第7章数列(文)教案
高中数学数列概念教案
高中数学数列概念教案
教学内容:数列概念
教学目标:能够理解数列概念,掌握常见数列的性质及求解方法。
教学重点和难点:掌握数列的定义及常见数列的性质。
教学准备:教学课件、教学实验材料、小黑板、粉笔、教科书。
教学过程:
一、引入(5分钟)
通过渐进法引入数列的概念,并引导学生思考数列在生活中的实际应用,激发学生学习的
兴趣。
二、讲解(15分钟)
1. 数列的定义:依据顺序排列的一系列数构成的序列称为数列。
2. 数列的表示方法:通项公式及递推公式。
3. 常见数列及性质:等差数列、等比数列、斐波那契数列等。
三、实例讲解(20分钟)
通过实例演算,帮助学生掌握数列的性质及求解方法,巩固所学知识。
四、练习(15分钟)
设计一些与课堂内容相关的练习题,让学生在课堂上进行练习,检验他们的学习情况。
五、总结(5分钟)
对本节课所学内容进行总结,强调重点知识点,帮助学生将学到的知识点牢固记忆。
六、作业布置(5分钟)
布置相关的课外作业,加深学生对数列的理解。
教学反思:
此教案通过引入、讲解、演算、练习、总结和作业布置等方式,全面系统地向学生介绍了
数列的概念及性质,帮助学生掌握了数列的基本知识,同时激发了学生对数学的学习兴趣。
在今后的教学中,应注重巩固学生的基础知识,引导学生灵活运用所学知识解决实际问题,提高学生的数学素养和解题能力。
数列的概念教案
数列的概念教案数列的概念教案一、教学目标1. 了解数列的概念和定义;2. 能够判断一个数列的规律;3. 能够根据给定的数列规律,推导出数列的通项公式;4. 能够应用数列的概念解决实际问题。
二、教学内容1. 数列的概念和定义;2. 数列的通项公式;3. 数列的前n项和;4. 应用数列解决实际问题。
三、教学步骤步骤一:引入数列的概念通过举例子的方式,让学生观察一些数的排列,找出其中的规律性。
例如:1、2、3、4、5...;1、3、5、7、9...等。
并引导学生思考这些数的排列是否有一定的规律,如果有,我们可以将其称为数列。
步骤二:引出数列的定义根据学生的观察和理解,引出数列的概念和定义。
数列是由一列数按照一定的顺序排列而成的序列,其中每个数称为该数列的项,用an表示,n表示项的位置。
步骤三:数列的通项公式的引入引导学生在观察数列的过程中,思考如何得到数列中的每一项。
例如,对于数列1、2、3、4、5...,如果需要求第n个数,我们可以发现数列中的每一项都比前一项大1,所以第n个数可以表示为an = a1 + (n - 1)。
步骤四:数列的前n项和的引入引导学生思考如何求一个数列的前n项和。
例如,对于数列1、2、3、4、5...,如果需要求前n项的和S,我们可以发现数列中的每一项都比前一项大1,所以可以利用等差数列求和公式Sn = (a1 + an) / 2 * n,其中an = a1 + (n - 1)。
步骤五:应用数列解决实际问题通过实际问题的引入,让学生应用数列的概念解决问题。
例如,有一序列数:1、3、5、7、9...,要求求出第n项的值并求前n 项和。
引导学生观察数列规律,判断数列是等差数列,然后根据通项公式和求和公式计算出结果。
四、教学注意事项1. 引导学生在观察数列的过程中,思考数列的规律;2. 培养学生分析和推断的能力,让其能够根据已知规律求解未知项或和;3. 引导学生在解决实际问题时,将问题转化为数列问题,然后应用数列的概念解决问题。
高中数学数列概念优秀教案
高中数学数列概念优秀教案教学目标:1. 掌握数列的基本概念,能够区分等差数列和等比数列。
2. 熟练运用数列的通项公式求解各种问题。
3. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 掌握数列的定义和分类。
2. 掌握等差数列和等比数列的性质及通项公式。
3. 运用数列的知识解决实际问题。
教学难点:1. 等比数列的通项公式推导。
2. 如何运用数列的知识解决实际问题。
教学过程:一、导入(5分钟)教师引入数列的概念,并举一些实际例子来说明数列在生活中的应用,如等差数列可以表示每天存钱增加的数量,等比数列可以表示细菌繁殖的数量等。
二、概念讲解(15分钟)1. 数列的定义和分类。
2. 等差数列的性质及通项公式。
3. 等比数列的性质及通项公式。
三、例题讲解(20分钟)1. 讲解一些常见的数列题目,如求等差数列和等比数列的前n项和、求某一项的值等。
2. 引导学生运用数列的知识解决实际问题,如经济学中的收入增长问题、物理学中的运动问题等。
四、练习与讨论(15分钟)教师布置一些练习题让学生自行解答,并对学生的答案进行讨论和纠正。
同时,鼓励学生提出自己的解题思路,培养他们的数学思维能力。
五、作业布置(5分钟)布置相关作业,巩固学生的学习成果。
六、总结(5分钟)教师对本节课的重点内容进行总结,激励学生对数列的学习做进一步的思考和总结。
教学反思:通过本节课的教学,学生应该能够掌握数列的基本概念及相关性质,并能够熟练运用数列的通项公式解决各种问题。
同时,教师应该注重引导学生提高数学思维能力,培养他们的逻辑推理能力。
高中教学数列设计数学教案
高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
数列的概念与简单表示法教案
数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
数列教案范文
数列教案范文一、教学目标1.知识目标:①了解等差数列和等比数列的概念以及它们的发展规律;②掌握求等差数列和等比数列的公式与方法;③了解数列在生活中的应用。
2.能力目标:①能够熟练地运用等差数列及等比数列求解问题;②能够将所学知识应用到实际生活中。
3.态度目标:①激发学生学习数学的兴趣;②培养学生积极探索、勇于创新的精神。
二、教学重点难点1.重点:等差数列和等比数列的概念、求和公式以及应用;2.难点:应用实例的解决。
三、教学内容及方法1.教学内容(1)等差数列及其求和公式;(2)等差数列在生活中的应用;(3)等比数列及其求和公式;(4)等比数列在生活中的应用。
2.教学方法(1)讲解法:讲解等差数列和等比数列的概念、求和公式及应用,通过例题演示方法,引领学生逐步了解并掌握。
(2)归纳法:在学生学习过程中,引导学生进行概念归纳、规律总结,使学生更深入地理解知识点。
(3)练习法:开展各类型的例题练习,让学生熟练掌握所学知识,提高能力。
(4)探究法:利用生活实际问题,让学生自主探索并解决问题,培养学生创新精神。
四、教学步骤1.导入:与学生讲述数学在生活和科技中的应用,引起学生对数学的兴趣。
2.讲解等差数列和等比数列的概念。
3.介绍等差数列及其求和公式,让学生对等差数列有一个深入的了解。
4.介绍等差数列在生活中的应用,例如:物流运输中的时间问题。
5.介绍等比数列及其求和公式,让学生对等比数列有一个深入的了解。
6.介绍等比数列在生活中的应用,例如:光传输中的问题。
7.练习,让学生能够熟练掌握所学的知识。
8.探究性学习,让学生认识数学应用实际中的作用。
五、教学评价1.能在学生生活中讲述数学的应用,并引起学生对数学的兴趣。
2.能在学生心中形成数学发展规律的认识,掌握等差数列及等比数列的求和方法。
3.能培养学生探究问题的能力,使学生在应用实例上更加熟练。
四、教学总结数列是数学中的重要概念,应用广泛,它既是数学教育的基石,也是日常生活中的基础知识,掌握好数列及其应用,能起到事半功倍的效果。
《数列的概念与简单表示法》教案
《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。
1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。
1.2.2 数列的项:数列中的每一个数称为项。
1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。
1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。
1.3.2 引导学生分析数列的基本特征,如顺序、项等。
1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。
第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。
2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。
2.2.2 描述法:用数学公式或文字描述数列的规律。
2.2.3 数列的通项公式:用公式表示数列中任意一项的值。
2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。
2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。
2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。
第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。
3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。
3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。
3.2.3 数列的性质:数列的项的公共性质称为数列的性质。
3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。
3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。
3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。
第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。
4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。
高中必修二数学教材数列教案
高中必修二数学教材数列教案
教学内容:数列
教学目标:1. 了解数列的概念及特点。
2. 掌握常见数列的表示方法及性质。
3. 能够解决与数列相关的问题。
教学重点:数列的概念、常见数列的特点、递推公式的求解。
教学难点:数列的性质应用题的解题技巧。
教学准备:黑板、彩色粉笔、教学PPT、习题集。
教学过程:
1. 概念引入:通过举例引入数列的概念,让学生了解什么是数列,并询问学生对数列的认识。
2. 数列的表示方法:介绍等差数列、等比数列等常见数列的表示方法及特点,并通过实例引导学生理解。
3. 数列的性质:讲解数列的性质,如首项、公差、通项公式等,让学生掌握数列的基本概念。
4. 数列的递推公式:通过实例引导学生如何求解数列的递推公式,让学生熟练掌握求解方法。
5. 综合练习:布置一些数列的练习题目,让学生独立解题,并及时纠正学生的错误。
6. 总结提问:对本节课所学的知识进行总结,并提出一些问题让学生思考,加深对数列的理解。
7. 课后作业:布置一些相关的练习题目,帮助学生巩固复习所学知识。
教学反思:在教学过程中要注重引导学生思考和探究,通过实例让学生理解数列的概念及性质,让学生在解题中得到实际应用。
同时要及时纠正学生的错误,并鼓励他们勇于探索和学习。
数列的概念教案
数列的概念教案教学目标:1. 理解数列的概念和基本特征;2. 能够识别数列中的常数项和通项;3. 能够根据规律确定数列的公式;4. 能够应用数列的特性解决问题。
教学准备:1. 幻灯片或白板、马克笔;2. 数列的示例题目。
教学过程:导入:(5分钟)1. 引入数列的概念:数列是指按照一定规律排列的一列数的集合。
数列中的每个数称为项。
2. 引导学生思考数列的例子:例如1,3,5,7,9是一个数列,其中的每个数都按加2的规律依次递增。
3. 提出问题:学生们有没有发现数列中的规律?如何确定数列的下一个数?探究:(15分钟)1. 给出示例数列:2,4,6,8,10,...2. 让学生观察数列,推测规律并列出下一个数。
3. 学生演示推理过程,例如:每个数都比前一个数大2,所以下一个数是12。
4. 引导学生总结:这个数列的规律是每个数比前一个数大2。
这个规律被称为数列的公式或通项公式。
5. 引入数列的常数项:数列中的某个特定项,如数列2,4,6,8,10,...中的10。
6. 引导学生区分常数项和通项。
示范与练习:(15分钟)1. 给出新的数列示例,如2,4,8,16,32,...2. 让学生观察数列,思考常数项和通项的确定。
3. 鼓励学生进行讨论,并给予提示,例如:每个数都是前一个数乘以2,所以通项公式为An = 2^n。
4. 让学生尝试应用通项公式计算数列的其他项。
拓展与应用:(10分钟)1. 给出更复杂的数列示例,让学生运用已学知识确定规律和通项公式。
2. 提供问题情境,让学生应用数列的概念解决实际问题。
归纳与总结:(5分钟)1. 学生回顾本节课学到的数列概念、特征和运用方法。
2. 教师总结并强调数列在数学和实际问题中的重要性。
展示与评价:1. 学生展示他们对数列概念的理解,可以通过口头回答问题或完成练习题的形式进行评价。
2. 教师给予反馈和评价,并鼓励学生进一步探究数列的性质和应用。
数列教学设计精选5篇
数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。
长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。
但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。
新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。
”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。
“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。
近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。
一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。
上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。
教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。
然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。
第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。
学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。
人教版高中数学《数列》全部教案
人教版高中数学《数列》全部教案人教版高中数学《数列》全部教案一、教学目标1、理解数列的概念,掌握数列的通项公式及其求解方法。
2、掌握等差数列和等比数列的特点及其求解方法。
3、能够根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
二、教学内容1、数列的概念及通项公式2、等差数列的特点及求解方法3、等比数列的特点及求解方法4、数列在实际问题中的应用三、教学方法1、讲授数列的概念及通项公式,通过例题和练习题加深学生对数列的理解。
2、通过实例和练习题,让学生掌握等差数列和等比数列的特点及求解方法。
3、通过案例分析和实际问题,让学生了解如何根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
四、教学步骤1、导入新课:通过一些简单的练习题,让学生了解数列的概念及通项公式。
2、讲授新课:(1)数列的概念及通项公式(2)等差数列的特点及求解方法(3)等比数列的特点及求解方法(4)数列在实际问题中的应用3、课堂练习:通过一些例题和练习题,让学生进一步掌握数列的概念及通项公式、等差数列和等比数列的特点及求解方法。
4、课堂小结:对本节课的内容进行总结,强调数列在实际问题中的应用。
5、布置作业:让学生进一步巩固本节课所学内容,提高对数列的理解和应用能力。
五、教学重点难点1、数列的概念及通项公式的理解。
2、等差数列和等比数列的求解方法。
3、如何根据实际问题中的数据特点,建立相应的数列模型。
六、教学评价1、通过课堂练习和作业,检查学生对数列的理解和应用能力。
2、通过实际问题的解决,评价学生对数列的应用能力。
3、通过学生之间的交流和讨论,了解学生对数列的理解情况。
七、教学建议1、加强对数列概念的理解,注重数列的实际应用。
2、练习等差数列和等比数列的求解方法,掌握其特点。
3、注重数列在实际问题中的应用,提高学生的数学应用能力。
4、提倡学生之间的合作学习,通过交流和讨论,加深对数列的理解。
八、教学实例例1:已知某品牌汽车的价格为20万元,每年按发票金额的10%递增,求5年后该汽车的价格。
高中数学数列教案文件
高中数学数列教案文件
一、教学目标:
1. 知识目标:了解数列的概念、性质及常见数列的求和公式。
2. 能力目标:掌握数列的概念和性质,能够运用数列的知识解决实际问题。
3. 情感目标:激发学生对数学的兴趣,培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点:
1. 教学重点:数列的概念、性质和常见数列的求和公式。
2. 教学难点:能够灵活运用数列的知识解决实际问题。
三、教学过程:
1. 导入:通过提出一个实际问题引入数列的概念,让学生了解数列的定义和常见的数列类型。
2. 讲解:介绍数列的概念和性质,如等差数列、等比数列等,并讲解常见数列的求和公式。
3. 练习:布置练习题让学生通过练习加深对数列的理解和运用。
4. 拓展:引导学生运用数列的知识解决实际问题,拓展学生的思维广度。
5. 总结:总结数列的知识点,强化学生对数列的掌握和应用能力。
四、课堂作业:
1. 完成练习题,加深对数列的理解和掌握。
2. 找出身边的例子,分析是否符合数列的概念。
3. 思考如何运用数列的知识解决实际问题。
五、教学反馈:
及时对学生的作业进行批改和评价,引导学生对数列的理解和应用进行反思和总结,及时
纠正和加强学生的掌握程度。
关于高中数学数列的教案
关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。
二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。
三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。
四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。
2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。
3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。
4. 练习:让学生进行数列的计算练习,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。
6. 总结:总结本节课的重点知识,梳理数列的学习内容。
7. 作业:布置相关练习,巩固学生所学的知识。
五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。
六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。
七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。
八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。
以上教案为高中数学数列的教学范本,希望能对您有所帮助。
数列的概念教案范文
数列的概念教案范文一、教学目标1.知识目标:了解数列的概念和性质,并能够利用递推关系式或通项公式求解数列中的值。
2.能力目标:培养学生的逻辑思维和数学推理能力,以及解决实际问题的能力。
3.情感目标:培养学生的数学兴趣,增强学生对数学的自信心。
二、教学重点1.数列的概念和性质2.求解数列中的值的方法三、教学难点1.利用递推关系式或通项公式求解数列中的值的方法2.将数列的概念和性质应用于实际问题的解决四、教学过程Step 1 引入新知1.教师出示一些有规律的数字,请学生观察并猜测规律。
2.学生发言,教师引导学生讨论并总结数列的概念。
Step 2 知识讲解1.通过示意图或表格的形式,讲解数列的定义和常见表示方式。
2.介绍等差数列和等比数列的概念,并比较它们的差异。
Step 3 学习练习1.学生以小组形式解答一些简单的数列问题,如求解数列中的一些值。
2.教师对学生的答案进行点评和讲解,并引导学生思考问题解决的方法和思路。
Step 4 拓展延伸1.给学生一些挑战性的问题,要求学生思考并解答,如求解递推数列的通项公式。
2.学生小组合作,利用已掌握的知识解决实际问题,如等差数列的应用等。
Step 5 归纳总结1.教师和学生共同总结数列的概念和性质,并将其应用于实际问题的解决。
2.学生提交书面总结,教师进行评价和点评。
五、课堂延伸1.学生可以在日常生活中找到更多的数列例子,并尝试运用数列的概念解决问题。
2.学生可以进一步研究数列的进一步性质,如等差数列的和公式和等比数列的收敛性等。
六、教学评价1.学生的参与度和表现2.学生的书面总结3.学生在课后练习中的实际表现七、教学反思通过本节课的教学,学生对于数列的概念有了初步的了解,并能够运用递推关系式或通项公式求解数列中的值。
同时,通过实际问题的解决,学生的数学兴趣和自信心也有所提高。
但是,在课堂上学生的参与度还不够高,教师需要更加灵活的教学方法和形式来激发学生的积极性。
初中数学数列求值问题教案
初中数学数列求值问题教案教学目标:1. 理解数列的概念,掌握数列的通项公式。
2. 学会使用数列的求和公式,解决数列求值问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 数列的概念和通项公式2. 数列的求和公式3. 数列求值问题的解决方法教学步骤:一、导入(5分钟)1. 引入数列的概念,让学生回顾已学的数列知识。
2. 提问:什么是数列?数列有什么特点?二、讲解数列的通项公式(15分钟)1. 讲解数列的通项公式的定义和意义。
2. 通过示例,让学生理解并掌握通项公式的应用。
三、讲解数列的求和公式(15分钟)1. 讲解数列的求和公式的定义和意义。
2. 通过示例,让学生理解并掌握求和公式的应用。
四、解决数列求值问题(15分钟)1. 讲解数列求值问题的解决方法。
2. 通过示例,让学生理解并掌握解决数列求值问题的方法。
五、练习和巩固(10分钟)1. 给学生发放练习题,让学生独立完成。
2. 讲解练习题的解题思路和方法。
六、总结和布置作业(5分钟)1. 对本节课的内容进行总结,让学生巩固所学知识。
2. 布置作业,让学生进一步巩固和提高。
教学评价:1. 课后收集学生的练习作业,评估学生对数列求值问题的掌握程度。
2. 在下一节课开始时,进行数列求值问题的课堂测试,评估学生对数列求值问题的掌握情况。
教学反思:本节课通过讲解数列的通项公式和求和公式,让学生掌握了数列求值问题的解决方法。
在教学过程中,要注意引导学生理解和掌握通项公式和求和公式的应用,通过示例和练习题,让学生巩固所学知识。
同时,要培养学生的逻辑思维能力和解决问题的能力,提高他们解决数列求值问题的能力。
数列教案教材分析
数列教案教材分析教案标题:数列教案教材分析教案目标:通过本节课的学习,学生将能够理解数列的概念,掌握数列的常见类型和求解方法,并能够运用所学知识解决实际问题。
教材分析:本节课的教材主要包括以下内容:1. 数列的定义和基本概念:引导学生了解数列的定义和基本特征,包括项、公式、通项等概念的理解。
2. 数列的常见类型:介绍等差数列、等比数列和斐波那契数列等常见数列的特点和求解方法。
3. 数列的应用:引导学生了解数列在实际生活中的应用,如金融、人口统计等领域。
教学重点:1. 理解数列的概念和基本特征。
2. 掌握等差数列、等比数列和斐波那契数列的求解方法。
3. 运用数列解决实际问题。
教学难点:1. 理解数列概念的抽象性和数学符号的运用。
2. 掌握等差数列、等比数列和斐波那契数列的求解方法的灵活运用。
教学方法:1. 情境导入法:通过引入一个与数列相关的实际问题,激发学生对数列的兴趣和学习的动机。
2. 讲授法:通过讲解数列的定义、基本特征和常见类型,帮助学生建立数列的概念框架,并掌握相关的求解方法。
3. 实例演练法:通过给出一些具体的数列例子,引导学生进行分析和求解,培养学生的数学思维和解题能力。
4. 合作学习法:组织学生进行小组合作,共同解决一些应用问题,培养学生的合作意识和团队精神。
教学步骤:1. 情境导入:通过一个与数列相关的实际问题,引起学生对数列的思考,并激发学习兴趣。
2. 概念讲解:介绍数列的定义和基本特征,引导学生理解数列的概念和相关术语。
3. 常见类型讲解:讲解等差数列、等比数列和斐波那契数列的定义、特点和求解方法。
4. 实例演练:给出一些具体的数列例子,引导学生进行分析和求解,巩固所学知识。
5. 应用拓展:引导学生思考数列在实际问题中的应用,并进行小组合作解决一些应用问题。
6. 总结归纳:对本节课所学内容进行总结,强化学生对数列的理解和掌握程度。
7. 作业布置:布置相关的练习作业,巩固所学知识。
《数列综合应用举例》教案
《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。
通过实例让学生了解数列的基本形式,如等差数列、等比数列等。
1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。
通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。
第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。
通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。
2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。
通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。
第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。
通过实例让学生了解数列极限的性质,如保号性、单调性等。
3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。
通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。
第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。
通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。
4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。
通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。
第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。
通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。
5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。
通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。
数列教案优秀3篇
数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。
教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。
这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。
【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。
【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。
对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。
二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。
(2)会简单运用等差数列的前n项和公式。
(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。
(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
三、教学模式与教法、学法本课采用“探究―发现”教学模式。
教师的教法:突出活动的组织设计与方法的引导。
学生的学法:突出探究、发现与交流。
四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。
这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。
《数学》教案:等比数列
4.某企业2014年的年产值为2 000万元,若产值在2014年的基础上,每年递增10%,问2020年该企业的年产值能够达到多少万元?(精确到0.01万元)
5.某人计划贷款买一部家用汽车,贷款150 000元,贷款期限为5年,年利率为5.20%,按复利计息法计算利息.如果5年后一次性还款,此人应偿还银行多少钱?(精确到0.01元)
解设这个等比数列的第1项为 公比为q,那么
①
②
②÷①,得
将 代入式①,可得
于是
三、等比数列的前n项和公式
等比数列的前n项和公式为
.(7-5)
例6求下列数列前8项的和:
(1) ;(2)
解(1)因 ,所以,当 时,
(2)因 ,所以,当 时,
讲解
说明
分析
讲解
提问
讲解
说明
分析
讲解
提问
讲解
说明
分析
讲解
提问
理解
【教学设备】
电脑、投影仪。
【教学时间】
2课时(90 min)。
【教学过程】
环节
教学内容
教师
Байду номын сангаас活动
学生活动
设计意图
新课讲解
一、等比数列的定义
一般地,如果一个数列从第2项起,每一项与其前一项的比都等于同一常数,那么,这个数列称为等比数列,这个常数称为等比数列的公比,用字母q 表示.
如果三个数a,G,b成等比数列,则
(3) ;
(4) ;
(5) ;
(6) .
2.求出下列等比数列中的未知项:
(1) ;(2) ,且 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
(2)
(1)-(2)得: a1 ∴ S m n m n a1
m n 1 d 1 2
2 d m n
m n m n 1
2 (法二)设 S n An Bn ,则
An2 Bn m 2 Am Bm n
3 a b a 3d a1d ∵ 4 4 得 1 , 9 a10 b10 a1 9d a1d
3d a1 (d 3 1) 即 , 9 9d a1 (d 1)
两式相除,整理得: d 6 d 3 2 0 ,∴ d 3 1 (舍去),或 d 3 2 ,故 a1 3 2 , d 3 2 . (2)由(1)得 an (2 n ) 3 2 , bn ( 3 2 ) n . ∴ b16 ( 3 2 )16 32 3 2 ,
3
∴当 n 7 时, Tn b1 b2 bn ( 当 n 7 时,
7n 2 )n 1 n 2 13 n 2 4 4
1 13 Tn b1 b2 b7 b8 b9 bn 2S 7 (b1 b2 bn ) n 2 n 21 4 4 1 2 13 n n (n 7) 4 4 ∴ Tn 1 n 2 13 n 21 (n 7) 4 4
1 的 等 比 数 列 , 数 列 {bn } 满 足 10
1 lg a1 lg a2 lg ak (k N * ) , k (1)求数列 {bn } 的前 n 项和的最大值; bk
(2)求数列 {|bn |} 的前 n 项和 Tn .
4 n 解: (1)由题意: an 10 ,∴ lg an 4 n ,∴数列 {lg an } 是首项为 3,公差为 1 的等
等比数列的概念与性质
【例 1】 (1)等比数列 an 中, a1 an 66 , a2 an 1 128 ,前 n 项和 Sn 126 ,求 n 和 公比 q ; (2)等比数列中 q 2 , S99 77 ,求 a3 a6 a9 a99 . 解: (1) a1an a2 an 1 128 ,又 a1 an 66 ,
(1) (2)
(1) (2) 得: (n m ) A (n m) B m n , m n , ∴ ( m n) A B 1 ,
2 ∴ S n m (n m) A (n m) B (n m) .
2
2
150
5.2
典型范例
考点:等比数列
A.
1 2
B.
2 2
2
C.
8
2
D.2
4 2
提示: 设公比为 q ,由已知得 a1q a1q 2 a1q 正数,所以 q
,即 q
2
2 ,又因为等比数列 {an } 的公比为
2 ,故 a1
a2 1 2 ,选 B q 2 2
2.(2010 山东文)设数列 {an } 是首项大于零的等比数列,则“ a1 a2 ”是数列 {an } 是递增 数列的( ) B.必要而不充分条件 A.充分而不必要条件
〖变式〗 等差数列 an 的公差和等比数列 bn 的公比都是 d ( d 1 ) 且 a1 b1 ,a4 b4 ,
a10 b10 .
(1)求实数 a1 和 d 的值; (2) b16 是不是数列 an 中的项?如果是,是第几项?如果不是,说明理由. 解:(1) an a1 (n 1)d , bn b1 d n 1
A.16 提示: S 4 4a1 B.24 C.36 D.48
)
4 (4 1) 2 6d 20 , d 3 ,故 S 6 3 15d 48 ,选 D. 2
3. (2011 天津文) 已知 an 是等差数列, 若 a3 16 ,S 20 20 , S n 为其前 n 项和,n N . 则 S10 的值为 .
∴ a3 a6 a9 a99
1 1 1) (a3 a6 a99 ) . q2 q
4 77 44 . 7
2
〖变式〗 1. (2009 广东文)已知等比数列 {an } 的公比为正数, 且 a3 ·a9 =2 a5 ,a2 =1, 则 a1 = ( )
6 6 3 3 4 2 5 1 由 a7 a1q 1 ,得 a1 q ,从而 a4 a1q q , a5 a1q q , a6 a1q q .
,a6 成等差数列,所以 a4 a6 2(a5 1) , 因为 a4,a5 1
即q q
3 1
【变式】 1.设数列 an 是等差数列,且 a2 8 , a15 5 , S n 是数列 an 的前 n 项和,则
149
A. S10 S11 提示 C, S 9
B. S10 S11
C. S9 S10
D. S9 S10
( a d ) a15 a2 a16 a 2 a15 d , S10 2 S 9 S10 2 2 2 5 ( 8) 13 69 另法:由 a2 8 , a15 5 ,得 d ,计算知 S9 S10 , a1 a 2 d 15 8 7 7
a 64 a 2 ∴ 1 或 1 . an 64 an 2
1 a1 an q q 2 q 126 ,∴ 或 2. 1 q n 6 n 6
又 Sn
(2)∵ S99 (a1 a4 a97 ) ( a2 a5 a98 ) (a3 a6 a99 ) = (
提示:设公差为 d ,由题设
a3 a1 2d 16, 解得 d 2 , a1 20 . S 20 20a1 190d 20.
S10 10a1 45d 10 20 45 2 110 .答案为 110.
【 例 2 】 数 列 {an } 是 首 项 为 1000 , 公 比 为
第七章
7. 1
典型范例
考点:等差数列 【例 1】在等差数列 an 中, (1)已知 a15 33 , a45 153 ,求 a61 ; (2)已知 S8 48 , S12 168 ,求 a1 和 d ; (3)已知 a16 3 ,求 S31 .
数列
等差数列的概念与性质
解(1)解法一:设首项为 a1 ,公差为 d ,依题设条件,得
2(q2 1) , q1 (q 2 1) 2(q2 1) .
n 1
1 1 n 1 6 n 1 所以 q .故 an a1q q q 64 2 2
.
1 n 64 1 1 n 2 a1 (1 q n ) 128 1 128 . (2) S n 1 1 q 2 1 2
(1)设 bn an1 an ( n N * ) ,证明 {bn } 是等比数列; (2)求数列 {an } 的通项公式; (3并证明:对任意的 n N * , an 是 an3 与 an 6 的等差中项. 本小题主要考查等差数列、 等比数列的概念、 等比数列的通项公式及前 n 项和公式, 考查运算能力和推理论证能力及分类讨论的思想方法.满分 12 分. (1)证明:由题设 an1 (1 q)an qan 1 ( n 2 ) ,得
151
【例 2】已知实数列 {an }是 等比数列,其中 a 7 1, 且a4 , a5 1, a6 成等差数列. (1)求数列 {an } 的通项公式; (2)数列 {an } 的前 n 项和记为 S n , 证明: S n , <128 ( n 1,2,3, …). 解: (1)设等比数列 an 的公比为 q( q R ) ,
差数列,
k ( k 1) 1 n( n 1) 7 n ] ,∴ bn [3n 2 n 2 2 bn 0 21 由 ,得 6 n 7 ,∴数列 {bn } 的前 n 项和的最大值为 S 6 S7 2 bn 1 0
∴ lg a1 lg a2 lg ak 3k (2)由(1)当 n 7 时, bn 0 ,当 n 7 时, bn 0 ,
C.充分必要条件 D.既不充分也不必要条件 提示:由 a1 a2 ,设数列 {an } 的公比为 q , 得 a1 a1q ,则 q 1 ,数列 {an } 为递增数列; 反之,若数列 {an } 是递增数列,则公比 q 1 所以 a1 a1q ,即 a1 a2 ,故“ a1 a2 ” 是数列 {an } 是递增数列的充分必要条件.答案选 C. 3. (2011 辽宁文)若等比数列{an}满足 ∙ = 16 ,则公比为( ) A.2 B.4 C.8 D.16 提示: 分别取 = 1,2代入, 两式相除可得 = ±4, 再判断 为正 (为什么?) 可得答案选 B.
a1 14d 33 , a1 44d 153
解方程组得 a1 = -23, d = 4. ∴
a61 = -23+(61-1)×4=217.
an am , nm
解法二:由 d 得d
a45 a15 153 33 4, 45 15 45 15
由 an am (n m)d 得 a61 a45 16d 153 16 4 217 . (2)∵ Sn na1
A. 1 B. 1 C. 3 D.7
提示:∵ a1 a3 a5 105 即 3a 3 105 ∴ a3 35 同理可得 a4 33 ∴公差 d a 4 a 3 2 ∴ a 20 a4 (20 4) d 1 .选 B.