)= 3 (2x + 1)– 12 8x – 4 – 20x – 2 = 6x +3 – 12 8x – 20x – 6x = 4 + 2 + 3 – 12 – 18x = – 3 x=
3.3 解一元一次方程(二)
----- 去分母
学习目标: 1、会用去分母解一元一次方程, 并掌握解一元一次方程的步骤。 2、通过去分母解方程,让学生了 解数学中的“化归”思想。 重点:会用去分母的方法解一元一 次方程。 难点:探究通过“去分母”方法解 一元一次方程及去分母时需要注意 的问题。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档