换热器管板与换热管胀焊并用连接的制造
管子与管板“胀、焊、胀”连接工法
管子与管板“胀、焊、胀”连接工法YJGF25—94作者:李念慈(四川省工业设备安装公司)摘要:管子与管板的连接方式有数种,如焊接、胀接和胀、焊并用连接等。
尽管它们各具优点,但对运行条件苛刻的大型换热器来讲,若采用上述管、板连接方法,则会因连接处难以避免和处理的应力腐蚀,疲劳断裂,脆性断裂等致命缺陷,无法保证其使用寿命和安全运行。
管、板胀、焊、胀连接工艺就是为了获得理想的低应力接头而进行研究的课题。
此项成果已成功地应用于我国第一套高空台排气冷却装置的大型薄板换热器的现场加工上,1990 年11 月被建设部评为全国施工新技术优秀项目含胀、焊、胀工艺技术在内的大型压力容器现场组装技术获四川省1990 年度科技进步一等奖;1991 年又被评为全国安装行业科技进步一等奖。
一、原理及适用条件本工艺的实施步骤是胀-焊-胀。
它巧妙地运用胀接过程的超压过载技术,通过对管与管板的环形焊缝进行复胀,造成应变递增而应力不增加,即让该区域处于屈服状态,在焊缝的拉伸残余应力场中,留下一个压缩残余应力体系。
两种残余应力相互叠加的结果,使其拉伸残余应力的峰值大减;二次应变又引起应力的重新分布,结果起到调整和均化应力场的效果,最终将残余应力的峰值削弱到预定限度以下。
本工法适用于管子与管板的胀、焊并用连接型列管式换热器的工厂或现场加工。
管板厚度范围为16~50mm,材质为碳钢者,应符合GB150-89 第二章2.2 条的规定;若采用16Mn 时,应分别符合GB3274-88 和GBI591-79 中的有关规定;换热管束应符合GB8163-87、GB9948-88、GB6479-86、GB5310-85 的规定。
二、胀、焊、胀工艺(一)准备工作1.对换热管和管板的质量检查(1)管子内外表面不允许有重皮、裂纹、砂眼及凹痕。
管端头处不得有纵向沟纹,横向沟纹深度不允许大于壁厚的1/10。
管子端面应与管子轴线垂直,其不垂直度不大于外径的2%。
换热器通用胀接工艺
胀管通用工艺规程一、胀接说明1 胀接胀接是换热管与管板的主要联接形式之一,它是利用胀管器伸入换热管管头内,挤压管子端部,使管端直径扩大产生塑性变形,同时保持管板处在弹性变形范围内。
当取出胀管器后,管板孔弹性变形,管板对管子产生一定的挤紧压力,使管子与管板孔周边紧紧地贴合在一起,达到密封和固定连接的目的。
由于管板与管子的胀接消除了弹性板与塑性管头之间的间隙,可有效地防止壳程介质的进入而造成的缝隙腐蚀。
当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性难以保证。
因此,在这种工况下,或预计拉脱力较大时,可采用管板孔开槽的强度胀接。
胀接又分为贴胀和强度胀。
2 胀管率胀管率是换热管胀接后,管子直径扩大比率。
贴胀与强度胀的主要区别在于对管子胀管率 (管子直径扩大比率) 的控制不同,对冷换设备换热管来说,强度胀要求的胀管率H为1~2.1%,而贴胀要求的胀管率H为0.3~0.7%。
3 贴胀贴胀是轻度胀接的俗称,贴胀是为消除换热管与管板孔之间的缝隙,以防止壳程介质进入缝隙而造成的间隙腐蚀。
由于贴胀时胀管器给管子的胀紧力较小,管子径向变形量也就比较小。
因此换热管与管板孔之间的相对运动的摩擦力就比较小,所以它不能承受较大的拉脱力,且不能保证连接的可靠性,仅起密封作用。
贴胀时,管孔不需要开槽。
4 强度胀强度胀是指管板与换热管连接处的密封性和抗拉脱强度均由胀接接头来保证的连接方式。
强度胀接的管板孔要求开胀管槽,一般开两道胀管槽。
以使管子材料在胀接时嵌入胀管槽内,由此来增加其拉脱力。
特别是当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性下降,甚至发生管子与管板松脱,这时采用强度胀接,其抗拉脱力就比贴胀要大得多。
胀管前应用砂轮磨掉表面污物和锈皮,直至呈现金属光泽,清理锈蚀长度应不小于管板厚度的2倍。
管板硬度应比管子硬度高HB20~30,以免胀接时管板孔产生塑性变形,影响胀接的紧密性。
换热器管子和管板焊接接头浅见分析
换热器管子和管板焊接接头浅见分析史建涛(江苏省特种设备安全监督检验研究院苏州分院,江苏苏州215128)摘要:通过对管板换热器设计参数、介质特性、使用环境以及承载情况的分析研究,比较不同焊缝接头形式以及焊接工艺过程的选择对最终焊接质量的影响,同时阐述了合理的焊缝检验工艺对于确保在焊接前、焊接过程中以及焊接完成之后保证焊接质量的重要意义,总结出管板换热器管子和管板焊接接头在制造过程中的关键控制点。
关键词:管板换热器;焊接接头;焊接质量;焊接检验工艺管板换热器是利用传热原理,通过对冷、热物料与被加热或冷却的介质进行逆向流动,即热交换,从而达到物料被冷却或加热作用[1]。
由于其结构简单,制造成本低,能得到较小的壳体直径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,可用作蒸发器、加热器、冷凝器和冷却器等,在工程中应用十分广泛。
作者在参与某德国U公司石化项目过程中,有幸作为现场监造到广东省茂名重力石化机械制造厂进行制造过程的质量监检。
由于此项目合同中要求设计由德国公司负责,图纸细化则由CPM(重力石化机械制造厂简称)完成,且CPM负责全程的制造质量,而且该德国公司此次采购的主要设备为管板式换热器, 设计中采用了德国公司的企业标准,因此对于制造厂而言,要准确理解德国公司的企业标准,并且利用现有的设备及人员完成不同于国标要求的石化设备相应难度加大。
而在管板换热器的制造过程中,换热管与管板的连接是整个制造过程中的关键环节。
1 管子-管板连接型式换热管与管板的连接方式有胀接、焊接、胀焊并用等型式。
常用的工艺制造方法有强度胀接、贴胀、强度焊以及密封焊。
强度胀接指为保证换热管与管板连接的密封性能以及抗拉脱强度的胀接;贴胀指为消除换热管与管孔之间缝隙的轻度胀接;强度焊指保证换热管与管板连接的密封性能及抗拉脱强度的焊接; 密封焊指保证换热管与管板连接密封性能的焊接[2]。
目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。
换热器管子与管板接头胀接工艺守则
换热器管子与管板接头胀接工艺守则1总则本守则规定了压力容器管子与管板的胀接方法和技术要求;本守则适用于GB150、GB151及《固容规》涉及的强度胀、焊后胀,胀后焊结构的容器产品; 2胀接操作人员2.1 胀接操作人员必须经过有关部门技术培训,考试合格后方能上岗;2.2 胀接操作人员应掌握所用胀接设备的使用性能,熟悉产品图样、工艺文件及标准要求; 2.3 胀接操作人员应认真做好胀接场地的管理工作,对所用工、量、检具能正确使用和妥善保管;3. 胀接设备与胀管器3.1 胀接设备与胀管器应能满足胀接技术条件及有关标准要求;3.2 胀接设备一般有如下几种:a.无自动控制胀管率装置的机械式胀管机;b.液压驱动扭矩自动控制胀管率的胀管机;c.微机控制胀管率的机械式胀管机;d.液压橡胶柔性胀管机;上述胀接设备可视产品情况选择使用;3.3 胀管器可与相应胀接设备一同使用或直接用于手工胀接;3.3.1 胀管器按用途一般分为:a.12°~15°扳边胀管器;b.90°扳边胀管器;c.无扳边胀管器;3.3.2 胀管器按胀柱数量一般分为:a.3个胀柱胀管器;b.5个胀柱胀管器;应优先选用5胀柱胀管器;3.3.3 90°扳边胀管器一般有普通90°扳边胀管器与90°无声扳边胀管器之分;应优先选用无声扳边胀管器;取1个试样;b样坯切取位置及方向应符合GB2975的规定;c硬度测试可在切取的试样上进行,亦可在管板和胀接管端上直接进行;测试前,应将测点处的氧化皮、锈蚀、油污清除掉,使之露出金属光泽;d当在试样上进行时,试验方法、试样尺寸及表面要求应符合GB231的规定;e当在管板和胀接管端上直接进行时,管子测点数量为每台锅炉按胀接管子总数的3%选取,且不少于15点;每根管端上最多不超过3点,测点位置应在距管端50mm范围内;管板测点数量为每个管板取3点,测点均匀分布;4.5胀接管端需做退火处理时,应符合下列要求:a退火可采用电加热,亦可采用火焰直接加热;当采用火焰加热时其燃料可采用焦炭、木炭、锯末,但不得用煤炭做燃料直接加热;b加热时应缓缓升温,平均温升不超过15℃/min,退火温度控制在600~650℃(无论用何种方法加热,都不得将管端加热至650℃以上),保温10~15min,保温后管端应埋于干燥的石棉灰或硅藻土或石灰粉中缓冷,埋入深度不小于350mm,冷却至室温后方可取出;c加热退火时必须配有温控装置或仪器,不得目测估量;d管端退火长度应控制在100~150mm;两端可同时加热;当管子一端加热时,应用木塞将管子的另一端堵住,以防空气在管内流动;加热过程中应旋转管子,使管端加热均匀;4.6胀接前须按下列要求对胀接管端进行清理:a管端外表面应用半自动双头磨管机或机械洗管机等除锈磨光,磨光长度不小于两倍的管板厚度mm;除锈磨光后的表面不应有起皮、凹痕、裂纹和纵向沟槽等缺陷,磨光后的最小管端外径应符合GB8163规定;管端内表面应无严重锈蚀和铁屑等杂物并清除毛刺;b除锈磨光后的胀接管子应及时胀接,如不能及时装配胀接,则应妥善保管以防再次生锈;如生锈应重新打磨,打磨后的管端最小外径仍须符合GB8163规定;5.胀接管孔的技术要求5.1 用汽油或四氟化碳等溶剂清洗管孔壁上的油污,再用细纱布沿孔壁圆周方向打磨残留锈蚀,并除去管孔边缘毛刺;打磨后管孔壁的表面粗糙度不得大于Ra12.5;5.2 清理后的管孔壁不得有纵向刻痕,个别管孔允许有一条螺旋形或环向刻痕,刻痕深度不得超过0.5mm,宽度不得超过1mm,刻痕至管孔边缘的距离不得小于4mm;5.3 胀接管孔尺寸应符合图纸工艺要求;5.4 如管孔直径超差,其超差数值不得超过规定偏差值的50%;当管孔总数不大于500个时,超差孔数不得超过管孔总数的2%,且不得超过5个;当管孔总数大于500个时,超差孔数不得超过管孔总数的1%,且不得超过10个;对于超差管孔在管板上应作出明显标记;6.胀接前对胀接设备的检查6.1 胀管器,胀杆锥度及胀珠胀杆转动灵活;6.2 液压驱动胀管设备和微机控制胀管设备其控制系统应准确灵敏、性能良好;6.3 胀管器先检查外观,然后用涂色法检查接触面(接触面应大于80%),合格后涂以润滑脂待用;7.穿管7.1 穿管前应先按图样核对管板的装配位置;7.2 按照每个胀接面管子、管孔总数的15%,随机测量管孔直径d、管端壁厚t,计算出d、t的算术平均值并做好记录(参见附录A表A1);7.3 根据超差管孔的直径选配管子,选配后的最大间隙不超过管子直径的3%;7.4 管子的两个胀接端穿入管孔时应能自由伸入,管子必须装正,不得歪斜;当发现有卡住,偏斜等现象时,不得强行插入,应取出管子,按大样矫正后,再行插入;7.5 穿管时应超穿一定距离,以再次清理胀接管端或管孔壁上因穿管留下的锈屑污物,清理后,退回正确位置;7.6 管子与管板胀接时,可先穿基准管,基准管找正后,采用预胀或其他方法加以固定;7.7 胀接管端伸出长度应符合图样要求;7.8 对于管端伸出长度超过要求的管子,应用机械(齐头机)方法去除超长部分,并清除毛刺;8.胀接技术要求8.1 试胀8.1.1 正式胀接前应进行试胀,以检查胀管器的质量、管材的胀接性能和确定最佳胀管率;8.1.2 试胀用管子的材质、规格应与产品胀接管子相同,试胀用板的材质、厚度及管孔间距、管孔尺寸、加工质量等均应与产品的管板相同;8.1.3 试胀件尺寸规格及数量按照产品图纸管板的厚度,孔的大小、排列做试胀板一块,开孔12~16个;8.1.4 试胀管子的胀接管端硬度应符合4.5规定;当管端退火时,应按4.6随炉退火,退火后的管端应按要求进行清理;8.1.5 试胀管子与管孔一一对应,编号入座,用油漆在试胀板上做出孔位编号,用游标卡尺逐一测量试胀管壁厚t、管孔直径d值,并作好记录(参见附录A表A2);8.1.6 在胀管率H为1%~2.1%范围内,选用不同的胀管率数值,计算出相应的胀口内径d1值,然后对各个胀口进行试胀,实测胀口内径并作好记录(参见附录A 表A2);8.2 胀接8.2.1 根据试胀所确定的最佳胀管率进行正式胀接;胀接时应在管端内壁涂少许润滑脂,再插入胀管器;胀接过程中,严防油污、水及灰尘渗入胀接面间;8.2.2 胀接时一般采用反阶式胀接顺序,见图4;管子与管板胀接可在管子穿妥后再按图4进行胀接;管子与管板胀接时,为防止油污流进胀接面间,亦可采用错列式胀接顺序,见图5;不足2个时,允许超胀2个;8.3 胀管率的间接控制方法8.3.1 采用液压柔性胀接时控制胀接压力;8.3.2 采用液压驱动机械胀管或微机控制机械胀管时,控制胀接扭矩;采用普通机械胀管时,使用胀管限位器控制胀杆进入胀口的相对位置;8.4 胀口质量要求8.4.1 管端内表面不应有粗糙、剥落、刻痕、裂纹等;8.4.2 12°~15°扳边后管端不应有裂纹;8.4.3 90°扳边后边缘不应有超过2mm长的细小裂纹;8.4.4 胀口处应无偏挤(单边);8.4.5 胀口的内径圆度公差大于0.15mm时,其超差数量在同一胀接面处不得超过胀接总数的10%;9.水压试验、补胀和换管技术要求9.1 胀接管子全部胀妥后,进行胀口及管板的内部清理,并检查管子有无堵塞;9.2 水压试验前应拆除本体组装设施或临时支架;9.3 水压试验按图纸、工艺及《固定式容规》进行;9.4 水压试验检查应在试验压力降至工作压力时进行,检查胀口有无漏水(漏水是指水珠向下流)、水印(指仅有水迹)和泪水(指水压试验期间不向下流的水珠);如发现上述缺陷,应在相应管端处分别作出标记;9.5 对水压试验漏水的胀口或超过允许数量的泪水、水印的胀口应在卸压放水后随即进行补胀,同时还应对其邻近的一些胀口稍加补胀以免受到影响而松弛;补胀前应测量胀口内径;确定合适的补胀量,以免超胀;9.6 同一漏水胀口,补胀次数不宜多于2次,补胀后应重新进行水压试验,对补胀后仍有漏水且胀管率已超过2.8%的管子应予换管重胀(在割除不合格的胀接管子时,必须注意不损伤管孔壁);补胀、重胀后的胀管率应符合8.2.9要求;9.7 应有专人负责记录胀接及水压试验结果(参见附录A表A3),以作为验收依据并备案;10.贴胀(或称“轻胀”、“预胀”)技术要求10.1 贴胀宜在需贴胀的管子焊接后进行,也可在焊接前进行;10.2 当图样要求贴胀或要求用胀接方法消除管子与孔壁间隙时,应采用与前述相同的胀接设备和操作方法,使管子外壁紧贴管孔内壁,并有一定的胀紧力,以消除管子与管孔间的间隙; 10.3 当采用手工贴胀时,应胀至感到扭矩明显增大时止;当采用机械或液压驱动贴胀时,应胀至负载明显时止;10.4 前部管子贴胀完毕后,应仔细检查外观质量,并应用小手锤轻击接近管孔的管段,监听贴胀质量(贴胀紧密时,其声音沉闷;而未贴紧时,声音较清脆);注:贴胀的目的仅是为了消除管子与管孔的间隙及降低焊接应力;因此,在执行本守则时,当对管子按规定进行材质、外观质量检验并合格后,对管子和管板的硬度检查、试胀、胀管率、扳边、记录、检查胀接质量的水压试验等要求均可免去;附录A胀接用数值记录表( 参考件)A1 胀接前各胀接面15%的管子、管孔数值测量记录表,见表A1;注:1.管板管孔:水平—纵向;垂直—环向;2.每个胀接面要分别测量、计算算术平均值;A2 试胀用数值记录表,见表A2注:Hj—最佳胀管率;d1j—最佳胀管率时的胀口内径;A3 胀接后数值记录表,见表A3注:管板管孔:水平—纵向;垂直,。
换热器管子与管板胀焊制造工艺分析
C hi n a s c t e n c e a n d T e c h n o l o g y R ev i e w
●I Leabharlann 换 热 器 管 子 与 管 板 胀 焊 制 造 工 艺 分 析
陈俊生 王 兴
( 廊 坊 广厦 新源 石 化设 备 制造 有 限公 司 河 北 省 0 6 5 6 0 0 ) [ 摘 要] 换 热器 管 子与 管板 的 连接 处 , 常 常 是最 容 易渗 漏 的部 位 。 管 子与 管 板连 接接 头设 计 得合 理 与否 以及 制 造质 量 好坏 , 都会 直接 影响 到 热交 换器 的使 用性 能 及寿命 , 有 时甚 至涉 及 整个 装置 的运 行 因此 , 管子 与 管板 连接 头 的连 接是 整个 换热 器制 造过 程 的 关键工 序 。 在 换热 器 的制造 过程 中. 有 胀接 、 焊 接和 胀焊 结 台三种 连接方 法 , 但经 常采 用管子 与管 板胀焊 结合 的连接 方法 , 目的在于综 合 利用胀 接和焊接 各 自的优 点 , 谋 求获 得耐高 温高压 、 承受动 载荷和耐 腐蚀 的换热 器 。 本文 分析 了换 热器 管子 与 管板胀 焊 接头 的加 工 , 是先 焊后 胀还 是先 胀 后焊 的好 , 至 今仍有 争 论。 详细分 析 比较 了两种 连接 加工 方法 , 各 自的优缺 点及 应用情 况 , 提 出 了胀 接与 焊接 先后 次序 应 遵循 的 主要 原则 。 为 实 际生 产选 择合 理 的制造 工 艺 , 保证 管子 与管 板 连接 接头 的质 量提 供参 考 。 [ 关键 词] 换 热器 管 子 , 管板 ・ 胀 焊工 艺 中 图分类 号 : T D3 2 7 . 3
文 献标 识 码 : A 文章编 号 : 1 0 0 9 -9 1 4 X( 2 0 1 5 ) 4 1 一O 0 5 9 一 O 1
列管式换热器中管板与换热管束胀焊结合连接工艺探讨
列管式 换热器 中管板 与换 热管束 胀焊结合连接工3 7 1 0 0 )
摘 要: 列管式换热 器是化 工生产 中热量 交换 的关键设备 , 管板 与换 热管的连接是这类化 工容 器的关键 部位 , 通 常情况 下换热 器管子 与管板连接都 采用胀焊结合的加 工工 艺, 究竟是先焊后胀还是先胀后 焊的好, 在 实际使 用中存在争论。笔 者详细分析 了两种 连接 加工 方法, 各 自的优劣性及 适用范 围, 并 以实际生产 当中的设备为例进行 了说 明 , 目的在 于为实
间 隙 ,从 而 达 到密 封 紧 固 的 目的 。这种 接 头 的优 点
是: 由于换热管与管板孔之间的间隙小 , 能够有效防 3 纯碱生产 中常用的接头连接工艺 止介质渗入期 间 , 进而产生的间隙腐蚀 。其缺点是 : 对 管板孔的加工精度要求较高 ;换热管具有一定的 3 . 1 胀接 塑形 ; 对 换 热 管 和 管板 的 硬度 都有 要 求 , 一 般要 求 换 常用 的胀 接加 工 方法 有 : 手 工胀 管 器 滚 压胀 接 、 热 管端 的 硬度 要 比管 板 硬度 低 HB 2 0—3 0 ; 抗拉 脱 离 计 算 机 胀 管 器 滚 压 胀 接 和 液 袋 式 胀 管 机 胀 接 等 几 偏低; 对使用介质温度有一定的局限性 , 例如 , 在使 种 。在 MI I 换 热器 的制造 中选用 液 袋 式 液 压胀 接 方 用 温度大于 3 0 0 c C 时 ,材料的蠕变会使挤压残余应 式。这是因为该方式效率高、 换热管端面与管板孑 L 胀 力逐渐消失产生连接失效现象 。
收 稿 日期 : 2 0 1 3 - 0 4 - 0 8
作者 简介 : 刘 玉梅 ( 1 9 7 5 一) 。 女, 甘肃武威人 。 工程师 , 本科 , 研究方 向为机械设计及制造 。
管壳式换热器中换热管与管板连接的工艺
管壳式换热器中换热管与管板连接的工艺换热器作为将物料之间热流体的部分热量传递给冷流体的传热设备,在人们日常生活及石油、化工、动力、医药、原子能和核工业等行业中有着广泛的应用。
它可作为独立的设备,如加热器、凝汽器、冷却器等;也可作为某些工艺设备的组成部分,如一些化工设备中的热交换器等。
尤其在耗能用量较大的化工行业中,换热器在化工生产的热量交换和传递过程中是不可缺少的设备,在整个化工生产设备中也占有相当的比例。
换热器从其功能上来看,一方面是保证工业过程对介质所要求的特定温度,另一方面也是提高能源利用率的主要设备。
按其结构形式主要有板式换热器、浮头式换热器、固定管板式换热器和U形管式换热器等等。
其中除板式换热器外,其余几种属于管壳式换热器。
由于管壳式换热器具有单位体积上较大的换热面积,而且换热效果好,同时具有结构坚固、适应性强、制造工艺成熟等优点,已成为最为普遍使用的一种典型的换热器。
管壳式换热器中换热管与管板的连接在管壳式换热器中换热管和管板是换热器管程和壳程之间的惟一屏障,换热管与管板之间的连接结构和连接质量决定了换热器的质量优劣和使用寿命,是换热器制造过程中至关重要的一个环节。
大多数换热器的破坏及失效都发生在换热管与管板的连接部位,其连接接头的质量也直接影响着化工设备及装置的安全可靠性,因此对于管壳式换热器中换热管与管板的连接工艺就成为了换热器制造质量保证体系中最关键的控制环节。
目前在换热器制造过程中,换热管与管板的连接主要有:焊接、胀接、胀接加焊接以及胶接加胀接等方法。
1.焊接换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用最为广泛的一种连接方法。
在采用焊接连接时,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。
对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。
换热器通用胀接工艺
胀管通用工艺规程一、胀接说明1 胀接胀接是换热管与管板的主要联接形式之一,它是利用胀管器伸入换热管管头内,挤压管子端部,使管端直径扩大产生塑性变形,同时保持管板处在弹性变形范围内。
当取出胀管器后,管板孔弹性变形,管板对管子产生一定的挤紧压力,使管子与管板孔周边紧紧地贴合在一起,达到密封和固定连接的目的。
由于管板与管子的胀接消除了弹性板与塑性管头之间的间隙,可有效地防止壳程介质的进入而造成的缝隙腐蚀。
当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性难以保证。
因此,在这种工况下,或预计拉脱力较大时,可采用管板孔开槽的强度胀接。
胀接又分为贴胀和强度胀。
2 胀管率胀管率是换热管胀接后,管子直径扩大比率。
贴胀与强度胀的主要区别在于对管子胀管率 (管子直径扩大比率) 的控制不同,对冷换设备换热管来说,强度胀要求的胀管率H为1~2.1%,而贴胀要求的胀管率H为0.3~0.7%。
3 贴胀贴胀是轻度胀接的俗称,贴胀是为消除换热管与管板孔之间的缝隙,以防止壳程介质进入缝隙而造成的间隙腐蚀。
由于贴胀时胀管器给管子的胀紧力较小,管子径向变形量也就比较小。
因此换热管与管板孔之间的相对运动的摩擦力就比较小,所以它不能承受较大的拉脱力,且不能保证连接的可靠性,仅起密封作用。
贴胀时,管孔不需要开槽。
4 强度胀强度胀是指管板与换热管连接处的密封性和抗拉脱强度均由胀接接头来保证的连接方式。
强度胀接的管板孔要求开胀管槽,一般开两道胀管槽。
以使管子材料在胀接时嵌入胀管槽内,由此来增加其拉脱力。
特别是当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性下降,甚至发生管子与管板松脱,这时采用强度胀接,其抗拉脱力就比贴胀要大得多。
胀管前应用砂轮磨掉表面污物和锈皮,直至呈现金属光泽,清理锈蚀长度应不小于管板厚度的2倍。
管板硬度应比管子硬度高HB20~30,以免胀接时管板孔产生塑性变形,影响胀接的紧密性。
换热器管子与管板连接接头技术研究
换热器管子与管板连接接头技术研究0 引言在化工、石油、医药、原子能和核工业中,换热器的应用十分广泛,其类型与结构也很多。
其中管壳式换热器是最普遍使用的。
在管壳式换热器的设计、制造过程中,换热管与管板之间的连接问题直接影响工艺操作的正常进行,甚至迫使整个生产线停产。
因此,换热器管子与管板的接头型式的技术研究一直是国内外技术人员关注的焦点。
1 换热器换热管与管板常用连接方法换热管与管板的连接方法主要有胀接、焊接和胀焊并用。
1.1 胀接胀接是利用胀管器插入管口旋转,将穿入管板孔内的管端部胀大,使管子达到塑性变形,同时管板孔被胀大,产生弹性变形。
胀管器退出后,管板弹性恢复,管子与管板的接触表面产生很大的挤压力,使管子与管板牢固地结合在一起,达到既密封又能抗拉脱力两个目的。
管板上的管孔,有孔壁开槽和孔壁不开槽两种,如图1所示。
目前采用的胀管工艺主要有机械滚胀、液压胀接、爆炸胀接、橡胶胀接等。
胀接适用于无剧烈振动,无过大的温度变化,无严重的应力腐蚀的场合。
由于管子与管孔紧密贴合,可使管接头减少介质腐蚀,且能承受拉脱力。
1.2 焊接换热管和管板之间的焊接有端面焊接和内孔焊接两种结构类型。
端面焊接典型结构如图2所示。
管束与管板焊接连接的适用场合主要是: (1)管间距太小或薄管板无法采用胀接时; (2)热循环剧烈和温差较高时; (3)压力较高或连接紧密性有严格要求时。
它能保证焊接接头达到抗拉脱强度。
端面焊属于不完全熔焊,按其使用要求不同,其施焊深度分为:(1)强度焊接(保证换热管和管板之间的连接强度); (2)密封焊接(仅在于起到密封作用)。
端面焊接接头具有焊接、外观检查与维修方便等优点,应用最为广泛。
但管子与管板之间存在间隙,在腐蚀性介质场合中使用,易产生间隙腐蚀。
1.3 胀焊接当温度和压力较高,且在热变形、热冲击、热腐蚀和流体压力的作用下,换热管与管板连接处极易被破坏,采用胀接或焊接均难以保证连接强度和密封性的要求。
换热器管子与管板胀接工艺分析
换热器管子与管板胀接工艺分析管子与管板的连接是管壳式换热器生产中最主要的工序之一。
由于这类工程需耗费大量工时,更重要的是,连接的地方在运行中容易发生故障。
因此,发展高效率、高质量的连接技术已成为制造中的重点研究课题。
根据换热器的使用条件不同,加工条件不同,连接的方法基本上分为胀接、焊接和胀焊结合三种,由于胀接法能承受较高的压力,特别适用于材料可焊性差及制造厂的焊接工作量过大的情况。
因此该方法在实际生产中运用广泛。
随着技术的不断发展,现已相继开发出滚柱胀管、爆炸胀管及液压、液袋和橡胶胀管等新工艺。
本文拟对这几种胀管工艺进行比较,为实际生产选择合理的胀管工艺提供参考。
1传统胀接工艺1.1 滚柱胀管法该方法是在一个构架上嵌入三个小直径的滚子,中间有一根锥型心轴的胀管器,如图1所示。
胀管时将胀管器的圆柱部分塞入管孔内,利用电动、风动等动力旋转心轴,通过滚子沿心轴周向旋转,使心轴挤入管内面并强迫管子扩大,达到一定的胀紧度,使管子紧紧地胀接于管板的孔上。
胀管操作可分为前进式和后退式两种,前进式是将构架插入管内,旋转心轴,前进挤大,达到所定的紧固程度后电动机反转,由管中拔出完成胀管过程。
反转式和前进式一样旋转心轴前进,达到原定的紧固程度后电动机停止,同时后退装置的离合器啮合反转,滚子和心轴的相对位置保持不变,一边反转一边由该深度到入口处连续均匀地进行平行胀管。
由于这种胀接过程是由里至外,管子的伸长,发生在管板外侧,可以消除管束的受力状态,提高产品质量[2],故用于胀接长度大于60cm的连接。
1.2 爆炸胀管工艺该方法是利用高能源的炸药,使其在爆炸瞬间(10×10-6~12×10-6s)所产生冲击波的巨大压力,迫使管子产生高速塑性变形,从而把管子与管板胀接在一起,实现管子与管板的连接。
图2为爆炸胀接的示意图,图中柱状炸药放置于管端的中心,为防止冲击波对管壁的损伤,炸药的周围有一管状缓冲填料(粘性物或者塑料),使压力能均匀地传递到管壁上。
换热管与管板胀接技术
换热管与管板胀接技术浅谈摘要:本论文以某企业转化器为例,探讨了胀接方式的选择、胀管工艺的实施等,为相关工程的实际操作提供了参考。
关键词:换热管、管板、胀接前言钢制管壳式换热器在化工生产中应用十分普遍,不管是固定管板还是浮头管板、u形管壳式换热器,管子与管板的连接是换热器中十分重要的结构和环节。
由于换热管和管板是换热器管程和壳程之间的唯一屏障,因此换热管与管板连接接头质量的好环是管壳式换热器失效最主要的因素,本文以我公司制作的转化器(dn2800×16×5690)为例来进行说明。
该转化器为衡阳某公司20万吨/年pvc 扩改(四期)工程关键设备之一,该设备为立式固定管板式换热器。
设计压力:管程0.08mpa、壳程0.32mpa,工作压力:管程0.07mpa、壳程0.30mpa,设计温度:管程170℃、壳程99℃,工作温度:管程110~170℃、壳程95~99℃,工作物料:管程为氯化氢、乙炔、活性碳、氯乙烯;壳程为热水。
主要材料:管程为q345r(gb713-2008)、10(gb/t8163-2008),壳程为q235-b(gb/t3274-2007)。
管板为q345r材质,板厚70mm,换热管规格为φ45×3、长度为3000mm,材料为10#无缝钢管,每台数量为2031根,总换热面积为831m2。
该设备共制造10台。
一、胀接方法选择换热管与管板的连接方式主要有胀接、焊接、胀焊并用三种。
根据设备介质以及连接方式的适用范围,转化器换热管与管板之间的连接方式为强度焊加贴胀。
胀接目前主要有滚柱胀管、爆炸胀管及液压、液袋和橡胶胀管等工艺。
1.几种胀管工艺方法的比较液压胀管工艺又称软胀接,一次可以胀接较多的管接头。
液压胀管是一种新的胀接技术,它是通过对管子内表面施加高的液压力,使管子塑性变形而胀接于板孔内表面的。
液压胀接的胀管头是直径略小于管子内径的一段芯棒,芯棒两端的外圆表面上有多个密封件,在芯棒中部设有进油孔,在两段密封件之间的管段内施以高压,使管子发生塑性胀大变形而实现胀接。
换热器管板与管子的连接方法与原理
欢迎共阅管板与换热管的连接方式主要胀接、焊接、胀焊结合。
胀接分强度胀和贴胀两种,胀接的方法主要有机械滚胀法、液压胀管、爆破胀管,胀接是利用电动或风动等动力使心轴旋转并挤入管内迫使管子扩张产生塑性变形而与管板贴合,为了提高胀管的质量,
采用胀焊结合的方法,不仅能提高连接处的抗疲劳性能,还可消除应力腐蚀和间隙腐蚀,提高使用寿命。
欢迎共阅
采用强度胀+密封焊的结合方式,胀接承受拉脱力,焊接保证紧密性,采用强度焊+贴胀的结合方式,焊接承受拉脱力,胀接消除管子与管板间的间隙。
换热器管子与管板胀焊制造工艺分析
换 热器 管子与管板胀焊制造工艺分 析
王 丹铭 ( 哈尔滨空 调股份有限 公司)
摘要 : 热器 管子与管板胀焊接头 的加 工 , 换 是先焊后 胀还 是先胀后焊 的 存在油污染和铁 离子污染 , 能保持接头的清 洁和干燥 , 胀接后可立 } 好, 至今仍有争论。 详细 分析 比较 了两种连接/ T方法 , 自的优缺点及应用 进行管 口的焊接作业。 ] n 各 情 况, 出了胀接与焊接先后次序应遵循 的主要原则 。为实际生产选择合理 提 橡 胶 胀 管 压 力 在 4 0 a以下 可 随 意 调 节 , 可 用 于 强 度 胀 t 0 MP 即 的制造工 艺, 保证管子与管板连接接头的质量提供 参考。 可用胀接 , 尤其适用于定位胀 。 接头连接的松紧程度很容易通 过调 关键词 : 换热器 管子与管板 胀接 焊接 胀焊接头
图 1 管子与管板连接 ( 贴胀 l
保证 了胀接连 接的可靠性。② 先胀后焊使 管子 与管板 的连接可 以避 免产生焊接裂纹 。特别是在管子、 管板材料差异较大的情况下, 采用 先胀后焊 的方法亦 可较好地保证其焊 接质 量。③小管径采用胀后焊 接可以提 高其连接接头 的抗疲劳性能。 ④焊接在胀管后进行 , 了 避免 胀接 力对焊缝破坏 的可能性 , 以实现管板厚度内的全程胀 管, 可 有效
浅析换热器管板与换热管胀焊胀工艺方法
浅析换热器管板与换热管胀焊胀工艺方法作者:万咏知来源:《环球市场》2018年第26期摘要:本论文阐述了在管壳式换热器的设计中换热管与管板的连接结构形式如何确定,确定了最佳的换热管连接方式为贴胀+密封焊+消除应力胀,防止换热器管板裂纹的产生,在生产中得到推广应用。
关键词:换热器;换热管;管板;强度胀;强度焊在管壳式换热器中,换热管与管板的连接是一个比较重要的结构部分。
根据管壳式换热器的使用条件不同,加工条件不同,管子与管板的连接通常采用:胀接或焊接的连接方式,胀接连接运行一段时间,随着冷热交替管板和管子间容易发生泄露,增加了维修频率;焊接连接的管子因过于密集,管孔桥间距较小,相邻焊缝的焊接热影响区叠加,容易产生焊接残余应力,焊后管板上易出现裂纹。
一、胀焊胀前准备(一)材料准备:Q345钢材,t=20,200×200(中间开φ32+0.74孔),一块;20#管子,φ32×2.5,L=150,一段;(二)设备、工具的准备:胀管器一个;WS-400氩弧焊一台;焊接辅助工具若干;(三)组对:将准备好的管子与管板组对起来,管子伸出长度4-5mm。
二、胀焊胀操作工艺要点(一)贴胀主要反映在管孔是否开槽和焊接坡口及管子伸出长度等方面,对一些比较苛刻的使用场合也有用强度焊+强度胀的管接头连接方式,如双管板换热器设计要求采取强度焊+强度胀。
我们在设计换热器时无论采取哪种方式,其要求满足的基本条件有两条:一是良好的气密性;二是足够的结合力。
(二)胀接胀接是一个连续的弹塑性力学过程,胀管时管子产生了严重的塑性变形,管板则主要处于弹性状态,卸载时由于回弹管孔将管子压紧而形成胀接接头。
强度胀是利用胀管器,使伸到管板中的管子端部直径扩大产生塑性变形而管板只达到弹性变形,因而胀管后管板与管子间就产生一定的挤压力,使管子能嵌入到管孔的环形槽内,达到密封紧固连接的目的。
(三)采用胀接时要求管板硬度较换热管硬度高,这样可免除在胀接时因管孔产生塑性变形而影响胀接的紧密性。
一种换热器管板与换热管的连接工艺[发明专利]
专利名称:一种换热器管板与换热管的连接工艺
专利类型:发明专利
发明人:刘玉阳,王国栋,吕勇,翟雪静,张本东,赵捍东,赵树超,宋宇,高玉坤
申请号:CN202111342939.2
申请日:20211112
公开号:CN114101522A
公开日:
20220301
专利内容由知识产权出版社提供
摘要:本发明涉及换热器技术领域,具体涉及一种换热器管板与换热管的连接工艺,包括如下步骤,S1、管板管孔壁上开设环形凹槽,在管板管孔开口边缘处加工出焊接坡口;S2、将换热管管端穿过管板管孔,在焊接坡口处将管板与换热管焊接;S3、焊接后首先进行液压胀,再进行机械胀,即得。
本发明焊接后,采用液压胀的基础上,再采用机械胀,也就是混合胀模式,液压胀具有柔性胀接方式的应力均匀、抗应力腐蚀强、易于胀入孔槽等特点,而机械胀能够保证所要求的胀度,以及消除液压胀残余的轴向应力,有力的保障了管板与换热管连接接头的密封性及强度。
申请人:山东凯斯达机械制造有限公司
地址:272000 山东省济宁市高新区崇文大道1688号
国籍:CN
代理机构:济南舜源专利事务所有限公司
代理人:辛向东
更多信息请下载全文后查看。
一种换热器的换热管与管板的连接结构及换热器的制造方法
一种换热器的换热管与管板的连接结构及换热器的制造方法换热器是一种用于传递热量的设备,常见于工业生产和能源领域。
换热管与管板的连接结构是确保换热器正常运行的重要组成部分。
下面介绍一种常见的换热管与管板的连接结构及换热器的制造方法。
换热管与管板的连接结构通常采用焊接或承插连接方式。
其中,焊接连接是最常用的方式之一。
具体步骤如下:
1. 准备工作:选择合适的材料,包括换热管和管板。
根据工作条件和流体介质的特性,选择耐腐蚀、高温和高压的材料,如不锈钢、铜合金等。
2. 加工换热管和管板:将换热管和管板进行加工,以确保其尺寸和形状符合设计要求。
通常需要对管道进行切割、翻边、折弯等加工操作。
3. 安装换热管:根据设计要求,在管板上预先布置好换热管的孔位。
将换热管通过孔位插入管板内,确保管道与孔位之间的密封性。
4. 焊接连接:使用合适的焊接方法,将换热管与管板进行连接。
常见的焊接方法包括氩弧焊、电阻焊等。
在焊接过程中,需要控制好焊接温度和焊接时间,确保焊缝牢固且密封性良好。
5. 焊后处理:焊接完成后,进行焊后处理工作。
包括对焊缝进行打磨、除去焊渣、进行焊缝的无损检测等。
6. 检验和测试:完成焊接后,对换热器进行检验和测试。
包括对焊缝进行压力测试、泄露测试等。
换热器的制造方法主要包括材料准备、加工制造、连接组装、测
试检验等步骤。
制造过程中需要严格按照设计要求和相关标准进行操作,确保换热器的质量和性能。
以上是一种常见的换热管与管板的连接结构及换热器的制造方法,希望能对您有所帮助。
【专业知识】换热管胀焊并用连接制造换热器管板
【专业知识】换热管胀焊并用连接制造换热器管板【学员问题】换热管胀焊并用连接制造换热器管板?【解答】GBl5ll999标准中规定,胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。
目前对常规的换热管通常采用贴胀+强度焊的模式;而重要的或使用条件苛刻的换热器则要求采用强度胀+密封焊的模式。
胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。
强度胀接适用于设计压力~小于4MPa、设计温度小于等于300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。
由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。
先胀后焊目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。
这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。
由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。
但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。
采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。
只有这样对于常规设计的贴胀+强度焊可采用先胀后焊的方式,而对特殊设计的强度胀+强度焊则可采用先贴胀,再强度焊,最后强度胀的方法。
管子与管板胀接后,在管端应留有15ram长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15ram的未胀管段与管板孔之间存在一个间隙。
在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。
胀管工艺规程管子与管板123
三、控制质量的主要措施 1 考试合格的焊工在作业之前应进行适应性训练,训练时的管板孔几何尺寸(不含 厚度尺寸)及管子直径,壁厚应与实物相同。
2 管板背面一侧孔口,宜倒棱圆滑,倒棱尺寸为0.5×0.5㎜,以为提高抗疲劳能
力。
级
换
管孔直径(mm) 19.25 25.25 32.35 38.40 45.40 57.55
热 器
管板
允许偏差(mm)
+0.15 0
+0.15 +0.2 +0.20 +0.20 +0.25
0
0
0
0
0
Ⅱ 换热器 允许偏差(mm) ±0.40 ±0.40 ±0.45 ±0.45 ±0.45 ±0.57
级
换热管的允许偏差表1-1
材料 标准
碳 GB8163-87
钢
外径×厚度 (mm)
19×2 25×2 25 ×2.5
32×3 38×3 45 ×3
Ⅰ级换热器 外径偏差 壁厚偏差 (mm) (mm)
Ⅱ级换热器
外径偏差
壁厚偏差
(mm)
(mm)
±0.2 ±0.3
+12% -10%
±0.4 ±0.45
+15% - 10%
对于管板较大的换热器。首先应按上述原则,按板中心二条互相垂直的轴线, 并沿轴线把管板划分为若干个小区,这些小区一定要以中心轴线对称。在 对称的小区中先选有代表性的点(即在管板上均布的点)先在那里完成胀 接固定,实现二个管板间的走距和定心,在这些点进行胀接时,可以由内 向外,或由外向内,原点向四周放射,但一走要按原点对称进行 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器管板与换热管胀焊并用连接的制造工艺GB151-1999标准中规定,强度胀接适用于设计压力≤4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和1 管子与管孔的公差控制
(1)换热管
在采购换热管时要求每台换热器所使用的换热管在冷拔加工时应采用同一坯料(炉批次)的原料,并在同一台经校验试验合格的拉管机上生产,这样才能保证每根换热管具有相同的材质、规格与精度。换热管外径的均匀一致能保证管子与管板管孔的间隙,内径的均匀一致能保证与液袋式胀管机胀头的匹配性,从而延长胀头的使用寿命。一般管子与管板管孔间隙要求控制在(0.3±0.05)mm范围内,而液袋式胀管机胀头外径与管子内径的公差也应控制在 (0.3±0.05)mm范围内。
1 先胀后焊
管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙(见图
1)。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。
2 先焊后胀
在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的(见图 2)。当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。有关资料显示,管口的焊接接头承受轴向力的能力是相当大的,即使是密封焊,焊接接头在做静态拉脱试验时,管子拉断了,焊口将不会拉脱。然而焊口承受切向剪力的能力相对较差,所以强度焊后,由于控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。