高中必修1-5错误解题分析系列-《6.4空间角和距离》
2024高考数学基础知识综合复习第21讲空间角与距离课件
3
A.-4
3
B.4
1
C.8
1
D.-8
解析 如图,取 CC1 中点 M,AC 中点 N,连接 MN,MB1,NB1,NB.
在直三棱柱 ABC-A1B1C1 中,AC=AA1=2,BC=1,所以 AA1⊥平面 A1B1C1.
设
2-
BM=t,因为△B1C1M∽△CNC1,由相似比得
2
解得
2 2 -2+4
AN=
,由等面积法得
2-
2 -2+4
≥1(当且仅当
3
CG=
2 3
2 -2+4
=
2
4
,CN= ,由余弦定理可
2-
,所以
1
tan∠C1GC=
t=1 时,等号成立),故(cos∠C1GC)max=
求解.
考向3
二面角
典例4直三棱柱ABC-A1B1C1中,各棱长均等于2,M为线段BB1上的动点,则平
面ABC与平面AMC
1所成的二面角为锐角,则该角的余弦值的最大值为
2
___________.
2
解析 延长 C1M 交 CB 于点 N,连接 AN,则平面 AMC1∩平面 ABC=AN,作 CG
⊥AN 于点 G,连接 C1G,∠C1GC 为所求的二面角的平面角.
1.空间角
(1)异面直线所成的角
①定义:已知两条异面直线 a,b 经过空间任一点 O 分别作直线 a'∥a,b'∥b,
我们把直线 a'与 b'所成的角叫做异面直线 a 与 b 所成的角(或夹角).
浅谈立体几何中空间角和距离问题
yzNB CC 11B 11A A 11 Mx浅谈空间角、距离--向量解法随着高考对立体几何考查力度的加大,立体几何中空间向量的运用,已成为解答立体几何问题的通性、通法.利用空间向量来解答问题,能将空间抽象思维转化为坐标运算问题,从而降低了对空间想象能力的要求.以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是不少立体几何题的主要特征。
用空间向量解立体几何问题,较为程序化,思路自然且较少添加辅助线,更易于被学生接受。
1.空间中夹角的向量求法在立体几何中,空间的角有:异面直线所成的角,直线和平面所成的角,平面和平面所成的角即二面角。
俗称线线角,线面角、面面角。
我们经常遇到求角的问题,这个问题一般都是转化为直线与直线的角来计算,总是先定位,后算其值。
但有时定位非常麻烦,难点在于不知道所求的角在哪儿?辅助线怎么作?灵活运用向量法,这些问题就迎刃而解,下面通过几个例子来说明向量在求角中的应用。
1.1. 异面直线夹角的向量求法异面直线之间夹角的计算可以转化为异面直线间方向向量的夹角的计算,设异面直线n m ,所成的角为θ,则θ等于n m ,的方向向量b a ,所成的角或其补角的大小,则||||||cos b a b a ∙∙=θ。
例1(2000年高考新课程卷试题)如图,直三棱柱ABC —A 1B 1C 1的底面三角形ABC 中,CA=CB=1,∠BCA=900,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点。
(1)求BN 的长;(2)求><11,cos CB BA 的值。
解:以C 为原点建立如图空间直角坐标系, (1)B (0,1,0),N (1,0,1), ∴3)01()10()01(||222=-+-+-=BN (2))2,1,0(),0,0,0(),2,0,1(11B C A∴5||,6||11==CB BA , 且3)2,1,0()2,0,1(11=⋅=⋅CB BA , ∴1030||||111111,cos =>=<⋅⋅CB BA CB BA CB BA1.2. 直线与平面所成的角直线l 与平面α成角θ,a 是直线l 的方向向量,b 是平面α的一个法向量, 则|||||||,cos |sin b a b a b a ∙∙=><=θ。
高考数学高频考点突破-空间角与距离课件
5 3.
立体几何中常涉及的距离 (1)点面距离;(2)线面距离;(3)面面距离. 其中,点面距离是线面距离、面面距离的基础,求其他 两种距离一般应化归为这一种距离,再通过解三角形而得到 解决.
[例3] 已知正三棱柱ABC-A1B1C1中, 点D是棱AB的中点,BC=1,AA1= 3. (1)求C1到平面A1DC的距离; (2)求二面角D-A1C-A的大小.
13 13 .
利用空间向量解决探索性问题,它无需进行复杂繁难的 作图、论证、推理,只须通过坐标运算进行判断,在解题过 程中,往往把“是否存在”问题,转化为“点的坐标是否有 解,是否有规定范围的解”等,可以使问题的解决更简单、 有效,应善于运用这一方法.
[例4] 如图,四边形ABCD是边长为1的正 方形,MD⊥平面ABCD,NB⊥平面ABCD, 且MD=NB=1,E为BC的中点. (1)求异面直线NE与AM所成角的余弦值; (2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在, 求线段AS的长;若不存在,请说明理由.
在 Rt△A1AN 中,A1N=
AN2+A1A中,
A1F= A1C21+CF1F2= 14. 在△A1NF 中,cos∠A1NF=A1N22+·AF1NN·2F-NA1F2=23.
所以
sin∠A1NF=
5 3.
所以二面角
A1-ED-F
的正弦值为
|=-35.
所以异面直线 EF 与 A1D 所成角的余弦值为35.
(2)证明:连接ED,易知 AF =(1,2,1),
EA1
=(-1,-
3 2
,4),
ED=(-1,12,0),
于是 AF ·EA1 =0, AF ·ED =0. 因此,AF⊥EA1,AF⊥ED. 又EA1∩ED=E,所以AF⊥平面A1ED.
高考数学总复习考点知识专题讲解43---空间角与距离
如图,以 O 为坐标原点,射线 OB,OC 分别为 x 轴,y 轴的正半轴建立空间直角坐标系 O-xyz,
则 P(0,- 3,2),A(0,- 3,0),B(1,0,0),C(0, 3,
0),
→
→
|AB·n|
的法向量,则 B 到平面 α 的距离为|BO|=
|n|
.
两个提醒 (1)线面角 θ 的正弦值等于直线的方向向量 a 与平面的法 向量 n 所成角的余弦值的绝对值,即 sinθ=|cos〈a,n〉|,
不要误记为 cosθ=|cos〈a,n〉|.
(2)二面角与法向量的夹角:利用平面的法向量求二面角 的大小时,当求出两半平面 α,β 的法向量 n1,n2 时,要根 据向量坐标在图形中观察法向量的方向,来确定二面角与向 量 n1,n2 的夹角是相等,还是互补.
BB1 为 z 轴,建立空间直角坐标系如图所示,设 AB=BC=AA1
→ =2,则 C1(2,0,2),E(0,1,0),F(0,0,1),∴EF=(0,-1,1),
→
→→
BC1=(2,0,2),∴EF·BC1=2,
∴cos〈E→F,B→C1〉=
2 2×2
2=12,
则 EF 和 BC1 所成的角是 60°,故选 C.
(2020·大连外国语学校月考)如图所示,在三棱柱 ABC- A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°, Байду номын сангаас E,F 分别是棱 AB,BB1 的中点,则直线 EF 和 BC1 所成 的角是( C )
A.30° C.60°
空间角度与距离归类高二数学选择性必修第一册)(解析版)
专题01空间角度与距离归类目录热点题型归纳【题型一】线面角基础 (1)【题型二】二面角基础 (4)【题型三】异面直线所成的角 (7)【题型四】给角求角(值)1:线面角 (10)【题型五】给角求角(值)2:二面角 (12)【题型六】探索性动点型1:线面角 (15)【题型七】探索性动点型2:二面角 (17)【题型八】翻折中的角度 (20)【题型九】角度范围与最值 (22)【题型十】距离与长度(体积) (26)培优第一阶——基础过关练 (32)培优第二阶——能力提升练 (37)培优第三阶——培优拔尖练 (42)【题型一】线面角基础【典例分析】如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN BM ∥,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:CD ∥平面PBM ;(2)求证:平面ANMB ⊥平面NMP ;(3)求直线CD 与平面ABP 所成角的正弦值.【答案】(1)证明见解析(2)证明见解析【分析】(1)取MN 中点Q ,连CQ ,DQ ,由线面平行的判定定理可得DQ ∥平面BMP ,CQ ∥平面BMP ,再由面面平行的判定定理可得平面CDQ ∥平面BMP 及性质定理可得答案;(2)过B 作BE MN ∥交AN 于E ,利用222AB AE BE =+得AE BE ⊥,由线面垂直的判定定理可得AN ⊥平面NMP ,面面垂直的判定定理可得答案;(3)以D 为原点建立空间直角坐标系,求出平面ABP 的法向量,由线面角的向量求法可得答案.(1)如图,取MN 中点Q ,连CQ ,DQ ,∵DQ 为中位线,∴DQ MP ∥,又DQ ⊄平面BMP ,MP ⊂平面BMP ,∴DQ ∥平面BMP ,同理,在梯形ABMN 中,CQ MB ∥,又CQ ⊄平面BMP ,MB ⊂平面BMP ,∴CQ ∥平面BMP ,且DQ ⊂平面CDQ ,CQ ⊂平面CDQ ,DQ CQ Q ⋂=,∴平面CDQ ∥平面BMP ,又CD ⊂平面CDQ ,所以CD ∥平面BMP.(2)如上图,在四边形ABMN 中,过B 作BE MN ∥交AN 于E ,在AEB △中,得2AE =,2BE =,AB =,则222AB AE BE =+,得AE BE ⊥,∵BE MN ∥,∴AN NM ⊥,又由已知条件AN NP ⊥,NM NP N ⋂=,,⊂NM NP 平面NMP ,故AN ⊥平面NMP ,又AN ⊂平面ANMB ,∴平面ANMB ⊥平面NMP .(3)∵PMN 为等腰三角形,∴DM NP ⊥,又因为AN ⊥平面MNP ,以D 为原点建立空间直角坐标系,如图:可得()0,0,0D ,()1,0,0P ,()1,0,0N -,()M ,()1,0,3A -,()B,122C ⎛⎫- ⎪ ⎪⎝⎭,设平面ABP 的法向量为(),,n x y z =,()2AB =-,()2,0,3AP =-,根据00⎧⋅=⎪⎨⋅=⎪⎩n AB n AP ,得20230⎧-=⎪⎨-=⎪⎩x z x z ,解得2n ⎛⎫= ⎪ ⎪⎝⎭,122DC ⎛⎫=- ⎪ ⎪⎝⎭,设直线CD 与平面ABP 所成角为θ,则sin cos ,3142220CD n n CD n θ⋅==⋅-++=,故直线CD 与平面ABP所成角的正弦值sin θ=直线与平面所成的角(射影角,也是夹角,[0.]2πϑ∈)m n ,是平面法向量121212222222111222|x x +y +|sin |cos a |=+y +z ++y z z b x y z θ=,x 【变式训练】如图,在四棱锥P ABCD -中,底面ABCD 为菱形,E ,F 分别为PA ,BC 的中点,(1)证明://EF 平面PCD .(2)若PD ⊥平面ABCD ,120ADC =∠︒,且24PD AD ==,求直线AF 与平面DEF 所成角的正弦值.【答案】(1)证明见解析(2)35【分析】(1)取PD 的中点G ,利用线面平行的判定定理即可证明;(2)建立空间直角坐标系,写出各点的坐标,求出平面DEF 的法向量,再求线面角.(1)证明:取PD 的中点G ,连接CG ,EG .因为E ,F 分别为PA ,BC 的中点,所以EG AD ∥,1=2EG AD ,又底面ABCD 为菱形,所以CF AD ∥,2CF AD =1所以EG CF ∥,EG CF =,所以四边形EGCF 为平行四边形,所以EF CG ∥.又CG ⊂平面PCD ,EF ⊄平面PCD ,所以EF ∥平面PCD .(2)因为PD ⊥平面ABCD ,120ADC =∠︒,所以以D 为坐标原点建立如图所示的空间直角坐标系D xyz -.因为2,4AD PD ==,所以()0,0,0D ,)F,()0,2,0A ,()0,1,2E ,则()0,1,2DE =,)DF =,)2,0AF =-,设平面DEF 的法向量(),,m x y z =,则200y z +=⎧⎪=,令1z =,得()0,2,1m =-,设直线AF 与平面DEF 所成的角为θ,则sin m AFm AF θ⋅===【题型二】二面角基础【典例分析】如图,在四棱锥P ABCD -中,ABP △是直角三角形,90APB ∠=︒,四边形ABCD 是等腰梯形,AB CD ∥,60BAD BAP ∠=∠=︒,24AB CD ==.(1)证明:AB DP ⊥;(2)若平面ABCD ⊥平面ABP ,求平面ABP 与平面CDP 的夹角的正弦值.【答案】(1)证明见解析;(2)2.【解析】【分析】(1)取AB 中点E ,取AE 中点F ,由题可得AB DF ⊥,AB FP ⊥,进而可得AB ⊥平面DFP ,即得;(2)建立空间直角坐标系,利用面面角的向量求法即得.(1)如图,取AB 中点E ,连接DE ,EP ,取AE 中点F ,连接DF ,FP ,由题意可知,ADE 和AEP △为全等的等边三角形.因为AB DF ⊥,AB FP ⊥,且DF FP F ⋂=,所以AB ⊥平面DFP ,又因为DP ⊂平面DFP ,所以AB DP ⊥.(2)因为平面ABCD ⊥平面ABP ,且DF AB ⊥,所以DF ⊥平面ABP .以F 为坐标原点,FP ,,FD 的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则)3,0,0P ,(3D ,(3C ,(3,0,3PD =-,(3,3PC =,平面ABP 的一个法向量(3FD =.设平面CDP 的一个法向量(),,n x y z =,则00n PD n PC ⎧⋅=⎨⋅=⎩,即3303230z y z ⎧-=⎪⎨-+=⎪⎩,可取()1,0,1n =,所以2cos ,2FD n FD n FD n ⋅==⋅,所以平面ABP 与平面CDP 的夹角的正弦值为22.【提分秘籍】基本规律二面角(法向量的方向角,[0.]ϑπ∈)n 是平面法向量121212222222111222|x x +y +||cos ||cos m |=+y +z ++y z z n x y z θ=,x【变式训练】如图所示,四棱锥S ABCD -中,平面SAD ⊥平面ABCD ,底面ABCD 是边长为2正方形,22,4SA SC ==,AC 与BD 交于点O ,点E 在线段SD 上.(1)求证:SA ⊥平面ABCD ;(2)若//OE 平面SAB ,求二面角S AC E --的余弦值.【答案】(1)证明见解析(2)255【分析】(1)根据面面垂直性质定理得AB ⊥平面SAD ,进而证明SA AB ⊥,再根据集合关系证明SA AC ⊥即可证明结论;(2)根据题意,E 为SD 的中点,进而以,,AB AD AS 分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用坐标法求解即可;(1)证明:因为平面SAD ⊥平面ABCD 且交线为AD ,又AB Ì平面ABCD 且AB AD ⊥,所以AB ⊥平面SAD ,又SA ⊂平面SAD ,所以SA AB ⊥.因为ABCD 是边长为2正方形,所以AC =又4SA SC ==,所以222SA AC SC +=,即SA AC ⊥,又因为AB AC A ⋂=,,AB 平面ABCD ,所以SA ⊥平面ABCD .(2)解:因为OE ∥平面SAB ,OE ⊂平面SBD ,平面SBD 平面SAB SB =,所以OE SB ∥,因为O 为BD 的中点,所以E 为SD 的中点,以,,AB AD AS 分别为x 轴,y 轴,z 轴建立空间直角坐标系,则有()()()()((0,0,0,2,0,0,2,2,0,0,2,0,,A B C D S E ,易得平面SAC 的一个法向量为()2,2,0n DB ==-,设平面EAC 的一个法向量为(),,m x y z =,则00m AE m AC ⎧⋅=⎨⋅=⎩0220y x y ⎧=⎪⇒⎨+=⎪⎩,取1z =,则)m =,设平面SAC 与平面EAC 所成夹角为θ,则cos m n m n θ⋅==⋅u r r u r r SAC 与平面EAC所成夹角的余弦值为.【题型三】异面直线所成的角【典例分析】如图所示,1111ABCD A B C D -是棱长为1的正方体.(1)设11BA C △的重心为O ,求证:直线OD ⊥平面11BA C ;(2)设E 、F 分别是棱AD 、11DC 上的点,且1DE D F a ==,M 为棱AB 的中点,若异面直线DM 与EF所成的角的余弦值为10,求a 的值.【答案】(1)证明见解析;(2)4.【分析】(1)由正方体性质证明1B D ⊥平面11A BC ,1B D 与平面11A BC 的交点即为重心O ,从而证得结论成立;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角,从而求得a 值.(1)设1111A C B D N =,连接1DB ,首先1DD ⊥平面1111D C B A ,11AC ⊂平面1111D C B A ,则111DD A C ⊥,又1111B D A C ⊥,1111DD B D D =,111,DD B D ⊂平面11BDD B ,所以11A C ⊥平面11BDD B ,而1B D ⊂平面11BDD B ,所以111A C B D ⊥,同理11A B B D ⊥,1111A C A B A =,111,AC A B ⊂平面11A BC ,所以1B D ⊥平面11A BC ,连接BN 交1B D 于O ,因为11DA DB DC ==,所以O 是等边11A BC V 的中心也是重心,所以DO ⊥平面11A BC ,(2)如图,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则(,0,0)E a ,1(1,,0)2M ,(0,,1)F a ,1(1,,0)2DM =,(,,1)EF a a =-,由题意22122cos ,1114a a DM EF DM EF DM EF a a -+⋅<>===+⨯++解得:24a =(负值舍去).【提分秘籍】基本规律(1)、异面直线夹角(平移角,也是锐角和直角(0.]2πϑ∈)121212222222111222|x x +y +|cos |cos a |=+y +z ++y z z b x y z θ=,x【变式训练】如图,在直三棱柱111ABC A B C -中,AC BC ==90ACB ∠=︒.12AA =,D 为AB 的中点.(1)求证:1AC ∥平面1B CD ;(2)求异面直线1AC 与1B C 所成角的余弦值.【答案】(1)证明见解析;(2)23.【分析】(1)设1C B 与1B C 的交点为E ,连接DE ,由三角形中位线定理可证得1//DE AC ,从而可得1//AC 平面1CDB ;(2)由1//DE AC 可得CED ∠为1AC 与1B C 所成的角(或其补角),在CDE △中,解三角形可求得cos CED ∠,即为所求.(1)证明:设1C B 与1B C 的交点为E ,连接DE ,∵四边形11BCC B 为正方形,∴E 是1BC 的中点,又D 是AB 的中点,∴1//DE AC .又DE ⊂平面1CDB ,1AC ⊄平面1CDB ,∴1//AC 平面1CDB .(2)解:∵1//DE AC ,∴CED ∠为1AC 与1B C 所成的角(或其补角).在CDE △中,111111,22222ED AC CD AB CE CB ======,∴2222221222cos 23CE DE CD CED CE DE ⎛⎫⎫+- ⎪⎪+-∠===⋅.∴异面直线1AC 与1B C 所成角的余弦值为23.【题型四】给角求角(值)1:线面角【典例分析】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,//BC AD ,2PA AB BC ===,4=AD ,E 为棱PD 的中点,F 是线段PC 上一动点.(1)求证:平面PBC ⊥平面PAB ;(2)若直线BF 与平面ABCD时,求二面角F EA D --的余弦值.【答案】(1)证明见解析(2)【分析】(1)证明出BC ⊥平面PAB ,利用面面垂直的判定定理可证得结论成立;(2)以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设PF PC λ=,其中01λ≤≤,利用已知条件求出λ的值,然后利用空间向量法可求得二面角F EA D --的余弦值.(1)证明:因为AB AD ⊥,//BC AD ,则BC AB ⊥,PA ⊥平面ABCD ,BC ⊂平面ABCD ,BC PA ∴⊥,PA AB A =,PA 、AB Ì平面PAB ,BC ∴⊥平面PAB ,BC ⊂平面PBC ,因此,平面PBC ⊥平面PAB .(2)解:因为PA ⊥底面ABCD ,AB AD ⊥,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()2,2,0C 、()0,4,0D 、()0,2,1E 、()002P ,,,设()()2,2,22,2,2PF PC λλλλλ==-=-,()22,2,22BF BP PF λλλ=+=--,其中01λ≤≤,易知平面ABCD 的一个法向量为()0,0,1u =,由已知可得cos ,u BF u BF u BF⋅<>==⋅,解得12λ=,所以,F 为PC 的中点,即()1,1,1F ,设平面AEF 的法向量为(),,m x y z =,()0,2,1AE =,()1,1,1AF =,则200m AE y z m AF x y z ⎧⋅=+=⎨⋅=++=⎩,取1y =,可得()1,1,2m =-,易知平面ADE 的一个法向量为()1,0,0n =r,所以,cos ,m n m n m n⋅<>==⋅F EA D --的平面角为钝角,故二面角F EA D--的余弦值为.【变式训练】如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=︒,F 为PA 中点,PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求二面角A BC P --的大小;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为30°?若存在,求出FQ 的长;若不存在,说明理由.【答案】(1)证明见解析(2)4π(3)存在,FQ =【分析】(1)首先以点D 为原点,建立空间直角坐标系,求平面DEF 的法向量1n ,利用0AP n ⋅=,即可证明线面垂直;(2)分别求平面BCP 和ABC 的法向量2n 和3n ,利用公式23cos ,n n <>,即可求解;(3)首先利用向量共线,设点)11222Q λλλ⎛⎫+- ⎪ ⎪⎝⎭,,,利用线面角的向量公式,即可求得λ的值.(1)证明:以D 为原点,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,由题意得,()000D ,,,()100A ,,,()110B ,,,()020C ,,,(022E ,,(002P ,,,12022F ⎛ ⎝⎭,,,则()120AC =-,,,平面DEF 的一个法向量()1n x y z =,,,(022DE =,,,12022DF ⎛= ⎝⎭,,,由1122012022n DE y z n DF x ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取2z =,得()12222n =-,,,((112222020AC n ⋅=-⨯-+⨯-+⨯=,1AC n ∴⊥,//AC ∴平面DEF ;(2)设平面PBC 的一个法向量()2,,n x y z =,(1,1,2PB =-,()1,1,0BC =-uu u r,由22200n PB x y z n BC x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1x =,解得(22n =设平面ABC 的一个法向量()30,0,1n =,2323232cos ,2n n n n n n ⋅∴<>==由图可知二面角A BC P --为锐二面角,二面角A BC P --的大小为4π;(3)设存在点Q 满足条件,由(022E ,,12022F ⎛ ⎝⎭,,,设()01FQ FE λλ=≤≤,1212(,,)(,2,)2222Q Q Q x y z λ-=-整理得)211222Q λλλ⎛⎫+- ⎪ ⎪⎝⎭,,,)2112122BQ λλλ⎛⎫++=-- ⎪ ⎪⎝⎭,,,直线BQ 与平面BCP 所成角的大小为30°,2222511sin |cos ,|||62||||219107BQ n BQ n BQ n λπλλ-⋅∴=<>===-+,则21λ=,由01λ≤≤,得1λ=,即点和E 点重合,故在线段EF 上存在一点Q ,且19FQ EF ==【题型五】给角求角(值)2:二面角【典例分析】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PD 上.(1)若E 为PD 的中点,证明://PB 平面AEC ;(2)若2PA =,24PD AB ==,若二面角E AC B --的大小为56π,试求:PE ED 的值.【答案】(1)证明见解析(2)2【分析】(1)连接BD 交AC 于O ,连接OE ,利用中位线的性质可得出//OE PB ,再利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设PE PD λ=,其中01λ≤≤,利用空间向量法可得出关于λ的等式,结合λ的取值范围可求得λ的值,即可得解.(1)证明:连接BD 交AC 于O ,连接OE ,因为四边形ABCD 为矩形,O ∴为BD 的中点,又因为E 为PD 的中点,则//OE PB ,因为OE ⊂平面AEC ,PB ⊄平面AEC ,因此,//PB 平面ACE .(2)解:由题设PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,PA ⊥平面ABCD ,AD ⊂平面ABCD ,PA AD ∴⊥,所以,AD ==,则()C 、()D 、()002P ,,、()0,0,0A ,设()()2,2PE PD λλλ==-=-,其中01λ≤≤,则(),22AE AP PE λ=+=-,()AC =,设平面ACE 的法向量为(),,m x y z =,则()20220m AC x m AE y z λ⎧⋅=+=⎪⎨⋅=+-=⎪⎩,取1y λ=-,可得))1,m λλ=--,易知平面ABC 的一个法向量为()0,0,1n =,由题可得cos ,2m nm n m n⋅<>===⋅,因为01λ≤≤,解得23λ=,此时2PE ED=.【变式训练】如图,在四棱锥E ABCD -中,BC AD ∥,AB AD ⊥,1AB BC ==,3BE =,AE =C ,D 都在平面ABE 的上方.(1)证明:平面BCE ⊥平面ABCD ;(2)若BC BE ⊥,且平面CDE与平面ABE 所成锐二面角的余弦值为46,求四棱锥E ABCD -的体积.【答案】(1)证明见解析.(2)2【分析】(1)先证AB ⊥平面BCE ,再证明平面BCE ⊥平面ABCD .(2)设AD 长为t ,建立空间直角坐标系,计算两个待求平面的法向量,代入公式求出t 的值,然后计算四棱锥的体积.(1)//BC AD AB BC AB AD ⎫⇒⊥⎬⊥⎭,又22210AB BE AE +==所以AB BE ⊥,BC BE B =,所以AB ⊥平面BCE ,又AB Ì平面ABCD所以,平面BCE ⊥平面ABCD .(2)因为BC BE ⊥,结合(1)问易得AB BC BE 、、两两互相垂直,所以建立如图所示的坐标系设AD =t ()0t >,则:()001C ,,,()300E ,,,()01D t ,,所以()301CE =-,,,()011CD t =-,,,设平面CDE 的法向量为()n x y z =,,由00CE n CD n ⎧⋅=⎨⋅=⎩得()3010x z y t z -=⎧⎨+-=⎩令3z =则()1333n t =-,,又CB ⊥平面ABE 所以取平面ABE 的法向量为()001m =,,cos n m n m n m ⋅===,解得3t =或1t =-(舍).即3AD =,所以四边形ABCD 的面积ABCD S ,由题知BE AB BE BC ⊥⊥,,AB BC B ⋂=,BE ∴⊥平面ABCD所以BE 为四棱锥E ABCD -的高,所以四棱锥E ABCD -的体积为1123233ABCD V S BE =⋅=⨯⨯=.故四棱锥E ABCD -的体积为2.【题型六】探索性动点型1:线面角【典例分析】如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,E 是线段1DD 上的动点.(1)求证:AC BE ⊥;(2)是否存在点E ,使得直线AC 与平面1BC E 所成角为45°,若存在,求出DE 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,74DE =.【解析】【分析】(1)利用线面垂直的性质定理进行证明.(2)建立空间直角坐标系,利用空间向量求解.(1)如图,连接1D B ,DB ,在长方体1111ABCD A B C D -中,∵1D D ⊥底面ABCD ,AC ⊂底面ABCD ,∴1D D AC ⊥.又AC DB ⊥,1D D DB D =,∴AC ⊥平面1D DB ,又BE ⊂平面1D DB ,AC BE∴⊥(2)假设存在这样的点E ,使得直线AC 与平面1BC E 所成角为45°.设()02DE λλ=≤≤,如图,以D 为原点,直线DA ,DC ,1DD 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,1,2C ,()0,0,E λ.∴()1,1,0AC =-,()1,1,BE λ=--,()11,0,2BC =-.设平面1BC E 的法向量为(),,m x y z =,则120,0,m BC x z m BE x y z λ⎧⋅=-+=⎨⋅=--+=⎩令2x =,则1z =,2y λ=-.∴平面1BC E 的一个法向量为()2,2,1m λ=-.∴()2222sin 45cos ,24212m AC m AC m ACλλ⋅-+-︒====+-+⨯,解得74λ=.∴存在这样的点E ,当74DE =时,直线AC 与平面1BC E 所成角为45°.【变式训练】在四棱锥P ABCD -中,已知//AB CD ,AB AD ⊥,BC PA ⊥,222AB AD CD ===,6PA =2PC =,E 是PB 上的点.(1)求证:PC ⊥底面ABCD ;(2)是否存在点E 使得PA 与平面EAC 所成角的正弦值为23若存在,求出该点的位置;不存在,请说明理由.【答案】(1)证明见解析(2)存在,E 点为PB 上靠近B 点的三等分点【分析】(1)首先证明BC ⊥面PAC ,再结合线面垂直的判断定理,证明PC ⊥面ABCD ;(2)以A 为原点,建立空间直角坐标系,求平面EAC 的法向量n ,利用1sin cos ,3n AP θ=<=>,即可求得λ的值.(1)在ADC 中:1AD DC ==,90ADC ∠=︒,所以2AC =在ABC 中:2AC ,2AB =,45BAC ∠=︒,由余弦定理有:222cos452BC AB AC AB AC =+-⋅⋅︒=2222BC AB AC BC ∴=+,所以90ACB ∠=︒,所以BC AC⊥①又因为BC PA ⊥②,由①②,PA AC A =,所以BC ⊥面PAC ,所以BC PC ⊥③.在PAC △中:AC =2PC =,PA PC AC ⊥④,由③④,AC BC C =,所以PC ⊥面ABCD .(2)以A 为原点,以AD ,AB ,竖直向上分别为x 、y 、z 轴建立直角坐标系.则有()0,0,0A ,()0,2,0B ,()1,1,0C ,()1,0,0D ,()1,1,2P ,设()()1,1,2,,2BE BP λλλλλ==-=-,则(),2,2AE AB BE λλλ=+=-,()1,1,0AC =,()1,1,2AP =,设(),,n x y z =r为面EAC 的法向量,则有:00n AE n AC ⎧⋅=⎨⋅=⎩,解得(),,1n λλλ=--,设所求线面角为θ,则有in s ,s co AP n θ=><23AP nAP n⋅===||||,解得23210λλ+-=,所以13λ=.所以E 点为PB 上靠近B 点的三等分点,满足条件.【题型七】探索性动点型2:二面角【典例分析】如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为3.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ;(2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为10?若存在,确定点E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点.【分析】(1)根据面面平行的判定定理,即可证明结论成立;(2)假设存在点E 满足题意,根据题中条件,先求出AD 的长,再以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立空间直角坐标系,得到()0,0,0P ,()1,0,0A ,()1,1,0B,(S,设(()()01AE AS λλλλ==-=-≤≤,分别表示出平面PEB 与平面SAD 的一个法向量,根据向量夹角余弦值,求出13λ=,即可得出结果.【详解】(1)证明:因为E 、F 分别是SA 、SB 的中点,所以EF AB ∥,在矩形ABCD 中,AB CD ∥,所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点,所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意.在等边三角形SAD 中,P 为AD 的中点,于是SP AD ⊥,又平面SAD ⊥平面ABCD ,平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高,设AD m =,则2SP m =,ABCD S m =矩形,所以113323S ABCD ABDD V S SP m -=⋅=⋅=矩形,所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()11100n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令x ,则)1,,1n λ=-,易知平面SAD 的一个法向量()20,1,0n =u u r,所以121212cos ,n n n n n n ⋅==10=,因为01λ≤≤,所以13λ=,所以存在点E ,位于AS 的靠近A点的三等分点.【变式训练】如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,且正方形ABCD 边长为2,PA ⊥平面ABCD ,PA =AB ,E 为线段PB 的中点,F 为线段BC 上的动点.(1)求证:AE ⊥平面PBC ;(2)试确定点F 的位置,使平面AEF 与平面PCD 所成的锐二面角为30°.【答案】(1)证明见解析;(2)点F 为BC 中点.【分析】(1)先根据线面垂直性质与判定定理得AE ⊥BC ,再根据等腰三角形性质得AE ⊥PB ,最后根据线面垂直判定定理得结果;(2)先建立空间直角坐标系,利用F 坐标,结合空间向量数量积求二面角,再根据条件列方程解得结果.【详解】(1)∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ,∵ABCD 为正方形,∴AB ⊥BC ,又PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴AE ⊂平面PAB ,∴AE ⊥BC ,∵PA =AB ,E 为线段PB 的中点,∴AE ⊥PB ,又PB ∩BC =B ,PB ,BC ⊂平面PBC ,∴AE ⊥平面PBC ;(2)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,设正方形ABCD 的边长为2,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (1,0,1),∴(1,0,1)AE =,(2,2,2)PC =-,(0,2,2)PD =-uu u r,设F (2,λ,0)(0≤λ≤2),∴(2,,0)AF λ=,设平面AEF 的一个法向量为()111,,n x y z =,则00n AE n AF ⎧⋅=⎨⋅=⎩,∴1111020x z x y λ+=⎧⎨+=⎩,令y 1=2,则11x z λλ=-⎧⎨=⎩,∴(,2,)n λλ=-,设平面PCD 的一个法向量为()222,,m x y z =,则00m PC m PD ⎧⋅=⎨⋅=⎩,∴2222200x y z y z +-=⎧⎨-=⎩,令y 2=1,则2201x z =⎧⎨=⎩,∴()0,1,1m =∵平面AEF 与平面PCD 所成的锐二面角为30°,∴223cos302224m n m nλλ⋅+︒===⨯+u r r u r r ,解得λ=1,∴当点F 为BC 中点时,平面AEF 与平面PCD 所成的锐二面角为30°.【题型八】翻折中的角度【典例分析】如图(一)四边形ABCD 是等腰梯形,DC AB ∥,2DC =,4AB =,60ABC ∠=︒,过D 点作DE AB ⊥,垂足为E 点,将AED 沿DE 折到A ED '位置如图(二),且A C 22'=.(1)证明:平面A ED '⊥平面EBCD ;(2)已知点P 在棱A C '上,且12A P PC '=,求二面角C EP D --的余弦值.【答案】(1)证明见解析(2)4214【分析】(1)根据勾股定理证明A E EC '⊥,再根据线面垂直的判定证明A E '⊥面EBCD ,进而得到平面A ED '⊥平面EBCD ;(2)以E 为坐标原点,建立空间直角坐标系E xyz -,分别求得平面CEP 和平面EPD 的法向量,根据面面角的向量求法求解即可(1)证明:在等腰梯形ABCD 中,DE AB ⊥,∴DE AE ⊥,∴A E DE '⊥2DC =,4AB =,60ABC ∠=︒,∴3BE =,2BC AD ==,3DE =在EBC 中,知7EC =,∵1A E AE '==,∵A C 22'=,∴222A E EC A C ''+=A E EC '⊥,EC ,DE ⊂面EBCD ,EC DE E =,∴A E '⊥面EBCD ∵A E '⊂面A ED ',∴面A ED '⊥面EBCD(2)由(1)知A E '⊥面EBCD ,ED EB ⊥∴以E 为坐标原点,建立如图所示空间直角坐标系E xyz-∴()0,0,1A ',()3,0D ,()3,0C ,()2,3,1CA '=--设∵12A P PC '=,∴23CP CA =',∴23CP CA '=,∴23233EP EC CP ⎛⎫=+= ⎪ ⎪⎝⎭设()1111,,x n y z =是面CEP 的法向量,∴1100n EP n EC ⎧⋅=⎪⎨⋅=⎪⎩,∴111112203320x y z x ⎧+=⎪⎨⎪=⎩,令1x =12y =-,10z =,)12,0n =-设()2222,,n x y z =是面DEP 的法向量,∴2200n EP n ED ⎧⋅=⎪⎨⋅=⎪⎩,∴22222200x z ⎧+=⎪⎨=⎪⎩,∴20y =令21z =-,∴21x =,()21,0,1n =-,cos θ==由图知,二面角C EP D --的余弦值为锐二面角,余弦值14【变式训练】如图1,在等边ABC 中,点D ,E 分别为边AB ,AC 上的动点且满足//DE BC ,记DEBCλ=.将△ADE 沿DE 翻折到△MDE 的位置并使得平面MDE ⊥平面DECB ,连接MB ,MC 得到图2,点N 为MC的中点.(1)当EN ∥平面MBD 时,求λ的值;(2)试探究:随着λ值的变化,二面角B -MD -E 的大小是否改变?如果改变,请说明理由;如果不改变,请求出二面角B MD E --的正弦值大小.【答案】(1)12λ=(2)【分析】(1)首先取MB 的中点为P ,连接DP ,PN ,再结合线面平行的性质即可得到12λ=(2)利用空间向量法求解即可.(1)取MB 的中点为P ,连接DP ,PN ,因为MN CN =,MP BP =,所以NP ∥BC ,又DE ∥BC ,所以NP ∥DE ,即N ,E ,D ,P 四点共面,又EN ∥平面BMD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD =DP ,所以EN ∥PD ,即NEDP 为平行四边形,所以NP =DE ,则DE =12BC ,即λ=12.(2)取DE 的中点O ,连接MO ,则MO ⊥DE ,因为平面MDE ⊥平面DECB ,平面MDE ∩平面DECB =DE ,且MO ⊥DE ,所以MO ⊥平面DECB ,如图建立空间直角坐标系,不妨设2BC =,则()M ,(),0,0D λ,)()1,0B λ-,所以(),0,MD λ=,)()11,0DB λλ=--,设平面BMD 的法向量为(),,m x y z =,则0(1))0MD m x z DB m x y λλλ⎧⋅==⎪⎨⋅=--=⎪⎩,即,x x ⎧=⎪⎨=⎪⎩,令x =)1,1m =-.又平面EMD 的法向量()0,1,0n =,所以cos ,m n m n m n⋅==即随着λ值的变化,二面角B MD E --的大小不变.且25sin ,5m n ==.所以二面角B MD E --.【题型九】角度范围与最值【典例分析】在四棱锥V ABCD -中,底面ABCD 为矩形,平面ABCD ⊥平面VAB .(1)求证:平面VBC ⊥平面VAB ;(2)若VA VB ⊥,2AB BC =,求平面VCD 与平面VAB 所成锐二面角的余弦值的取值范围.【答案】(1)证明见解析;(2).【分析】(1)根据给定条件,利用面面垂直的性质、判定推理作答.(2)在平面VAB 内过V 作VA AB ⊥于O ,以O 为原点建立空间直角坐标系,借助空间向量求解作答.(1)在四棱锥V ABCD -中,底面ABCD 为矩形,有BC AB ⊥,因平面ABCD ⊥平面VAB ,平面ABCD 平面VAB AB =,BC ⊂平面ABCD ,则BC ⊥平面VAB ,又BC ⊂平面VBC ,所以平面VBC ⊥平面VAB .(2)在平面VAB 内过V 作VO AB ⊥于O ,而平面ABCD ⊥平面VAB ,平面ABCD 平面VAB AB =,则VO ⊥平面ABCD ,在平面ABCD 内过O 作Ox AB ⊥,有,,Ox OB OV 两两垂直,以点O为原点,建立如图所示的空间直角坐标系,令2AB =,则4CD =,又VA VB ⊥,设π(0)2BAV θθ∠=<<,于是有2cos VA θ=,sin sin 2VO VA θθ==,因此有(0,0,sin 2)V θ,2(4,2cos ,0)D θ-,2(4,2cos ,sin 2)DV θθ=-,而//DC OB ,直线DC的方向向量(0,1,0)a =,设平面VCD 的法向量为(,,)n x y z =,则242cos sin 200n DV x y z n a y θθ⎧⋅=-++=⎨⋅==⎩,令4z =,得(sin 2,0,4)n θ=,显然,平面VAB 的一个法向量(1,0,0)m =,设平面VCD 与平面VAB 所成锐二面角大小为α,则有||cos |cos ,|||||n m n m n m α⋅=〈〉==π02θ<<,02πθ<<,0sin 21θ<≤,则cos α=≤sin 21θ=,即π4θ=时取“=”,cos 0α>,所以平面VCD 与平面VAB所成锐二面角的余弦值的取值范围是.【变式训练】1.已知四棱锥P ABCD -的底面为正方形,侧面PAD 为等腰直角三角形,2APD π∠=,平面PAD ⊥平面ABCD ,平面PAB ⋂平面PCD l =.(1)求证:l ⊥平面PAD ;(2)设M 为l 上一点,求PC 与平面MAD 所成角正弦值的最小值.【答案】(1)证明见解析;(2)6【分析】(1)先由//AB CD 证得CD //平面PAB ,再由线面平行的性质得//l CD ,最后由面面垂直的性质得CD ⊥平面PAD ,即可得证;(2)建立空间直角坐标系,表示出平面MAD 的法向量,求出PC ,由线面角的向量求法结合二次函数求出最小值即可.(1)由题意知//AB CD ,因为AB Ì平面PAB ,CD ⊄平面PAB ,所以CD //平面PAB .因为平面PAB ⋂平面PCD l =,CD ⊂平面PCD ,所以//l CD ;因为CD AD ⊥,平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,CD ⊂平面ABCD ,所以CD ⊥平面PAD .又//l CD ,所以l ⊥平面PAD ;(2)取AD 中点O ,连接PO ,由△PAD 为等腰直角三角形知PO AD ⊥.又因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD .所以PO ⊥平面ABCD .以O 为原点建立如图所示的空间直角坐标系,则有()()()()0,1,0,0,1,0,0,0,1,2,1,0A D P C -,设PM t =,则(),0,1M t ,则有(),1,1AM t =,()0,2,0AD =,设平面MAD 的一个法向量(),,n x y z =,则有00n AM n AD ⎧⋅=⎨⋅=⎩.即020tx y z y ++=⎧⎨=⎩,令1x =有()1,0,n t =-,()2,1,1PC =-,设PC 与平面MAD 所成角为α,则sin cos ,n PC n PC n PCα⋅=<>=⋅令2t m +=,2t m =-,则sin α=当52m =即12t =时,sin α有最小值6,即PC 与平面MAD2.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)求当面11BB C C 与面DFE 所成的二面角的正弦值最小时,三棱锥1E BDB -的体积.【答案】(1)证明见解析;(2)16.【分析】(1)根据直三棱柱的性质,结合线面垂直的判定定理、性质建立空间直角坐标系,利用空间向量数量积坐标表示公式进行运算证明即可;(2)利用空间向量夹角公式,结合三棱锥的体积公式进行求解即可.(1)因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,AB Ì底面ABC ,所以1BB AB ⊥,因为1111,A B AB BF A B ⊥∥,所以BF AB ⊥,又1BB BF B ⋂=,1BB BF ⊂,平面11BCC B ,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为x ,y ,z 轴建立空间直角坐标系,如图.所以111(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,0,2),(0,2,2),(1,1,0),(0,2,1)B A C B A C E F .由题设(,0,2)(02)D a a ≤≤.(1)因为(0,2,1),(1,1,2)BF DE a ==--,所以0(1)211(2)0BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥;(2)设平面DFE 的法向量为(,,)m x y z =,因为(1,1,1),(1,1,2)EF DE a =-=--,所以m EF m DE ⎧⊥⎨⊥⎩,即0(1)20x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则(3,1,2)m a a =+-.因为平面11BCC B 的法向量为(2,0,0)BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则22||63|cos |||||222142214m BA m BA a a a a θ⋅===⋅⨯-+-+.当12a =时,22214a a -+取最小值为272,此时cos θ=所以min (sin )θ==112B D =,三棱锥1E BDB -的体积1111213226V ⎛⎫=⨯⨯⨯= ⎪⎝⎭.【题型十】距离与长度(体积)【典例分析】在矩形ABCD中,2==AD AB 点E 是线段AD 的中点,将△ABE 沿BE 折起到△PBE 位置(如图),点F 是线段CP 的中点.(1)求证:DF ∥平面PBE :(2)若二面角P BE C --的大小为2π,求点A 到平面PCD 的距离.【答案】(1)证明见解析;.【分析】(1)利用线面平行的判定定理即得;(2)由题建立空间直角坐标系,利用点到平面的距离的向量求法即得.(1)设PB 的中点为G 点,连接GF 和GE ,因为点G 、点F 分别为PB 和PC 的中点,所以GF BC ∥且12GF BC =,又DE BC ∥且12DE BC =,所以GF DE ∥且GF DE =,所以四边形GFDE 为平行四边形,所以DF GE ∥,又GE ⊂平面PBE ,DF ⊄平面PBE ,所以DF ∥平面PBE ;(2)由二面角P BE C --的大小为2π可知,平面PBE ⊥平面ABCD ,取BE 得中点O ,连接PO ,则PO BE ⊥,PO ⊥平面ABCD ,如图建立空间直角坐标系,则()0,0,0O ,()()()()0,1,0,0,0,1,1,2,0,2,1,0A P C D ---,所以()()1,2,1211PC PD =--=--,,,,设平面PCD 的法向量为(),,n x y z =r,则2020PC n x y z PD n x y z ⎧⋅=-+-=⎨⋅=-+-=⎩,令1x =则()1,1,3n =--,又()2,2,0AD =-,所以点A 到平面PCD 的距离为AD n d n⋅==.【提分秘籍】向量计算点到距离公式(棱锥等的高)方法一:直接法(直接做出高)方法二:等体积转化法方法三:建系向量计算法121212|x x +y +|d=||sin |||cos PA n |=|n|y z z PA PA θ=∙,规律【变式训练】1.如图,在直三棱柱111ABC A B C -中,1AB AC ==,23BAC π∠=,D ,1D 分别是BC ,11B C 的中点,23AG AD =,过点G 作EF BC ∥,分别交AB ,AC 于点E ,F .(1)证明1A G EF ⊥;(2)若二面角1A A E F --的大小是3π,求三棱柱111ABC A B C -的体积.【答案】(1)证明见解析;6【分析】(1)先由1AA EF ⊥及AD EF ⊥证得EF ⊥平面11AA D D ,即可证明1A G EF ⊥;(2)建立空间直角坐标系,设1AA h =,分别求出平面1A AE 和1A EF 的法向量,由二面角1A A E F --的大小是3π解出h ,再计算体积即可.(1)由已知得1AA ⊥平面ABC ,EF ⊂平面ABC ,所以1AA EF ⊥,又AB =AC ,D 是BC 的中点,得AD BC ⊥,又EF BC ∥,故AD EF ⊥.因为1AA ,AD 是平面11AA D D 内的两条相交直线,所以EF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1A G EF ⊥;(2)依题意23AG AD =,又EF BC ∥,所以22,33AE AB AF AC ==.由直棱柱性质和题设,11111,,D A D B D D 两两互相垂直,建立如图所示的空间直角坐标系.设1AA h =,则111331313,0,0,,0,,,0,,,,2266A A h B h C h E h F h ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,设(,,)m x y z =是平面1A AE 的法向量,()11130,0,,,33A A h A E h ⎛⎫==- ⎪ ⎪⎝⎭,11013033A A m zh A E m x y zh ⎧⋅==⎪⎨⋅=-+=⎪⎩,取3x =(3,1,0)m =.设111(,,)n x y z =是平面1A EF 法向量,123130,,3EF A E h ⎛⎫⎛⎫==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,111110103EF n y A E m x y z h ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩,取13x =,则1(3,0,n h =,因为二面角1A A E F --的大小是3π,所以1cos ,2m n ==,解得h =所以三核柱111ABC A B C -的体积111122624ABC V S CC =⋅=⨯⨯⨯⨯=.2.ABCDE 中,已知AC BC ⊥,ED AC ∥,且22AC BC AE ED ====,DC DB =(1)求证:平面BCD ⊥平面ABC ;(2)线段BC 上是否存在点F ,使得二面角B AE F --的余弦值为3,若存在,求CF 的长度;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,65CF =【分析】(1)证面面垂直,先证其中一个平面内的直线AC 垂直另一个平面BCD ;(2)由第一问结论,建立合适的坐标系,用空间向量求解即可.(1)取AC 中点G ,连接EG,因为ED AC ∥,12CG AC ED ==,所以EG CD ∥,所以四边形EDCG 为平行四边形,所以EG DC ==又因为112AG AC ==,2AE =,所以222AG EG AE +=,所以AG EG ⊥,又因为CD EG ∥,所以AC CD ⊥.因为AC BC ⊥,BC ,CD 是平面BCD 内的两条相交直线,所以AC ⊥平面BCD ,因为AC ⊂平面ABC ,所以平面ABC ⊥平面BCD .(2)解法一:在平面BCD 内过点C 作BC 的垂线l ,因为AC ⊥平面BCD,所以l 、CA ,CB 两两相互垂直,故以C 为坐标原点.如图所示,建立空间直角坐标系,则()2,0,0A ,()0,2,0B ,(D ,(E ,设在线段BC 上存在点()()0,,002F t t ≤≤,使二面角B AE F --22则(2AE =-,()2,2,0AB =-,()2,,0AF t =-设平面AEF 的法向量()1111,,n x y z =.则1100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即111112020x y z x ty ⎧-++=⎪⎨-+=⎪⎩,不妨令12y =,则1x t =,)1222t z -=,所以)1222t n t ⎛⎫-= ⎪ ⎪⎝⎭.设平面ABE 的一个法向量为()2222,,n x y z =,则222222220220AE n x y AB n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即2222220220x y z x y ⎧-++=⎪⎨-+=⎪⎩不妨令21x =,21y =,20z =,所以()21,1,0n =所以()121221222222cos ,32222n n t n n n n t t ⋅+===⋅-⋅++.化简得:21568600t t -+=,解得65t =或103(舍去),故60,,05F ⎛⎫ ⎪⎝⎭,所以65CF =.所以存在点F ,当65CF =时,二面角B AE F --的余弦值为23.解法二:取BC 、AB的中点O 、H ,连接OD ,OH ,因为DB DC =,O 是BC 中点,所以DO BC ⊥,又因为DO ⊂平面BCD ,平面ABC ⊥平面BCD 且交于BC ,所以DO ⊥平面ABC ,因为H 是AB 中点,即OH AC ∥,所以OH BC ⊥,故DO ,OH ,BC 两两互相垂直,则以O 为坐标原点,OH ,OB ,OD uuu r为x ,y ,z 轴,如图建立空间直角坐标系,则()2,1,0A -,()0,1,0B,(D,(E .设在线段BC 上存在点()()0,,011F t t -≤≤,使二面角B AE F --的余弦值为3,则(AE =-,()2,2,0AB =-,()2,1,0AF t =-+.设平面AEF 的一个法向量为()1111,,n x y z =,则1100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即()111110210x y x t y ⎧-+=⎪⎨-++=⎪⎩,不妨令12y =,则11x t =+,)112t z -=,所以)112t n t ⎛⎫-=+ ⎪ ⎪⎝⎭.又因为12ED AC ∥,12OH AC ∥,所以OH DE ∥,所以四边形DEHO 为平行四边形,即EH DO ∥,因为DO ⊥平面ABC ,所以EH ⊥平面ABC ,因为CH ⊂平面ABC ,所以EH CH ⊥,又因为AC BC =,H 是AB 中点,所以CH AB ⊥,因为EH ,AB 为平面ABE 内的两条相交直线,所以CH ⊥平面ABE ,故CH 是平面ABE 的一个法向量,因为()1,1,0CH =,所以111cos ,3||CH CH CH n n n ⋅==⋅.化简得:2153870t t -+=,解得15t =或73(舍去),故10,,05F ⎛⎫⎪⎝⎭,所以16155CF =+=,所以存在点F ,当65CF =时,二面角B AE F --的余弦值为3.解法三:取BC、AB 的中点O 、H ,连接OD ,OH ,因为DB DC =,所以DO BC ⊥,又因为DO ⊂平面BCD ,平面ABC ⊥平面BCD 且交于BC ,所以DO ⊥平面ABC .因为12ED AC ∥,12OH AC ∥,所以OH DE ∥,所以四边形DEHO 为平行四边形,即EH DO ∥,因为DO ⊥平面ABC ,所以EH ⊥平面ABC ,因为CH ⊂平面ABC ,所以EH CH ⊥,又因为AC BC =,H 是AB 中点,所以CH AB ⊥,因为EH ,AB 为平面ABE 内的两条相交直线,所以CH ⊥平面ABE ,假设在线段BC 上存在点F,使二面角B AE F --的余弦值为3,过F 作FM AB ⊥于点M ,则FM ⊥平面ABE ,过M 作MN AE ⊥于点N ,连接NF ,则FNM ∠为二面角B AE F --的平面角.设()201FB x t =<≤,则FM BM ==,AM =,所以2NM x =-,在Rt FMN 中,NF ==所以cos 3MN FNM NF ∠===.化简得215440x x +-=,解得5x =或23-(舍去),即45FB =,所以625CF FB =-=,所以存在点F ,当65CF =时,二面角B AE F --的余弦值为3培优第一阶——基础过关练1.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形,E ,F 分别为PA ,BC 的中点.(1)证明:EF ∥平面PCD(2)若PD ⊥平面ABCD ,120ADC ∠=,且24PD AD ==,求直线AF 与平面DEF 所成角的正弦值.【答案】(1)证明见解析(2)35【分析】(1)取PD 的中点G ,连接CG ,EG ,则由三角形中位线定理可得1//,2EG AD EG AD =,再结合底面四边形为菱形,可得四边形EGCF 为平行四边形,从而得//.EF CG 然后由线面平行的判定定理可证得结论,(2)由已知可得,,DF DA DP 两两垂直,所以以D 为坐标原点建立如图所示的空间直角坐标系D —xyz ,然后利用空间向量求解即可(1)证明:取PD 的中点G ,连接CG ,EG ,因为E ,F 分别为PA ,BC 的中点,所以1//,2EG AD EG AD =,。
高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)
高考数学复习考点题型专题讲解专题15 空间角、距离的计算(几何法、向量法) 高考定位 1.以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面位置关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查.高考注重利用向量方法解决空间角问题,但也可利用几何法来求解;2.空间距离(特别是点到面的距离)也是高考题中的常见题型,多以解答题的形式出现,难度中等.1.(多选)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则( )A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°答案ABD解析如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确;在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1.连接B1C,则B1C⊥BC1.因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确;连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB. 因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=2a 2,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误;因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.故选ABD.2.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接OC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.3.(2022·新高考Ⅱ卷)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.(1)证明如图,取AB的中点D,连接DP,DO,DE.因为AP=PB,所以PD⊥AB.因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC.因为AB⊂平面ABC,所以PO⊥AB.又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.因为OD⊂平面POD,所以AB⊥OD,又AB⊥AC,AB,OD,AC⊂平面ABC,所以OD∥AC.因为OD⊄平面PAC,AC⊂平面PAC,所以OD∥平面PAC.因为D,E分别为BA,BP的中点,所以DE∥PA.因为DE⊄平面PAC,PA⊂平面PAC,所以DE∥平面PAC.又OD,DE⊂平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OE⊂平面ODE,所以OE∥平面PAC.(2)解连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以PO⊥OA,PO⊥OB,所以OA=OB=PA2-PO2=52-32=4.易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OA sin 30°=4×12=2,AB=2AD=2OA cos 30°=2×4×32=4 3.又∠ABC=∠ABO+∠CBO=60°,所以在Rt△ABC 中,AC =AB tan 60°=43×3=12.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (43,0,0),C (0,12,0), P (23,2,3),E ⎝⎛⎭⎪⎫33,1,32,所以AE →=⎝ ⎛⎭⎪⎫33,1,32,AB →=(43,0,0),AC →=(0,12,0).设平面AEC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,即⎩⎨⎧33x +y +32z =0,12y =0,令z =23,则n =(-1,0,23).设平面AEB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,即⎩⎨⎧33x 1+y 1+32z 1=0,43x 1=0,令z 1=2,则m =(0,-3,2),所以|cos 〈n ,m 〉|=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=4313.设二面角C -AE -B 的大小为θ,则sin θ=1-⎝⎛⎭⎪⎫43132=1113.4.(2021·浙江卷)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=15,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.(1)证明因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN与平面PDM所成角的正弦值为15 6.法二因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD.故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →|·|n |=5215=156.故直线AN 与平面PDM 所成角的正弦值为156.热点一 异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n |m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ∈⎝⎛⎦⎥⎤0,π2,求出角θ.例1 在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2B.π3C.π4D.π6 答案 D解析 法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP , 所以C 1P ⊥平面B 1BP . 又BP ⊂平面B 1BP , 所以有C 1P ⊥BP .连接BC 1, 则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D. 法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2). 设直线PB 与AD 1所成的角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32. 因为θ∈⎝⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三如图,连接BC1,A1B,A1P,PC1,则易知AD1∥BC1,所以直线PB与AD1所成的角等于直线PB与BC1所成的角.由P为正方形A1B1C1D1的对角线B1D1的中点,知A1,P,C1三点共线,且P为A1C1的中点.易知A1B=BC1=A1C1,所以△A1BC1为等边三角形,所以∠A1BC1=π3,又P为A1C1的中点,所以可得∠PBC1=12∠A1BC1=π6,故直线PB与AD1所成的角为π6,故选D.易错提醒 1.利用几何法求异面直线所成的角时,通过平移直线所得的角不一定就是两异面直线所成的角,也可能是其补角.2.用向量法时,要注意向量夹角与异面直线所成角的范围不同.训练1 (1)(2022·湖州质检)在长方体ABCD-A1B1C1D1中,BB1=2AB=2BC,P,Q分别为B 1C1,BC的中点,则异面直线AQ与BP所成角的余弦值是( )A.55B.21717C.8585D.28585 答案 C解析法一 不妨设AB =2,则BC =2,BB 1=4,连接A 1P ,A 1B (图略),则A 1P ∥AQ , ∴∠A 1PB (或其补角)为异面直线AQ 与BP 所成的角.由勾股定理得BP =17,A 1P =5,A 1B =25,在△A 1BP 中,由余弦定理的推论得,cos∠A 1PB =(17)2+(5)2-(25)22×17×5=8585.故选C.法二 如图建立空间直角坐标系, 设直线AQ 与BP 所成的角为θ, 不妨设AB =2, 则BC =2,BB 1=4.故B (2,0,0),P (2,1,4),Q (2,1,0), 所以BP →=(0,1,4),AQ →=(2,1,0),所以cos θ=|cos 〈BP →,AQ →〉|=⎪⎪⎪⎪⎪⎪117×5=8585. (2)(2022·河南顶尖名校联考)如图,圆锥的底面直径AB =2,其侧面展开图为半圆,底面圆的弦AD =3,则异面直线AD 与BC 所成的角的余弦值为( )A.0B.3 3C.34D.22答案 C解析法一如图,延长DO交圆于E,连接BE,CE,易知AD=BE=3,AD∥BE,∴∠EBC(或其补角)为异面直线AD与BC所成的角.由圆锥侧面展开图为半圆,易得BC=2,在△BEC中,BC=CE=2,BE=3,∴cos∠EBC=22+(3)2-222×2×3=34.法二由圆锥侧面展开图为半圆,易得BC=2,又BO=1,所以CO=3,在△AOD中,AO=DO=1,AD=3,由余弦定理得cos∠AOD=12+12-(3)22×1×1=-12,则∠AOD=2π3,以O 为坐标原点,OB 所在直线为y 轴,OC 所在直线为z 轴,建立空间直角坐标系如图,则A (0,-1,0),D ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),C (0,0,3),所以AD →=⎝ ⎛⎭⎪⎫32,32,0,BC →=(0,-1,3),故cos 〈AD →,BC →〉=-323×2=-34,又异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,故直线AD 与BC 所成角的余弦值为34. 热点二 直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈⎣⎢⎡⎦⎥⎤0,π2,求出角θ.例2(2022·南京模拟)如图,在三棱柱ABC-A1B1C1中,AA1=13,AB=8,BC=6,AB⊥BC,AB=B1C,D为AC的中点,平面AB1C⊥平面ABC.1(1)求证:B1D⊥平面ABC;(2)求直线C1D与平面AB1C所成角的正弦值.(1)证明因为AB1=B1C,D为AC的中点,所以B1D⊥AC.又平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,B1D⊂平面AB1C,所以B1D⊥平面ABC.(2)解法一在平面ABC内,过点D作BC的平行线,交AB于点E,过点D作AB的平行线,交BC于点F,连接DE,DF,BD.由(1)知B 1D ⊥平面ABC , 所以B 1D ⊥AC ,B 1D ⊥BD . 因为AB ⊥BC ,所以DE ⊥DF ,故以{DE →,DF →,DB 1→}为基底建立如图所示的空间直角坐标系D -xyz .因为AB =8,BC =6,AB ⊥BC ,所以AC =AB 2+BC 2=10,BD =12AC =5.又AA 1=BB 1=13,AB ⊥BC , 所以B 1D =BB 21-BD 2=12.易得D (0,0,0),A (3,-4,0),B (3,4,0),C (-3,4,0),B 1(0,0,12), 则AC →=(-6,8,0),BC →=(-6,0,0),B 1C →=(-3,4,-12). 设点C 1(x ,y ,z ), 则B 1C 1→=(x ,y ,z -12), 由BC →=B 1C 1→,得(-6,0,0)=(x ,y ,z -12),所以⎩⎨⎧x =-6,y =0,z =12,即C 1(-6,0,12),所以C 1D →=(6,0,-12).设平面AB 1C 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AC →=-6x 1+8y 1=0,n ·B 1C →=-3x 1+4y 1-12z 1=0,得3x 1=4y 1,z 1=0.不妨取x 1=4,则y 1=3,得平面AB 1C 的一个法向量为n =(4,3,0). 设直线C 1D 与平面AB 1C 所成的角为θ, 则sin θ=|cos 〈n ,C 1D →〉|=|n ·C 1D →||n |·|C 1D →|=|4×6+3×0+0×(-12)|42+32+02×62+02+(-12)2=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 法二 连接BC 1,交B 1C 于点M ,易知BM =MC 1,所以点C 1到平面AB 1C 的距离d 和点B 到平面AB 1C 的距离相等.过点B 作BH ⊥AC ,垂足为H .又平面AB 1C ⊥平面ABC ,平面AB 1C ∩平面ABC =AC ,BH ⊂平面ABC , 所以BH ⊥平面AB 1C ,则BH 为点B 到平面AB 1C 的距离. 在Rt△ABC 中,因为AB =8,BC =6,AB ⊥BC , 所以AC =10,则BH =6×810=245, 所以d =BH =245.由(1)知B 1D ⊥平面ABC , 又BC ⊂平面ABC ,所以B 1D ⊥BC . 又B 1C 1∥BC ,所以B 1D ⊥B 1C 1, 则△DB 1C 1为直角三角形. 连接BD ,则B 1D ⊥BD .因为D 为AC 的中点,所以BD =12AC =5.又AA 1=BB 1=13,所以B 1D =12. 又B 1C 1=BC =6,所以C 1D =6 5. 设直线C 1D 与平面AB 1C 所成的角为θ,则sin θ=d C 1D =24565=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 规律方法 1.几何法求线面角的关键是找出线面角(重点是找垂线与射影),然后在三角形中应用余弦定理(勾股定理)求解;2.向量法求线面角时要注意:线面角θ与直线的方向向量a 和平面的法向量n 所成的角〈a ,n 〉的关系是〈a ,n 〉+θ=π2或〈a ,n 〉-θ=π2,所以应用向量法求的是线面角的正弦值,而不是余弦值.训练2(2022·湖北十校联考)如图,在四棱锥A-BCDE中,CD∥BE,CD=12EB=1,CB⊥BE,AE=AB=BC=2,AD=3,O是AE的中点.(1)求证:DO∥平面ABC;(2)求DA与平面ABC所成角的正弦值. (1)证明取AB的中点为F,连接CF,OF,因为O,F分别为AE,AB的中点,所以OF∥BE,且OF=12 BE.又CD∥BE,CD=12 EB,所以OF∥CD,且OF=CD,所以四边形OFCD为平行四边形,所以DO∥CF,又CF⊂平面ABC,DO⊄平面ABC,所以DO∥平面ABC.(2)解法一取EB的中点为G,连接AG,DG,易得DG綊BC.因为AE=AB=2,BE=2,所以AE2+AB2=BE2,所以AB⊥AE,△ABE为等腰直角三角形,所以AG⊥BE,AG=1,又AD=3,DG=BC=2,所以AG2+DG2=AD2,所以DG⊥AG.又BE⊥AG,BE∩DG=G,BE,DG⊂平面BCDE,所以AG⊥平面BCDE. 记h为点D到平面ABC的距离,连接BD,则V D-ABC=V A-BCD,即13S△ABC·h=13S△BCD·AG,因为BC⊂平面BCDE,所以BC⊥AG,又CB⊥BE,BE∩AG=G,BE,AG⊂平面ABE,所以BC⊥平面ABE,又AB⊂平面ABE,所以BC⊥AB,所以S△ABC=12×AB×BC=12×2×2=1,又S△BCD=12×BC×CD=12×2×1=22,所以h=2 2,设DA与平面ABC所成的角为θ,则sin θ=h AD =223=66.所以DA 与平面ABC 所成角的正弦值为66. 法二 如图,取EB 的中点为G ,连接AG ,OG ,DG ,由(2)法一可知AG ⊥BE ,AB ⊥AE ,BC ⊥平面ABE ,BC ∥DG ,所以DG ⊥平面ABE .以G 为坐标原点,以GA →,GB →,GD →的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则G (0,0,0),A (1,0,0),D (0,0,2),E (0,-1,0),AD →=(-1,0,2). 因为AE ⊂平面ABE ,所以BC ⊥AE ,又AB ⊥AE ,BC ∩AB =B ,BC ,AB ⊂平面ABC ,所以AE ⊥平面ABC , 故平面ABC 的一个法向量为AE →=(-1,-1,0). 设DA 与平面ABC 所成角为θ,则sin θ=|cos 〈AD →,AE →〉|=|AD →·AE →||AD →|·|AE →|=16=66.所以DA 与平面ABC 所成角的正弦值为66.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m,n;②计算cos〈m,n〉=m·n|m|·|n|;③设两个平面的夹角为θ,则cos θ=|cos〈m,n〉|.例3(2022·济南质测)如图,在三棱锥D-ABC中,DA⊥底面ABC,AC=BC=DA=1,AB =2,E是CD的中点,点F在DB上,且EF⊥DB.(1)证明:DB⊥平面AEF;(2)求平面ADB与平面DBC夹角的大小.法一(1)证明∵DA⊥平面ABC,且BC⊂平面ABC,∴DA⊥BC.∵AC=BC=1,AB=2,∴AC2+BC2=AB2,∴AC⊥BC.∵DA∩AC=A,DA,AC⊂平面DAC,∴BC ⊥平面DAC , 又AE ⊂平面DAC , ∴BC ⊥AE .∵DA =AC ,E 是CD 的中点, ∴DC ⊥AE ,又BC ∩DC =C ,BC ,DC ⊂平面DBC , ∴AE ⊥平面DBC ,又DB ⊂平面DBC ,∴DB ⊥AE , 又EF ⊥DB ,EF ∩AE =E ,EF ,AE ⊂平面AEF , ∴DB ⊥平面AEF .(2)解∵EF ⊥DB ,由(1)得DB ⊥AF , ∴∠AFE 为平面ADB 与平面DBC 的夹角. ∵DA ⊥平面ABC , ∴DA ⊥AC ,DA ⊥AB ,又AC =DA =1,E 为CD 的中点, ∴AE =12DC =22.∵AB =2,∴S △DAB =12×DA ×AB =12×DB ×AF ,∴AF =DA ×AB DB =1×212+(2)2=63. 由(1)知,AE ⊥平面DBC ,∵EF ⊂平面DBC ,∴AE ⊥EF ,∴sin∠AFE =AE AF =2263=32. ∵∠AFE 为锐角,∴∠AFE =π3, ∴平面ADB 与平面DBC 夹角的大小为π3.法二 (1)证明∵DA ⊥平面ABC ,且BC ⊂平面ABC ,∴DA ⊥BC . ∵AC =BC =1,AB =2, ∴AC 2+BC 2=AB 2, ∴AC ⊥BC .∴DA ∩AC =A ,DA ,AC ⊂平面DAC , ∴BC ⊥平面DAC , 如图,过点A 作AG ∥BC , 则AG ⊥平面DAC .以A 为坐标原点,分别以向量AC →,AG →,AD →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,1,0),D (0,0,1),E ⎝ ⎛⎭⎪⎫12,0,12,∴DB →=(1,1,-1),AE →=⎝ ⎛⎭⎪⎫12,0,12.∵DB →·AE →=1×12+1×0+(-1)×12=0,∴DB →⊥AE →,∴DB ⊥AE .又DB ⊥EF ,且AE ∩EF =E ,AE ,EF ⊂平面AEF , ∴DB ⊥平面AEF .(2)解 由(1)知AD →=(0,0,1),BD →=(-1,-1,1),CD →=(-1,0,1). 设平面ADB 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AD →=0,m ·BD →=0,∴⎩⎨⎧z 1=0,-x 1-y 1+z 1=0,令y 1=1,则m =(-1,1,0).设平面DBC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·CD →=0,n ·BD →=0,∴⎩⎨⎧-x 2+z 2=0,-x 2-y 2+z 2=0, 令x 2=1,则n =(1,0,1). 设平面ADB 与平面DBC 的夹角为θ, 则cos θ=|cos 〈m ,n 〉|=|-1|2×2=12.所以θ=π3,即平面ADB 与平面DBC 夹角的大小为π3.规律方法 (1)用几何法求解二面角的关键是:先找(或作)出二面角的平面角,再在三角形中求解此角.(2)利用法向量的依据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在求二面角的大小时,一定要判断出二面角的平面角是锐角还是钝角,否则解法是不严谨的.训练3(2022·沈阳质检)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =2 2.(1)求证:BD ⊥平面PAC ;(2)求平面BPC 与平面PCD 夹角的余弦值.(1)证明法一 由题意得,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =22,所以tan ∠ACB =tan∠DBA =2, 可知∠ACB =∠DBA ,所以∠DBC +∠ACB =90°,则AC ⊥BD . 又PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD ,又AC∩PA=A,PA,AC⊂平面PAC,故BD⊥平面PAC.法二由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),BD→=(-2,22,0),AP→=(0,0,2),BD→·AP→=0,即BD⊥AP,AC→=(2,2,0),BD→·AC→=-4+4=0,即BD⊥AC,又AC∩AP=A,AC,AP⊂平面PAC,故BD⊥平面PAC.(2)解由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),在平面PBC中,BC→=(0,2,0),BP→=(-2,0,2),设平面PBC的法向量为n=(x1,y1,z1),则⎩⎪⎨⎪⎧n ·BC →=2y 1=0,n ·BP →=-2x 1+2z 1=0,所以y 1=0,令x 1=1,则z 1=1, 所以n =(1,0,1).在平面PCD 中,CD →=(-2,2,0), CP →=(-2,-2,2),设平面PCD 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧m ·CD →=-2x 2+2y 2=0,m ·CP →=-2x 2-2y 2+2z 2=0,令x 2=1,则y 2=2,z 2=2, 所以m =(1,2,2).设平面BPC 与平面PCD 夹角的大小为θ, 则cos θ=|cos 〈m ,n 〉|=|1+0+2|2×7=31414,所以平面BPC 与平面PCD 夹角的余弦值为31414. 热点四 距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.例4 在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M为BB1的中点,N为BC的中点.(1)求点M到直线AC1的距离;(2)求点N到平面MA1C1的距离.解法一(1)如图,连接AM,MC1,AC1,易知MC1=MB21+A1B21+A1C21=22+22+12=3,AC1=22,MA=5,在△MAC1中,由余弦定理得cos ∠MAC1=5+8-92×5×22=1010,则sin ∠MAC1=310 10,所以M到直线AC1的距离为MA·sin ∠MAC1=5×31010=322.(2)如图,S△MNC1=S矩形B1BCC1-S△B1MC1-S△BMN-S△NCC1=42-2-22-2=322,设点N到平面MA1C1的距离为h,由V N-MA1C1=V A1-MNC1,得1 3×12×2×5×h=13×322×2,得h =355,即N 到平面MA 1C 1的距离为355. 法二 (1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=⎝⎛⎭⎪⎫0,22,22,AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322. (2)设平面MA 1C 1的法向量为n =(x ,y ,z ), 因为A 1C 1→=(0,2,0),A 1M →=(2,0,-1), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1M →=0,即⎩⎨⎧2y =0,2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量, 因为N (1,1,0),所以MN →=(-1,1,-1), 故N 到平面MA 1C 1的距离d =|MN →·n ||n |=35=355.规律方法 1.在解题过程中要对“点线距离”、“点面距离”、“线面距离”与“面面距离”进行适当转化,从而把所求距离转化为点与点的距离进而解决问题. 2.解决点线距问题注意应用等面积法,解决点面距问题注意应用等体积法.训练4 在四棱柱ABCD-A1B1C1D1中,A1A⊥平面ABCD,AA1=3,底面是边长为4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点,则点E到平面O1BC的距离为( )A.2B.1C.32D.3答案 C解析法一如图,连接OO1,则OO1⊥平面ABCD,OO1=AA1=3,∵四边形ABCD是边长为4的菱形,且∠DAB=60°,∴OB=2,OC=23,AC=2OC=43,OB⊥AC.∴O1B=13,O1C=21,又BC=4,∴cos∠BO1C=913×21,sin∠BO1C=8313×21,故S△BO1C=12×13×21×8313×21=4 3.设A到平面O1BC的距离为h,则由V A-BO1C=V O1-ABC得13×43×h=13×12×43×2×3,解得h =3,又∵E 是O 1A 的中点, ∴E 到平面O 1BC 的距离为32.法二 易得OO 1⊥平面ABCD ,所以OO 1⊥OA ,OO 1⊥OB . 又OA ⊥OB ,所以建立如图所示的空间直角坐标系Oxyz . 因为底面ABCD 是边长为4的菱形,∠DAB =60°, 所以OA =23,OB =2,则A (23,0,0),B (0,2,0),C (-23,0,0),O 1(0,0,3), 所以O 1B →=(0,2,-3),O 1C →=(-23,0,-3). 设平面O 1BC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·O 1B →=0,n ·O 1C →=0,所以⎩⎨⎧2y -3z =0,-23x -3z =0,取z =2,则x =-3,y =3,则n =(-3,3,2)是平面O 1BC 的一个法向量. 设点E 到平面O 1BC 的距离为d .因为E 是O 1A 的中点,所以E ⎝⎛⎭⎪⎫3,0,32,EO 1→=⎝⎛⎭⎪⎫-3,0,32, 则d =|EO 1→·n ||n |=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-3,0,32·(-3,3,2)(-3)2+32+22=32, 所以点E 到平面O 1BC 的距离为32.一、基本技能练1.如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明 取BC 的中点E ,连接DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连接OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD . (2)解 取PD 的中点F ,连接OF , 则OF ∥PB .由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而 OF =12PB =1,所以A 到平面PCD 的距离为1.2.(2022·广州调研)如图,在三棱锥P -ABC 中,BC ⊥平面PAC ,AD ⊥BP ,AB =2,BC =1,PD =3BD =3.(1)求证:PA ⊥AC ;(2)求平面PAC与平面ACD夹角的余弦值.(1)证明法一由AB=2,BD=1,AD⊥BP,得AD= 3. 由PD=3,AD=3,AD⊥BP,得PA=2 3.由BC⊥平面PAC,AC,PC⊂平面PAC,得BC⊥AC,BC⊥PC.所以AC=AB2-BC2=3,PC=PB2-BC2=15.因为AC2+PA2=15=PC2,所以PA⊥AC.法二由AB=2,BD=1,AD⊥BP,得AD= 3.由PD=3,AD=3,AD⊥BP,得PA=2 3.因为PB=4,所以PB2=AB2+PA2,所以PA⊥AB.由BC⊥平面PAC,PA⊂平面PAC,得BC⊥PA.又BC,AB⊂平面ABC,BC∩AB=B,故PA⊥平面ABC.因为AC⊂平面ABC,所以PA⊥AC.(2)解法一如图,过点D作DE∥BC交PC于点E,因为BC⊥平面PAC,所以DE⊥平面PAC.因为AC⊂平面PAC,所以DE⊥AC.过点E作EF⊥AC交AC于点F,连接DF,又DE∩EF=E,DE,EF⊂平面DEF,所以AC⊥平面DEF.因为DF⊂平面DEF,所以AC⊥DF.则∠DFE为平面PAC与平面ACD的夹角.由PD=3BD=3,DE∥BC,得DE=3 4,由EF⊥AC,PA⊥AC,且EF,PA⊂平面PAC,得EF∥PA,且EFPA=CECP=BDBP=14,得EF=3 2.易知DE⊥EF,则DF=DE2+EF2=21 4.所以cos∠DFE =EF DF =277.所以平面PAC 与平面ACD 夹角的余弦值为277. 法二 如图,作AQ ∥CB ,以AQ ,AC ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BC =1,BD =1,BP =4, 所以AC =3,AP =2 3.故A (0,0,0),B (1,3,0),C (0,3,0),P (0,0,23). 由BD →=14BP →,得D ⎝ ⎛⎭⎪⎫34,334,32,则AD →=⎝ ⎛⎭⎪⎫34,334,32,AC →=(0,3,0).设平面ACD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,即⎩⎨⎧3y =0,34x +334y +32z =0,令x =2,则z =-3,y =0,所以n =(2,0,-3)为平面ACD 的一个法向量. 由于BC ⊥平面PAC ,因此CB →=(1,0,0)为平面PAC 的一个法向量. 设平面PAC 与平面ACD 夹角的大小为θ,则cos θ=|cos 〈CB →,n 〉|=|CB →·n ||CB →||n |=27=277.所以平面PAC 与平面ACD 夹角的余弦值为277. 3.(2022·泉州质检)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设平面FDE 与平面DEC 夹角的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,OB ,OC ⊂平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz .因为BD =2,CB =CD =5,AO =2,所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1), 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0),所以BF →=14BC →=⎝ ⎛⎭⎪⎫-14,12,0.又DB →=(2,0,0), 故DF →=DB →+BF →=⎝ ⎛⎭⎪⎫74,12,0.设平面DEF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧DE →·n 1=0,DF →·n 1=0,即⎩⎨⎧x 1+y 1+z 1=0,74x 1+12y 1=0, 取x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5)为平面DEF 的一个法向量.设平面DEC 的法向量为n 2=(x 2,y 2,z 2),又DC →=(1,2,0), 则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎨⎧x 2+y 2+z 2=0,x 2+2y 2=0, 取x 2=2,得y 2=-1,z 2=-1,所以n 2=(2,-1,-1)为平面DEC 的一个法向量. 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313.所以sin θ=1-cos 2θ=23913.二、创新拓展练4.如图,三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为矩形,若平面BCC 1B 1⊥平面ABB 1A 1,平面BCC 1B 1⊥平面ABC 1.(1)求证:AB ⊥BB 1;(2)记平面ABC 1与平面A 1B 1C 1的夹角为α,直线AC 1与平面BCC 1B 1所成的角为β,异面直线AC 1与BC 所成的角为φ,当α,β满足:cos α·cos β=m (0<m <1,m 为常数)时,求sin φ的值.(1)证明∵四边形BCC 1B 1是矩形,∴BC ⊥BB 1,图1 又平面ABB1A1⊥平面BCC1B1,平面ABB1A1∩平面BCC1B1=BB1,BC⊂平面BCC1B1,∴BC⊥平面ABB1A1,又AB⊂平面ABB1A1,∴AB⊥BC.如图1,过C作CO⊥BC1,∵平面BCC1B1⊥平面ABC1,平面BCC1B1∩平面ABC1=BC1,CO⊂平面BCC1B1,∴CO⊥平面ABC1,又AB⊂平面ABC1,∴AB⊥CO,又AB⊥BC,CO∩BC=C,CO,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,又BB1⊂平面BCC1B1,∴AB⊥BB1.(2)解由题意知AB∥A1B1,又AB⊥平面BCC1B1,∴A1B1⊥平面BCC1B1.以B 1为原点,B 1A 1,B 1B ,B 1C 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图2,图2不妨设B 1A 1=a ,B 1B =b ,B 1C 1=c ,则B 1(0,0,0),A 1(a ,0,0),B (0,b ,0),C 1(0,0,c ),A (a ,b ,0), BA →=B 1A 1→=(a ,0,0),BC →=B 1C 1→=(0,0,c ),BC1→=(0,-b ,c ). 设n 1=(x 1,y 1,z 1)为平面ABC 1的法向量,则⎩⎪⎨⎪⎧n 1·BA →=ax 1=0,n 1·BC 1→=-by 1+cz 1=0,∴x 1=0,令y 1=c ,则z 1=b , ∴n 1=(0,c ,b ).取平面A 1B 1C 1的一个法向量n =(0,1,0), 由图知,α为锐角, 则cos α=|cos 〈n 1,n 〉|=c b 2+c 2.取平面BCC 1B 1的一个法向量n 2=(1,0,0), 由C 1A →=(a ,b ,-c ), 得sin β=|cos 〈C 1A →,n 2〉|=aa 2+b 2+c2. 又β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos β=b 2+c 2a 2+b 2+c 2, 则cos αcos β=ca 2+b 2+c2. |cos 〈C 1A →,BC →〉|=cos φ=|(a ,b ,-c )·(0,0,c )|c a 2+b 2+(-c )2=c a 2+b 2+c 2,∴cos φ=cos αcos β.∵cos αcos β=m 且m ∈(0,1),φ∈⎝ ⎛⎦⎥⎤0,π2,∴sin φ=1-cos 2φ=1-m 2.。
2020年高中新教材目录
2020年高中新教材目录数学必修第一册(A版)第一章集合与常用逻辑用语1.1集合的概念 (2)1.2集合间的基本关系 (7)1.3集合的基本运算 (10)阅读与思考集合中元素的个数 (15)1.4充分条件与必要条件 (17)阅读与思考集合命题与充分条件、必要条件..241.5全称量词与存在量词 (26)小结 (33)复习参考题1 (34)第二章一元二次函数、方程和不等式2.1等式性质与不等式性质.......... 3 72.2基本不等式.................... 4 42.3二次函数与一元二次方程、不等式5 0小结............................. 5 6复习参考题2 (57)第三章函数的概念与性质阅读与思考函数概念的发展历程 (75)3.2函数的基本性质 (76)信息技术应用用计算机绘制函数图象87 3.3幂函数 (89)探究与发现探究函数y = x + 1/x的图象与性质 (92)3.4函数的应用(一) (93)文献阅读与数学写作函数的形成与发展97小结 (99)复习参考题3 (100)第四章指数函数与对数函数4.1指数 (104)4.2指数函数 (111)阅读与思考放射性物质的衰减 (115)信息技术应用探究指数函数的性质1204.3对数 (122)阅读与思考对数的发明 (128)4.4对数函数 (130)探究与发现互为反函数的两个函数图象间的关系 (135)阅读与思考中外历史上的方程求解147 文献阅读与数学写作对数概念的形成与发展 (157)小结 (158)复习参考题4 (159)数学建模建立函数模型解决实际问题 (162)第五章三角函数5.1任意角和弧度制 (168)5.2三角函数的概念 (177)阅读与思考三角学与天文学 (186)5.3诱导公式 (188)5.4三角函数的图象与性质 (196)探究与发现函数y=Asin(3x + 5)及函数y = Acos(3x +牛)的周期 (203)探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质.• (208)5.5三角恒等变换 (215)信息技术应用利用信息技术制作三角函数表 (224)5.6函数丫二人$岫乂 +牛) (231)阅读与思考振幅、周期、频率、相位 (250)小结 (251)复习参考题5 (253)部分中英文词汇索引 (258)数学必修第一册(B版)第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法 (3)1.1.2集合的基本关系 (9)1.1.3集合的基本运算 (14)1.2常用逻辑用语1.2.1命题与量词 (22)1.2.2全称量词命题与存在量词命题的否定..271.2.3充分条件、必要条件 (30)本章小结 (37)第二章等式与不等式2.1等式2.1.1等式的性质与方程的解集 (43)2.1.2一元二次方程的解集及其根与系数的关系 (47)2.1.3方程组的解集 (51)2.2不等式2.2.1不等式及其性质 (58)2.2.2不等式的解集 (64)2.2.3一元二次不等式的解法 (68)2.2.4均值不等式及其应用 (72)本章小结 (79)第三章函数3.1函数的概念与性质3.1.1函数及其表示方法 (85)3.1.2函数的单调性 (95)3.1.3函数的奇偶性 (104)3.2函数与方程、不等式之间的关系 (112)3.3函数的应用(一) (121)3.4数学建模活动:决定苹果的最佳出售时间点..125本章小结 (131)本书拓展阅读目录罗素悖论与第三次数学危机 (11)数学中的猜想 (23)自主招生中的充分条件与必要条件 (33)《九章算术》中的代数成就简介 (52)函数定义的演变过程简介 (86)物理中的变化率 (99)付出与收获的关系 (101)二分法在搜索中的应用 (118)数学必修第二册(A版)第六章平面向量及其应用6.1平面向量的概念 (2)阅读与思考向量及向量符号的由来 (6)6.2平面向量的运算 (7)6.3平面向量基本定理及坐标表示 (25)6.4平面向量的应用 (38)阅读与思考海伦和秦九韶 (55)小结 (57)复习参考题6 (59)数学探究用向量法研究三角形的性质 (63)第七章复数7.1复数的概念 (68)7.2复数的四则运算 (75)阅读与思考代数基本定理 (81)7.3*复数的三角表示 (83)探究与发现1的n次方根 (91)小结 (93)复习参考题7 (94)第八章立体几何初步8.1基本立体图形 (97)8.2立体图形的直观图 (107)阅读与思考画法几何与蒙日 (112)8.3简单几何体的表面积与体积 (114)探究与发现祖暅原理与柱体、锥体的体积 (121)8.4空间点、直线、平面之间的位置关系 (124)8.5空间直线、平面的平行 (133)8.6空间直线、平面的垂直 (146)阅读与思考欧几里得《原本》与公理化方法 (165)文献阅读与数学写作*几何学的发展166小结 (167)复习参考题8 (169)第九章统计9.1随机抽样 (173)阅读与思考如何得到敏感性问题的诚实反应 (185)信息技术应用统计软件的应用 (189)9.2用样本估计总体 (192)阅读与思考统计学在军事中的应用----二战时德国坦克总量的估计问题 (208)阅读与思考大数据 (217)9.3统计案例公司员工的肥胖情况调查分析 (218)小结 (220)复习参考题9 (222)第十章概率10.1随机事件与概率 (226)10.2事件的相互独立性 (246)10.3频率与概率 (251)阅读与思考孟德尔遗传规律 (259)小结 (261)复习参考题10 (263)部分中英文词汇索引 (265)数学必修第二册(B版)第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算 (3)4.1.2指数函数的性质与图像 (9)4.2对数与对数函数4.2.1对数运算 (15)4.2.2对数运算法则 (20)4.2.3对数函数的性质与图像 (24)4.3指数函数与对数函数的关系 (30)4.4幂函数 (33)4.5增长速度的比较 (38)4.6函数的应用(二) (42)4.7数学建模活动:生长规律的描述 (46)4.8结 (50)第五章统计与概率5.1统计5.1.1数据的收集 (55)5.1.2数据的数字特征 (61)5.1.3数据的直观表示 (68)5.1.4用样本估计总体 (77)5.2数学探究活动:由编号样本估计总数及其模拟 (90)5.3概率5.3.1样本空间与事件 (93)5.3.2事件之间的关系与运算 (98)5.3.3古典概型 (102)5.3.4频率与概率 (108)5.3.5随机事件的独立性 (114)5.4统计与概率的应用 (119)本章小结 (126)第六章平面向量初步6.1平面向量及其线性运算6.1.1向量的概念 (133)6.1.2向量的加法 (137)6.1.3向量的减法 (142)6.1.4数乘向量 (145)6.1.5向量的线性运算 (147)6.2向量基本定理与向量的坐标6.2.1向量基本定理 (152)6.2.2直线上向量的坐标及其运算 (157)6.2.3平面向量的坐标及其运算 (160)6.3平面向量线性运算的应用 (168)本章小结 (172)本书拓展阅读目录对数发明起源的简介 (17)素数个数与对数 (18)指数运算与生活哲学 (40)我国古代统计工作简介 (57)用样本估计总体的失败案例 (82)“黄金7 2小时”中的概率 (96)向量的推广与应用 (163)数学必修第三册(B版)第七章三角函数7.1任意角的概念与弧度制7.1.1角的推广 (3)7.1.2弧度制及其与角度制的换算 (8)7.2任意角的三角函数7.2.1三角函数的定义 (14)7.2.2单位圆与三角函数线 (18)7.2.3同角三角函数的基本关系式 (22)7.2.4诱导公式 (27)7.3三角函数的性质与图像7.3.1正弦函数的性质与图像 (36)7.3.2正弦型函数的性质与图像 (43)7.3.3余弦函数的性质与图像 (50)7.3.4正切函数的性质与图像 (54)7.3.5已知三角函数值求角 (57)7.4数学建模活动:周期现象的描述...•• (64)本章小结 (66)第八章向量的数量积与三角恒等变换8.1向量的数量积8.1.1向量数量积的概念 (71)8.1.2向量数量积的运算律 (76)8.1.3向量数量积的坐标运算 (81)8.2三角恒等变换8.2.1两角和与差的余弦 (87)8.2.2两角和与差的正弦、正切 (90)8.2.3倍角公式 (96)8.2.4三角恒等变换的应用 (99)本章小结 (107)本书拓展阅读目录更多三角函数及关系式 (25)向量的数量积与三角形的面积 (84)正弦型函数与信号处理 (103)数学必修第四册(B版)第九章解三角形9.1正弦定理与余弦定理9.1.1正弦定理 (3)9.1.2余弦定理89.2正弦定理与余弦定理的应用 (13)9.3数学探究活动:得到不可达两点之间的距离 (17)本章小结 (19)第十章复数10.1复数及其几何意义10.1.1复数的概念 (25)10.1.2复数的几何意义 (29)10.2复数的运算10.2.1复数的加法与减法 (33)10.2.2复数的乘法与除法 (36)10.3复数的三角形式及其运算 (43)本章小结 (50)第十一章立体几何初步11.1空间几何体11.1.1空间几何体与斜二测画法 (55)11.1.2构成空间几何体的基本元素 (60)11.1.3多面体与棱柱 (66)11.1.4棱锥与棱台 (72)11.1.5旋转体 (76)11.1.6祖暅原理与几何体的体积 (82)11.2平面的基本事实与推论 (91)11.3空间中的平行关系11.3.1平行直线与异面直线 (96)11.3.2直线与平面平行 (100)11.3.3平面与平面平行 (103)11.4空间中的垂直关系11.4.1直线与平面垂直 (110)11.4.2平面与平面垂直 (116)本章小结 (123)本书拓展阅读目录秦九韶的“三斜求积术” (11)利用复数产生分形图 (40)四元数简介 (47)我国古代数学中球的体积公式 (86)生物学必修1分子与细胞第一章走进细胞第1节细胞是生命活动的基本单位 (2)第2节细胞的多样性和统一性 (9)探究•实践使用高倍显微镜观察^种细胞 (9)生物科技进展人工合成生命的探索 (12)第二章组成细胞的分子第1节细胞中的元素和化合物 (16)探究•实践检测生物组织中的糖类、脂肪和蛋白质 (18)第2节细胞中的无机物 (20)第3节细胞中的糖类和脂质 (23)第4节蛋白质是生命活动的主要承担者 (28)生物科学史话世界上第一个人工合成蛋白质的诞生 (33)第5节核酸是遗传信息的携带者 (34)第三章细胞的基本结构第1节细胞膜的结构和功能 (40)第2节细胞器之间的分工合作 (47)探究•实践用高倍显微镜观察叶绿体和细胞质的流动 (50)第3节细胞核的结构和功能 (54)探究•实践尝试制作真核细胞的三维结构模型 (57)生物科技进展世界上首例体细胞克隆猴的诞生 (58)第四章细胞的物质和输入输出第1节被动运输 (62)探究•实践探究植物细胞的吸水和失水 (64)生物科学史话人类对通道蛋白的探索历程 (68)第2节主动运输与胞吞、胞吐 (69)第五章细胞的能量供应和利用第1节降低化学反应活化能的酶 (76)一酶的作用和本质 (76)探究•实践比较过氧化氢在不同条件下的分解 (77)二酶的特性 (81)探究•实践淀粉酶对淀粉和蔗糖的水解作用 (81)探究•实践影响酶活性的条件 (82)科学・技术・社会酶为生活添姿彩..85第2节细胞的能量“货币” ATP (86)第3节细胞呼吸的原理和应用 (90)探究•实践探究酵母菌细胞呼吸的方式..90第4节光合作用与能量转化 (97)一捕获光能的色素和结构 (97)探究•实践绿叶中色素的提取和分离 (98)二光合作用的原理和应用 (102)探究•实践探究环境因素对光合作用强度的影响 (105)第六章细胞的生命历程第1节细胞的增殖 (110)探究•实践观察根尖分生区组织细胞的有丝分裂 (116)第2节细胞的分化 (118)科学・技术・社会骨髓移植和中华骨髓库 (122)第3节细胞的衰老和死亡 (123)生物科技进展秀丽隐杆线虫与细胞凋亡研究 (127)与生物学有关的职业病理科医师 (128)附录生物学实验室的基本安全规则 (131)生物学必修2遗传与进化第一章遗传因子的发现第1节孟德尔的豌豆杂交实验(一) (2)探究•实践性状分离比的模拟实验 (6)第2节孟德尔的豌豆杂交(二) (9)与生物学有关的职业育种工作者 (14)第二章基因和染色体的关系第1节减数分裂和受精作用一减数分裂 (18)探究•实践观察蝗虫精母细胞减数分裂装片 (24)二受精作用 (25)探究•实践建立减数分裂中染色体变化的模型 (25)科学・技术・社会人类辅助生殖技术..28在染色体上 (29)科学家的故事染色体遗传理论的奠基人摩尔根 (33)第3节伴性遗传 (34)第三章基因的本质第1节DNA是主要的遗传物质 (42)生物科技进展生物信息学及其应用..47第2节DNA的结构 (48)探究•实践制作DNA双螺旋结构模型51科学・技术・社会DNA指纹技术 (52)第四章基因的表达指导蛋白质的合成 (64)生物科学史话遗传密码的破译 (70)第2节基因表达与性状的关系 (71)科学・技术・社会基因工程的应用 (76)第五章基因突变及其它变化第1节基因突变和基因重组 (80)生物科技进展基因组编辑 (85)科学・技术・社会精准医疗 (86)第2节染色体变异 (87)探究•实践低温诱导植物细胞染色体数目的变化 (89)第3节人类遗传病 (92)探究•实践调查人群中的遗传病 (93)与生物学有关的职业遗传咨询师.96第六章生物的进化第1节生物有共同祖先的证据 (100)科学・技术・社会理想的“地质时钟”105与生物学有关的职业化石标本的制作人员 (105)第2节自然选择与适应的形成 (106)第3节种群基因组成的变化与物种的形成..110物理必修第一册第一章运动的描述1.质点参考系 (11)2.时间位移 (14)3.位置变化快慢的描述一一速度 (19)4.速度变化快慢的描述一一加速度 (25)第二章匀变速直线运动的研究1.实验:探究小车速度随时间变化的规律..342.匀变速直线运动的速度与时间的关系 (37)3.匀变速直线运动的位移与时间的关系 (40)4.自由落体运动 (45)第三章相互作用力1.重力与弹力 (55)2.摩擦力 (60)3.牛顿第三定律 (64)4.力的合成和分解 (68)5.共点力的平衡 (72)第四章运动和力的关系1.牛顿第一定律 (79)2.实验:探究加速度与力、质量的关系 (83)3.牛顿第二定律 (88)4.力学单位制 (93)5.牛顿运动定律的应用 (97)6.超重和失重 (101)课题研究 (108)学生实验 (112)索引 (116)化学必修第一册第一章物质及其变化第一节物质的分类及转化 (6)第二节离子反应 (13)第三节氧化还原反应 (20)整理与提升 (27)第二章海水中的重要元素——钠和氯第一节钠及其化合物 (32)第二节氯及其化合物 (41)第三节物质的量 (49)整理与提升 (58)实验活动1配制一定物质的量浓度的溶液..61第三章铁金属材料第一节铁及其化合物 (64)第二节金属材料 (73)整理与提升.............. 整实验活动2铁及其化合物的性质 (84)第四章物质结构元素周期律 (84)第一节原子结构与元素周期表 (86)第二节元素周期律 (101)第三节化学键 (107)整理与提升 (111)实验活动3同周期、同主族元素性质的递变115附录I实验室突发事件的应对措施和常见废弃物的处理方法 (116)附录口一些化学品安全使用标识 (117)附录印名词索引 (119)附录V部分酸、碱和盐的溶解性表(室温)120附录V 一些常见元素中英文名称对照表..121附录VI相对原子质量表 (122)元素周期表地理必修第一册第一章宇宙中的地球第一节地球的宇宙环境 (2)第二节太阳对地球的影响 (8)第三节地球的历史 (14)第四节地球的圈层结构 (21)问题研究火星基地应该是什么样子.25第二章地球上的大气第一节大气的组成和垂直分层 (28)第二节大气受热过程和大气运动 (34)问题研究何时“蓝天”常在 (42)第三章地球上的水第一节水循环 (46)第二节海水的性质 (50)第三节海水的运动问题研究能否淡化海冰解决环渤海 (57)地区淡水短缺问题 (63)第四章地貌第一节常见地貌类型 (66)第二节地貌的观察 (76)问题研究如何提升我国西南喀斯特峰丛山地的经济发展水平 (79)第五章制备与土壤第一节植被 (82)第二节土壤 (88)问题研究如何让城市不再“看海” (96)第六章自然灾害第一节气象灾害 (100)第二节地质灾害 (106)第三节防灾减灾 (110)第四节地理信息技术在防灾减灾中的应用 (114)问题研究救灾物资储备库应该建在哪里 (120)附录一本书主要地理词汇中英文对照表122附录二本套书常用地图图例 (124)体育与健康必修全一册。
高等数学知识点总结
高等数学知识点总结高等数学知识点总结1高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,*面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,序列及其应用。
这部分是高考的重点和难点部分,主要产生一些综合题。
第四,不平等。
本文主要考察不等式的解法和证明,很少单独考察,主要是通过解题中的大小比较。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明*行或垂直,求角和距离。
第七,解析几何。
是高考的难点,计算量大,一般包含参数。
高考数学基础知识的考查全面,突出重点。
扎实的数学基础是成功解题的关键。
鉴于数学高考对基础知识和基本技能的强调,必须全面系统地复习高中数学基础知识,正确理解基本概念,正确掌握定理、原理、规律、公式,形成记忆和技能。
以恒变。
数学思想方法考试是在更高层次上对数学知识的抽象和概括的考试,是与数学知识相结合的。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用**的数学观点**材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面也就是对每个章节、每个知识点的再认识、再记忆、再应用。
数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。
高中数学详细目录章节
高中数学目录数学必修1第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第2章函数概念与基本初等函数Ⅰ2.1 函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2 指数函数分数指数幂指数函数2.3 对数函数对数对数函数2.4 幂函数2.5 函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6 函数模型及其应用数学必修2第3章立体几何初步3.1 空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2 点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1 直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2 圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3 空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1 算法的意义5.2 流程图5.3 基本算法语句5.4 算法案例第6章统计6.1 抽样方法6.2 总体分布的估计6.3 总体特征数的估计6.4 线性回归方程第7章概率7.1随机事件及其概率7.2 古典概型7.3 几何概型7.4 互斥事件及其发生的概率数学必修4第8章三角函数8.1 任意角、弧度8.2 任意角的三角函数8.3 三角函数的图象和性质第9章平面向量9.1 向量的概念及表示9.2 向量的线性运算9.3 向量的坐标表示9.4 向量的数量积9.5 向量的应用第10章三角恒等变换10.1 两角和与差的三角函数10.2 二倍角的三角函数10.3 几个三角恒等式数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修 1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修 1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修 2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修 2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修 2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。
用空间向量研究距离、夹角问题6题型分类(讲+练)(学生版) 24-25学年高二必修一数学同步知识题型
1.4.2用空间向量研究距离、夹角问题6题型分类一、空间向量研究距离问题1.点P 到直线l 的距离:已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设向量AP →在直线l 上的投影向量为AQ →=a ,则点P 到直线l (如图).2.点P 到平面α的距离:设平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点,则点P 到平面α的距离为|AP →·n||n|(如图).3.两平行直线间的距离:一条直线上任一点到另一条直线的距离.4.直线到平面的距离:直线上任一点到这个平面的距离.5.两平行平面间的距离:一平面上任一点到另一平面的距离.二、空间向量研究夹角问题1.两个平面的夹角:平面α与平面β的夹角:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.2.空间角的向量法解法角的分类向量求法范围线线角设两异面直线l 1,l 2所成的角为θ,其方向向量分别为u ,v ,则cos θ=|cos 〈u ,v 〉|=|u ·v ||u ||v |(0,π2]线面角设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos〈u ,n 〉|=|u ·n ||u ||n |[0,π2]面面角设平面α与平面β的夹角为θ,平面α,β的法向量分别为n 1,n 2,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|[0,π2](一)点到直线的距离1、用向量法求点到直线的距离的一般步骤:(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.2、用向量法求点到直线的距离时需注意以下几点:(1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点;(3)直线的方向向量可以任取,但必须保证计算正确.题型1:利用空间向量求点到直线的距离1-1.(2024高二上·北京大兴·期中)如图,已知正方体1111ABCD A B C D -的棱长为1,O 为正方形11ADD A 的中心,若P 为平面1OD B 内的一个动点,则P 到直线11A B 的距离的最小值为( )A .22B .12C .64D .331-2.(2024高二上·河南新乡·期末)已知空间三点()()()2,1,0,2,1,1,1,0,1A B C -,则点C 到直线AB 的距离为.1-3.(2024高二·全国·课后作业)如图,在棱长为1的正方体1111ABCD A B C D -中,点B 到直线1AC 的距离为( )A .63B .66C .65D .2631-4.(2024·广东佛山·模拟预测)如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是a ,且AB AD ^,1160A AB A AD Ð=Ð=°,E 为1CC 的中点,则点E 到直线1AC 的距离为( )A .510a B .55a C .54a D .53a(二)点到平面的距离与直线到平面的距离1、用向量法求点面距的步骤:(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标(AP →,α内两不共线向量,平面α的法向量n ).(4)求距离d =|AP →·n ||n |.2、求点到平面的距离的主要方法:(1)作点到平面的垂线,点到垂足的距离即为点到平面的距离.(2)在三棱锥中用等体积法求解.(3)向量法:d=|n ·MA ||n |(n 为平面的法向量,A 为平面上一点,MA 为过点A 的斜线段).题型2:利用空间向量求点到平面的距离2-1.(2024高二上·陕西西安·期末)在直角梯形ABCD 中,,2222,90AD BC BC AD AB ABC ===Ð=°∥,O 为BD 中点,如图(1).把ABD △沿BD 翻折,使得平面ABD ^平面BCD ,如图(2).(1)求证:OA CD ^;(2)若M 为线段BC 的中点,求点M 到平面ACD 的距离.2-2.(2024高三下·江西鹰潭·阶段练习)如图,在三棱柱11ABC A B C -中,1CC ^平面ABC ,AC BC ^,14BC AC CC ===,D 为1AB 的中点,1CB 交1BC 于点E .(1)证明:11CB C D ^;(2)求点E 到平面11B C D 的距离.2-3.(2024高二上·河南新乡·期末)如图,在四棱锥P ABCD -中,PD ^底面ABCD ,底面ABCD 是矩形,4524,,5AB AD PD E ===是PA 的中点,2FB PF =uuu r uuu r ,则点C 到平面DEF 的距离为( )A .3105B .2105C .105D .10102-4.(2024高二下·云南楚雄·期中)如图,在正三棱柱111ABC A B C -中,E 是线段1BC 上靠近点B 的一个三等分点,D 是1AC 的中点.(1)证明:1A D //平面1AB E ;(2)若16AA AB ==,求点1A 到平面1AB E 的距离.(三)两条异面直线所成的角1、求异面直线夹角的方法(1)传统法:作出与异面直线所成角相等的平面角,进而构造三角形求解.(2)向量法:在两异面直线a 与b 上分别取点A ,B 和C ,D ,则AB → 与CD →可分别为a ,b 的方向向量,则cos θ=|AB → ·CD →||AB → ||CD →|.注:用空间向量求两条直线l 1,l 2夹角θ的步骤与方法:(1)化为向量问题:转化为求两直线l 1,l 2的方向向量u ,v 的夹角;(2)进行向量运算:计算cos ⟨u ,v⟩=u∙v|u |∙|v |的值;(3)回到图形问题:两条直线l 1,l 2夹角θ的余弦值cos θ=|cos ⟨u ,v⟩|.题型3:利用空间向量求异面直线的夹角3-1.(2024高二下·全国·课后作业)如图,在直三棱柱111ABC A B C -中,1,1,2AB BC AB BC CC ^===,建立适当的空间直角坐标系,并求1A B uuu r 与1B C uuur的夹角余弦值.3-2.(2024高二上·天津南开·期中)如图,平行六面体1111ABCD A B C D -中,1111,60AB AD AA A AB A AD BAD ===Ð=Ð=Ð=°.(1)证明:1AC BD ^;(2)求1AC 的长;(3)求直线1BD 与AC 所成角的余弦值.3-3.(2024高一下·浙江宁波·期中)在正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为直线1BB 上的异于点B 的动点,则异面直线1A B 与MN 所成的角的最小值为q ,则sin q =( )A .1010B .105C .31010D .21053-4.(2024高二下·江苏连云港·阶段练习)如图,在四棱锥P ABCD -中,已知PA ^平面ABCD ,且四边形ABCD 为直角梯形,π2Ð=Ð=ABC BAD ,3PA AD ==,1AB BC ==.点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,则线段BQ 的长为(四)直线与平面所成的角利用平面的法向量求直线与平面夹角的基本步骤(1)建立空间直角坐标系;(2)求直线的方向向量u ;(3)求平面的法向量n ;(4)设线面角为θ,则sin θ=|u ·n ||u ||n |.题型4:利用空间向量求直线与平面所成的角4-1.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)数学试题)在三棱柱111ABC A B C -中,平面11A B BA ^平面ABC ,侧面11A B BA 为菱形,1π3ABB Ð=,1A B AC ^,2AB AC ==,E 是AC 的中点.(1)求证:1A B ^平面1AB C ;(2)点P 在线段1A E 上(异于点1A ,E ),AP 与平面1A BE 所成角为π4,求1EP EA 的值.4-2.(2024·吉林通化·二模)已知四棱锥P ABCD -的底面为平行四边形,2AD =,4DC =,60BAD Ð=o ,PD ^平面ABCD ,直线PD 与平面PAC 所成角为30o ,则PD =( )A .22B .475C .677D .74-3.(2024高二下·甘肃金昌·期中)如图,已知AE ^平面ABCD ,//CF AE ,//AD BC ,AD AB ^,1AB AD ==,2BC =.若2AE =,1CF =,则BF 与平面BDE 所成角的余弦值为.4-4.(2024高二下·四川成都·期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ^平面ABCD ,M 为PC 中点.(1)求证://PA 平面MBD ;(2)若2AB AD PA ===,求直线BM 与平面AMD 所成角的正弦值.4-5.(2024高二下·四川成都·期中)如图,在长方体1111ABCD A B C D -中,2AB =,4=AD ,13AA =,1B C 交1BC 于点E .(1)证明:直线1//D E 平面1A BD ;(2)求AD 与平面1A BD 所成角的正弦值.4-6.(2024·陕西商洛·二模)在四棱锥P ABCD -中,PA ^底面ABCD ,底面ABCD 是边长为1的正方形,2AP =,则直线PB 与平面PCD 所成角的正弦值为( )A .255B .25C .23D .334-7.(2024高二下·江苏徐州·期中)如图,圆台的下底面圆1O 的直径为AB ,圆台的上底面圆2O 的直径为PQ ,C 是弧AB 上一点,且222PA AC PC BC PB =====,.(五)两个平面的夹角求两平面夹角的两种方法(1)定义法:在两个平面内分别找出与两平面交线垂直的直线,这两条直线的夹角即为两平面的夹角.也可转化为求与两平面交线垂直的直线的方向向量的夹角,但要注意其异同.(2)法向量法:分别求出两平面的法向量n 1,n 2,则两平面的夹角为〈n 1,n 2〉(当〈n 1,n 2〉∈[0,π2]时)或π-〈n 1,n 2〉注:利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.题型5:利用空间向量求二面角5-1.(山东省滨州市2023-2024学年高二上学期期末数学试题)如图,在四棱锥P ABCD -中,PC ^底面ABCD ,四边形ABCD 是直角梯形,AD DC ^,//AB DC ,222PC AB AD CD ====,点E 在棱PB 上.(1)证明:平面EAC ^平面PBC ;(2)当2BE EP =uuu r uuu r时,求二面角P AC E --的余弦值.5-2.(2024·河南·模拟预测)如图,四边形ABCD 为菱形,ED ^平面ABCD ,FB ED P ,222BD ED FB ==.(1)证明:平面EAC ^平面FAC ;(2)若60BAD Ð=°,求二面角F AE C --的大小.5-3.(2024高二上·湖北·期末)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ^,AB DC P ,PA ^底面ABCD ,点E 为棱PC 的中点,22AD DC AP AB ====.(1)证明://BE 平面PAD ;(2)在棱PC 上是否存在点F ,使得二面角F AD C --的余弦值为1010,若存在,求出PF PC 的值,若不存在,请说明理由.5-4.(2024高三下·河南·阶段练习)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,平面1D BC ^平面1D BD .(1)求证:BC BD ^;(2)若1224AA BD BC ===,探索在棱1AA 上是否存在一点E ,使得二面角1E BD D --的大小为30o ?若存在,求出1AEAA 的值;若不存在,请说明理由.5-5.(2024高二下·江苏南通·阶段练习)在四棱锥S ABCD -中,四边形ABCD 为正方形,2AB =,1DS =,平面ASD ^平面ABCD ,SD AD ^,点E 为DC 上的动点,平面BSE 与平面ASD 所成的二面角为(q q 为锐角), 则当q 取最小值时,DE =.题型6:利用空间向量求两个平面的夹角6-1.(2024高二上·湖南郴州·期末)如图2,在ABCD Y 中,2AB =,3BC =,30ABC Ð=°.将DAC △沿AC 翻折,使点D 到达点P 位置(如图3),且平面PAC ^平面PBC .(1)求证:平面PAC ^平面ABC ;(2)设Q 是线段PB 上一点,满足PQ mPB =uuu r uuu r,试问:是否存在一个实数m ,使得平面QAC 与平面PAB 的夹角的余弦值为24,若存在,求出m 的值;若不存在,请说明理由.6-2.(2024高二上·云南昆明·期末)如图,在直三棱柱111ABC A B C -中,侧面11ACC A 为正方形,90CAB Ð=°,2AC AB ==,M ,N 分别为AB 和1BB 的中点,D 为棱AC 上的点.(1)证明:1A M DN ^;(2)是否存在点D ,使得平面1C DN 与平面11ABB A 夹角的余弦值为53?如果不存在,请说明理由;如果存在,求线段AD 的长.6-3.(2024高二下·福建福州·期中)如图,圆O 是ABC V 的外接圆,CE ^平面ABC ,AB 是圆O 的直径,30CAB Ð=°,2CE BD =uuu r uuu r,且2CE AB ==.(1)求证:平面ACE ^平面BCED ;(2)若2ME DM =,求平面ACM 与平面ACE 夹角的余弦值.6-4.(2024·广东·模拟预测)如图,在四棱锥P ABCD -中,BD PC ^,四边形ABCD 是菱形,60ABC Ð=°,1AB PA ==,2PB =,E 是棱PD 上的中点.(1)求三棱锥C BDE -的体积;(2)求平面PAB 与平面ACE 夹角的余弦值.6-5.(2024高一上·吉林·阶段练习)如图①所示,长方形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -.(1)求四棱锥P ABCM -的体积的最大值;(2)设P AM D --的大小为q ,若π0,2q æùÎçúèû,求平面PAM 和平面PBC 夹角余弦值的最小值.6-6.(2024高二上·云南昆明·期末)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,2π3ADC Ð=,24PD DC BC ===,点E 是线段AD 的中点,点F 在线段AP 上且满足AF AP l =uuu r uuu r ,PD ^面ABCD .(1)当13l =时,证明:PC //平面BFE ;(2)当l 为何值时,平面BFE 与平面PBD 所成的二面角的正弦值最小?一、单选题1.(2024高二下·四川成都·期中)在长方体1111ABCD A B C D -中,11,AB BC AA ===,则1AD uuuu v 与1DB uuuu v夹角的余弦值为( )A B C .15D .2.(2024高二上·贵州铜仁·期末)已知正四棱柱1111ABCD A B C D -中,2AB =,14AA =,点E ,F 分别是11B C和1BB 的中点,M 是线段1D F 的中点,则直线AM 和CE 所成角的余弦值为( )A B C D 3.(2024高二上·广东惠州·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,分别取棱1AA ,11A D 的中点E ,F ,点G 为EF 上一个动点,则点G 到平面1ACD 的距离为( )A B C .1D 4.(2024高二上·河北邯郸·期末)在四棱锥P ABCD -中,底面ABCD 为菱形,PB ^底面ABCD ,AB =2BD PB ==,则PCD △的重心到平面PAD 的距离为( )A .29B .13C .49D .5185.(2024高二下·福建福州·期中)如图在长方体1111ABCD A B C D -中,11,AD DD AB ===E ,F ,G 分别是1,,AB BC CC 棱的中点,P 是底面ABCD 内一个动点,若直线1//D P 平面EFG 平行,则线段BP 的最小值为( )A B .1C D .126.(2024高二下·江苏南京·期中)已知两平面的法向量分别为(0,1,1)m =u r ,(1,1,1)n =r ,则两平面所成的二面角的正弦值为( )A B C .13D 6.3.4空间距离的计算(1))已知平面α的一个法向量(2,2,1)n =--r,点(1,3,0)A -在α内,则(2,1,4)P -到α的距离为( )A .10B .3C .83D .1038.(2024高二下·福建龙岩·期中)如图,在圆锥SO 中,AB 是底面圆O 的直径,4SO AB ==,AC BC =,D 为SO 的中点,N 为AD 的中点,则点N 到平面SBC 的距离为( )A .43B .53C .1D .29.(2024高二下·江西景德镇·期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AD ,BC 的中点,M 为线段EF 上的一动点,则直线1A D 与1B M 所成角的余弦值的取值范围是( )A .12éêëB .C .D .35éêë10.(2024高二下·浙江·阶段练习)如图,已知四棱台的底面ABCD 是直角梯形,90BAD o Ð=,//AD BC ,111222AD AB BC DD A D ====,1DD ^平面ABCD ,E 是侧棱1BB 所在直线上的动点,AE 与1CA 所成角的余弦值的最大值为( )A B C D 11.(2024高二下·全国·单元测试)三棱锥O ABC -中,,,OA OB OC 两两垂直且相等,点,P Q 分别是线段BC 和OA 上移动,且满足12BP BC £,12AQ AO £,则PQ 和OB 所成角余弦值的取值范围是( )A .B .C .D .12.(2024高二下·河南周口·阶段练习)在正四棱锥P ABCD -中,2PA AB ==,M 为棱PC 的中点,则异面直线AC ,BM 所成角的余弦值为( )A B C D 13.(2024高二上·河南平顶山·期末)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,13D D =,M ,N 分别是11B C ,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )A B C D 14.(2024高二下·浙江·期中)在正三棱柱111ABC A B C -中,12,3AB AA ==,点D 为棱BC 的中点,点E 为线段1AC (不与C 点重合)上的点,且满足1(0)A E mEC m =>uuur uuu r ,当二面角E AD C --的平面角为π4时,实数m 的值为( )A .1B .2C .3D .415.(2024高二上·浙江金华·期末)襄阳一桥全称“襄阳江汉大桥”,于1970年正式通车,在和襄阳城长达53年的相处里,于襄阳人来说一桥早已无可替代.江汉大桥由主桥架、上下水平纵向联结系、桥门架和中间横撑架以及桥面系组成,下面是一桥模型的一段,它是由一个正方体和一个直三棱柱构成.其中AB =BH ,那么直线AH 与直线IG 所成角的余弦值为( )A .BC .12-D .1216.(2024高二下·浙江·学业考试)如图,棱长均相等的三棱锥P ABC -中,点D 是棱PC 上的动点(不含端点),设CD x =,二面角A BD C --的大小为q .当x 增大时,( )A .q 增大B .q 先增大后减小C .q 减小D .q 先减小后增大17.(2024·新疆阿勒泰·一模)四棱锥P ABCD -中,AB BC ==1,则直线PA 与直线BC 所成角的余弦值为( )A .13B C D 18.(2024高二下·江苏宿迁·期中)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,90BAD Ð=°,112PA AB BC AD ====,//BC AD ,已知Q 是棱PD 上靠近点P 的四等分点,则CQ 与平面PAB 所成角的正弦值为( ).A B C D .1619.(2024高二下·陕西汉中·期末)如图,在正方体1111ABCD A B C D -中,P 为体对角线1B D 上一点,且12DP PB =,则异面直线1AD 和CP 所成角的余弦值为( )A .0B .35C .45D 二、多选题20.(江苏省淮安市淮海中学2023-2024学年高二上学期收心考试数学试题)如图,在棱长为1的正方体1111ABCD A B C D -中( )A .AC 与1BD 的夹角为60°B .二面角1D ACD --C .1AB 与平面1ACD D .点D 到平面1ACD 21.(2024高二上·山东青岛·期中)如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是( )A .三棱锥C EFG -的体积为1B .1AC ^平面EFGC .11//AD 平面EFGD .平面EGF 与平面ABCD 22.(2024高二下·江西宜春·开学考试)点M 在z 轴上,它与经过坐标原点且方向向量为()1,1,1s =-r的直线l,则点M 的坐标是( )A .()0,0,3-B .()0,0,3C .(D .(0,0,23.(2024高二上·浙江宁波·阶段练习)如图,在三棱锥A BCD -中,平面ABC ^平面BCD ,ABC V 与BCD △均为等腰直角三角形,且90BAC BCD Ð=Ð=°,2BC =,P 是线段AB 上的动点(不包括端点),若线段CD 上存在点Q ,使得异面直线PQ 与AC 成30o 的角,则线段PA 的长度可能为( )A B C D 24.(2024高二上·河南·期中)在三棱锥A BCD -中,平面ABD ^平面BCD ,BD CD ^,BD CD ==ABD为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE 与BF ,则AF 的值可能为( )A .23B .1C .43D .5325.(2024高二下·江苏淮安·期中)布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转换成图3所示的空间几何体.若图3中每个正方体的棱长为1,则下列结论正确的是( )A .点1C 到直线CQB .122CQ AB AD AA =--+uuu r uuu r uuu r uuu rC .平面ECG 与平面1BCD 的夹角余弦值为13D .异面直线CQ 与BD 26.(海南省海口市龙华区海南华侨中学2023届高三一模数学试题)如图,在棱长为1的正方体1111ABCD A B C D -中,Q 是棱1DD 上的动点,则下列说法正确的是( )A .不存在点Q ,使得11//C Q A CB .存在点Q ,使得11C Q A C^C .对于任意点Q ,Q 到1AC 的距离的取值范围为D .对于任意点Q ,1A CQ △都是钝角三角形三、填空题27.(2024高二上·黑龙江哈尔滨·期末)如图,在长方体1111ABCD A B C D -中,2AB AD ==,14DD =,则11A B 与平面11A C D 所成的角的正弦值为 .28.(2024高二下·福建宁德·期中)如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别为1DD ,BD ,1BB 的中点,则1C E 与FG 所成的角的余弦值为 .29.(2024·浙江绍兴·一模)如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M = .30.(2024高二上·黑龙江齐齐哈尔·期中)在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点,则直线FC 到平面1AEC 的距离为 .31.(2024高二上·黑龙江齐齐哈尔·期中)如图,在长方体1111ABCD A B C D -中,12AA AB ==,1BC =,E 、F 、H 分别是AB 、CD 、11A B 的中点,则直线EC 到平面AFH 的距离为 .32.(2024高二上·山东枣庄·期末)在棱长为1的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为 .33.(2024高一·全国·课后作业)正方体1111ABCD A B C D -中,二面角11A CC B --的大小为 .34.(2024高三·全国·课后作业)已知PA ^平面ABCD ,四边形ABCD 是矩形,PA AD =为定长,当AB 的长度变化时,异面直线PC 与AD 所成角的取值范围是 .35.(2024高一下·浙江温州·期末)“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美,如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则直线MN 与平面ABCD 所成角的正弦值为 .四、解答题36.(2024高二上·天津·期中)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,底面ABCD 是菱形,2AB =,60BAD Ð=o .(1)求证:BD ^平面PAC ;(2)若PA AB =,求PB 与AC 所成角的余弦值.37.(2024高二下·广东广州·阶段练习)如图,四棱锥P ABCD -中,CD ^平面PAD ,//AB CD ,1AB =,2CD =,M 为棱PC 上一点.(1)若M 为PC 的中点,证明://BM 平面PAD ;(2)若2PA PD AD ===,且//PA 平面BMD ,求直线PC 与平面BMD 所成角的正弦值.38.(2024高二下·江苏常州·阶段练习)如图,正方体1111ABCD A B C D -的棱长为2,点E 为1BB 的中点.(1)求点D 到平面1AD E 的距离为d ;(2)求1BC 到平面1AD E 的距离.39.(2024高二上·吉林长春·期末)如图,在正三棱柱111ABC A B C -中,点D 为1A B 的中点,1AA ==(1)证明:BC ∥平面1AC D ;(2)求直线BC 到平面1AC D 的距离.40.(2024高二上·辽宁沈阳·阶段练习)如图,在三棱锥P ABC -中,PA ^底面ABC ,90BAC Ð=o ,点D 、E 分别为棱PA ,PC 的中点,M 是线段AD 的中点,N 是线段BC 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ;(2)求直线MN 到平面BDE 的距离.41.(2024高二下·全国·课后作业)如图,矩形ADFE 和梯形ABCD 所在平面互相垂直,AB ∥CD ,∠ABC =∠ADB =90°,CD =1,BC =2,DF =1.(1)求证:BE ∥平面DCF ;(2)求点B 到平面DCF 的距离.42.(2024高二上·浙江杭州·期中)如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面PAC ^平面ABC ,PAC V 为正三角形,E ,F 分别是棱,PC PB 上的点,且满足(01)PE PF PC PBl l ==<<.(1)求证:BC AE ^;(2)是否存在l ,使得直线AP 与平面AEF l 的值;若不存在,请说明理由.43.(2024·新疆·模拟预测)如图所示,四棱锥P ABCD -中,PA ^菱形ABCD 所在的平面,60ABC Ð=°,点E 、F 分别是BC 、PC 的中点,M 是线段PD 上的点.(1)求证:平面AEM ^平面PAD ;(2)当AB AP =时,是否存在点M ,使直线EM 与平面ABF ?若存在,请求出PM PD 的值,若不存在,请说明理由.44.(2024高二下·福建莆田·阶段练习)如图,四棱锥P ﹣ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥AD ,PA ⊥平面ABCD ,AD =5,BC =2AB =4,M 为PC 的中点.(1)求证:平面PAC ⊥平面PCD ;(2)若AM ⊥PC ,求直线PB 与面PCD 所成角的正弦值.45.(2024高二下·江苏常州·期中)如图,直角梯形ABCD 与等腰直角三角形ABP 所在的平面互相垂直,且//AB CD ,AB BC ^,AP PB ^,2AB =,1BC CD ==.(1)求证:AB PD ^;(2)求直线PC 与平面ABP 所成角的余弦值;(3)线段PA 上是否存在点E ,使得//PC 平面EBD ?若存在,求出AE AP的值;若不存在,请说明理由.46.(2024高二下·江苏南京·期末)如图所示,在三棱锥P ABC -中,已知PA ^平面ABC ,平面PAB ^平面PBC .(1)证明:^BC 平面PAB ;(2)6PA AB ==,3BC =,在线段PC 上(不含端点),是否存在点D ,使得二面角B AD C --的余弦值为D 的位置;若不存在,说明理由.47.(2024··模拟预测)如图,四边形ACC 1A 1与四边形BCC 1B 1是全等的矩形,1AB AA ==.(1)若P 是AA 1的中点,求证:平面PB 1C 1⊥平面PB 1C ;(2)若P 是棱AA 1上的点,直线BP 与平面ACC 1A 1求二面角B 1﹣PC ﹣C 1的余弦值.48.(2024·福建福州·二模)如图1,在ABC V 中,2π2,,3AB AC BAC E Ð===为BC 的中点,F 为AB 上一点,且EF AB ^.将BEF △沿EF 翻折到B EF ¢V 的位置,如图2.(1)当AB ¢=B AE ¢^平面ABC ;(2)已知二面角B EF A ¢--的大小为π4,棱AC 上是否存在点M ,使得直线B E ¢与平面B MF ¢所成角的正弦值M 的位置;若不存在,请说明理由.49.(2024·江苏·二模)如图,在三棱台111ABC A B C -中,BA BC ^,平面11A B BA ^平面ABC ,二面角1B BC A --的大小为45°,2AB =,1111BC A B AA ===.(1)求证:1AA ^平面ABC ;(2)求异面直线1BA 与1B C 所成角的余弦值.50.(2024·黑龙江哈尔滨·三模)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,AB BC =,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的动点.11BF A B ^.(1)证明:BF DE ^;(2)求平面11BB C C 与平面DEF 所成的二面角正弦值的最小值及此时点D 的位置.51.(2024·河南郑州·模拟预测)在底面ABCD 为梯形的多面体中.AB CD ∥,BC ⊥CD ,2AB CD ==,∠CBD =45°,BC =AE =DE ,且四边形BDEN 为矩形.(1)求证:BD ⊥AE ;(2)线段EN 上是否存在点Q ,使得直线BE 与平面QAD 所成的角为60°?若不存在,请说明理由.若存在,确定点Q 的位置并加以证明.52.(2024高二下·江苏常州·期中)如图,圆锥SO ,S 为顶点,O 是底面的圆心,AE 为底面直径,AE AS =,圆锥高SO =6,点P 在高SO 上,ABC V 是圆锥SO 底面的内接正三角形.(1)若PO ,判断PA 和平面PBC 是否垂直,并证明;(2)点P 在高SO 上的动点,当PE 和平面PBC 所成角的正弦值最大时,求三棱锥P-ABC 的体积.53.(2024高二下·江苏盐城·期中)如图,在Rt AOB V 中,π2AOB Ð=,4AO =,2BO =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 在线段AB 上.(1)当D 为AB 的中点时,求异面直线AO 与CD 所成角的余弦值;(2)求CD 与平面AOB 所成角的正弦值的最大值.54.(2024·江苏淮安·模拟预测)如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,PA PD =,底面ABCD 是边长为2的正方形,点E 在棱PC 上,2CE PE =.(1)证明:平面BDE ^平面ABCD ;(2)当直线DE 与平面PBD 所成角最大时,求四棱锥P ABCD -的体积.55.(2024高二下·四川成都·期末)如图,在四棱锥Q ABCD -中,底面ABCD 是矩形,若2AD QD QA ===,1CD QC ==,(1)证明:平面QAD ^平面ABCD ;(2)若E F ,分别是QC QD ,的中点,动点P 在线段EF 上移动,设q 为直线BP 与平面ABCD 所成角,求sin q 的取值范围.。
高中数学专题复习空间角和距离的求法知识点例题精讲
空间角和距离的求法[高考能力要求]空间的角和距离,是定量刻划立体几何点线面位置关系的主要“指数”。
空间角和距离的计算,是立体几何学习的主要内容,也是高考必考的热点问题。
通常所说的“空间角和距离”主要是指1.三种角,包括两条异面直线所成的角、直线和平面所成的角、二面角。
解决角的计算问题,必须分两步走,首先根据概念,通过定理转化为平面角表示,然后再借助于平面图形求解。
应当重视角度的范围:两条异面直线所成的角的范围是]90,0(0,直线和平面所成的角的范围是]90,0[00,二面角的范围是]180,0[00。
2.七种距离,包括两点间距离、点线距离、点面距离、线线距离、线面距离、面面距离及球面距离等。
求解距离问题也分两步走,第一步,根据概念,运用定理指出哪是所求的距离,第二步,转化为平面图形中的线段长。
其中线面距离,点面距离是高考考查的重点内容,并且距离求解常与体积计算联系在一起。
[例题精讲]【例1】在0120的二面角N l M --中,N B M A ∈∈,,已知点A ,B到棱l 的距离分别为2和4,且AB=10。
求:(1)直线AB 与棱l 所成的角的正弦值;(2)直线AB 与平面N 所成的角。
分析:本题以二面角为载体设计问题,既考查钝二面角的画法,又考查线线角、线面角。
分析与解:如图,分别在平面M 、N 内,作AC l ⊥,BD l ⊥,垂足为C 、D ,再在N 内过C 作CE//DB且CE=DB ,连BE ,从BD l ⊥知CE l ⊥,则∠ACE 是二面角N l M --的平面角,即∠ACE=0120。
连AE ,则ABE ∠为AB 与棱l 所成的角。
在ACE ∆中,由余弦定理得AE=27。
在AEB Rt ∆中,571072sin ==∠ABE 对于(2)的解决中,首先要作出直线AB 在平面N 上的射影,从⊥l 平面ACE 知,平面ACE ⊥平面N 和M ,从点A 作到N 上的射影,其垂足必然在平面ACE 与N 的交线上,由于ACE ∆中,ACE ∠为0120是一个钝角,作AA ′CE ⊥,其射影A ′一定落在CE 的反向延长线上,所以AA ′=AC 360sin 0=。
高三数学二轮专题复习27 空间角与空间距离
立体几何—空间角与空间距离专题综述空间角度与空间距离的推理、比较与计算,是高考考查的重点.求解方法既可以选择几何法,又可以选择向量法,在解决空间背景下及建系困难的几何体中的角与距离时,几何法更具优势,在解决简单几何体中的角与距离及探究性问题时,向量法更具优势.因此,选择合适的方法,确保快速解决问题.另外,两种方法都要求熟练准确的运算,且具有较高的直观想象、逻辑推理及数学运算的核心素养.专题探究探究1:综合法解决立体图形中角度和距离问题的思路:立体几何平面化→平面几何三角化→三角问题定理化.即把空间立体几何的问题转化为平面几何的问题,再把平面几何的问题转化为解三角形问题.答题思路一:综合法求解空间角(1)求异面直线成角的方法①平移:平移已有的平行线,或选择适当的点(线段的中点或端点),做平线性平移,或补形平移;② 证明:证明所作的角是异面直线所成的角或是其补角;③ 寻找:在立体图形中,寻找或作出含有此角的三角形,解三角形; ④ 取舍:因为异面直线所成角θ的取值范围是0,2π⎛⎤⎥⎝⎦,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.(2)求线面角的方法: (I )定义法:① 先确定斜线与平面,找到线面的交点A 为斜足;找线在面外的一点B ,过点B 向平面α做垂线,确定垂足O ;② 连结斜足A 与垂足O ,OA 为斜线AB 在面α内的投影;投影OA 与斜线AB 之间的夹角为线面角;③ 把投影OA 与斜线AB 归到三角形中进行求解. (2)间接法:设斜线PA 与平面α所成角为θ,则sin Ph PAθ=(P h 为点P 到平面α的距离),转化为求点P 到平面α的距离,可利用等积转化或借助其他点求距离. (3)求二面角的方法:l αβ--① 点A 为平面α内一点,过点A 作AO l ⊥于点O ; ② 证明过点A 的直线AB ⊥平面β于点B ,连接OB ,AB l l ⇒⊥⇒⊥平面AOB ,OB l ⇒⊥,⇒AOB ∠即为二面角l αβ--的平面角;③ 解Rt AOB ∆.答题思路二:综合法求解空间距离空间中的距离:平行平面间的距离、平行平面的直线到平面的距离、点到平面的距离⇒转化为点到平面的距离求点A 到平面α距离的方法: (1)直接法:① 求证过点A 的直线AB ⊥平面α于点B ,则线段AB 的长即为点A 到平面α的距离; ② 利用求三棱锥体积的等积转化思想进行求解; (2)间接法:转化为其他点到平面的距离① 直线AB 平面α,转化为求点B 到平面的距离;② ,A B ∈平面β,平面β平面α,转化为求点B 到平面的距离.(2021.福建省福州市月考试卷)如图,在棱长为2的正方体1111ABCD A B C D -中,下列结论正确的有( ) A.二面角11A CD D --的大小为045 B.异面直线11D B 与CD 所成的角为060 C. 直线11D B 与平面11A DCB 所成的角为030 D. 1D 到平面11A DCB 的距离为2【审题视点】以简单几何体或者空间位置背景下的多选题,选项中涉及求空间角、距离、体积的问题,若建系,运算量较大,可以优先选择综合法解题.【思维引导】将综合法求空间角和距离的方法,以“流程化”的形式,将需要寻找的点,或需要作出的辅助线呈现出来,即可锁定所求的角或线段长.综合法的关键是,“按步骤进行”.【规范解析】解:在棱长为2的正方体1111ABCD A B C D -中, 连接1AD 交1A D 于点O ,则11A D AD ⊥CD ⊥平面11ADD A1CD AD ∴⊥11,,A D CD D A D CD =⊂平面11A DCB 1AD ∴⊥平面11A DCB确定过点1D 垂直于平面11A DCB 的垂线1DD CD⊥11A DD ∴∠是二面角11ACD D --的平面角,又1145A DD ∠=,∴二面角11A CD D --的大小为045故A 正确11CD C D111B D C ∴∠是异面直线11D B 与CD 所成角或其补角又011145B D C ∠=∴异面直线11D B 与CD 所成角为045故B 错误01130OB D ∴∠=∴直线11D B 与平面11A DCB 所成的角为030故C 正确 方法一:1OD ⊥平面11A DCB∴1OD 的长即为点1D 到平面11A DCB 的距离 ∴点1D 到平面11A DCB方法二:三棱锥111D A B D -中111111D A B D B A D D V V --=1111111133D A B D B A D D h S h S ∆∆∴⋅⋅=⋅⋅11111112222122B A D DDA B Dh ShS∆∆⋅⋅⋅⋅∴===⋅∴点1D到平面11A DCB方法三:111111,C D A B A B ⊂平面11A DCB,11C D⊄平面11A DCB三棱锥111C A B C-中111111C A B C A C B CV V--=11111112222122A CB CCA B Ch ShS∆∆⋅⋅⋅⋅∴===⋅∴点1C到平面11A DCB,即点1D到平面11A DCB故D正确.【探究总结】求空间角和距离,不能单一的只利用空间向量法求解,对于一些简单的几何体,或者建系定坐标需花费较多时间的题目,选择用综合法求解会缩短解题时间.空间三大角中,二面角的求解较为困难,记住一点出发,作两垂线,连接两垂足,解三角形即可.1111111133C A B C A C B Ch S h S∆∆∴⋅⋅=⋅⋅(2021年全国新高考Ⅰ卷)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.探究2:向量法利用空间向量求空间角与距离的思路:寻找从同一点出发的三条两两相互垂直的直线(条件不足需证明垂直)⇒建立空间直角坐标系⇒确定点的坐标⇒求出向量(方向向量或法向量)坐标 ⇒带入空间向量求角或距离的公式,求解. 答题思路三:向量法求解空间角与空间距离(1)求空间角① 设异面直线,m n 的方向向量分别为,m n ,则异面直线,m n 所成角的余弦值为cos ,m n m n m n⋅=; ② 设直线m平面A α=,直线m 的方向向量为m ,平面α的法向量为a ,则直线m 与平面α所成角的正弦值为cos ,m a m a m a⋅=; ③ 设平面α平面l β=,平面α,平面β的法向量分别为,a b ,则法向量,a b 夹角的余弦值为cos ,a b a b a b⋅=.(2)求点到平面的距离点P ∉平面α,点A ∉平面α,平面α的法向量为n ,则点P 到平面α的距离为PA n n⋅.强调:方向向量所成角的余弦值的绝对值分清所求角是二面角还是平面与平面所成角,对结果进行转化注意是角的正弦值(1)利用空间向量求解空间角或者空间距离①通过建立空间直角坐标系,利用向量的坐标运算进行;②利用空间向量基本定理表示向量,结合空间向量数量积,求角或距离.(2)求解空间角或者距离范围、最值的问题依然利用上述的求解思路,只是点的坐标含有参数,导致最终的结果是一个含参表达式.结合题干条件明确参数范围,转化为函数求范围、最值问题.AB=,(2021广东省佛山市期中考试)如图,已知矩形ABCD中,21∆沿AM折起,使得平面ADM⊥平面ABCM,AD=,M为DC的中点,将ADM连接BM.(1)求证:BM⊥平面ADM;--的余弦值;(2)求二面角A DM C-的体积为(3)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M ADE212【审题视点】题干条件中边长关系较多,联想到利用勾股定理或等腰三角形的三线合一的结论得出垂直结论,平面ADM⊥平面ABCM转化为线面垂直,故图形中垂直结论较多,第一问不难证明,同样容易建系求解后续两问.【思维引导】这是一道立体几何部分的常规题型,图形中垂直条件较多,不难证明BM⊥平面ADM,第一问的结论又为建系提供条件.题中需要求二面角的余弦值,及探究点E位置,用空间向量解决问题的思路更清晰一些.【规范解析】(1)证明:∵矩形ABCD 中,2AB =,1AD =,M 为DC 的中点2AM BM ∴==,222AM BM AB ∴+=AM BM ∴⊥平面ADM ⊥平面ABCM ,平面ADM平面ABCM AM =BM ⊂平面ABCM BM ∴⊥平面ADM(2)解:分别取,AM AB 的中点O 和N ,则ONBM ,ON ∴⊥平面ADM ,ON AM ON OD ∴⊥⊥ AD AM = OD AM ∴⊥建立如图所示空间直角坐标系 则2220,0,,,0,0,2,,0222D M C ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2222,0,,,,02222DM MC ⎛⎫⎛⎫∴=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设(),,m x y z =为平面CDM 的一个法向量, 则2202222022DM m x z MC m x y ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩令1x =,则1,1y z ==-,即()1,1,1m =- 又()0,1,0n =是平面ADM 的一个法向量,3cos ,3m n m n m n⋅==∴二面角A DM C --的余弦值为33建系:凑齐建系条件找点坐标,表示向量坐标,若直接表求向量的坐标难度大,可利用向量间的关系,间接表示求法向量,与坐标平面重合或者平行的平面可直接给出法向量结合图形,分析二面角的范围,对结果进行转化(3)由(2)得22,0,0,,2,022A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 22,2,22DB ⎛⎫∴=-- ⎪ ⎪⎝⎭设[],0,1DE DB λλ=∈22,2,22DE λλλ⎛⎫∴=-- ⎪ ⎪⎝⎭ 则222,2,222E λλλ⎛⎫=-- ⎪ ⎪⎝⎭2222,2,2222AE λλλ⎛⎫∴=--- ⎪ ⎪⎝⎭∴点E 到平面ADM 的距离2AE n d nλ⋅==则1223612M ADB ADM V S d λ-∆=⋅==解得12λ=,则E 为BD 的中点. 【探究总结】向量法解决问题的前提是合理建系(条件不足时,有必要的证明),写出点的坐标,求解二面角、点面距的前提是准确求出法向量.向量法本质是几何问题代数化,准确计算是保障.(2021浙江省期中考试)如图,在四棱柱1111ABCD A B C D -中,底面ABCD是等腰梯形, AB CD ,14,2AB BC CD D C ====, 1D C ⊥底面ABCD ,则( ) A.BC ⊥平面1ACDB.直线1DD 与底面ABCD 所成的角为4πC.平面11ABC D 与平面ABCD 所成锐二面角的余弦值为217过点E 的斜线的方向向量+平面的法向量,求点面距离专题升华对于空间角与空间距离的计算问题,综合法与向量法都需要掌握.综合法要求一作(作辅助线)、二证(证明作图的合理性,即平行垂直的依据)、三计算(利用平面几何的知识计算角或边长),注重考查空间想象能力(判别平行与垂直的位置关系),推理论证能力(平行与垂直关系的辅助线作图与论证),运算求解能力(利用余弦定理,计算三角形的内角与边长).空间向量法要求建立坐标系、写出点坐标、计算角的三角函数值与距离或选择空间向量基底表示其他向量, 利用空间向量数量积运算计算各种角的三角函数值与距离.两种方法针对不同的题型,各具优势,做题时选择合适的方法,快速准确的解题.【答案详解】 变式训练1 【解析】 解:(1)AB AD =,O 为BD 中点OA BD ∴⊥平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD OA ∴⊥平面BCDOA CD ∴⊥(2)作EF BD ⊥于F , 作EM BC ⊥于M ,连FM ,则EF OA OA ⊥平面BCD ,EF OAEF ∴⊥平面BCDEF BC ∴⊥平面BCD,EM BC EM EF E ⊥=BC ∴⊥平面EFMBC FM ∴⊥EMF ∴∠为二面角E BC D --的平面角, 即4EMF π∠=BO OD =,OCD ∆为正三角形BCD ∴∆为直角三角形2DE EA =1223FM BF ∴== 33122OA EF FM ∴===11131133326A BCD BCD V OA S -∆∴=⋅=⨯⨯⨯⨯= 变式训练2【解析】解:如图,易知1D C ⊥平面.ABCD BC ⊂平面ABCD1.BC D C ∴⊥在等腰梯形ABCD 中,过点C 作CG AB ⊥于点.G 则3AG =,1BG =,22213CG =-=, 所以22223(3)2 3.AC AG CG =+=+= 因此满足22216AC BC AB +==,所以.BC AC ⊥ 又1D C ,AC ⊂平面1AD C ,1D C AC C =, BC ∴⊥平面1AD C1D C ⊥平面ABCD14D DC π∴∠=,即直线1DD 与底面ABCD 所成的角为.4π 建立如图所示空间直角坐标系则(0,0,0)C ,(23,0,0)A ,(0,2,0)B ,1(0,0,2)D , (23,2,0)AB ∴=-,1(23,0,2).AD =-设平面11ABC D 的法向量(,,)n x y z =,由10,0,AB n AD n ⎧⋅=⎪⎨⋅=⎪⎩得2320,2320,x y x z ⎧-+=⎪⎨-+=⎪⎩ 取1x =,可得平面11ABC D 的一个法向量(1,3,3).n = 又1(0,0,2)CD =为平面ABCD 的一个法向量 设平面11ABC D 与平面ABCD 所成锐二面角为θ, 则11||2321cos ||||727CD n CD n θ⋅===,因此平面11ABC D 与平面ABCD 所成锐二面角的余弦值为7 故点C 到平面11ABC D 的距离为1||221||7CD n n ⋅= 故选.ABC。
人教版数学选择性必修一1.4.2用空间向量研究距离、夹角问题课件
2
2
3
1 =(- a,- , 2 a).
2
2
设平面AMC1的法向量为n=(x,y,z).
⋅ = 0
൝ 1
⋅ = 0
令y=2,则z=-
3
− + + 2 = 0
2
൞ 2
+ 2 = 0
2
,x=0.
2
∴n=(0,2,-
).
2
, 2 a),
[例2] 已知正三棱柱ABC-A1B1C1的底面边长为a ,侧棱长为 2a ,
A.30°
B.60°
C.120°
D.150°
3.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),
则两平面所成的二面角的大小为( C )
A.45°
B.135°
C.45°或135°
D.90°
4.在正三棱柱ABC-A1B1C1中,若AB= 2BB1,则AB1与C1B
所成角的大小为______.
[例2] 已知正三棱柱ABC-A1B1C1的底面边长为a ,侧棱长为 2a ,
M为A1B1的中点,求BC1与平面AMC1所成角的正弦值.
建立如图所示的空间直角坐标系,则A(0,0,0),M(0,
2
3
C1(- a, , 2a),B(0,a,0),
2
2
3
故1 =(- a, , 2 a), =(0, , 2 a),
[例3] 如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,
A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
1.4.2用空间向量研究距离、夹角问题课件-高二上学期数学人教A版选择性必修第一册
1.4.2 用空间向量研究距离、夹角问题
——夹角问题
空间的角常见的有:线线角、线面角、面面角
距离类似,角度是立体几何中另一个重要的度量. 下 面我们用向量方法研究直线 与直线所成的角、直线与平面所成的角以及平面与平面的夹角,先看线线角.
1. 线线角 (异面直线所成的角)
一般地,两条异面直线所成的角,可以转化为两条异面直线的方向向量的夹角
或d PQ |AP n | |AP n| . |n| |n|
P n
d
α
A
Q
4. 直线到平面的距离: 直线到平面的距离可转化为点到平面的距离求解.
d |AP n| . |n|
P•
l
n
d
α
Q A
3. 两个平行平面之间的距离:
两个平行平面之间的距离也可转化为点到平面的距离求解.
d |AP n| . |n|
(1,1,
1), CC1
(0, 0,
1).
D1
A1
x
E
C1 y
B1
设平面AEC1的一个法向量为n ( x, y, z) ,则
∴
1 2
ቤተ መጻሕፍቲ ባይዱ
y
z
0
, 取y 2,则z 1, x 1.
点C到平面AEC1
的距离为
|
CC1 |n
|
n
|
6 .
6
x y z 0 ∴平面AEC1的一个法向量为n (1, 2,1).
z
G
d | n BE | 2 11 .
n
11
D x
F
A
E
C
B y
【巩固训练3】如图,正方体ABCD和ABEF的边长都是1,且它们所在平面互相垂
1.4.2用空间向量研究距离、夹角问题高二上学期数学人教A版(2019)选择性必修第一册
解 由已知得 A'(0,0,1),B(1,0,0),C(1,1,0),E
则' =(1,0,-1), =
1
-1,- 2 ,1
所以' ·=1×(-1)+0×
2
| |= (-1) +
1 2
2
1
-2
+ 12
=
1
0, ,1
2
,
.
+(-1)×1=-2,|'|=
12
+
02
2
+ (-1) = √2,
方向向量为 u,平面 α 的法向量为 n,则 sin θ=|cos<u,n>|=
·
||||
=
|·|
.
||||
过关自诊
1.直线与平面所成的角和直线的方向向量与平面的法向量所成的角有怎
样的关系?
提示 设n为平面α的一个法向量,a为直线a的方向向量,直线a与平面α所成
的角为θ,则
θ=
π
2
π
- < , > , < , > ∈[0, 2 ],
π
π
< , > - , < , > ∈( ,π].
2
2
1
2.已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos<m,n>=- 2 ,
则l与α所成的角为( A )
A.30°
B.60°
C.120° D.150°
解析 设 l 与 α 所成的角为 θ 且 θ∈[0°,90°],则 sin
2
的余弦值为负时,应取其绝对值.
变式训练1
如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成
高二数学 立体几何选修1-1:第六节 空间角与距离 含解
重点列表:重点详解:重点1:异面直线所成的角 【要点解读】 两条异面直线所成的角 ①异面直线所成的角已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤ ⎥⎝⎦.②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a ba b θϕ⋅==⋅. 【考向】异面直线所成的角【例题】【2017届湖北省沙市高三上学期第二次考试】在直三棱柱111ABC A B C -中,底面ABC ∆是直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点. (1)求异面直线1DC 、1BC 所成角的余弦值; (2)求二面角11B DC C --的平面角的余弦值.(2)因为(0,2,0)CB = ,(2,0,0)CA =,1(0,0,2)CC = ,所以0CB CA ⋅= ,10CB CC ⋅= ,所以CB 为平面11ACC A 的一个法向量.因为1(0,2,2)BC =-- ,(2,0,1)CD = ,设平面1BDC 的一个法向量为n , (),,n x y z = .由10,0,n B C n CD ⎧⋅=⎪⎨⋅=⎪⎩得220,20.y z x z --=⎧⎨+=⎩令1x =,则2,2y z ==-,()1,2,2n =-.所以42cos(,).323||||n CB n CB n CB ⋅===⨯所以二面角11B DC C --的余弦值为.32【名师点睛】异面直线所成的角,通过作平行线,转化为相交直线所成的角.具体地,有以下两种方法:一是在其中一条上的适当位置选一点,过该点作另一条的平行线;二是在空间适当位置选一点,过该点作两条异面直线的平行线.求异面直线所成的角,点的选取很重要.运用空间向量坐标运算求异面直线所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:两异面直线所成的角不一定是直线的方向向量的夹角. 重点2:直线与平面所成的角 【要点解读】平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角. ①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【考向】直线与平面所成的角 【例题】【2017届湖北黄石市高三9月调研】如图,正方形AMDE 的边长为2,B C 、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.(2)因为PA ⊥底面ABCDE ,所以,PA AE PA AB ⊥⊥,如图建立空间直角坐标系A xyz -,则()0,0,0A ,()()()()1,0,0,2,1,0,0,0,2,0,1,1B C P F ,()1,1,0BC =.设平面ABF 的法向量为(),y,z n x =,则00n A B n A F ⎧=⎨=⎩,即00x y z =⎧⎨+=⎩,令1z =,则1y =-,所以()0,1,1n =-.设直线BC 与平面ABF 所成角为α,则1sin cos ,2n BC n BC n BCα===,因此直线BC 与平面ABF 所成角的大小为6π【名师点睛】直线与平面所成的角就是直线与其在该平面内的射影所成的角.求线面角的关键是找出斜线在平面内的射影,一般在斜线上的某个特殊的位置找一点,过该点平面的垂线,从而作出射影;运用空间向量坐标运算求直线与平面所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:直线与平面所成的角的正弦等于直线与平面的法向量的夹角的余弦的绝对值.重点3:二面角【要点解读】如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD〉.(2)如图2、3,12,n n分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>). 【考向】二面角的求法 【例题】【2017届河南省豫北重点高三联考】如图所示,在四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,//AD BC ,侧面11ABB A 为菱形,1DAB DAA ∠=∠. (1)求证:1A B AD ⊥; (2)若012,A 60A D A BB C A B==∠=,点D 在平面11ABB A 上的射影恰为线段1AB 的中点,求平面11DCCD 与平面11ABB A 所成锐二面角的余弦值.(2)设线段1A B 的中点为O ,连接1DO AB 、,由题意知DO ⊥平面 11ABB A ,因为侧面11ABB A 为菱形,所以11AB A B ⊥,故可分别以射线OB 、射线1OB 、射线OD 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -.设22AD AB BC a ===,由0160A AB ∠=可知1,OB a OA OB ===,所以OD a ==,从而()()()()10,,0,,0,0,,0,0,0,A B a B D a,所以()11,0CC BB a ==-.由12BC AD =可得1,,22C a a a ⎛⎫ ⎪ ⎪⎝⎭,所以1,,22DC a a a ⎛⎫=- ⎪ ⎪⎝⎭ .设平面11DCC D 的一个法向量为()000,,m x y z = ,由10,0m CC m DC ==,得0000001022ax ax az ⎧-+=⎪⎨+-=⎪⎩取01y =,则00x z ==m =.又平面11ABB A 的法向量为()0,0,OD a =,所以cos ,OD m OD m OD m===【名师点睛】二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. ③空间向量法:法一: ,AB CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=〈〉.法二:设1n ,2n是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角12cos cos ,u u θ=〈〉 或12cos cos ,u u θ=-〈〉. 重点4:空间距离【要点解读】(1)两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过b 且与a 平行的平面,则直线a 到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与b ,a 分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.④根据异面直线间的距离公式EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)求距离.(2)点到平面的距离点P到直线a 的距离为点P到直线a 的垂线段的长,常先找或作直线a 所在平面的垂线,得垂足为A,过A作a 的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a 的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【考向】空间距离的求法【例题】【2017届广东珠海市高三9月摸底考试】如图,在四棱锥P ABCD -中,PD ABCD ⊥,1PD D C BC ===,2AB =,//,90AB DC BCD ∠=o.⑴ 求证:PC BC ⊥;⑵ 求点A 到平面PBC 的距离.【名师点睛】1.求距离的关键是化归.即空间距离向平面距离化归,具体方法如下:(1)求空间中两点间的距离,一般转化为解直角三角形或斜三角形.(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法.(3)求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之.2.用法向量球距离:(1)用法向量求异面直线间的距离:如右图所示,a 、b 是两异面直线,是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b之间的距离是d =;(2)用法向量求点到平面的距离:如右图所示,已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d =;(3)用法向量求直线到平面间的距离:首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题;(4)用法向量求两平行平面间的距离:首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题.【趁热打铁】1.【2017届河南商丘第一高级年高三上开学摸底】如图,在直三棱柱111ABC A B C -中,1,2,AB AC AB AA AC ⊥===过BC 的中点D 作平面1ACB 的垂线,交平面11ACC A 于E ,则BE 与平面11ABB A 所成角的正切值为( )A2. 【2017届山西临汾一中高三10月月考】如图,在直三棱柱111ABC A B C -中,1,2,AB AC AB AA AC ⊥==过BC 的中点D 作平面1ACB 的垂线,交平面11ACC A 于E ,则点E 到平面11BB C C 的距离为( )A .2B .3C . 3D .23.【2017届湖北襄阳四中高三七月周考】AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在的平面,,D E 分别是,VA VC 的中点.(1)试判断直线DE 与平面VBC 的位置关系,并说明理由;(2)若已知2,AB VC ==当三棱锥V ABC -体积最大时,求点C 到面VBA 的距离.4. 【2017届宁夏石嘴山三中高三上学期月考】在长方体1111ABCD A BC D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得如图所示的几何体111ABCD AC D -,且这个几何体的体积为10.(1)求棱1A A 的长;(2)若11AC 的中点为1O ,求异面直线1BO 与11A D 所成角的余弦值.5. 【2017届山西怀仁县一中高三上学期开学考】在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(1)求证://OD 平面PAB ; (2)当12k =时,求直线PA 与平面PBC 所成的角的正弦值;(3)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?6. 【2017届广东珠海市高三9月摸底】在如图所示的圆台中,C A 是下底面圆O 的直径,EF 是上底面圆/O 的直径,FB 是圆台的一条母线.(1)已知H G ,分别为FB E ,C 的中点,求证:ABC GH 面//;(2)已知221===AC FB EF ,BC AB =,求二面角O BC F --的余弦值.。
【原创精品资料】6.4《空间角和距离》错误解题分析
6.4《空间角和距离》错误解题分析一、知识导学1、掌握两条异面直线所成的角、直线与平面所成的角及二面角,掌握上述三类空间角的作法及运算。
2、掌握给出公垂线的两条异面直线的距离、点到直线(或平面)的距离、直线与平面的距离及两平行平面间距离的求法。
二、疑难知识导析1、求空间角的大小时,一般将其转化为平面上的角来求,具体地将其转化为某三角形的一个内角。
2、求二面角大小时,关键是找二面角的平面角,可充分利用定义法或垂面法等。
3、空间距离的计算一般将其转化为两点间的距离。
求点到平面距离时,可先找出点在平面内的射影(可用两个平面垂直的性质),也可用等体积转换法求之。
另外要注意垂直的作用。
球心到截面圆心的距离由勾股定理得22r R d -=4、球面上两点间的距离是指经过这两点的球的大圆的劣弧的长,关键在于画出经过两点的大圆以及小圆。
5、要注意距离和角在空间求值中的相互作用,以及在求面积和体积中的作用。
三、经典例题导讲[例1] 平面α外有两点A,B ,它们与平面α的距离分别为a,b ,线段AB 上有一点P ,且AP:PB=m:n ,则点P 到平面α的距离为_________________。
【错解】na mbm n++。
【错因】只考虑AB 在平面同侧的情形,忽略AB 在平面两测的情况。
【正解】|na mb mb nam n m n+-++或|。
[例2]与空间四边形ABCD 四个顶点距离相等的平面共有______个。
【错解】4个。
【错因】只分1个点与3个点在平面两侧。
没有考虑2个点与2个点在平面两侧。
【正解】7个。
[例3]一个盛满水的三棱锥形容器,不久发现三条侧棱上各有一个小洞D、E、F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的()A、2923B、2719C、3130D、2723【错解】A、B、C。
由过D或E作面ABC的平行面,所截体计算而得。
【正解】D。
当平面EFD处于水平位置时,容器盛水最多2121sin31sin313131hASBSBSAhDSESESDhShSVVSABSDESABCSDEF⋅∠⋅⋅⋅⋅∠⋅⋅⋅=⋅⋅=∴∆∆--27431323221=⋅⋅=⋅⋅=hhSBSESASD最多可盛原来水得1-2723274=[例4]斜三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧棱长等于b,一条侧棱AA1与底面相邻两边AB、AC都成450角,求这个三棱柱的侧面积。
高中数学立体几何专:空间距离的各种计算(含答案)doc(K12教育文档)
高中数学立体几何专:空间距离的各种计算(含答案)doc(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学立体几何专:空间距离的各种计算(含答案)doc(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学立体几何专:空间距离的各种计算(含答案)doc(word版可编辑修改)的全部内容。
高中数学立体几何空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离。
4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点。
(1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF 。
又因为AE =BE ,所以FE ⊥AB 交AB 于E 。
同理EF ⊥DC 交DC 于点F .所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21,所以EF 2=BF 2—BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB 。
2022届高考数学基础总复习提升之专题突破详解专题23空间角和距离计算含解析
专题23 空间角和距离计算一.知识点、方法、规律 (一)【学习目标】1.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式.2.理解空间向量的概念,理解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.5.会找直线的方向向量和平面的法向量,能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.6.能用向量法证明有关直线和平面关系的一些定理.7.会用向量法计算直线与直线、直线与平面的夹角及二面角,会用向量法计算空间距离. 8.理解异面直线所成的角、直线与平面所成的角、二面角及二面角的平面角等概念,能依题设条件选择恰当的方法求解空间角和距离.特别注意两平面法向量的夹角与二面角的关系(二)解题方法归纳1.证明平面三点共线的方法对平面三点P ,A ,B 可通过证明下列结论来证明三点共线: (1)PA →=λPB →(λ∈R);(2)对空间任一点O ,OP →=OA →+tAB →(t ∈R);(3)对空间任一点O ,OP →=xOA →+yOB →(x ,y ∈R ,且x +y =1). 2.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论来证明四点共面: (1)MP →=xMA →+yMB →(x ,y ∈R);(2)对空间任一点O ,OP →=OM →+xMA →+yMB →(x ,y ∈R);(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x ,y ,z ∈R ,且x +y +z =1); (4)PM →∥AB →(或PA →∥MB →或PB →∥AM →).3.同时要重视空间向量基本定理的运用,要注意空间向量基底的选取,用基向量表示出已知条件和所需解决问题的所有向量,将几何问题转化为向量问题.4.用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之,树立用数解形的观念,即用数形结合的思想解决问题.5.利用向量解决几何问题具有快捷、有效的特征.一般方法如下:先将原问题转化为等价的向量问题,即将已知条件的角转化为向量的夹角,线段长度转化为向量的模,并用已知向量表示出未知向量(注意量的集中),然后利用向量运算解决该向量问题,从而原问题得解.6.利用向量坐标解决立体几何问题的关键在于找准位置,建立恰当、正确的空间坐标系.表示出已知点(或向量)的坐标.难点是通过向量的坐标运算,实现几何问题的代数解法.7.向量法求空间角与距离一般在易建系而又不易直接作出求角与距离时使用事半功倍. 8.向量法证明线面关系时恰当的推理和必要的空间想象是必需的.9.求异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2,斜线与平面所成的角关键是找斜线在平面内的射影;求二面角的大小方法多、技巧性强,但一般先想定义法,再想构造法.10.实施解题过程仍要注意“作、证、指、求”四环节,计算一般是放在三角形中,因此,“化归”思想很重要.11.应用向量法求空间角要注意:①恰当正确的建立空间直角坐标系;②求得相关向量的夹角的三角函数值后一定要注意相应空间角的取值范围及问题情境确定所求角的三角函数值或大小.二、命题类型: 1.空间中的轨迹问题 2.点面距离问题 3.线面距离问题 4.面面距离问题 5.异面直线所成角问题 6.线面角 7.二面角三、命题类型分析及规律总结: 1.空间中的轨迹问题例1.如图,在等腰梯形ABCD 中, 222CD AB EF a ===, ,E F 分别是底边,AB CD 的中点,把四边形BEFC 沿直线EF 折起使得平面BEFC ⊥平面ADFE .若动点P ∈平面ADFE ,设,PB PC 与平面ADFE 所成的角分别为12,θθ(12,θθ均不为0).若12=θθ,则动点P 的轨迹围成的图形的面积为( )A.214a B. 249a C. 214a π D. 249a π 【答案】D故答案选:D .点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.4空间角和距离一、知识导学1.掌握两条异面直线所成的角、直线与平面所成的角及二面角,掌握上述三类空间角的作法及运算.2.掌握给出公垂线的两条异面直线的距离、点到直线(或平面)的距离、直线与平面的距离及两平行平面间距离的求法. 二、疑难知识导析1.求空间角的大小时,一般将其转化为平面上的角来求,具体地将其转化为某三角形的一个内角.2.求二面角大小时,关键是找二面角的平面角,可充分利用定义法或垂面法等. 3.空间距离的计算一般将其转化为两点间的距离.求点到平面距离时,可先找出点在平面内的射影(可用两个平面垂直的性质),也可用等体积转换法求之.另外要注意垂直的作用.球心到截面圆心的距离由勾股定理得22r R d -=4.球面上两点间的距离是指经过这两点的球的大圆的劣弧的长,关键在于画出经过两点的大圆以及小圆.5.要注意距离和角在空间求值中的相互作用,以及在求面积和体积中的作用. 三、经典例题导讲[例1] 平面α外有两点A,B ,它们与平面α的距离分别为a,b ,线段AB 上有一点P ,且AP:PB=m:n ,则点P 到平面α的距离为_________________. 错解:na mbm n++.错因:只考虑AB 在平面同侧的情形,忽略AB 在平面两测的情况. 正解:|na mb mb nam n m n+-++或| .[例2]与空间四边形ABCD 四个顶点距离相等的平面共有______个.错解:4个.错因:只分1个点与3个点在平面两侧.没有考虑2个点与2个点在平面两侧. 正解:7个.[例3]一个盛满水的三棱锥形容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( ) A.2923 B.2719 C.3130D.2723 错解:A 、B 、C.由过D 或E 作面ABC 的平行面,所截体计算而得. 正解:D.当平面EFD 处于水平位置时,容器盛水最多2121sin 31sin 313131h ASB SB SA h DSE SE SD h S h S V V SAB SDE SABC SDE F ⋅∠⋅⋅⋅⋅∠⋅⋅⋅=⋅⋅=∴∆∆-- 27431323221=⋅⋅=⋅⋅=h h SB SE SA SD 最多可盛原来水得1-2723274= [例4]斜三棱柱ABC-A 1B 1C 1的底面是边长为a 的正三角形,侧棱长等于b ,一条侧棱AA 1与底面相邻两边AB 、AC 都成450角,求这个三棱柱的侧面积.错解:一是不给出任何证明,直接计算得结果;二是作直截面的方法不当,即“过BC 作平面与AA 1垂直于M ”;三是由条件“∠A 1AB=∠A 1AC ⇒∠AA 1在底面ABC 上的射影是∠BAC 的平分线”不给出论证. 正解:过点B 作BM ⊥AA 1于M ,连结CM ,在△ABM 和△ACM 中,∵AB=AC ,∠MAB=∠MAC=450,MA 为公共边,∴△ABM ≌△ACM ,∴∠AMC=∠AMB=900,∴AA 1⊥面BHC ,即平面BMC 为直截面,又BM=CM=ABsin450=22a ,∴BMC 周长为2x 22a+a=(1+2)a ,且棱长为b ,∴S 侧=(1+2)ab[例5]已知CA ⊥平面α,垂足为A ;AB α,BD ⊥AB ,且BD 与α成30°角;AC=BD=b ,AB=a.求C ,D 两点间的距离. 解 : 本题应分两种情况讨论:(1)如下左图.C ,D 在α同侧:过D 作DF ⊥α,垂足为F.连BF ,则,30=∠DBF 于是221bBD DF ==.根据三垂线定理BD ⊥AB 得BF ⊥AB.在Rt △ABF 中,AF=24322b a BF AB +=+ 过D 作DE ⊥AC 于E ,则DE=AF ,AE=DF=2b .所以EC=AC-AE= b-2b=2b .故CD=22243222222)(b a b a AF EC DE EC b +=++=+=+(2)如上右图.C ,D 在α两侧时:同法可求得CD=223b a +点 评: 本题是通过把已知量与未知量归结到一个直角三角形中,应用勾股定理来求解.[例6] (06年湖北卷)如图,在棱长为1的正方体1111D C B A ABCD -中,p 是侧棱1CC 上的一点,m CP =.(1)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23;(2)在线段11C A 上是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP . 并证明你的结论.解:解法一(1)连AC ,设AC 与BD 相交于点O,AP 与平面11BDD B 相交于点,,连结OG ,因为PC ∥平面11BDD B ,平面11BDD B ∩平面APC =OG,故OG ∥PC ,所以,OG =21PC =2m. 又AO ⊥BD,AO ⊥BB1,所以AO ⊥平面11BDD B , 故∠AGO 是AP 与平面11BDD B 所成的角.在Rt △AOG 中,tan ∠AGO =23222==m GOOA,即m =31.所以,当m =31时,直线AP 与平面11BDD B所成的角的正切值为(2)可以推测,点Q 应当是A I C I 的中点O 1,因为D 1O 1⊥A 1C 1, 且 D 1O 1⊥A 1A ,所以 D 1O 1⊥平面ACC 1A 1, 又AP ⊂平面ACC 1A 1,故 D 1O 1⊥AP.那么根据三垂线定理知,D 1O 1在平面APD 1的射影与AP 垂直。
解法二:(1)建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B 1(1,1,1),D 1(0,0,1) 所以1(,B D =-又由10,0AC BD AC BB ⋅=⋅=知,AC 为平面11BB D D 的一个法向量。
设AP 与平面11BB D D 所成的角为θ,则sin cos()22AP ACAP AC πθθ⋅=-==⋅。
=解得13m =。
故当13m =时,直线AP 与平面11BB D D 所成的角的正切值为 (2)若在A 1C 1上存在这样的点Q ,设此点的横坐标为x ,则Q(x ,1-x ,1),1(,1,0)DQ x x =-。
依题意,对任意的m 要使D 1Q 在平面APD 1上的射影垂直于AP ,等价于D 1Q ⊥AP 110(1)0.2AP D Q x x x ⇔⋅=⇔-+-=⇔=即Q 为A 1C 1的中点时,满足题设要求。
[例7]在梯形ABCD 中,∠ADC=90°,AB ∥DC ,AB=1,DC=2,2=AD ,P 为平面ABCD外一点,PAD 是正三角形,且PA ⊥AB ,求:(1)平面PBC 和平面PAD 所成二面角的大小; (2)D 点到平面PBC 的距离.解: (1)设AD ∩BC=E ,可知PE 是平面PBC 和平面PAD 的交线,依题设条件得PA=AD=AE ,则∠EPD=90°,PD ⊥PE又PA ⊥AB ,DA ⊥AB ,故AB ⊥平面PAD . ∵ DC ∥AB ,∴ DC ⊥平面PAD .由PE ⊥PC 得PE ⊥PD ,∠DPC 是平面PBC 与平面PAD 所成二面角的平面角.2=PD ,DC=2,yxtan 2==∠PDDCDPC ,2arctan =∠DPC . (2)由于PE ⊥PD ,PE ⊥PC ,故PE ⊥平面PDC , 因此平面PDC ⊥平面PBC ,作DH ⊥PC ,H 是垂足,则DH 是D 到平面PBC 的距离. 在Rt △PDC 中,2=PD ,DC=2,6=PC ,332=⋅=PC DC PD DH . 平面PBC 与平面PAD 成二面角的大小为arctan 2,D 到平面PBC 的距离为332. [例8] 半径为1的球面上有A 、B 、C 三点,A 与B 和A 与C 的球面距离都是2π,B 与C 的球面距离是3π,求过A 、B 、C 三点的截面到球心O 距离.分析 : 转化为以球心O 为顶点,△ABC 为底面的三棱锥问题解决.由题设知△OBC 是边长为1的正三角形,△AOB 和△AOC 是腰长为1的全等的等腰三角形.取BC 中点D ,连AD 、OD ,易得BC ⊥面AOD ,进而得面AOD ⊥面ABC ,过O 作OH ⊥AD 于H ,则OH ⊥面ABC ,OH 的长即为所求,在Rt ADB ∆中,AD=27,故在Rt AOD ∆,OH=721=⋅ADO D AO点评: 本题若注意到H 是△ABC 的外心,可通过解△ABC 和△AHO 得OH .或利用体积法.四、典型习题导练1.在平面角为600的二面角βα--l 内有一点P ,P 到α、β的距离分别为PC=2cm ,PD=3cm ,则P 到棱l 的距离为____________.2.异面直线a , b 所成的角为︒60,过空间一定点P ,作直线l ,使l 与a ,b 所成的角均为︒60,这样的直线l 有 条.3.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是AB 和AD 的中点,则点A 1到平面EFB 1D 1的距离为4.二面角α-l -β内一点P ,分别作两个面的垂线PA 、PB ,A 、B 为垂足.已知PA=3,PB=2,∠APB=60°求α-l -β的大小及P 到l 的距离.5.ABCD 是边长为4的正方形,CG ⊥面ABCD ,CG = 2.E 、F 分别是AD 、AB 的中点.求点B到面EFG 的距离.6.如图:二面角α-l -β为锐角,P 为二面角内一点,P 到α的 距离为22,到面β的距离为4,到棱l 的距离为24,求二面角α-l -β的大小.7.如图,已知三棱柱A 1B 1C 1-ABC 的底面是边长为2的正三角形,侧棱A 1A 与AB 、AC 均成45°角,且A 1E ⊥B 1B 于E ,A 1F ⊥CC 1于F .(1)求点A 到平面B 1BCC 1的距离;(2)当AA 1多长时,点A 1到平面ABC 与平面B 1BCC 1的距离相等.。