上海市金山区2018届九年级上学期期末(一模)数学试卷(含详细答案)

合集下载

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=1.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,1)B .(1,1)C .(﹣1,1)D .(1,﹣1)【答案】A 【分析】根据旋转变换的性质得到旋转变换后点A 的对应点坐标,根据平移的性质解答即可.【详解】∵点C 的坐标为(﹣1,0),AC=1,∴点A 的坐标为(﹣3,0),如图所示,将Rt △ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,1),再向右平移3个单位长度,则变换后点A′的对应点坐标为(1,1),故选A .【点睛】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键. 2.抛物线23123y x x =-+-的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)【答案】A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵223123=3(2)9y x x x =-+---+,∴顶点坐标为(2,9).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在2()y a x h k =-+中,对称轴为x=h ,顶点坐标为(h ,k ).3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B 【详解】解:∵ABCD 是矩形,∴AD=BC ,∠B=90°,∵翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,∴AO=AD ,CO=BC ,∠AOE=∠COF=90°,∴AO=CO ,AC=AO+CO=AD+BC=2BC ,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°, ∴BE=12CE , ∵AB ∥CD ,∴∠OAE=∠FCO ,在△AOE 和△COF 中,∵∠OAE=∠FCO ,AO=CO ,∠AOE=∠COF ,∴△AOE ≌△COF ,∴OE=OF ,∴EF 与AC 互相垂直平分,∴四边形AECF 为菱形,∴AE=CE ,∴BE=12AE , ∴12AE AE EB AE ==2, 故选B .【点睛】本题考查翻折变换(折叠问题).4.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C .21313D .3133【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案. 【详解】由勾股定理得,AC =22AB BC +=2232+=13,则cosA =AB AC =13=31313, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 5.二次函数2y ax bx c =++图象如图所示,下列结论:①240b ac ->;②20a b +=;③0abc >;④420a b c ++>;⑤230ax bx c ++-=有两个相等的实数根,其中正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据图象与x 轴有两个交点可判定①;根据对称轴为12b a-=可判定②;根据开口方向、对称轴和与y 轴的交点可判定③;根据当0x =时0y >以及对称轴为1x =可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x 轴有两个交点可得240b ac ->,此结论正确;②对称轴为12b a-=,即2b a =-,整理可得20a b +=,此结论正确; ③抛物线开口向下,故0a <,所以20b a =->,抛物线与y 轴的交点在y 轴的正半轴,所以0c >,故0abc <,此结论错误;④当0x =时0y >,对称轴为1x =,所以当2x =时0y >,即420a b c ++>,此结论正确; ⑤当3y =时,只对应一个x 的值,即230ax bx c ++-=有两个相等的实数根,此结论正确; 综上所述,正确的有4个,故选:D .【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.6.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 【答案】B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【详解】根据二次函数的定义,二次项系数不等于0,3-a ≠0,则a≠3,故选B【点睛】本题考查二次函数的定义,熟记概念是解题的关键.7.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .【答案】B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >. ∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b =+的图象过第一、二、三象限.故选:B .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a >,0b >.解决该题型题目时,熟记各函数图象的性质是解题的关键.8.下列事件中,属于必然事件的是( )A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等【答案】D【解析】A 、明天最高气温是随机的,故A 选项错误;B 、任意买一张动车票,座位刚好挨着窗口是随机的,故B 选项错误;C 、掷骰子两面有一次正面朝上是随机的,故C 选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.9.如果零上2℃记作+2℃,那么零下3℃记作( )A .-3℃B .-2℃C .+3℃D .+2℃【答案】A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.10.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A.2 B.1 C.3D.3 2【答案】C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606︒=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.11.关于x的一元二次方程210x mx--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【答案】A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣1【答案】D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .二、填空题(本题包括8个小题)13.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.14.如图,矩形纸片ABCD 中,AB =6cm ,AD =10cm ,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将△AEF 沿EF 折叠,使点A′在BC 边上,当折痕EF 移动时,点A′在BC 边上也随之移动.则A′C 的取值范围为_____.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.15.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.【答案】5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD 内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4.设AM =MN =x ,∵MD =5﹣x ,MC =4+x ,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(5﹣x )5=(4+x )5,解得x =3;当∠BNC =90°,N 在矩形ABCD 外部时,如图5.∵∠BNC =∠MNB =90°,∴M 、C 、N 三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4,设AM =MN =y ,∵MD =y ﹣5,MC =y ﹣4,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(y ﹣5)5=(y ﹣4)5,解得y =9,则所有符合条件的M 点所对应的AM 和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.16.当x_____时,|x ﹣2|=2﹣x .【答案】≤2【分析】由题意可知x ﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x ﹣2|=2﹣x ,可得20x -≤,解得:2x ≤.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.17.在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE =________时,以A 、D 、E 为顶点的三角形与 ABC 相似. 【答案】51235或 【解析】当AE AB AD AC =时, ∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC =时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 18.如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km ,则两点间的距离为______km.【答案】1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km .【详解】∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.1(km).故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.三、解答题(本题包括8个小题)19.已知:如图,将△ADE 绕点A 顺时针旋转得到△ABC ,点E 对应点C 恰在D 的延长线上,若BC ∥AE .求证:△ABD 为等边三角形.【答案】证明见解析.【分析】由旋转的性质可得ACB E ∠=∠,AC AE =,可得E ACE ∠=∠,由平行线的性质可得180BCE E ∠+∠=︒,可得60E ∠=︒,则可求60BAD ∠=︒,可得结论.【详解】解:由旋转知:△ADE ≌△ABC ,∴∠ACB =∠E ,AC =AE ,∴∠E =∠ACE ,又BC ∥AE ,∴∠BCE+∠E =180°,即∠ACB+∠ACE+∠E =180°,∴∠E =60°,又AC =AE ,∴△ACE 为等边三角形,∴∠CAE =60°又∠BAC =∠DAE∴∠BAD =∠CAE =60°又AB =AD∴△ABD 为等边三角形.【点睛】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出60CAE ∠=︒是本题的关键. 20.一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.【答案】二次函数为222y x x -=-,顶点(1,-3).【分析】先设该二次函数的解析式为y=ax 2+bx+c (a ≠0),利用待定系数法求a ,b ,c 的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【详解】解:∵二次函数的图象经过(0,-2),可设所求二次函数为22y ax bx =+-, 由已知,函数的图象不经过(3,1),(-2,6)两点,可得关于a 、b 的二元一次方程组9321,422 6.a b a b +-=⎧⎨--=⎩解这个方程,得1,2.a b =⎧⎨=-⎩∴二次函数为:222y x x -=-;化为顶点式得:2(1)3y x =--∴顶点为:(1,3)-.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.21.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 22.如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.【答案】点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式.【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3.又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上,3236,m ∴-=⨯=∴反比例函数的表达式为6y x=. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23.解下列方程:210252(5)x x x -+=-【答案】x 1=5,x 2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2-10x+25=2(x-5),(x-5)2-2(x-5)=0,(x-5)(x-5-2)=0,x-5=0,x-5-2=0,x 1=5,x 2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24.如图,抛物线y=ax 2 +bx+ 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.【答案】(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158) (2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b=-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH+CH 最小,即最小为=2CD ==. ∴△CDH 的周长最小值为CD+DR+CH=2. 设直线BD 的解析式为y=k 1x+b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y=32-x+ 2. 由于Rt △CEG ∽△COB ,得CE:CO=CG:CB ,所以CG= 2.3,GO= 1.3.G (0,1.3).同理可求得直线EF 的解析式为y=12x+32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158). (2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN=y K -y N =2142t t --+-(12t+32)=2135222t t --+.所以S △EFK =S △KFN +S △KNE =12KN (t+ 2)+12KN (1-t )= 2KN= -t 2-2t+ 3 =-(t+32)2+294. 即当t=-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】 本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.解方程:(1)2x 2+3x ﹣1=0(2)1122 xx x-=+-【答案】(1)x1=3174-+,x2=3174--;(2)x=23【分析】(1)将方程化为一般形式a x2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-317=±∆±,∴x1=3174-+,x2=3174--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.27.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .【答案】B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x <1时,y <0,符合题意; (3)﹣1<x 1<0,3<x 1<4时,x 1离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4.点P(-6,1)在双曲线ky x=上,则k 的值为( ) A .-6 B .6C .16-D .16【答案】A【分析】根据反比例函数图象上点的坐标特征可直接得到答案. 【详解】解:∵点P (61-,)在双曲线ky x=上, ∴616k =-⨯=-; 故选:A. 【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 5.下列各组图形中,两个图形不一定是相似形的是( ) A .两个等边三角形 B .有一个角是100︒的两个等腰三角形 C .两个矩形 D .两个正方形【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确. 故选:C . 【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.6.如图,PA 是⊙O 的切线,OP 交⊙O 于点B ,如果1sin 2P =,OB=1,那么BP 的长是( )A .4B .2C .1D .3【答案】C【分析】根据题意连接OA 由切线定义可知OA 垂直AP 且OA 为半径,以此进行分析求解即可. 【详解】解:连接OA ,已知PA 是⊙O 的切线,OP 交⊙O 于点B ,可知OA 垂直AP 且OA 为半径,所以三角形OAP 为直角三角形,∵1sin 2P =,OB=1, ∴1sin 2OA P OP ==,OA=OB=1, ∴OP=2,BP=OP-OB=2-1=1. 故选C. 【点睛】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.7.已知函数ky x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限 C .当x<0时,必y<0 D .点(-2, -3)不在此函数的图象上【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 8.若角αβ,都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=,则sin cos αβ=.其中正确的是( ) A .①② B .①②③C .①③④D .①②③④【答案】C【分析】根据锐角范围内sin α 、cos α 、tan α 的增减性以及互余两锐角的正余弦函数间的关系可得. 【详解】①∵sin α随α 的增大而增大,正确; ②∵cos α随α 的增大而减小,错误; ③∵tan α随α 的增大而增大,正确;④若90αβ+=,根据互余两锐角的正余弦函数间的关系可得sin cos αβ=,正确; 综上所述,①③④正确 故答案为:C . 【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3) B .(-3,3)C .(2,3)D .(-4,6)【答案】A【分析】设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【详解】设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AEBC AC=的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D【解析】根据相似三角形的判定和性质,即可得到答案. 【详解】解:∵//DE BC , ∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D. 【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°【答案】C【详解】∵AB BC =,∠AOB=60°, ∴∠BDC=12∠AOB=30°. 故选C .12.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5 B .6C .7D .8【答案】B【分析】设白球的个数为x ,利用概率公式即可求得. 【详解】设白球的个数为x ,由题意得,从14个红球和x 个白球中,随机摸出一个球是白球的概率为0.3, 则利用概率公式得:0.314xx=+,解得:6x =,经检验,x=6是原方程的根, 故选:B. 【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.二、填空题(本题包括8个小题)13.用一个圆心角为120︒的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为_____. 【答案】12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可. 【详解】设这个圆锥的母线长为l , 依题意,有:12024180lππ⨯⨯=, 解得:12l =, 故答案为:12. 【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14.若12y x =,则y x x +=___________.【答案】32【分析】把所求比例形式进行变形,然后整体代入求值即可. 【详解】=1y x y x x ++,12y x =,13=+1=22y x x +∴;故答案为32. 【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 【答案】y=x 1+1【解析】分析:先确定二次函数y=x 1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x 1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x 1+1. 故答案为y=x 1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.点A ()12,y -,B ()21,y -都在反比例函数3y x=-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.。

<合集试卷3套>2018年上海市金山区九年级上学期数学期末统考试题

<合集试卷3套>2018年上海市金山区九年级上学期数学期末统考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知一次函数y=kx-2 的图象与x 轴、y 轴分别交于A,B 两点,与反比例函数4(0) y xx=>的图象交于点C,且AB=AC,则k 的值为( )A.1 B.2 C.3 D.4【答案】B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=2k,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=2k,∴BO=CD=2,OA=AD=2k,∴OD=224 k k k +=∴点C(4k,2),∵点C在反比例函数4(0)y xx=>的图象上,∴424k⨯=,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C 点的坐标是解题的关键.2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A .B .C .D .【答案】D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图3.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为x ,则下面所列方程正确的是( )A .()350015300x +=B .()530013500x +=C .()2530013500x +=D .()2350015300x += 【答案】D【分析】由题意设每年的增长率为x ,那么第一年的产值为3500(1+x )万元,第二年的产值3500(1+x )(1+x )万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x ,依题意得3500(1+x )(1+x )=5300,即()2350015300x +=.故选:D .【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x ”的含义以及找到题目中的等量关系.4.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为 ( )A.12B.34C.1 D.2【答案】C【详解】解:∵OD⊥AC,∴AD=12AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【点睛】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个B.2 个C.1 个D.4 个【答案】C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.6.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形【答案】D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.7.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A.94B.4 C.92D.152【答案】C【分析】由a b c∥∥,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】a b c,AB DEBC EF∴=,35AB BC==∵,,DE3=EF5∴,12DF=,39=82DE DF =∴, 故选C. 【点睛】 本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键. 8.如图,123////l l l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,若54AB BC =,则EF DE的值为( )A .54B .49C .45D .59【答案】C【分析】直接利用平行线分线段成比例定理即可得出结论.【详解】∵l 1∥l 2∥l 3,∴AB DE BC EF=, ∵54AB BC =, ∴45EF DE =. 故选:C .【点睛】本题考查了平行线分线段成比例定理,得出AB DE BC EF=是解答本题的关键. 9.下列航空公司的标志中,是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意;故选:C .【点睛】本题考查的是轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.在ABC ∆中,90C ∠=︒,4sin 5A =,则cos B 的值为( ) A .43 B .34 C .35 D .45【答案】D【分析】在Rt △ABC 中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt △ABC 中,∠C=90°,∠A+∠B=90°,则cosB=sinA=45. 故选:D .【点睛】 本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等. 11.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.则△CMN 与△CAB 的面积之比是( )A .1:2B .1:3C .1:4D .1:9【答案】C 【解析】由M 、N 分别为AC 、BC 的中点可得出MN ∥AB ,AB =2MN ,进而可得出△ABC ∽△MNC ,根据相似三角形的性质即可得到结论.【详解】∵M 、N 分别为AC 、BC 的中点,∴MN ∥AB ,且AB =2MN ,∴△ABC ∽△MNC ,∴MNC ABC S S=(MN AB )2=14. 故选C .【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC ∽△MNC 是解题的关键.12.正六边形的半径为4,则该正六边形的边心距是( )A .4B .2C .3D .33【答案】C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,而正多边形的边心距即为每个边长为4的正三角形的高,∴正六多边形的边心距=2242-=23.故选C.【点睛】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.二、填空题(本题包括8个小题)13.方程x 2﹣2x+1=0的根是_____.【答案】x 1=x 2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x ﹣1)2=0,解得:x 1=x 2=1.故答案是:x 1=x 2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.【答案】1【分析】首先根据二次函数25(0)y ax bx a =-+≠的图象经过点(2,2)得到243b a -=,再整体代值计算即可.【详解】解:∵二次函数25(0)y ax bx a =-+≠的图象经过点(2,2),∴4252a b -+=,∴243b a -=,∴242017b a -+=32017+=1,故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.15.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.【答案】x>1 2【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x2+bx+c中,得:1012b cb c-+=⎧⎨++=-⎩,解得:12bc=-⎧⎨=-⎩,那么二次函数的解析式是:2y x x2=--,函数的对称轴是:12x=,因而当y随x的增大而增大时,x的取值范围是:12x>.故答案为12x>.【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键.16.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .【答案】3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,2233+322211+2,所以,BO=1222,CO=1322⨯=322,所以,tan∠DBC=COBO3222.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.17.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.18.如图,在正方形ABCD 的外侧,作等边△ABE ,则∠BFC =_________°【答案】1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC ,证,可得∠BFC=∠DFC .【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC , =45°又∵△ABE是等边三角形,∴AE=AB=BE,∠BAE=1°∴AD=AE∴∠ADE=∠AED,∠DAE=90°+1°=150°∴∠ADE=(180°-150°)÷2=15°又∵∠DAC=45°∴∠DFC=45°+15°=1°在和中∴∴∠BFC=∠DFC=1°故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.三、解答题(本题包括8个小题)19.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【答案】(1)12;(2)13【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 ;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.20.今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【答案】(1)y=﹣2x+340(20≤x≤40);(2)5200【解析】试题分析:(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.考点:二次函数的应用21.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【答案】(1)13;(2)23.【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为13;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.解方程:4x2﹣2x﹣1=1.【答案】115x+=,21-5x=【分析】根据一元二次方程的解法,配方法或者公式法解答即可. 【详解】解:由题意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=2201584±±=;【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.23.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C,(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【答案】(1)证明见解析;(1)BC=1.【解析】试题分析:(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(1)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.试题解析:(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(1)解:∵⊙O的半径为2,∴2,2,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC=,OB OP42=,822∴BC=1.考点:切线的判定24.计算:(1)()20136032π-⎛⎫︒-- ⎪⎝⎭; (2)解方程:2320x x -+=.【答案】(1)6;(2)x 1=1,x 2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【详解】解:(1)原式=4331=4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:11x =,22x =.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.25.如图,在平面直角坐标系中,抛物线y =ax 2+bx+c 与两坐标轴分别交于点A 、B 、C ,直线y =﹣45x+4经过点B ,与y 轴交点为D ,M (3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N 在对称轴上,且AN+DN 的值最小.求点N 的坐标.(3)在(2)的条件下,若点E 与点C 关于对称轴对称,请你画出△EMN 并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P ,使以A 、B 、N 、P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣6x+5;(2)N(3,85);(3)画图见解析,S△EMN=425;(4)存在,满足条件的点P的坐标为(3,﹣85)或(7,85)或(﹣1,85).【分析】(1)先确定出点B坐标,最后用待定系数法即可得出结论;(2)先判断出点N是直线BC与对称轴的交点,即可得出结论;(3)先求出点E坐标,最后用三角形面积公式计算即可得出结论;(4)设出点P坐标,分三种情况利用用平行四边形的两条对角线互相平分和中点坐标公式求解即可得出结论.【详解】解:(1)针对于直线y=﹣45x+4,令y=0,则0=﹣45x+4,∴x=5,∴B(5,0),∵M(3,﹣4)是抛物线的顶点,∴设抛物线的解析式为y=a(x﹣3)2﹣4,∵点B(5,0)在抛物线上,∴a(5﹣3)2﹣4=0,∴a=1,∴抛物线的解析式为y=(x﹣3)2﹣4=x2﹣6x+5;(2)由(1)知,抛物线的解析式为y=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,∵点A,B关于抛物线对称轴对称,∴直线y=﹣45x+4与对称轴x=3的交点就是满足条件的点N,∴当x=3时,y=﹣45×3+4=85,∴N(3,85);(3)∵点C是抛物线y=x2﹣6x+5与y轴的交点,∴C(0,5),∵点E与点C关于对称轴x=3对称,∴E (6,5),由(2)知,N (3,85), ∵M (3,﹣4),∴MN =85﹣(﹣4)=285, ∴S △EMN =12MN•|x E ﹣x M |=12×285×3=425; (4)设P (m ,n ),∵A (1,0),B (5,0),N (3,85), 当AB 为对角线时,AB 与NP 互相平分, ∴12(1+5)=12(3+m ),12(0+0)=12(85+n ), ∴m =3,n =﹣85, ∴P (3,﹣85); 当BN 为对角线时,12(1+m )=12((3+5),12(0+n )=12(0+85), ∴m =7,n =85, ∴P (7,85); 当AN 为对角线时,12(1+3)=12(5+m ),12(0+85)=12(0+n ), ∴m =﹣1,n =85, ∴P (﹣1,85), 即:满足条件的点P 的坐标为(3,﹣85)或(7,85)或(﹣1,85). 【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积公式,对称性,平行四边形的性质,用方程的思想解决问题是解本题的关键.26.用适当的方法解下列方程:(1)x 2-6x +1=0(2)x 2-4=2x +4【答案】(1)x 1=3+,x 2=3- ;(2)x 1=-2,x 2=4【分析】(1)利用配方法进行求解一元二次方程即可;(2)根据十字相乘法进行求解一元二次方程即可.【详解】解:(1)2610x x -+=2698x x +-=,()238x -=, 解得:12322,322x x =+=-;(2)2424x x -=+2280x x --=,()()240x x +-=,解得:122,4x x =-=.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.27.如图,已知抛物线2y x 2x 3=-++.(1)用配方法将2y x 2x 3=-++化成()2y a x h k =-+的形式,并写出其顶点坐标;(2)直接写出该抛物线与x 轴的交点坐标.【答案】(1)()214y x =--+,顶点坐标为()1,4;(2)()1,0-,()3,0, 【分析】(1)利用配方法将二次函数的一般式转化为顶点式,从而求出抛物线的顶点坐标; (2)将y=0代入解析式中即可求出结论.【详解】解:(1)()222314y x x x =-++=--+,顶点坐标为()1,4;(2)将y=0代入解析式中,得2230x x -++=解得:121,3x x =-=∴抛物线与x 轴的交点坐标为()1,0-,()3,0,【点睛】此题考查的是求抛物线的顶点坐标和求抛物线与x 轴的交点坐标,掌握将二次函数的一般式转化为顶点式和一元二次方程的解法是解决此题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列是电视台的台标,属于中心对称图形的是( )A .B .C .D . 【答案】C【解析】根据中心对称图形的概念即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误.故选:C .【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.如果α、β是一元二次方程2310x x +-=的两根,则22ααβ+-的值是( ) A .3B .4C .5D .6【答案】B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又22ααβ+-=2α+3 α- α- β=23αααβ+-+()=1+3=4,所以答案选择B 项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键. 3.函数1-=x y x 中,自变量x 的取值范围是( ) A .1x ≥B .1x ≤C .0x ≠D .x ≤1或x ≠0【答案】D【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】根据题意得,10x -≥且0x ≠,解得:1x ≤且0x ≠.故选:D .【点睛】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.4.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( )A .12B .1C .5D .5【答案】B【解析】根据根与系数的关系得到x 1+x 2=-1,x 1•x 2=-1,然后把1211x x +进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x 1+x 2=-1,x 1•x 2=-1,所以1211x x +=121211x x x x +-=-=1, 故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a. 5.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( )A .抛物线开口向下B .抛物线与x 轴有两个交点C .抛物线的对称轴是直线x =1D .抛物线经过点(2,3) 【答案】B【详解】A 、a=2,则抛物线y=2x 2-3的开口向上,所以A 选项错误;B 、当y=0时,2x 2-3=0,此方程有两个不相等的实数解,即抛物线与x 轴有两个交点,所以B 选项正确;C 、抛物线的对称轴为直线x=0,所以C 选项错误;D 、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D 选项错误,故选B .6.如图,已知⊙O 的直径为4,∠ACB =45°,则AB 的长为( )A .4B .2C .2D .2【答案】D 【分析】连接OA 、OB ,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB =90°,再根据等腰直角三角形的性质即可求出AB 的长.【详解】连接OA 、OB ,如图,∵∠AOB =2∠ACB =2×45°=90°,∴△AOB 为等腰直角三角形,∴AB =2OA =22.故选:D .【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.7.下列函数属于二次函数的是( )A .y =x ﹣1x B .y =(x ﹣3)2﹣x 2 C .y =21x ﹣x D .y =2(x+1)2﹣1 【答案】D【分析】由二次函数的定义:形如()20y ax bx c a =++≠,则y 是x 的二次函数,从而可得答案.【详解】解:A .自变量x 的次数不是2,故A 错误;B .()223y x x =--整理后得到69y x =-+,是一次函数,故B 错误C .由221y x x x x-=-=-可知,自变量x 的次数不是2,故C 错误; D .()2211y x =+-是二次函数的顶点式解析式,故D 正确.故选:D .【点睛】 本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键.8.下列二次函数的开口方向一定向上的是( ) A .y=-3x 2-1B .y=-13x 2+1C .y=12x 2+3D .y=-x 2-5 【答案】C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解: A. y=-3x 2-1中,﹣3<0, 二次函数图象的开口向下,故A 不符合题意;B. y=-13x 2+1中, -13<0, 二次函数图象的开口向下,故B 不符合题意;C. y=12x 2+3中, 12>0, 二次函数图象的开口向上,故C 符合题意; D. y=-x 2-5中, -1<0, 二次函数图象的开口向下,故D 不符合题意; 故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.9.我们定义一种新函数:形如2y ax bx c ++=(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A .4B .3C .2D .1【答案】A 【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线1x = ,②也是正确的;根据函数的图象和性质,发现当11x -≤≤或3x ≥ 时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据0y =,求出相应的的值为1x =-或3x =,因此④也是正确的;从图象上看,存在函数值大于当1x =时的223=4y x x =--,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的; ②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线1x =,因此②也是正确的;③根据函数的图象和性质,发现当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x 轴的两个交点,根据y =0,求出相应的x 的值为1x =-或3x =,因此④也是正确的;⑤从图象上看,存在函数值要大于当1x =时的223=4y x x =--,因此⑤是不正确的;故选A【点睛】 理解“鹊桥”函数2y ax bx c ++=的意义,掌握“鹊桥”函数与2y ax bx c ++=与二次函数2y ax bx c ++=之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数2y ax bx c ++=与x 轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.10.已知点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在反比例函数y=-5x 的图象上,当x 1<x 2<0<x 3时,y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 1 【答案】C【分析】根据反比例函数为y=-5x,可得函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,进而得到y 1,y 2,y 3的大小关系. 【详解】解:∵反比例函数为y=-5x , ∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,又∵x 1<x 2<0<x 3,∴y 1>0,y 2>0,y 3<0,且y 1<y 2,∴y 3<y 1<y 2,故选:C .【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.11.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m【答案】D 【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴DC CE AB AE=, 即1.50.52AB =, 解得:AB =6,故选D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 12.下列说法错误的是( )A .将数65800000用科学记数法表示为76.5810⨯B .9的平方根为3±C .无限小数是无理数D .54更大,比5更小【答案】C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:93±=±,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.2520=,因为162025<<,所以4205<<,即4255<<,故本选项正确.故选:C .【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.二、填空题(本题包括8个小题)13.如图,将Rt ABC ∆绕直角顶点A 顺时针旋转90︒,得到AB C ''∆,连结BB ',若125∠=︒,则C ∠的度数是____.【答案】70︒【分析】先根据旋转的性质得出'',''90,'C AC B C AB CAB AB AB ∠=∠∠=∠=︒=,然后得出'45AB B ∠=︒,进而求出'AB C ∠的度数,再利用'90'C ACB AB C ∠=∠=︒-∠即可求出答案.【详解】∵Rt ABC ∆绕直角顶点A 顺时针旋转90︒,得到AB C ''∆'',''90,'C AC B C AB CAB AB AB ∴∠=∠∠=∠=︒='45AB B ∴∠=︒∵125∠=︒''1452520AB C AB B ∴∠=∠-∠=︒-︒=︒''90AB C ACB ∠+∠=︒'90'902070C ACB AB C ∴∠=∠=︒-∠=︒-︒=︒故答案为:70°.【点睛】本题主要考查旋转的性质,直角三角形两锐角互余,掌握旋转的性质是解题的关键.14.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.【答案】 (-1010,10102)【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2019的坐标.【详解】∵A 点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.15.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为______.【答案】6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案. 【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.。

∥3套精选试卷∥2018年上海市金山区九年级上学期数学期末复习检测试题

∥3套精选试卷∥2018年上海市金山区九年级上学期数学期末复习检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形; 中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B 选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C 选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D 选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.将抛物线21y x =+先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为( ) A .()224y x =++B .()222y x =--C .()224y x =-+D .()222y x =+- 【答案】D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为()()2222132x x y =++-+=-故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.3.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【答案】D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.4.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130°B.50°C.65°D.100°【答案】D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.6.对于函数y =1x,下列说法错误的是( ) A .它的图像分布在第一、三象限 B .它的图像与直线y =-x 无交点C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小 【答案】C【解析】A. k=1>0,图象位于一、三象限,正确;B. ∵y=−x 经过二、四象限,故与反比例函数没有交点,正确;C. 当x>0时,y 的值随x 的增大而增大,错误;D. 当x<0时,y 的值随x 的增大而减小,正确,故选C.7.若将抛物线y=-12x 2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是( )A .21(3)22y x =-+-B .21(3)22y x =---C .2(3)2y x =+-D .21(3)22y x =-++ 【答案】A【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】∵ 将抛物线先向左平移3个单位,再向下平移2个单位,∴y=-12(x+3)2-2. 故答案为A.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a ,b ,c 为常数,a≠0),确定其顶点坐标(h ,k),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”. 8.如图,AB 是O 的直径,点F C 、是O 上两点,且AF FC CB ==,连接AC AF 、,过点C 作CD AF ⊥,交AF 的延长线于点D ,垂足为D ,若CD =O 的半径为( )A .33B .63C .3D .6【答案】D【分析】根据已知条件可知Rt ACD 、Rt ABC 都是含30角的直角三角形,先利用含30角的直角三角形的性质求得AC ,再结合勾股定理即可求得答案.【详解】解:连接BC 、OC ,如图:∵AF FC CB ==∴60BOC ∠=︒∴30DAC BAC ∠=∠=︒∴在Rt ACD 中,263AC CD ==∵AB 是O 的直径∴90ACB ∠=︒∴在Rt ABC 中,222BC AC AB +=,即()2222BC AC BC +=∴(()22232BC BC += ∴6BC =∴212AB BC ==∴O 的半径为162OA OB AB ===. 故选:D【点睛】本题考查了圆的一些基本性质、含30角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.9.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=3【答案】A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.10.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上B.直线y=﹣x上C.x轴上D.y轴上【答案】B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点11.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高B E D在同一条直线上).已知小明身高EF是1.6m,则楼高AB===(点,,CD m DE m BD m1.2,0.6,30为()A.20m B.21.2m C.31.2m D.31m【答案】B∽,从而得出【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明CFM CANAN,进而求得AB的长.【详解】过点C 作CN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDEM 、BDCN 是矩形,∴ 1.2300.6BN ME CD m CN BD m CM DE m =======,,,∴ 1.6 1.20.4MF EF ME m =-=-=,依题意知,EF ∥AB ,∴CFM CAN ∽, ∴CM FM CN AN=,即:0.60.430AN=, ∴AN=20,20 1.221.2AB AN BN =+=+=(米), 答:楼高为21.2米.故选:B .【点睛】 本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.12.如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,S 四边形BCFE =8,则S △ABC =( )A .9B .10C .12D .13【答案】A 【分析】由在△ABC 中,EF ∥BC ,即可判定△AEF ∽△ABC ,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE 1EB 2=, ∴AE AE 11==AB AE+EB 1+23=. 又∵EF ∥BC ,∴△AEF ∽△ABC .∴2AEF ABC S 11=S 39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.二、填空题(本题包括8个小题)13.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.【答案】0<x<1.【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【详解】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为0<x<1.【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键.14.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4 整除的概率是__________.【答案】1 5【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【详解】解:小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:21 105=.故答案为:15.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x,根据题意可列方程为______.【答案】()28100112500x +=【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:()28100112500x +=.故答案为:()28100112500x +=.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.16.某校棋艺社开展围棋比赛,共m 位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场.记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的13,则m =__________. 【答案】1【分析】设分出胜负的有x 场,平局y 场,根据所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的13列出方程与不等式,根据x ,y 为非负整数,得到一组解,根据m 为正整数,且(1)2m m x y -=+判断出最终的解.【详解】设分出胜负的有x 场,平局y 场, 由题意知,3761()3x y y x y +=⎧⎪⎨≤+⎪⎩, 解得,5217x ≥,∵x ,y 为非负整数,∴满足条件的解为:2210x y =⎧⎨=⎩,237x y =⎧⎨=⎩,244x y =⎧⎨=⎩,251x y =⎧⎨=⎩, ∵(1)2m m x y -=+, 此时使m 为正整数的解只有244x y =⎧⎨=⎩,即8m =, 故答案为:1.【点睛】本题考查了二元一次方程,一元一次不等式,一元二次方程的综合应用,本题注意隐含的条件,参赛学生,胜利的场数,平局场数都为非负整数.17.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.【答案】2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故答案为:2020.【点睛】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键. 18.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为_______. 【答案】13或24【解析】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13; ②当3是斜边时,根据勾股定理,∠A 的邻边=223122-=,∴tanA=222=; 所以tanA 的值为13或24. 三、解答题(本题包括8个小题)19.如图,在ABC ∆中,90C ∠=︒,6AC =,8BC =,点O 在AC 上,2OA =,以OA 为半径的O交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)求证:直线DE 是O 的切线;(2)求线段DE 的长. 【答案】(1)见解析;(2) 4.75DE =.【分析】(1)连接OD ,利用垂直平分线的性质及等腰三角形的性质通过等量代换可得出90EDB ODA ∠+∠=︒,即90ODE ∠=︒,则OD DE ⊥,则结论可证;(2)连接OE ,设DE BE x ==,8CE x =-,利用勾股定理即可求出x 的值.【详解】(1)证明:连接OD ,∵EF 垂直平分BD , ∴EB ED =,∴B EDB ∠=∠, ∵OA OD =,∴ODA A ∠=∠, ∵90C ∠=︒,∴90A B ∠+∠=︒,∴90EDB ODA ∠+∠=︒, ∴90ODE ∠=︒, ∴OD DE ⊥,∴DE 是O 的切线. (2)解:连接OE ,OD,设DE BE x ==,8CE x =-,∵22222OE DE OD EC OC =+=+,∴22224(8)2x x +-=+,解得 4.75x =,∴ 4.75DE =.【点睛】本题主要考查切线的判定及勾股定理,掌握切线的判定方法及勾股定理是解题的关键.20.如图所示,CD 是O 的直径,AB 为弦,CD 交AB 于点E .若30BAO ∠=︒, //AO BC ,2OA =.(1)求AOD ∠的度数;(2)求CE 的长度.【答案】(1)120°;(2)1.【分析】(1)首先根据∠BAO=30°,AO ∥BC 利用两直线平行,内错角相等求得∠CBA 的度数,然后利用圆周角定理求得∠AOC 的度数,从而利用邻补角的定义求得∠AOD 的度数.(2)首先根据30BAO ∠=︒,60AOC ∠=︒求得90AEO ∠=︒,在Rt AEO ∆中,求得OE 的值,将OE,OC 的值代入CE OC OE =-即可得出.【详解】解:(1)30BAO ∠=︒,//AO BC ,30CBA ∴∠=︒,60AOC ∴∠=︒,180120AOD AOC ∴∠=︒-∠=︒.(2)30BAO ∠=︒,60AOC ∠=︒,90AEO ∴∠=︒.在Rt AEO ∆中,sin301OE OA =⋅︒=.2OC OA ==,1CE OC OE ∴=-=.【点睛】本题考查了解直角三角形及圆周角定理,构造直角三角形是解题的关键.21.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)3240y x =-+;(2)233609600w x x =-+-,5055x ;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W (元)与销售价x (元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得()90350y x =--,化简,得3240y x =-+.(2)由题意,得()()240324033609600w x x x x =--+=-+-,5055x . (3)233609600w x x =-+-.∵0a <,∴抛物线开口向下.当60x =时,w 有最大值.又当5055x 时,w 随x 的增大而增大,∴当55x =元时,w 的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量22.某学校自主开发了A 书法、B 阅读,C 绘画,D 器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?【答案】(1)共有6种等可能的结果数,它们是:AB 、AC 、AD 、BC 、BD 、CD ;(2)他们两人恰好选修同一门课程的概率为14. 【解析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】(1)共有6种等可能的结果数,它们是:AB 、AC 、AD 、BC 、BD 、CD ;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.23.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方 向 以1个单位/秒的速度向终点A 匀速运动,同时, 动点F 从A 点出发,沿着AB 方向以2个单位/ 秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形? (3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线的解析式为y=﹣x 2+2x+3,直线AB 的解析式为y=﹣x+3;(2)t=15(532)7-或9(523)41-;(3)存在面积最大,最大值是278,此时点P (32,154). 【分析】(1)将A (3,0),B (0,3)两点代入y=﹣x 2+bx+c ,求出b 及c 即可得到抛物线的解析式,设直线AB 的解析式为y=kx+n ,将A 、B 两点坐标代入即可求出解析式;(2)由题意得OE=t ,2t ,AE=OA ﹣OE=3﹣t ,分两种情况:①若∠AEF=∠AOB=90°时,证明△AOB ∽△AEF得到AF AB=AE OA ,求出t 值;②若∠AFE ∠AOB=90°时,证明△AOB ∽△AFE ,得到OA AF =AB AE 求出t 的值; (3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),根据ABP OBP AOP AOB S S S S =+-,得到233(22)827ABP S x -+=-,由此得到当x=32时△ABP 的面积有最大值,最大值是278,并求出点P 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点,∴9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x+3,设直线AB 的解析式为y=kx+n ,∴ 303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+3;(2)由题意得,OE=t ,,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①若∠AEF=∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AEF ∴AF AB =AE OA,33t -=,∴t=15(57-. ②若∠AFE ∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AFE , ∴OA AF =AB AE, 53t=-,∴t=3)41-;综上所述,t=15(57-或3)41;(3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),∵ABP OBP AOP AOB SS S S =+-, ∴111222ABP P P S OB x OA y OA OB =⋅+⋅-⋅ =211133(2223)332x x x ++⨯+⨯-⨯⨯﹣ =23922x x -+ =23327()228x --+, ∵32a =-<0, ∴当x=32时△ABP 的面积有最大值,最大值是278, 此时点P (32,154).【点睛】此题是二次函数与一次函数的综合题,考查了待定系数法求函数解析式,相似三角形的判定及性质,函数与动点问题,函数图象与几何图形面积问题.24.已知关于x 的方程()22120mx m x m --+-=; (1)当m 为何值时,方程有两个不相等的实数根;(2)若m 为满足(1)的最小正整数,求此时方程的两个根1x ,2x .【答案】(1)14m >-且0m ≠;(2)1152x +=,2152x -=. 【分析】(1)由方程有两个不相等的实数根,可得△=b 2-4ac >0,继而求得m 的取值范围;(2)因为最小正整数为1,所以把m=1代入方程。

{3套试卷汇总}2018年上海市金山区九年级上学期数学期末达标测试试题

{3套试卷汇总}2018年上海市金山区九年级上学期数学期末达标测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若整数a使关于x的不等式组125 26 52 xxx a++⎧≤⎪⎨⎪->-⎩至少有4个整数解,且使关于x的分式方程1223axx-=+有整数解,那么所有满足条件的a的和是()A.13-B.15-C.17-D.20-【答案】A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组1252652x xx a++⎧≤⎪⎨⎪->-⎩得:225-<≤ax∵至少有4个整数解∴215-<-a,解得3a<-分式方程去分母得()1223-=+ax x解得:62xa=+∵分式方程有整数解,a为整数∴21a+=±、2±、3±、6±∴=1a、3-、0、4-、1、5-、4、8-∵632=≠-+xa,∴4a≠-又∵3a<-∴=5-a或=8-a满足条件的a的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.2.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20°B.30°C.40°D.50°【答案】A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.4.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A.50°B.49°C.48°D.47°【答案】A【解析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.如图,AB是⊙O的直径,CD是⊙O的弦. 若∠BAD=24°,则C的度数为()A.24°B.56°C.66°D.76°【答案】C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB 是⊙O 的直径∴90BDA ∠=︒∵ ∠BAD=24°∴180902466ABD ∠=︒-︒-︒=︒又 ∵AD AD =∴C BAD ∠=∠=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°6.下列运算正确的是( )A .x 6÷x 3=x 2B .(x 3)2=x 5C 2=±D 2=-【答案】D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A .x 6÷x 3=x 3,故本选项不合题意;B .(x 3)2=x 6,故本选项不合题意;2=,故本选项不合题意;2=-,正确,故本选项符合题意.故选:D .【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.7x 的取值范围是( )A .0x >B .1x -C .1xD .1x ≤ 【答案】C【分析】根据二次根式有意义的条件进行求解即可.【详解】由题意得:x-1≥0,解得:x ≥1,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.8.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用...的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:下面有四个推断:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;③估计全校仅使用B支付的学生人数为200人;④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.其中合理推断的序号是()A.①②B.①③C.①④D.②③【答案】B【分析】先把样本中的仅使用A支付的概率,A,B两种支付方式都使用的概率分别算出,再来估计总体该项的概率逐一进行判断即可.【详解】解:∵样本中仅使用A支付的概率=1893=0.3100++,∴总体中仅使用A支付的概率为0.3. 故①正确.∵样本中两种支付都使用的概率=10053025100---=0.4∴从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.4;故②错误.估计全校仅使用B支付的学生人数为:80025100⨯ =200(人)故③正确.根据中位数的定义可知,仅用A支付和仅用B支付的中位数应在0至500之间,故④错误.故选B.【点睛】本题考查了用样本来估计总体的统计思想,理解样本中各项所占百分比与总体中各项所占百分比相同是解题的关键.9.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=512-AB,②AC=352AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个【答案】C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=51-AB,故①正确;由AC=512-AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为51-是解题的关键.10.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42°B.48°C.52°D.58°【答案】B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.11.如果某人沿坡度为3 : 4的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m【答案】A【解析】设斜坡的铅直高度为3x ,水平距离为4x ,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x ,水平距离为4x ,由勾股定理得9x 2+16x 2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 12.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <﹣2B .k <2C .k >2D .k <2且k ≠1【答案】D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于k 的不等式组,求出不等式组的解集即可得到k 的取值范围.【详解】根据题意得:()24441840b ac k k ∆=-=--=->,且10k -≠, 解得:2k <,且1k ≠.故选:D .【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于k 的不等式组是解决问题的关键.二、填空题(本题包括8个小题)13.如图,在矩形ABCD 中,ABC ∠的角平分线BE 与AD 交于点E ,BED ∠的角平分线EF 与DC 交于点F ,若8AB =,3DF FC =,则BC =_______.【答案】262+【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据EFD GFC △∽△ ,得出CG 与 DE 的倍数关系,并根据BG BC CG =+ 进行计算即可.【详解】延长EF 和BC 交于点G∵矩形ABCD 中,∠B 的角平分线BE 与AD 交 于点E∴ 45ABE AEB ==︒∠∠∴ 8AB AE ==∴直角三角形 ABE 中,228882BE =+= 又∵∠BED 的角平分线EF 与DC 交于点F∴ BEG DEF =∠∠∵ // AD BC∴ G DEF =∠∠∴BEG G =∠∠∴ 82BG BE ==由G DEF =∠∠ ,EFD GFC =∠∠ ,可得EFD GFC △∽△∴133CG CF CF DE DF CF === 设CG x = ,3DE x = ,则83AD x BC =+=∴BG BC CG =+∴8283x x =++解得222x =-∴()83222622BC =+-=+故答案为:2+62 .【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.14.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m 个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为______.【答案】1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】根据题意,得:m 0.2100=, 解得:m 20=,故答案为:1. 【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比. 15.反比例函数m y x=(0m ≠)的图象如图所示,点A 为图象上的一点,过点A 作AB x ⊥轴,AC y ⊥轴,若四边形ACOB 的面积为4,则m 的值为______.【答案】4【分析】根据反比例函数的性质得出4m =,再结合图象即可得出答案.【详解】m 表示的是x 与y 的坐标形成的矩形的面积4m ∴=反比例函数m y x=(0m ≠)的图象在第一象限 0m ∴>4m ∴=故答案为:4.【点睛】本题考查了反比例函数的性质,反比例函数k y x=中,k 的绝对值表示的是x 与y 的坐标形成的矩形的面积.16.二次函数22(1)1y a x x a =+-+-的图像经过原点,则a 的值是______.【答案】1【分析】根据题意将(0,0)代入二次函数22(1)1y a x x a =+-+-,即可得出a 的值. 【详解】解:∵二次函数22(1)1y a x x a =+-+-的图象经过原点,∴21a -=0,∴a=±1,∵a+1≠0,∴a ≠-1,∴a 的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.17.写出一个对称轴是直线1x =,且经过原点的抛物线的表达式______.【答案】答案不唯一(如22y x x =-)【分析】抛物线的对称轴即为顶点横坐标的值,根据顶点式写出对称轴是直线1x =的抛物线表达式,再化为一般式,再由经过原点即为常数项c 为0,即可得到答案.【详解】解:∵对称轴是直线1x =的抛物线可为:22(1)21y x x x =-=-+又∵抛物线经过原点,即C=0,∴对称轴是直线1x =,且经过原点的抛物线的表达式可以为:22y x x =-,故本题答案为:22y x x =-(答案不唯一).【点睛】本题考查了抛物线的对称轴与抛物线解析式的关系.关键是明确对称轴的值与顶点横坐标相同.18=_____.【答案】x 1=2,x 2=﹣1【解析】解:方程两边平方得,x 2﹣x=2,整理得:x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1.经检验,x 1=2,x 2=﹣1都是原方程的解,所以方程的解是x 1=2,x 2=﹣1.故答案为:x 1=2,x 2=﹣1.三、解答题(本题包括8个小题)19.解方程:2x 2+3x ﹣1=1.【答案】34-. 【分析】找出a ,b ,c 的值,代入求根公式即可求出解.【详解】解:这里a=2,b=3,c=﹣1,∵△=9+8=17,∴ 考点:解一元二次方程-公式法.20.在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B (0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.【答案】(2)m="2,A(-3点E′的坐标是(2,2),③点E′的坐标是(67,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2 当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" B E" = 2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为24y x=-+.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,241x-+=.解得3x=±∴A3②如图,连接EE′.由题设知AA′=n (0<n <2),则A′O=2-n .在Rt △A′BO 中,由A′B 2=A′O 2+BO 2,得A′B 2=(2–n)2+42=n 2-4n+3.∵△A′E′O′是△AEO 沿x 轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n .又BE=OB-OE=2.∴在Rt △BE′E 中,BE′2=E′E 2+BE 2=n 2+9,∴A′B 2+BE′2=2n 2-4n+29=2(n –2)2+4.当n=2时,A′B 2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A 作AB′⊥x 轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B ,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′, ∴''3'4AA AB A O OB ==, ∴AA′=36277⨯= ∴EE′=AA′=67, ∴点E′的坐标是(67,2). 考点:2.二次函数综合题;2.平移.【详解】21.解方程(1)2213x x +=(用配方法)(2)()()223240x x ----=(3()1013tan 3042π-⎛⎫︒+-+- ⎪⎝⎭【答案】(1)11x =,212x =;(2)11x =,26x =;(31 【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可.【详解】(1)2213x x +=, 方程整理得:23122x x -=-, 配方得:23919216216x x -+=-+, 即231416x ⎛⎫-= ⎪⎝⎭, 开方得:3144x -=±, 解得:11x =,212x =; (2)()()223240x x ----=,()()21240x x -+--=,即()()160x x --=,∴10x -=或60x -=,解得:11x =, 26x =;(3()1013tan 3042π-⎛⎫︒+-+- ⎪⎝⎭()3123=⨯++-1=1=.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键.22.计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.【答案】1-3【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可. 【详解】解:原式=112311322-+--=-. 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键. 23.如图,在ABC ∆中,D 、E 分别为BC 、AC 上的点.若23CE CD BC AC ==,AB =8cm ,求DE 的长.【答案】163cm 【分析】根据两边成比例且夹角相等证△CDE ∽△CAB ,由相似性质得对应边成比例求解.【详解】解:在△CDE 和△CAB 中,∵23CE CD BC AC ==,∠DCE=∠ACB , ∴△CDE ∽△CAB ,∴23DE CE AB BC , ∴283DE , ∴DE=163 . 【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.24.已知关于x 的方程()22120mx m x m --+-=. (1)当m 取何值时,方程有两个不相等的实数根;(2)若1x 、2x 为方程的两个不等实数根,且满足2212122x x x x +-=,求m 的值.【答案】(1)当14m >-且0m ≠时,方程有两个不相等的实数根;(221 【分析】(1)由方程有两个不相等的实数根,可得24b ac =-⊿>0,继而求得m 的取值范围; (2)由根与系数的关系,可得12x x +和12x x ,再根据已知得到方程并解方程即可得到答案.【详解】(1)关于x 的方程()22120mx m x m --+-= a m =,()21b m =--,2c m =-,∵方程有两个不相等的实数根,∴()()2242142b ac m m m ⎡⎤=-=----⎣⎦⊿>0, 解得:14m >-, ∵二次项系数0a ≠,∴0m ≠, ∴当14m >-且0m ≠时,方程有两个不相等的实数根; (2)∵12x x 、为方程的两个不等实数根, ∴122m 1b x x a m -+=-=,122c m x x a m-==, ∴()()222212121212322m 132m x x x x x x x x m m --⎛⎫+-=+-=-= ⎪⎝⎭,解得:11m =,21m =(不合题意,舍去),∴1m =.【点睛】本题考查了根的判别式以及根与系数的关系.注意当24b ac =-⊿>0时,方程有两个不相等的两个实数根;注意若12x x 、是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12c x x a =. 25.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):(1)该校这10天用电量的众数是 度,中位数是 度;(2)估计该校这个月的用电量(用30天计算).【答案】(1)113;113;(2)3240度.【分析】(1)分别利用众数、中位数的定义求解即可;(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.【详解】解:(1)113度出现了3此,出现的次数最多,故众数为113度;将数据按从小到大的顺序排列,共10个数据,位于第5,6的数均为113,故中位数为113度; (2)130(9093204339114240)324010⨯+++++=(度). 答:估计该校该月的用电量为3240度.【点睛】本题考查的知识点是中位数、众数的概念定义以及算数平均线的计算方法,属于基础题目,易于理解掌握. 26.(1)2y 2+4y =y+2(用因式分解法)(2)x 2﹣7x ﹣18=0(用公式法)(3)4x 2﹣8x ﹣3=0(用配方法)【答案】(1)y 1=﹣2,y 2=12;(2)x 1=9,x 2=﹣2;(3)x 1=,x 2=1. 【分析】(1)先变形为2y (y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先计算出判别式的值,然后利用求根公式法解方程;(3)先把二次项系数化为1,再两边加上一次项系数一半的平方,配方法得到(x ﹣1)2=74,然后利用直接开平方法解方程.【详解】解:(1)2y (y+2)﹣(y+2)=0,∴(y+2)(2y ﹣1)=0,∴y+2=0或2y ﹣1=0,所以y 1=﹣2,y 2=12; (2)a =1,b =﹣7,c =﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x =71121±⨯, ∴x 1=9,x 2=﹣2;(3)x 2﹣2x =34, ∴x 2﹣2x+1=34+1, ∴(x ﹣1)2=74,∴x ﹣1=∴x 1=,x 2=1 【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.27.一位橄榄球选手掷球时,橄榄球从出手开始行进的高度()y m 与水平距离()x m 之间的关系如图所示,已知橄榄球在距离原点6m 时,达到最大高度7m ,橄榄球在距离原点13米处落地,请根据所给条件解决下面问题:(1)求出y 与x 之间的函数关系式;(2)求运动员出手时橄榄球的高度.【答案】(1)21(6)7,7y x =--+(2)13.7m 【分析】(1)由题意知:抛物线的顶点坐标(6,7),设二次函数的解析式为2(6)7,y a x =-+把(13,0)代入即可得到答案,(2)令0,x =求解y 的值即可.【详解】解:(1)由题意知:抛物线的顶点为:(6,7),设二次函数的解析式为2(6)7,y a x =-+把(13,0)代入2(6)7,y a x =-+解得:1,7a =- 则二次函数的解析式为:21(6)7,7y x =--+ (2)由题意可得:当0,x =21364913(06)7,7777y =--+=-+= ∴ 运动员出手时橄榄球的高度137米. 【点睛】本题主要考查了二次函数的应用,熟练掌握顶点式法求函数解析式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >1;②b 2﹣4ac >1;③9a ﹣3b+c=1;④若点(﹣1.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <1.其中正确的个数有( )A .2B .3C .4D .5【答案】B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-2ba =-1,a+b+c=1,∴b=2a ,c=-3a ,∵a >1,∴b >1,c <1,∴abc <1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x 轴还有另外一个交点(-3,1)∴抛物线与x 轴有两个交点,∴b 2-4ac >1,故②正确,∵抛物线与x 轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y 1),(-2,y 2)均在抛物线上,(-1.5,y 1)关于对称轴的对称点为(-1.5,y 1)(-1.5,y 1),(-2,y 2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y 1<y 2;故④错误,∵5a-2b+c=5a-4a-3a=-2a <1,故⑤正确,故选B .【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x =-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键. 3.如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A .5B .6C .2D .3 【答案】C【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,22AD DH -,∴HB=AB ﹣AH=8,在Rt △BDH 中,2285+=DH BH设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OAOFBD BH , ∴0885=F,∴5故选C .考点:1.切线的性质;2.菱形的性质.4.下列关于x 的方程是一元二次方程的有( )①ax 2+bx+c=0 ②x 2=0 ③21110234x x +-= ④21x x =A .②和③B .①和②C .③和④D .①和④【答案】A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax 2+bx+c=0,当a=0时,该方程不是一元二次方程;②x 2=0符合一元二次方程的定义; ③21110234x x +-=符合一元二次方程的定义;④21x x =是分式方程. 综上所述,其中一元二次方程的是②和③.故选A .【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)【答案】D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解. 【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .6.如图,在平面直角坐标系中,直线OA 过点(4,2),则tan α的值是( )A .12B .5C .5D .2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD ⊥x 轴交OA 于点C ,交x 轴于点D ,∵在平面直角坐标系中,直线OA 过点(4,2),∴OD=4,CD=2,∴tanα=CD OD =24=12, 故选A .本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.7.在一个不透明的袋中装有50个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在0.2左右,则袋中红球大约有( )A .10个B .20个C .30个D .40个 【答案】A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x 个,由题意得0.250x 解得x =10,故选:A .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.8.已知两圆半径分别为6.5cm 和3cm ,圆心距为3.5cm ,则两圆的位置关系是( )A .相交B .外切C .内切D .内含 【答案】C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm 和3cm ,圆心距为3.5cm ,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C .【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R 和r ,且R≥r ,圆心距为d :外离d >R+r ;外切d =R+r ;相交R ﹣r <d <R+r ;内切d =R ﹣r ;内含d <R ﹣r .9.如图,在平面直角坐标系内,四边形ABCD 为菱形,点A ,B 的坐标分别为(﹣2,0),(0,﹣1),点C ,D 分别在坐标轴上,则菱形ABCD 的周长等于( )A 5B .3C .5D .20【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴AB==∴菱形ABCD的周长等于4AB=故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.10.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+4【答案】A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.11.下列几何图形不是中心对称图形的是()A.平行四边形B.正五边形C.正方形D.正六边形【答案】B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A. 平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B. 正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C. 正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D. 正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.12.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(32,3),(23-,4)B.(74,72),(23-,4)C.(32,3),(12-,4)D.(74,72),(12-,4)【答案】C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,EC AEAF OF∴=,3EC,2∴=∴点C坐标1,42⎛⎫- ⎪⎝⎭,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3OM EC 2==, ∴点B 坐标3,32⎛⎫ ⎪⎝⎭,故选C .【点睛】 本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.二、填空题(本题包括8个小题)13.用长24m 的铁丝做一个长方形框架,设长方形的长为x ,面积为y ,则y 关于x 的函数关系式为__________.【答案】12y x x =-()或212y x x =-+【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【详解】由题意得:矩形的另一边长=24÷2−x=12−x ,则y=x(12−x)=−x 2+12x. 故答案为12y x x =-()或212y x x =-+【点睛】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.14.如图,二次函数()(202)y x x x =-≤≤的图象记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,得到一条“波浪线”.若(2020,)P m 在这条“波浪线”上,则m =____.【答案】1【分析】根据抛物线与x 轴的交点问题,得到图象C 1与x 轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C 2与x 轴交点坐标为:(2,1),(4,1),则抛物线C 2:y=(x-2)(x-4)(2≤x ≤4),于是可推出横坐标x 为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【详解】解:∵一段抛物线C 1:y=-x (x-2)(1≤x ≤2),∴图象C 1与x 轴交点坐标为:(1,1),(2,1),∵将C 1绕点A 1旋转181°得C 2,交x 轴于点A 2;,∴抛物线C 2:y=(x-2)(x-4)(2≤x ≤4),。

【精选3份合集】2017-2018年上海市金山区九年级上学期期末监测数学试题

【精选3份合集】2017-2018年上海市金山区九年级上学期期末监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若函数y =3m x -的图象在第一、三象限内,则m 的取值范围是( ) A .m >﹣3B .m <﹣3C .m >3D .m <3 【答案】C【分析】根据反比例函数的性质得m ﹣1>0,然后解不等式即可.【详解】解:根据题意得m ﹣1>0,解得m >1.故选:C .【点睛】本题主要考查的是反比例函数的性质,当k >0时,图像在第一、三象限内,根据这个性质即可解出答案. 2.关于x 的一元二次方程x 2+4x+k =0有两个相等的实数根,则k 的值为( )A .k =4B .k =﹣4C .k≥﹣4D .k≥4 【答案】A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的一元一次方程,解之即可得出结论.【详解】解:∵关于x 的一元二次方程x 2+1x+k =0有两个相等的实数根,∴△=12﹣1k =16﹣1k =0,解得:k =1.故选:A .【点睛】本题考查了根的判别式以及解一元一次方程,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.若32x y=,则下列等式一定成立的是( ) A .32x y =B .6xy =C .23x y =D .23y x = 【答案】D 【分析】根据比例的性质a c b d=,则ad=bc ,逐个判断可得答案. 【详解】解:由32x y=可得:2x=3y A. 32x y =,此选项不符合题意B. 6xy=,此选项不符合题意C.23xy=,则3x=2y,此选项不符合题意D.23yx=,则2x=3y,正确故选:D 【点睛】本题考查比例的性质,解题关键在于掌握a cb d=,则ad=bc.4.如图,AB是O的直径,AB=4,C为AB的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B7C.23D3+1【答案】D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为AB的三等分点,∴AC的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=1121 22OC,由勾股定理可得,3, ∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=1121 22OA=⨯=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为3+1.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.5.已知反比例函数y=kx的图象如图所示,则二次函数y=k2x2+x﹣2k的图象大致为()A.B.C.D.【答案】A【分析】先根据已知图象确定反比例函数的系数k的正负,然后再依次确定二次函数的开口方向、对称轴、与y轴的交点坐标确定出合适图象即可.【详解】解:∵反比例函数图象位于第一三象限,∴k>0,∴k2>0,﹣2k<0,∴抛物线与y轴的交点(0,-2k)在y轴负半轴,∵k 2>0,∴二次函数图象开口向上,∵对称轴为直线x =212k<0,∴对称轴在y 轴左边, 纵观各选项,只有A 选项符合.故选:A .【点睛】本题考查了二次函数和反比例函数的图象特征,根据反比例函数图象确定k 的正负、熟知二次函数的性质是解题的关键.6.抛物线y =(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(﹣1,3)C .(1,﹣3)D .(3,﹣1)【答案】A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y =(x ﹣1)2+3的顶点坐标是(1,3).故选:A .【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.7.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )A .②③B .①③④C .①②④D .①②③④ 【答案】D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.8.如图为二次函数y =ax 2+bx+c 的图象,在下列说法中①ac >0;②方程ax 2+bx+c =0的根是x 1=﹣1,x 2=3;③a+b+c <0;④当x >1时,y 随x 的增大而增大,正确的是( )A .①③B .②④C .①②④D .②③④【答案】D 【分析】①依据抛物线开口方向可确定a 的符号、与y 轴交点确定c 的符号进而确定ac 的符号;②由抛物线与x 轴交点的坐标可得出一元二次方程ax 2+bx+c=0的根;③由当x=1时y <0,可得出a+b+c <0;④观察函数图象并计算出对称轴的位置,即可得出当x >1时,y 随x 的增大而增大.【详解】①由图可知:0a >,0c <,0ac ∴<,故①错误;②由抛物线与x 轴的交点的横坐标为1-与3,∴方程20ax bx c ++=的根是11x =-,23x =,故②正确;③由图可知:1x =时,0y <,0a b c ∴++<,故③正确;④由图象可知:对称轴为:1312x -+==, 1x ∴>时,y 随着x 的增大而增大,故④正确;故选D .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.9.用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形【答案】B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A 可能;截面不可能是矩形,故B 符合题意;斜截且与底面不相交的截面是椭圆,故C 可能;过圆锥的顶点的截面是三角形,故D 可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.10.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠【答案】A 【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题. 11.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是BE 的中点,则下列结论:①OC ∥AE ;②EC =BC ;③∠DAE =∠ABE ;④AC ⊥OE ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为BE的中点,即=BC CE,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为AC中点,故E不一定是AC中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.12.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CDAB等于()A.tanαB.sina C.cosαD.1 tan【答案】C【分析】连接BD 得到∠ADB 是直角,再利用两三角形相似对应边成比例即可求解. 【详解】连接BD,由AB 是直径得,∠ADB=90︒.∵∠C=∠A ,∠CPD=∠APB ,∴△CPD ∽△APB ,∴CD:AB=PD:PB=cosα.故选C.二、填空题(本题包括8个小题)13.如图,ABC 内接于,30,2O C AB ∠==, 则O 的半径为__________.【答案】2【分析】连接OA 、OB ,求出∠AOB=60得到△ABC 是等边三角形,即可得到半径OA=AB=2.【详解】连接OA 、OB ,∵30C ∠=,∴∠AOB=60,∵OA=OB ,∴△ABC 是等边三角形,∴OA=AB=2,故答案为:2.【点睛】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.14.在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________.【答案】45 【分析】先根据勾股定理求的BC 的长,再根据余弦的定义即可求得结果. 【详解】由题意得224BC AB AC =-=则4cos 5BC B AB == 故答案为:45 点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.15.小明向如图所示的ABC ∆区域内投掷飞镖,阴影部分时ABC ∆的内切圆,已知15AB =,9AC =,12BC =,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.【答案】6π 【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】15AB =,9AC =,12BC =,222AB AC BC ∴=+∴ABC 是直角三角形,90C ∠=︒设圆的半径为r ,利用三角形的面积有11()22AC BC AB r AC BC ++= 即11(91215)91222r ⨯++=⨯⨯ 解得3r =∴阴影部分的面积为29r ππ=∵三角形的面积为119125422AC BC =⨯⨯= ∴飞镖落在阴影部分的概率为9546ππ= 故答案为:6π. 【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.16.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球.小明和小东同时从袋中随机各摸出1个球,并计算这两球上的数字之和,当和小于9时小明获胜,反之小东获胜.则小东获胜的概率_______. 【答案】23【分析】根据题意画出树状图,再根据概率公式即可得出答案.【详解】根据题意画图如下:可以看出所有可能结果共有12种,其中数字之和大于等于9的有8种∴P (小东获胜)=812=23故答案为:23. 【点睛】 此题主要考查概率公式的应用,解题的关键是根据题意画出树状图表示所有情况.1721x -x 的取值范围是__________.【答案】12x ≥; 【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围.【详解】∵二次根式有意义的条件是被开方数大于等于0∴210x -≥ 解得12x ≥ 故答案为:12x ≥. 【点睛】本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.18.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点P 是AB 上的任意一点,作PD AC ⊥于点D ,PE CB ⊥于点E ,连结DE ,则DE 的最小值为________.【答案】4.8【分析】连接CP ,根据矩形的性质可知:DE CP =,当DE 最小时,则CP 最小,根据垂线段最短可知当CP AB ⊥时,则CP 最小,再根据三角形的面积为定值即可求出CP 的长.【详解】Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,10AB ∴=,连接CP ,PD AC ⊥于点D ,PE CB ⊥于点E , ∴四边形DPEC 是矩形,DE CP ∴=,当DE 最小时,则CP 最小,根据垂线段最短可知当CP AB ⊥时,则CP 最小, 68 4.810DE CP ⨯∴===.故答案为:4.8.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE 的最小值转化为其相等线段CP 的最小值.三、解答题(本题包括8个小题)19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.【答案】树高为5.5 米【解析】根据两角相等的两个三角形相似,可得△DEF∽△DCB ,利用相似三角形的对边成比例,可得DE EFDC CB=,代入数据计算即得BC的长,由AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DE EF DC CB=,∵DE=0.4m,EF=0.2m,CD=8m,∴0.40.28CB=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.20.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.【答案】(1)A,B5(2)1922t-≤≤;(3)点Q在以点O为圆心,4为半径的圆上;或在以点O为圆心,23【分析】(1)由题意利用“和谐三角形”以及“和谐距离”的定义进行分析求解;(2)由题意可知以BD的中点为圆心,以BD为直径作圆此时可求点E的横坐标t的取值范围;(3)根据题意△OPQ是“和谐三角形”,且“和谐距离”是2,画出图像进行分析.【详解】解:(1)由题意可知当A(2,0),B(0,4)与O构成三角形时满足圆周角定理即能与点O组成“和谐三角形”,此时“和谐距离”为5;(2)根据题意作图,以BD的中点为圆心,以BD为直径作圆,可知当E在如图位置时求点E的横坐标t的取值范围,解得点E的横坐标t的取值范围为19 22t-≤≤;(3)如图当PQ为“和谐边”时,点Q在以点O为圆心,23为半径的圆上;当OQ为“和谐边”时,点Q在以点O为圆心,4为半径的圆上.【点睛】本题考查圆的综合问题,熟练掌握圆的相关性质以及理解题干定义是解题关键.21.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?【答案】(1)-1,20;(2)当x=10时,该商品的销售利润最大,最大利润是25元;(3)7≤x≤13【分析】(1)利用待定系数法求二次函数解析式得出即可;(2)利用配方法求出二次函数最值即可;(3)根据题意令y=16,解方程可得x 的值,结合图象可知x 的范围.【详解】解:(1)y=ax 2+bx-1图象过点(5,0)、(7,16),∴255750,4977516,a b a b +-=⎧⎨+-=⎩解得:1,20.a b =-⎧⎨=⎩故答案为-1,20⑵∵222075(10)25y x x x =-+-=--+∴当x=10时,该商品的销售利润最大,最大利润是25元.⑶根据题意,当y=16时,得:-x 2+20x-1=16,解得:x 1=7,x 2=13,即销售单价7≤x≤13时,该种商品每天的销售利润不低于16元.【点睛】此题主要考查了二次函数的应用以及待定系数法求二次函数解析式等知识,正确利用二次函数图象是解题关键.22.2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x 元/千克,日销售量为y 千克.(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.【答案】(1)y =200﹣2x ;(2)售价是68元/千克时,日销售利润最大,最大利润是1元【分析】(1)根据售价每上涨1元,则每天少售出2千克即可列出函数关系式;(2)根据(1)所得关系式,销售利润=每千克的利润×销售量列出二次函数关系式,再求出最值即可.【详解】解:(1)根据题意,得设猪肉进价为a 元/千克,(60﹣a )×80=1600,解得a =40,y =80﹣2(x ﹣60)=200﹣2x .答:y 与x 的函数解析式为:y =200﹣2x .(2)设售价为x 元时,日销售利润为w 元,根据题意,得w =(x ﹣40)(200﹣2x )=﹣2x 2+280x ﹣8000;=﹣2(x ﹣70)2+1800∵﹣2<0,当x <70时,w 随x 的增大而增大,∵物价管理部门规定猪肉价格不高于68元/千克,∴x =68时,w 有最大值,最大值为1.答:当售价是68元/千克时,日销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.23.如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD AC BE BC=.【答案】见解析.【分析】根据两角相等的两个三角形相似证明△ADC ∽△BEC 即可.【详解】证明:∵AD ,BE 分别是BC ,AC 上的高∴∠D=∠E=90°又 ∠ACD=∠BCE (对顶角相等)∴△ADC ∽△BEC∴AD AC BE BC=. 【点睛】本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.24.已知1y -与x 成反比例,当1x =时,5y =-,求y 与x 的函数表达式.【答案】61y x=-+ 【分析】根据反比例的定义,设1k y x -=,再将1,5x y ==-代入求出k ,即可求得. 【详解】由题意设1k y x-=, 将1,5x y ==-代入得 511k --=,。

2018年上海金山区初三一模数学试卷答案

2018年上海金山区初三一模数学试卷答案
目录
选择题(每小题4分,共24分) 填空题(每小题4分,共48分) 解答题(本题共7题,满分78分)
学生版
教师版
答案版
2018年上海金山区初三一模数学试卷
选择题(每小题4分,共24分)
1. 已知a、b是不等于0的实数,2a = 3b,那么下列等式中正确的是( ).
A.
a =
2
b
3
C. a + b
4
=
).
A. a = b ⋅ cos A
B. c = a ⋅ sin A
C. a ⋅ cot A = b
D. a ⋅ tan A = b
答案 C
解析
,即 , 错. b
cos A =
cos A ⋅ c = b A
c
,即 , 错. a
sin A =
sin A ⋅ c = a B
c
,即 , 正确. b
cot A =
∴ , △BF D ∽ △DF C
∴ . 2 DF = BF ⋅ C F
(2) 在AB上取一点G,如果AE ⋅ AC = AG ⋅ AD,求证:EG ⋅ C F = ED ⋅ . DF
编辑
答 案 证明见解析.
解析
∵ , AE ⋅ AC = ED ⋅ DF
∴ . AE
AG
=
AD
AC
又∵∠A = ∠A ,
式.
/04
目录
选择题(每小题4分,共24分) 填空题(每小题4分,共48分) 解答题(本题共7题,满分78分)
学生版
答案 解析
教师版
答案版
2018/12/04
. −−→
MN =
1 a⃗ −

〖汇总3套试卷〗上海市金山区2018年九年级上学期数学期末教学质量检测试题

〖汇总3套试卷〗上海市金山区2018年九年级上学期数学期末教学质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如下图:⊙O 的直径为10,弦AB 的长为8,点P 是弦AB 上的一个动点,使线段OP 的长度为整数的点P 有( )A .3 个B .4个C .5个D .6个【答案】A【分析】当P 为AB 的中点时OP 最短,利用垂径定理得到OP 垂直于AB ,在直角三角形AOP 中,由OA 与AP 的长,利用勾股定理求出OP 的长;当P 与A 或B 重合时,OP 最长,求出OP 的范围,由OP 为整数,即可得到OP 所有可能的长.【详解】当P 为AB 的中点时,由垂径定理得OP ⊥AB ,此时OP 最短, ∵AB=8, ∴AP=BP=4,在直角三角形AOP 中,OA=5,AP=4, 根据勾股定理得OP=3,即OP 的最小值为3; 当P 与A 或B 重合时,OP 最长,此时OP=5,∴35OP ≤≤,则使线段OP 的长度为整数的点P 有3,4,5,共3个. 故选A考点:1.垂径定理;2.勾股定理2.下列是电视台的台标,属于中心对称图形的是( ) A .B .C .D .【答案】C【解析】根据中心对称图形的概念即可求解. 【详解】A 、不是中心对称图形,故此选项错误; B 、不是中心对称图形,故此选项错误; C 、是中心对称图形,故此选项正确; D 、不是中心对称图形,故此选项错误. 故选:C . 【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或0【答案】C【分析】利用因式分解法求解可得.【详解】解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)【答案】D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.5.已知关于 x 的方程20x ax b ++=有一个根是(0)b b ≠,则 a b +的值是( )A .-1B .0C .12D .1【答案】A【分析】把b 代入方程得到关于a ,b 的式子进行求解即可; 【详解】把b 代入20x ax b ++=中,得到20b ab b ++=, ∵0b ≠,∴两边同时除以b 可得10b a ++=, ∴1a b +=-. 故答案选A . 【点睛】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键. 6.用直角三角板检查半圆形的工件,下列工件合格的是( )A .B .C .D .【答案】C【分析】根据直径所对的圆周角是直角逐一判断即可.【详解】解:A 、直角未在工件上,故该工件不是半圆,不合格,故A 错误; B 、直角边未落在工件上,故该工件不是半圆,不合格,故B 错误; C 、直角及直角边均落在工件上,故该工件是半圆,合格,故C 正确; D 、直角边未落在工件上,故该工件不是半圆,不合格,故D 错误, 故答案为: C . 【点睛】本题考查了直径所对的圆周角是直角的实际应用,熟知直径所对的圆周角是直角是解题的关键. 7.如图,空地上(空地足够大)有一段长为10m 的旧墙MN ,小敏利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长100m ,矩形菜园ABCD 的面积为900m 1.若设AD =xm ,则可列方程( )A .(60﹣2x)x =900 B .(60﹣x )x =900 C .(50﹣x )x =900 D .(40﹣x )x =900【答案】B【分析】若AD =xm ,则AB =(60−x )m ,根据矩形面积公式列出方程. 【详解】解: AD =xm ,则AB =(100+10)÷1−x =(60−x )m , 由题意,得(60−x )x =2. 故选:B . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 8.用一个圆心角为120°,半径为6cm 的扇形做成一个圆锥的侧面,这个圆锥的高为( ) A 35B .42C .33D .5【答案】B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高. 【详解】解:设此圆锥的底面半径为r ,由题意得:12062r 180ππ⨯=,解得r=2cm ,22623242-==故选:B. 【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.9.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是( ) 抽取件数(件) 50 100 150 200 500 800 1000 合格频数 4898 144193489 784981A .12B .24C .1188D .1176【答案】B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02, 出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.5 2【答案】A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴12 AB DEBC EF==,又∵AB=2,∴BC=4,∴AC=AB+BC=1.故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.已知ab cd=,则下列各式不成立的是()A.a dc b=B.a cd b=C.a c d bc b++=D.1111a dc b++=++【答案】D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A:因为a dc b=所以ab=cd,故A正确;B:因为a cd b=所以ab=cd,故B正确;C:因为a c d bc b++=所以(a+c)b=(d+b)c,化简得ab =cd,故选项C正确;D:因为1111a dc b++=++所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c,故选项D错误;故答案选择D. 【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则. 12.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是( )A .B .C .D .【答案】C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A 、由图形顺时针旋转90°,可得出;故本选项不符合题意; B 、由图形逆时针旋转90°,可得出;故本选项不符合题意; C 、不能由如图图形经过旋转或平移得到;故本选项符合题意; D 、由图形顺时针旋转180°,而得出;故本选项不符合题意; 故选:C . 【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键. 二、填空题(本题包括8个小题)13.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______【答案】①②③⑤【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图象可知:抛物线开口方向向下,则a 0<, 对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为bx 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误; ⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤. 【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.14.如图,点P 是反比例函数y =xk(k ≠0)的图象上任意一点,过点P 作PM ⊥x 轴,垂足为M .若△POM 的面积等于2,则k 的值等于_【答案】-2【分析】利用反比例函数k 的几何意义得到12|k|=1,然后根据反比例函数所在的象限确定k 的值. 【详解】∵△POM 的面积等于1,∴12|k|=1. ∵反比例函数图象过第二象限,∴k <0,∴k=﹣2. 故答案为:﹣2. 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.15.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是__________【答案】 (5,0)【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒. 故第35秒时跳蚤所在位置的坐标是(5,0).16.已知二次函数2246y x x =-++, 用配方法化为2()y a x m k =-+的形式为_________________,这个二次函数图像的顶点坐标为____________. 【答案】22(1)8y x =--+ (1,8)【分析】先利用配方法提出二次项的系数,再加上一次项系数的一半的平方来凑完全平方式,再根据顶点式即可得到顶点的坐标.【详解】222462()218y x x x x =-++=-++- 利用完全平方公式得:22(1)8y x =--+ 由此可得顶点坐标为(1,8). 【点睛】本题考查了用配方法将二次函数的一般式转化为顶点式、以及二次函数顶点坐标,熟练运用配方法是解题关键.17.如图,若直线L 与x 轴、y 轴分别交于点A 、B ,并且4OB =,30ABO =∠,一个半径为1的O ,圆心C 从点(0,1)开始沿y 轴向下运动,当C 与直线L 相切时,C 运动的距离是__________.【答案】3或1【解析】分圆运动到第一次与AB 相切,继续运算到第二次与AB 相切两种情况,画出图形进行求解即可得. 【详解】设第一次相切的切点为 E ,第二次相切的切点为 F ,连接EC ′,FC ″, 在 Rt△BEC ′中,∠ABC =30°,EC ′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为 3 或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.18.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.【答案】1 2【详解】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:48=12.故答案为12.考点:几何概率三、解答题(本题包括8个小题)19.如图,AB是O的直径,C点在O上,AD平分角BAC交O于D,过D作直线AC的垂线,交AC的延长线于E,连接,BD CD.(1)求证:BD CD =; (2)求证:直线DE 是O 的切线;(3)若3,4==DE AB ,求AD 的长.【答案】(1)见解析;(2)见解析;(3)23AD =.【分析】(1)根据在同圆中,相等的圆周角所对的弦也相等即可证明;(2)连接半径OD ,根据等边对等角和等量代换即可证出∠ODE=90°,根据切线的判定定理即可得出结论;(3)作DF AB ⊥于F ,根据角平分线的性质可得3==DF DE ,然后利用勾股定理依次求出OF 和AD 即可.【详解】证明:(1)∵在O 中,AD 平分角BAC ∠,∴CAD BAD ∠=∠, ∴BD CD =;(2)如图,连接半径OD ,有OD OA =,∴OAD ODA ∠=∠, ∵DE AC ⊥于E , ∴90EAD ADE ∠+∠=︒, 由(1)知EAD BAD ∠=∠, ∴90BAD ADE ∠+∠=︒, 即90ODA ADE ∠+∠=︒, ∴∠ODE=90° ∴DE 是O 的切线.(3)如图,连接OD ,作DF AB ⊥于F ,则3==DF DE 2OD =,在Rt ODF ∆中,221,OF OD DF =-=∴3AF AO OF =+=在Rt ADF ∆中,2223AD AF DE =+=【点睛】此题考查的是圆的基本性质、切线的判定、角平分线的性质和勾股定理,掌握在同圆中,相等的圆周角所对的弦也相等、切线的判定定理、角平分线的性质和用勾股定理解直角三角形是解决此题的关键. 20.求值:12sin 60cos 4522︒⨯︒+2sin30°-tan60°- tan 45° 3【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可. 解:原式=1322123122222⨯⨯+⨯- 31318=+ 732=1673-= 21.定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:(1)理解:如图1,在四边形ABCD 中,若__________(填一种情况),则四边形ABCD 是“准菱形”; (2)应用:证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明) (3)拓展:如图2,在Rt △ABC 中,∠ABC=90°,AB=2,BC=1,将Rt △ABC 沿∠ABC 的平分线BP 方向平移得到△DEF ,连接AD ,BF ,若平移后的四边形ABFD 是“准菱形”,求线段BE 的长.【答案】 (1)答案不唯一,如AB=BC.(2)见解析;(3) BE=2或5或2或1422.【解析】整体分析:(1)根据“准菱形”的定义解答,答案不唯一;(2)对角线相等且互相平分的四边形是矩形,矩形的邻边相等时即是正方形;(3)根据平移的性质和“准菱形”的定义,分四种情况画出图形,结合勾股定理求解. 解:(1)答案不唯一,如AB=BC.(2)已知:四边形ABCD是“准菱形”,AB=BC,对角线AC,BO交于点O,且AC=BD,OA=OC,OB=OD.求证:四边形ABCD是正方形.证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.∵AC=BD,∴平行四边形ABCD是矩形.∵四边形ABCD是“准菱形”,AB=BC,∴四边形ABCD是正方形.(3)由平移得BE=AD,DE=AB=2,EF=BC=1,DF=AC=5.由“准菱形”的定义有四种情况:①如图1,当AD=AB时,BE=AD=AB=2.②如图2,当AD=DF时,BE=AD=DF=5.③如图3,当BF=DF5FE交AB于点H,则FH⊥AB.∵BE平分∠ABC,∴∠ABE=12∠ABC=45°.∴∠BEH=∠ABE=45°.∴BE2BH.设EH =BH =x ,则FH =x +1,BE =2x. ∵在Rt △BFH 中,BH 2+FH 2=BF 2, ∴x 2+(x +1)2=(5)2,解得x 1=1,x 2=-2(不合题意,舍去), ∴BE =2x =2.④如图4,当BF =AB =2时,与③)同理得:BH 2+FH 2=BF 2.设EH =BH =x ,则x 2+(x +1)2=22,解得x 1=172-+,x 2=172--(不合题意,舍去), ∴BE =2x =1422-.综上所述,BE=2或5或2或142-. 22.如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长【答案】6AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B ,∠C=∠C∴△CAD ∽△CBA∴AC DC BC AC= ∴26424AC BC CD =•=⨯=解得:26AC =或26-(舍去) 即26AC =.【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.【答案】(1)13(2)12 【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【详解】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=13; 故答案为:13 (2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=61122=. 【点睛】本题考查1、列表法与树状图法;2、概率公式,难度不大,掌握公式正确计算是解题关键.24.已知双曲线m y (m 0)x =≠经过点B (2,1). (1)求双曲线的解析式;(2)若点()111,A x y 与点()222,A x y 都在双曲线m y (m 0)x =≠上,且120x x <<,直接写出1y 、2y 的大小关系.【答案】(1)2y x=;(2)12y y > 【分析】(1)把点B 的坐标代入m y x =可求得函数的解析式; (2)根据反比例函数1y x=,可知函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,进而得到1y ,2y 的大小关系.【详解】解:(1)将2B (,1)代入m y x =,得2m =,则双曲线的解析式为2y x = (2)∵反比例函数2y x=, ∴函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,又∵120x x <<∴12y y >故答案为:.12y y >.【点睛】本题考查了待定系数法求函数解析式、反比例函数的增减性,利用函数的性质比较函数值的大小,解题的关键是明确题意,掌握待定系数法求函数解析式、能利用反比例函数的性质解答.25.黄山景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件.物价部门规定:销售单价不低于6元,但不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件).(1)直接写出y 与x 的函数关系式.(2)求日销售利润w (元)与销售单价x (元)的函数关系式.并求当x 为何值时,日销售利润最大,最大利润是多少?【答案】(1)10280y x =-+;(2)()210171210w x =--+,x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,20010(8)10280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()2(6)(10280)10171210w x x x =--+=--+ 100,612x -<≤≤∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960 元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.26.如图,在正方形网格上有ABC 以及一条线段DE .请你以DE 为一条边.以正方形网格的格点为顶点画一个DEF ,使得ABC 与DEF 相似,并求出这两个三角形的相似比.【答案】图见解析,ABC 与DEF 的相似比是12. 【分析】可先选定BC 与DE 为对应边,对应边之比为1:2,据此来选定点F 的位置,相似比亦可得.【详解】解:如图,ABC 与DEF 相似.理由如下:由勾股定理可求得,2AB =,BC=2, 10AC =;22DF = ,DE=4,210EF =, ∴12AB BC AC DF DE EF ===, ∴ABC ∽DEF ,相似比是12. 【点睛】此题主要考查了相似三角形的判定与性质,利用网格得出三角形各边长度是解题关键.27.如图,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D ,E 为AB 上一点,DE=DC ,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【答案】(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知x ,y 满足2254440-+++=x x xy y ,则x y 的值是( ).A .16B .116C .8D .18【答案】A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y 即可.【详解】由2254440-+++=x x xy y 得 ()()22244440xy y x x x +++-+=()()22220x x y +++=所以2x y +=0,2x +=0所以x=-2,y=-4所以x y =(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.2.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .12B .13C .23D .14【答案】D【解析】试题分析:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=14. 考点:概率的计算.3.如图,在线段AB 上有一点C,在AB 的同侧作等腰△ACD 和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD 与线段AE,线段CE 分别交于点F,G.对于下列结论:①△DCG ∽△BEG ;②△ACE ∽△DCB ;③GF·GB=GC·GE ;④若∠DAC=∠CEB=90°,则2AD 2=DF·DG.其中正确的是( )A.①②③④B.①②③C.①③④D.①②【答案】A【解析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C 四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.【详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180︒-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正确;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵AC DC EC BC=,∴△ACE∽△DCB;③正确;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正确;如图,连接CF, 由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四点共圆,∴∠CFB=∠CEB=90︒,∵∠ACD=∠ECB=45︒,∴∠DCE=90︒,∴△DCF∽△DGC∴DF DC DC DG,∴2DC DF DG,∵2DC AD,∴2AD2=DF·DG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,③的证明可通过②的相似推出所需要的条件继而得到证明;④是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到∠CFB=∠CEB=90 是解本题关键.4.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x …﹣3 ﹣1 ﹣1 0 1 1 3 4 …y …11 5 0 ﹣3 ﹣4 ﹣3 0 5 …给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5.下列图形的主视图与左视图不相同的是( )A .B .C .D .【答案】D【解析】确定各个选项的主视图和左视图,即可解决问题. 【详解】A 选项,主视图:圆;左视图:圆;不符合题意; B 选项,主视图:矩形;左视图:矩形;不符合题意; C 选项,主视图:三角形;左视图:三角形;不符合题意; D 选项,主视图:矩形;左视图:三角形;符合题意; 故选D 【点睛】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键. 6.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s D .5 m/s【答案】C【解析】当y=5时,则21520x =,解之得10x =(负值舍去),故选C 7.某商品先涨价后降价,销售单价由原来100元最后调整到96元,涨价和降价的百分率都为x .根据题意可列方程为( ) A .()()1001196x x +-= B .()2100 196x += C .()()9611 100x x +-= D .()2961 100x +=【答案】A【分析】涨价和降价的百分率都为x ,根据增长率的定义即可列出方程. 【详解】涨价和降价的百分率都为r .根据题意可列方程()()1001196x x +-= 故选A . 【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列出方程.8.将一元二次方程2473x x +=化成一般式后,二次项系数和一次项系数分别为( ) A .4,3 B .4,7C .4,-3D .24 3x x【答案】C【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:2473x x +=化成一元二次方程一般形式是4x 2-1x+7=0,则它的二次项系数是4,一次项系数是-1. 故选:C . 【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 9.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A .抛一枚硬币,正面朝上的概率B .掷一枚正六面体的骰子,出现1点的概率C .转动如图所示的转盘,转到数字为奇数的概率D .从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率 【答案】D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A 、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意; B 、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意; C 、转动如图所示的转盘,转到数字为奇数的概率为23,故此选项不符合题意;D 、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率为13,故此选项符合题意.故选:D . 【点睛】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键. 10.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32【答案】C【解析】根据∠DBC=∠A ,∠C=∠C ,判定△BCD ∽△ACB ,66=代入求值即可.【详解】∵∠DBC=∠A ,∠C=∠C , ∴△BCD ∽△ACB , ∴CD BCBC AC=, 636= ∴CD=2. 故选:C. 【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键. 11.方程x 2-2x=0的根是( ) A .x 1=x 2=0 B .x 1=x 2=2 C .x 1=0,x 2=2 D .x 1=0,x 2=-2 【答案】C【解析】根据因式分解法解一元二次方程的方法,提取公因式x 可得x (x-2)=0,然后按照ab=0的形式的方程解法,可得x=0或x-2=0,解得x 1=0,x 2=2. 故选C.点睛:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ). A .中国女排一定会夺冠B .中国女排一定不会夺冠C .中国女排夺冠的可能性比较大D .中国女排夺冠的可能性比较小【答案】C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%, ∴中国女排夺冠的可能性比较大 故选C. 【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义. 二、填空题(本题包括8个小题)13.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x ,则满足x 的方程是______.【答案】2300(1)260x -=.【分析】根据降价后的售价=降价前的售价×(1-平均每次降价的百分率),可得降价一次后的售价是300(1)x -,降价一次后的售价是2300(1)x -,再根据经过连续两次降价后售价为260元即得方程.【详解】解:由题意可列方程为2300(1)260x -= 故答案为:2300(1)260x -=. 【点睛】本题考查一元二次方程的实际应用,增长率问题,解题的关键是读懂题意,找到等量关系,正确列出方程,要注意增长的基础.14.如图,⊙A 过点O(0,0),C(3,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO 、BD ,则∠OBD 的度数是_____.【答案】30°【解析】根据点的坐标得到OD ,OC 的长度,利用勾股定理求出CD 的长度,由此求出∠OCD 的度数;由于∠OBD 和∠OCD 是弧OD 所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD 的度数. 【详解】连接CD.。

最新-2018届上海市金山区中考一模(即期末)数学试题及答案 精品

最新-2018届上海市金山区中考一模(即期末)数学试题及答案 精品

金山区2018-2018学年第一学期期末质量检测 初三数学试卷 2018.1(时间100分钟,满分150分)一、选择题(本题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.抛物线122+=x y 的顶点坐标是( )(A ))1,2(; (B ))1,0(; (C ))0,1(; (D ))2,1(.2.在ABC Rt ∆中, ︒=∠90C ,3,5==BC AB ,那么A sin 的值等于( ) (A )43; (B )34; (C )53; (D )54.3.已知ABC ∆∽DEF ∆,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么D EF ABC S S ∆∆:等于( )(A )3:2; (B )9:4; (C )16:81; (D )81:16.4.正多边形的中心角是36º,那么这个正多边形的边数是( ) (A )10; (B )8; (C );6 (D )5.5.已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于( )(A )4; (B )6; (C )4或5; (D )4或66.已知反比例函数)0(≠=a xa y ,当0 x 时,它的图像y 随x 的增大而减小,那么二次函数ax ax y -=2 的图像只可能是( )(A) (B) (C)(D)二、填空题(本题共12题,每小题4分,满分48分) 7.已知23x y=,那么=+-yx y x8.计算:()+-b a 22________313=⎪⎭⎫⎝⎛-b a9.将抛物线11-22+=)(x y 向上平移3个单位,那么平移后得到的抛物线的解析式是10.如图,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,若4=AD ,2=BD ,3=DE ,那么=BC11.在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为 12.已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的的取值范围是13.如图,斜坡AB 的坡度3:1=i ,该斜坡的水平距离=AC 6米,那么斜坡AB 的长等于 米14.如图,已知直线AB 与⊙O 相交于A 、B 两点, 30=∠OAB ,半径2=OA ,那么弦AB =_________15.已知⊙A 与⊙B 的半径分别为3和2,若两圆相交,那么这两圆的圆心距AB 的取值 范围是16.如图,在ABC Rt ∆中,︒=∠90ACB ,CD ⊥AB ,CD =4,A cos =32,那么BC =17.如图, 在ABC ∆中,BE AD 、分别是边AC BC 、上的中线,BE AD 、相交于点G .设=a →,=b →,那么= (用 a →、b →的 式子表示)18.如图,在ABC Rt ∆中,︒=∠90C ,4=AC ,3=BC .将ABC ∆绕着点C 旋转︒90,点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为三、(本题共有7题,满分78分) 19.(本题满分10分)CBD 第17题第16题第18题CA BAECBD G计算:︒︒︒︒︒︒⋅-+-30cot 45cos 60tan 30cos 45tan 45sin 220.(本题满分10分) 如图,ABC ∆中,PC 平分ACB ∠,PC PB = (1)求证:APC ∆∽ACB ∆; (2)若2=AP ,6=PC ,求AC 的长.21.(本题满分10分)如图,小明在广场上的C 处用测角仪正面测量一座楼房墙上的广告屏幕AB 的长度,测得屏幕下端B 处的仰角为 30,然后他正对大楼方向前进10米到达D 处,又测得该屏幕上端A 处的仰角为45,已知该楼高7.18米,测角仪MC、ND 的高度为1.7米.求广告屏幕AB 的长.ABCP22.(本题满分10分)抛物线2(0)y ax bx c a=++≠向右平移2个单位得到抛物线1)3(2--=xay,且平移后的抛物线经过点)12(,A.(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求BPM∆的面积.23.(本题满分12分)x yO如图,已知⊙O 与⊙1O 外离,OC 与D O 1分别是⊙O 与⊙1O 的半径,OC ∥D O 1.直线CD 交1OO 于点P ,交⊙O 于点A ,交⊙1O 于点B . 求证:(1)OA ∥B O 1;(2)BPAP=24.(本题满分12分)如图,已知直线62+=x y 与x 轴、y 轴分别交于A 、D 两点,抛物线)0(22≠++=a bx ax y 经过点A 和点)01(,B . (1)求抛物线的解析式;(2)在线段AD 上取一点F (点F 不与点A 重合),过点F 作x 轴的垂线交抛物线于点G 、交x 轴于点H.当GH FG =时,求点H 的坐标; (3)设抛物线的对称轴与直线AD 交于点E ,抛物线与y 轴的交点为C ,点MB在线段AB上,当AEM∆与BCM∆相似时,求点M的坐标.25.(本题满分14分)如图,在ABC ∆中,10==AC AB ,12=BC ,点E 、F 分别在边BC 、AC 上(点F 不与点A 、C 重合)EF ∥AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设x FC =. (1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE 、DF 分别交AB 于M 、N ,若写y MN =,求y 关于x 的函数关系式并出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的⊙E 与边AC①没有公共点时,求x 的取值范围. ②一个公共点时,求x 的取值范围. ③两个公共点时,求x 的取值范围.AECBF。

《试卷3份集锦》上海市金山区2017-2018年九年级上学期数学期末考试试题

《试卷3份集锦》上海市金山区2017-2018年九年级上学期数学期末考试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法中,不正确的是( )A .所有的菱形都相似B .所有的正方形都相似C .所有的等边三角形都相似D .有一个角是100°的两个等腰三角形相似【答案】A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A 、所有的菱形都相似,错误;B 、所有的正方形都相似,正确;C 、所有的等边三角形都相似,正确;D 、有一个角是100°的两个等腰三角形相似,正确;故选:A.【点睛】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键. 2.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的-个交点坐标为(1-,0),其部分图象如图所示,下列结论:①240b ac -<;②方程20ax bx c ++=的两个根是11x =-,23x =;③20a b +=;④当0y >时,x 的取值范围是13x -<<.其中结论正确的个数是( )A .4B .3C .2D .1【答案】B 【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另个交点坐标为(3,0),则可对②进行判断;由对称轴方程可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断.【详解】∵观察函数的图象知:抛物线与x 轴有2个交点,∴24b ac ->0,所以①错误;∵抛物线的对称轴为直线1x =,而点()10,-关于直线1x =的对称点的坐标为()30,,∴方程20ax bx c ++=的两个根是1213x x =-=,,所以②正确; ∵抛物线的对称轴为12b x a =-=,即2b a =-, ∴20a b +=,所以③正确;∵抛物线与x 轴的两点坐标为()10,-,()30,,且开口向下, ∴当y >0时,x 的取值范围是13x -<<,所以④正确;综上,②③④正确,正确个数有3个.故选:B .【点睛】本题考查了二次函数图象与系数的关系,关键是掌握对于二次函数()20y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置;常数项c 决定抛物线与y 轴交点位置;抛物线与x 轴交点个数由24b ac =-⊿决定.3.已知函数:(1)xy=9;(2)y=6x ;(3)y=-23x ;(4)y=22x ;(5) y=31x -,其中反比例函数的个数为( ) A .1B .2C .3D .4 【答案】C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=6x ;y=-23x . 故答案为C .【点睛】本题考查了反比例函数的定义,即形如y=k x(k ≠0)的函数关系叫反比例函数关系. 4.二次函数 y=(x-1)2 -5 的最小值是( )A .1B .-1C .5D .-5【答案】D【分析】根据顶点式解析式写出即可.【详解】二次函数y=(x-1)2-1的最小值是-1.故选D .【点睛】本题考查了二次函数的最值问题,比较简单.5.下面四个手机应用图标中是轴对称图形的是( ) A . B . C . D .【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A 、既不是轴对称图形,也不是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项错误;C 、既不是轴对称图形,也不是中心对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选D .【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6.某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共握了10次手.求这次聚会的人数是多少?设这次聚会共有x 人,可列出的方程为( )A .()110x x +=B .()1=10x x -C .()21=10x x -D .1(1)102x x -= 【答案】D【分析】每个人都要和他自己以外的人握手一次,但两个人之间只握手一次,所以等量关系为12×聚会人数×(聚会人数-1)=总握手次数,把相关数值代入即可.【详解】解:设参加这次聚会的同学共有x 人,由题意得:1(1)102x x -=, 故选:D .【点睛】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.如图,AB 、CD 相交于点O ,AD∥CB,若AO=2,BO=3,CD=6,则CO 等于( )A .2.4B .3C .3.6D .4【答案】C 【分析】由平行线分线段成比例定理,得到CO BO DO AO= ;利用AO 、BO 、CD 的长度,求出CO 的长度,即可解决问题.【详解】如图,∵AD ∥CB ,∴CO BO DO AO=; ∵AO=2,BO=3,CD=6, ∴362CO CO =- ,解得:CO=3.6, 故选C .【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..8.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为( )A .7.5×米 B .0.75×米 C .0.75×米 D .7.5×米 【答案】D【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:7.5忽米用科学记数法表示7.5×10-5米.故选D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.下列说法不正确的是( )A .所有矩形都是相似的B .若线段a =5cm ,b =2cm ,则a :b =5:2C .若线段AB 5,C 是线段AB 的黄金分割点,且AC >BC ,则AC 55-cmD .四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段【答案】A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A 不正确,符合题意;B.若线段a =5cm ,b =2cm ,则a :b =5:2,B 正确,不符合题意;C.若线段AB 5,C 是线段AB 的黄金分割点,且AC >BC ,则AC =552- cm ,C 正确,不符合题意;D. ∵1:2=2:4,∴四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段,D 正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.10.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为( ) A.121元B.110元C.120元D.81元【答案】A【分析】依次列出每次涨价后的价格即可得到答案.⨯+,【详解】第一次涨价后的价格为:100(110%)⨯++=121(元),第二次涨价后的价格为:100(110%)(110%)故选:A.【点睛】此题考查代数式的列式计算,正确理解题意是解题的关键.11.以下四个图形标志中,其中是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念对各选项逐一分析判断即可得答案.【详解】A、不是中心对称图形,故本选项不合题意,B、不是中心对称图形,故本选项不合题意,C、是中心对称图形,故本选项符合题意,D、不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【答案】C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题(本题包括8个小题)13.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.【答案】1【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=22=10,68∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为1,故答案为1.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.14.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为______.【答案】6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案.【详解】解:连接AD ,∵⊙O 的直径AB 垂直于弦CD ,垂足为E ,∴AD =AC ,∵∠B =60°,∴△ACD 是等边三角形,∵AC =6,∴CD =AC =6.故答案为:6.【点睛】此题考查了垂径定理以及等边三角形数的判定与性质.注意由垂径定理得出AD=AC 是关键. 15.边长为4cm 的正方形ABCD 绕它的顶点A 旋转180°,顶点B 所经过的路线长为(______)cm .【答案】4π【解析】试题解析:∵边长为4cm 的正方形ABCD 绕它的顶点A 旋转180°,顶点B 所经过的路线是一段弧长,弧长是以点A 为圆心,AB 为半径,圆心角是180°的弧长, ∴根据弧长公式可得:1804180π⨯=4π. 故选A . 16.如图,在平面直角坐标系xOy 中,点A B 、的坐标分别为()()2,02,1、,以原点O 为位似中心,把线段AB 放大,点A 的对应点A '的坐标为()4,0,则点B 的对应点B ′的坐标为__________.【答案】()4,2【分析】由题意可知:OA=2,AB=1,OA '=4,△OAB ∽△OA B '',根据相似三角形的性质列出比例式即可求出2A B ''=,从而求出点B ′的坐标.【详解】由题意可知:OA=2,AB=1,OA '=4,△OAB ∽△OA B ''∴OA AB OA A B='''即21 4A B =''解得:2A B''=∴点B′的坐标为(4,2)故答案为:()4,2.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的对应边成比例是解决此题的关键.17.如图,在平面直角坐标系中,O为坐标原点,点(),6A m在第一象限,OA与x轴所夹的锐角为α,且3sin5α=,则m的值是______.【答案】8【分析】过A作AB⊥x轴,根据正弦的定义和点A的坐标求出AB,OA的长,根据勾股定理计算即可. 【详解】如图,过A作AB⊥x轴,∴sin=AB OAα,∵3 sin5α=,∴35 ABOA=,∵(),6A m,∴AB=6,∴56103OA⨯==,根据勾股定理得:22221068OB OA AB=-=-=,即m=8,故答案为8.【点睛】本题考查的是锐角三角函数的定义、坐标与图形的性质,掌握直角三角形中,锐角的正弦是其对边与斜边的比是解题的关键.18.如图,圆O 是一个油罐的截面图,已知圆O 的直径为5m ,油的最大深度4CD =m (CD AB ⊥),则油面宽度AB 为__________m .【答案】1【分析】连接OA ,先求出OA 和OD ,再根据勾股定理和垂径定理即可求出AD 和AB .【详解】解:连接OA∵圆O 的直径为5m ,油的最大深度4CD =m∴OA=OC=52m ∴OD=CD -OC=32m ∵CD AB ⊥根据勾股定理可得:222OA OD m∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.三、解答题(本题包括8个小题)19.解方程:(1)x 2﹣2x ﹣1=0(2)2(x ﹣3)2=x 2﹣9【答案】 (1)112x =+212x =;(2)x 1=3,x 2=9.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】解:(1)∵a =1,b =﹣2,c =﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,∴x =12即11x =+21x =.(2)∵2(x ﹣3)2=x 2﹣9,∴2(x ﹣3)2=(x+3)(x ﹣3),∴2(x ﹣3)2﹣(x+3)(x ﹣3)=0,∴(x ﹣3)(x ﹣9)=0,∴x ﹣3=0或x ﹣9=0,解得x 1=3,x 2=9.【点睛】本题主要考查了解一元二次方程的配方法和因式分解法,掌握解一元二次方程是解题的关键.20.计算:(1)()2016032π-⎛⎫︒-- ⎪⎝⎭; (2)解方程:2320x x -+=.【答案】(1)6;(2)x 1=1,x 2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【详解】解:(1)原式=41=4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:11x =,22x =.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.21.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x的图象于点P . (1)求反比例函数y=k x 的表达式; (2)求点B 的坐标;(3)求△OAP 的面积.【答案】(1)反比例函数解析式为y=12 x;(2)点B的坐标为(9,3);(3)△OAP的面积=1.【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=kx,得:k=12,则反比例函数解析式为y=12x;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴2243+,∵AB∥x轴,且AB=OA=1,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=13x,由1312y xyx⎧=⎪⎪⎨⎪=⎪⎩可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=1.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.22.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1.(1)求抛物线顶点C的坐标(用含m的代数式表示);(2)已知点A(0,3),B(2,3),若该抛物线与线段AB有公共点,结合函数图象,求出m的取值范围.【答案】(1)C(m,﹣1);(3)﹣3≤m≤0或3≤m≤3.【分析】(1)化成顶点式,即可求得顶点C的坐标;(3)由顶点C的坐标可知,抛物线的顶点C在直线y=﹣1上移动.分别求出抛物线过点A、点B时,m 的值,画出此时函数的图象,结合图象即可求出m的取值范围.【详解】(1)y=x3﹣3mx+m3﹣1=(x﹣m)3﹣1,∴抛物线顶点为C(m,﹣1).(3)把A(0,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=m3﹣1,解得m=±3.把B(3,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=33﹣3m×3+m3﹣1,即m3﹣3m=0,解得m=0 或m=3.结合函数图象可知:﹣3≤m≤0或3≤m≤3.【点睛】本题考查了二次函数的图象与系数的关系,二次函数图象上点的坐标特征,提现了转化思想和数形结合思想的应用.23.某商场经销-种进价为每千克50元的水产品,据市场分析,每千克售价为60元时,月销售量为500kg ,销售单价每涨1元时,月销售量就减少10kg ,针对这种情况,请解答以下问题:(1)当销售单价定为65元时,计算销售量和月销售利润;(2)若想在月销售成本不超过12000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?【答案】(1)销售量:450kg ;月销售利润:6750元;(2)销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元【分析】(1)利用每千克水产品的销售利润×月销售量=月销售利润列出函数即可;(2)由函数值为8000,列出一元二次方程解决问题.【详解】解:(1)销售量:500(6560)10450()kg --⨯=,月销售利润:450(6550)6750⨯-=(元);(2)因为月销售成本不超过12000元,∴月销售数量不超过1200050240()kg ÷=;设销售定价为x 元,由题意得:(50)50010(60)[]8000x x ---=,解得1290,70x x ==;当90x =时,月销售量为50010(9060)200240-⨯-=<,满足题意;当70x =时,月销售量为50010(7060)400240-⨯-=>,不合题意,应舍去.∴销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元.【点睛】此题考查了一元二次方程的应用,利用基本数量关系:每千克水产品的销售利润×月销售量=月销售利润列函数解析式,用配方法求最大值以及函数与方程的关系.24.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为1.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N 的坐标.【答案】(1)y=x2+2x﹣3;(2)存在,点P坐标为1133313++⎝⎭或53715337-+-⎝⎭;(3)点N的坐标为(﹣4,1)【分析】(1)分别令y=0 ,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(12,32-),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,当x=0,y=a∴点C坐标为(0,a),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为1, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点P坐标为1322⎛++ ⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩∴1152y x ⎧-=⎪⎪⎨⎪=⎪⎩,2252y x ⎧-=⎪⎪⎨⎪=⎪⎩∴点P坐标为⎝⎭,综上可得,点P 坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,⎛⎫-+- ⎪ ⎪⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB ,∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM ,∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN+GB =GA+GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM+∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.25.用适当的方法解方程(1)3(2)5(2)x x x +=+(2)225(3)100x -=【答案】(1)212,53x x =-=;(2)125,1x x ==. 【分析】(1)利用因式分解法解方程即可;(2)利用直接开方法解方程即可.【详解】(1)3(2)5(2)x x x +=+,3(2)5(2)0x x x +-+=,(2)(35)0x x +-=,20x +=或350x -=,212,53x x =-=; (2)225(3)100x -=,2(3)4x -=,32x -=±,125,1x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.26.先化简,再求值:(1+2a 1-)÷2211a a a ++-,其中a =1. 【答案】化简为11a +,值为13 【分析】先将分式化简,再把值代入计算即可. 【详解】原式=()21111a a a a +-⨯-+ =11a +, 当a =1时, 原式=11213=+. 【点睛】本题考查分式的化简求值,关键在于熟练掌握化简方法.27.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?【答案】(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元.【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润×销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可.试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2)()()()22402016002024006400020608000P x x x x x =--+=-+-=--+,∵x≥45,抛物线()220608000P x =--+的开口向下,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元.考点:二次函数的应用.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,A ,B ,C ,D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O ﹣C ﹣D ﹣O 路线作匀速运动,设运动时间为t (s ).∠APB =y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( )A .B .C .D .【答案】C【解析】根据题意,分P 在OC 、CD 、DO 之间3个阶段,分别分析变化的趋势,又由点P 作匀速运动,故图像都是线段,分析选项可得答案.【详解】根据题意,分3个阶段;① P 在OC 之间,∠APB 逐渐减小,到C 点时, ∠APB 为45°,所以图像是下降的线段,②P 在弧CD 之间,∠APB 保持45°,大小不变,所以图像是水平的线段,③P 在DO 之间,∠APB 逐渐增大,到O 点时, ∠APB 为90°,所以图像是上升的线段,分析可得:C 符合3个阶段的描述;故选C.【点睛】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.2.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.3.如图,在△ABC 中,DE ∥BC ,13AD AB =,BC =12,则DE 的长是( )A .3B .4C .5D .6【答案】B 【解析】试题解析:在△ABC 中,DE ∥BC ,.ADE ABC ∴∽1.3DE AD BC AB ∴== 12.BC =4.DE ∴= 故选B.4.已知ab cd =,则下列各式不成立的是( )A .a d c b =B .a c d b =C .a c d b c b ++=D .1111a d cb ++=++ 【答案】D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A :因为a d cb =所以ab=cd ,故A 正确; B :因为acd b=所以ab=cd ,故B 正确; C :因为a c d b c b++=所以(a+c)b=(d+b)c ,化简得ab =cd ,故选项C 正确; D :因为1111a d cb ++=++所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c ,故选项D 错误; 故答案选择D.【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则. 5.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有( ) A .12人B .18人C .9人D .10人 【答案】C【解析】试题分析:设这个小组有n 人,1(1)72,2n n ⨯-=9,8().n n ∴==-舍去故选C . 考点:一元二次方程的应用.6.已知二次函数()210y ax bx c a =++≠和一次函数()20y kx n k =+≠的图象如图所示,下面四个推断:①二次函数1y 有最大值②二次函数1y 的图象关于直线1x =-对称③当2x =-时,二次函数1y 的值大于0④过动点(),0P m 且垂直于x 轴的直线与12y y ,的图象的交点分别为C,D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y 1=ax 2+bx+c (a≠0)的图象的开口向上,∴二次函数y 1有最小值,故①错误;观察函数图象可知二次函数y 1的图象关于直线x=-1对称,故②正确;当x=-2时,二次函数y 1的值小于0,故③错误;当x <-3或x >-1时,抛物线在直线的上方,∴m 的取值范围为:m <-3或m >-1,故④正确.故选B .【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.7.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形B.菱形C.矩形D.平行四边形【答案】B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,∵E、F、G、H分别为各边的中点,∴HG、EF分别为△ACD与△ABC的中位线,∴HG∥AC∥EF,12HG EF AC==,∴四边形EFGH是平行四边形;同理可得,12EH GF BD==,∵AC=BD,∴EH=GH,∴四边形EFGH是菱形;故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.8.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A.BDCBB.CDCBC.ACABD.ADAC【答案】A【解析】根据垂直定义证出∠A=∠DCB,然后根据余弦定义可得答案.【详解】解:∵CD是斜边AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB ,∴cosA=AC CD AD AB CB AC== 故选A .【点睛】考查了锐角函数定义,关键是掌握余弦=邻边:斜边.9.在平面直角坐标系中,如图是二次函数y =ax 2+bx+c (a≠0)的图象的一部分,给出下列命题:①a+b+c =0;②b >2a ;③方程ax 2+bx+c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx+c 得,a+b+c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx+c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A.2 B.2.5 C.3 D.4【答案】B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A.32B.43C.53D.85【答案】A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴BF FGAB AC=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴453FC FG-=,∵FC=FG,∴453FC FC-=,解得:FC=32,即CE的长为32.故选A.【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.12.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m【答案】A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB=ACBC=1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.二、填空题(本题包括8个小题)。

《试卷3份集锦》上海市金山区2017-2018年九年级上学期数学期末联考试题

《试卷3份集锦》上海市金山区2017-2018年九年级上学期数学期末联考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图,已知在△ABC 纸板中,AC =4,BC =8,AB =11,P 是BC 上一点,沿过点P 的直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么CP 长的取值范围是( )A .0<CP≤1B .0<CP≤2C .1≤CP <8D .2≤CP <8 【答案】B【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP 的长的取值范围.【详解】如图所示,过P 作PD ∥AB 交AC 于D 或PE ∥AC 交AB 于E,则△PCD ∽△BCA 或△BPE ∽△BCA,此时0<PC <8;如图所示,过P 作∠BPF =∠A 交AB 于F,则△BPF ∽△BAC,此时0<PC <8;如图所示,过P 作∠CPG =∠B 交AC 于G,则△CPG ∽△CAB,此时,△CPG ∽△CBA,当点G 与点A 重合时,CA 1=CP×CB,即41=CP×8,∴CP =1,∴此时,0<CP≤1;综上所述,CP 长的取值范围是0<CP≤1.故选B .【点睛】本题主要考查了相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.3.如图,已知二次函数y=(x +1)2﹣4,当﹣2≤x≤2时,则函数y 的最小值和最大值( )A .﹣3和5B .﹣4和5C .﹣4和﹣3D .﹣1和5【答案】B 【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1)2-4,对称轴是:x=-1∵a=-1>0,∴x >-1时,y 随x 的增大而增大,x <-1时,y 随x 的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y 有最大值,y=(2+1)2-4=5,x=-1时y 有最小值,是-4,故选B .【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.4.如图,抛物线y =()20ax bx c a ++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:① 0abc >; ② 30a c +>;③ 244b ac a->0; ④当0x <时, y 随 x 的增大而增大;⑤ 244am bm +≤2a b -(m 为实数),其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0),其对称轴为直线12x =-, ∴抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0)和(2,0),且-2b a =1-2, ∴a=b ,由图象知:a<0,c>0,b<0,∴abc>0,故结论①正确;∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0),∴9a-3b+c=0,∵a=b ,∴c=-6a ,∴3a+c=-3a>0,故结论②正确; ∵当12x =-时,y=244ac b a->0, ∴244b ac a -<0,故结论③错误; 当x <1-2时,y 随x 的增大而增大,当1-2<x<0时,y 随x 的增大而减小,故结论④错误; ∵a=b ,∴244am bm +≤2a b -可换成244am am +≤a -,∵a <0,∴可得244m m +≥-1,即4m 2+4m+1≥0(2m+1)2≥0,故结论⑤正确;综上:正确的结论有①②⑤,故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数的性质,掌握知识点是解题关键.5.如图,在O 中,AB 所对的圆周角050ACB ∠=,若P 为AB 上一点,055AOP ∠=,则POB ∠的度数为( )A .30°B .45°C .55°D .60°【答案】B 【解析】根据圆心角与圆周角关系定理求出∠AOB 的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B .【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.6.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.二次函数2y x 经过平移后得到二次函数2(1)1y x =-+,则平移方法可为( )A .向左平移1个单位,向上平移1个单位B .向左平移1个单位,向下平移1个单位C .向右平移1个单位,向下平移1个单位D .向右平移1个单位,向上平移1个单位【答案】D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x 加减(左加右减),上下平移y 加减(下加上减),据此便能得出答案.【详解】由2(1)1y x =-+得21(1)y x -=-平移方法可为向右平移1个单位,向上平移1个单位故答案为:D .【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.8.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A .k≤﹣4B .k <﹣4C .k≤4D .k <4 【答案】C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣1ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.下图中,不是中心对称图形的是( ) A . B . C . D .【答案】D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A 、是中心对称图形,故此选项不合题意;B 、是中心对称图形,故此选项不合题意;C 、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.10.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.11.关于x的一元二次方程x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣2 B.2 C.5 D.﹣4【答案】B【分析】把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,然后解关于m的方程即可.【详解】解:把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,解得m=1.故选:B.【点睛】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握12.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=63,则阴影部分面积为()A.πB.3πC.6πD.12π【答案】D【解析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【详解】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO ,∴△COB 是等边三角形,∵E 为OB 的中点,∴CD ⊥AB ,∵CD=63, ∴EC=33,∴sin60°×CO=33,解得:CO=6,故阴影部分的面积为:21206360π⨯=12π. 故选:D .【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO 的长是解题关键.二、填空题(本题包括8个小题) 13.如图,A 是反比例函数y =4x(x >0)图象上一点,以OA 为斜边作等腰直角△ABO ,将△ABO 绕点O 以逆时针旋转135°,得到△A 1B 1O ,若反比例函数y =x k 的图象经过点B 1,则k 的值是_____.【答案】-1【分析】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,则可证明△OB 1F ∽△OAE ,设A (m ,n ),B 1(a ,b ),根据三角形相似和等腰三角形的性质求得2.2a ,再由反比例函数k 的几何意义,可得出k 的值.【详解】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,∵等腰直角△ABO 绕点O 以逆时针旋转135°,∴∠AOB 1=90°,∴∠OB 1F =∠AOE ,∵∠OFB 1=∠AEF =90°,∴△OB 1F ∽△OAE , ∴1B F OE =OF AF =1OB OA , 设A (m ,n ),B 1(a ,b ),∵在等腰直角三角形OAB 中,A OB O =22,OB =OB 1, ∴a n =b m =22, ∴m =2b .n =﹣2a ,∵A 是反比例函数y =4x (x >0)图象上一点, ∴mn =4,∴﹣2a•2b =4,解得ab =﹣1.∵反比例函数y =k x的图象经过点B 1, ∴k =﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数k 的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k 的几何意义是本题的关键.14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1. 【答案】14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=14cm 1, 故答案为14.15.方程(x ﹣3)(x+2)=0的根是_____.【答案】x=3或x=﹣1.【解析】由乘法法则知,(x ﹣3)(x+1)=0,则x-3=0或x+1=0,解这两个一元一次方程可求出x 的值.【详解】∵(x ﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案为:x=3或x=﹣1.【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 16.在Rt △ABC 中,∠C=90°,如果AB=6,1cos 3A =,那么AC=_____. 【答案】2【解析】如图所示,在Rt △ABC 中,∠C=90°,AB=6,cosA=13, ∴cosA=13AC AB =, 则AC=13AB=13×6=2, 故答案为2.17.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .【答案】1.【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这1个格点,故答案为1.考点:圆的有关性质.18.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.【答案】-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x=2y﹣1得出x﹣2y=﹣1.三、解答题(本题包括8个小题)19.如图,某防洪堤坝长300米,其背水坡的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得加固后坡面的坡角∠ADB=50°(1)求此时应将坝底向外拓宽多少米?(结果保留到0.01米)(2)完成这项工程需要土石多少立方米?(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)【答案】(1)应将坝底向外拓宽大约6.58米;(2)21714立方米【分析】(1)过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE ,再根据DB=DE-BE 即可求解;(2)用△ABD 的面积乘以坝长即为所需的土石的体积.【详解】解:(1)过A 点作AE ⊥CD 于E .在Rt △ABE 中,∠ABE=62°.∴AE=AB•sin62°≈25×0.88=22米,BE=AB•cos62°≈25×0.47=11.75米,在Rt △ADE 中,∠ADB=50°,∴DE=tan 50AE ︒=18.33米, ∴DB=DE-BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.(2)6.58×22×12×300=21714立方米. 【点睛】本题考查了解直角三角形的应用-坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.20.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点0,62(),(0,),30A N ABN ∠=︒,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M 的切线. 【答案】(1)()43,2B ;(2)见解析.【分析】(1)由A 、N 两点坐标可求AN 的长,利用 30,90ABN ANB ∠=︒∠=︒,2AB AN =,由勾股定理求BN 即可,(2) 连接MC ,NC ,由AN 是M 的直径,可得90ACN ∠=︒,D 为线段NB 的中点,由直角三角形斜边中线CD 的性质得ND=CD ,由此得CND NCD ∠=∠,由半径知MCN MNC ∠=∠,利用等式的性质得∠MCD=∠MND=90º,可证直线CD 是M 的切线. 【详解】()1A 的坐标为()()0,6,0,2N ,4AN ∴=,30,90ABN ANB ∴∠=︒∠=︒,28AB AN ∴==,由勾股定理可知:2243NB AB AN =-=,()43,2B ∴; ()2连接MC ,NC ,AN 是M 的直径,90ACN ∴∠=︒, 90NCB ∴∠=︒,D 为线段NB 的中点,12CD NB ND ∴==, CND NCD ∴∠=∠,MC MN =,MCN MNC ∴∠=∠,90MNC CND ∠+∠=︒,90MCN NCD ∴∠+∠=︒,即MC CD ⊥,∴直线CD 是M 的切线.【点睛】本题考查点的坐标与切线问题,掌握用两点坐标求线段的长,能在直角三角形中,利用30º角求线段,会利用勾股定理解决问题,会利用半径证角等,利用直角三角形的斜边中线解决角等与线段相等问题,利用等式的性质证直角等知识.21.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示" QQ"的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、"QQ"、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.【答案】(1)100;108°;(2)详见解析;(3)600人;(4)1 3【分析】(1)利用喜欢“电话”沟通的人数除以其所占调查总人数的百分率即可求出调查总人数,然后求出喜欢“QQ”沟通的人数占调查总人数的百分率,再乘360°即可求出结论;(2)用调查总人数×喜欢“短信”沟通的人数所占百分率即可求出喜欢“短信”沟通的人数,然后用调查总人数减去其余“电话”、“短信”、“QQ”和“其它”沟通的人数即可求出喜欢用“微信”沟通的人数,最后补全条形统计图即可;(3)先求出喜欢用“微信”沟通的人数占调查总人数的百分率,再乘1500即可;(4)根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:(1)调查总人数为20÷20%=100人表示" QQ"的扇形圆心角的度数是30÷100×360°=108°(2)喜欢用“短信”沟通的人数为:100×5%=5人,喜欢用“微信”沟通的人数为:100-20-5-30-5=40人,补充条形统计图,如图所示:(3)喜欢用“微信”沟通所占百分比为:40100%40%100⨯=∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:150040%600⨯=人.答:该校最喜欢用“微信”进行沟通的学生有600人.(4)列出树状图,如图所示,共有9种等可能的结果,其中两人恰好选中同一种沟通方式共有3种情况,所以甲、乙两名同学恰好选中同一种沟通方式的概率为:31 93 =【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,结合条形统计图和扇形统计图得出有用信息并掌握画树状图和概率公式求概率是解决此题的关键.22.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)【答案】(1)见解析;(2)扫过的图形面积为2π.【解析】(1)先确定A、B、C三点分别绕O点旋转90°后的点的位置,再顺次连接即可得到所求图形;(2)先运用勾股定理求解出OA的长度,再求以OA为半径、圆心角为90°的扇形面积即可.【详解】(1)如图,先确定A、B、C三点分别绕O点旋转90°后的点A1、B1、C1,再顺次连接即可得到所求图形,△A1B1C1即为所求三角形;(2)由勾股定理可知OA=222222+=,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1=()2 90222360ππ⨯⨯=答:扫过的图形面积为2π.【点睛】本题结合网格线考查了旋转作图以及扇形面积公式,熟记相关公式是解题的关键.23.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【答案】13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出CG EGAH EH=,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【详解】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴CG EG AH EH = 即:CD EF FD AH FD BD-=+ ∴3 1.62215AH -=+ ∴AH =11.9∴AB =AH+HB =AH+EF =11.9+1.6=13.5(m ).【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.24.已知,如图,在平行四边形ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连接EM ,分别交线段AD 于点F 、AC 于点G .(1)证明:AFG ∆∽CMG ∆(2)求证:GF EF GM EM=; 【答案】(1)详见解析;(2)详见解析.【分析】(1)利用平行线的性质及对顶角相等即可证明AFG ∆∽CMG ∆;(2)由相似三角形的性质可知GF AF GM CM =,由AD ∥BC 可知AF EF BM EM =,通过等量代换即可证明结论. 【详解】(1)证明:AD ∥BCFAG MCG ∴∠=∠AGF CGM ∠=∠AFG ∴∆∽CMG ∆(2)证明:∵AFG ∆∽CMG ∆GF AF GM CM∴= ∵AD ∥BC ,∴AF EFBM EM=又∵CM=BM,AF EFCM EM∴=GF EFGM EM∴=【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.25.已知二次函数y=x2-mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.【答案】(1)证明见解析;(2)k≥3 4 .【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;(2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果.【详解】(1)证:当y=0时x2-mx+m2+m-1=0∵b2-4ac=(-m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x2-mx+m2+m-1=0有两个不相等的实数根∴二次函数y=x2-mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为: y=x2-mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k≥34.【点睛】本题考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.26.如图,等边△ABC中,点D在AC上(CD<12AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求DEDF的值(用含m的式子表示).【答案】(1)图形见解析,∠BAE=2∠CBD,理由见解析;(2)DEDF=12mm++,理由见解析【分析】(1)根据圆周角和圆心角的关系得:2∠BDH=∠BAE,由等腰三角形的性质得HD∥BC,由平行线的性质可得结论;(2)如图2,作辅助线,由旋转得:△BDM是等边三角形,证明△AMB≌△CDB(SAS),得AM=CD,∠MAB=∠C=60°,证明△ABD∽△DFE,设AF=a,列比例式可得结论【详解】(1)如图1,∠BAE=2∠CBD.设弧DE与AB交于H,连接DH,∴2∠BDH=∠BAE,又∵AD=AH,AB=AC,∠BAC=60°,∴∠AHD=∠ADH=60°,∠ABC=∠C=60°,∴∠AHD=∠ABC,∴HD∥BC,∴∠DBC=∠HDB,∴∠BAE=2∠DBC;(2)如图2,连接AM,BM,由旋转得:BD=DM,∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD=60°,∵∠ABM+∠ABD=∠ABD+∠CBD,∴∠ABM=∠CBD,∵△ABC是等边三角形,∴AB=AC,∴△AMB≌△CDB(SAS),∴AM=CD,∠MAB=∠C=60°,∵∠AGM=∠BGD,∠MAB=∠BDM=60°,∴∠AMD=∠ABD,由(1)知:AD=AE,∴∠AED=∠ADE,∵∠EDF=∠BAD,∴△ABD∽△DFE,∴∠EFD=∠ABD=∠AFM=∠AMD,∴AF=AM=CD,设AF=a,则EF=ma,AE=a+ma=(m+1)a,∴AB=AD+CD=AE+CD=(m+2)a,由△ABD∽△DFE,∴DE ADDF AB==(1)(2)m am a++=12mm++.【点睛】本题考查全等三角形的性质和判定、相似三角形的判定和性质、等边三角形、三角形内角和和外角的性质等知识,解题的关键灵活应用所学知识解决问题,学会利用辅助线,构建全等三角形解决问题,属于中考常考题型.27.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F ,若∠DEB=∠DBC.(1)求证:BC 是⊙O 的切线;(2)若BF=BC=2,求图中阴影部分的面积.【答案】 (1)证明见解析;(2)332π-. 【分析】(1)求出∠ADB 的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD ,分别求出三角形DOB 面积和扇形DOB 面积,即可求出答案.【详解】(1)AB 是O 的直径, 90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,A DEB ∠=∠,DEB DBC ∠=∠,A DBC ∴∠=∠,90DBC ABD ∠+∠=︒,BC ∴是O 的切线;(2)连接OD ,2BF BC ==,且90ADB ∠=︒,CBD FBD ∴∠=∠,//OE BD ,FBD OEB ∴∠=∠,OE OB =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒,60C ∴∠=︒,AB ∴==,O ∴∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积1336424ππ=⨯-=-. 【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在平面直角坐标系中,把点(3,2)P -绕原点O 顺时针旋转180,所得到的对应点P'的坐标为( ) A .(3,2)B .(2,3)-C .(3,2)-D .(3,2)- 【答案】C【分析】根据题意得点P 点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【详解】∵P 点坐标为(3,-2),∴P 点的原点对称点P′的坐标为(-3,2).故选C .【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.2.二次函数y=ax 2+bx+c (a ,b ,c 为常数且a≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数c y x=的图象可能是A .B .C .D .【答案】C【分析】根据二次函数y =ax 2+bx+c 的图象,可以判断a 、b 、c 的正负情况,从而可以判断一次函数y =ax+b 与反比例函数y =c x的图象分别在哪几个象限,从而可以解答本题. 【详解】解:由二次函数y =ax 2+bx+c 的图象可知,a >0,b <0,c <0,则一次函数y =ax+b 的图象经过第一、三、四象限,反比例函数y =c x 的图象在二四象限, 故选C .【点睛】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.3.在Rt△ABC 中,∠C=90°,各边都扩大2倍,则锐角A 的锐角三角函数值( )A .扩大2倍B .缩小12C .不变D .无法确定【解析】∵在Rt △ABC 中,∠C =90°, ∴BC sin A AB =,AC cos A AB =,BC tan A AC=, ∴在Rt △ABC 中,各边都扩大2倍得:2BC BC sin A 2AB AB ==,2AC AC cos A 2AB AB ==,2BC BC tan A 2AC AC==, 故在Rt △ABC 中,各边都扩大2倍,则锐角A 的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A 的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A 的三角函数值是不会变的.4.点P (x ﹣1,x+1)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1) x-1>0, x+1>0 ,解得x >1,故x-1>0,x+1>0,点在第一象限;(2) x-1<0 ,x+1<0 ,解得x <-1,故x-1<0,x+1<0,点在第三象限;(3) x-1>0 ,x+1<0 ,无解;(4) x-1<0 ,x+1>0 ,解得-1<x <1,故x-1<0,x+1>0,点在第二象限.故点P 不能在第四象限,故选D .5.己知O 的半径为5cm ,点A 是线段OP 的中点,当8cm OP =时,点A 与O 的位置关系是( )A .点A 在O 外B .点A 在O 上C .点A 在O 内D .不能确定【答案】C 【分析】首先根据题意求出OA ,然后和半径比较大小即可.【详解】由已知,得OA=12OP=4cm , ∵O 的半径为5cm∴OA <5∴点A 在O 内故答案为C .【点睛】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.6.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DEA.3 B.C.4 D.【答案】B【分析】首先分析得到当点E旋转至y轴正方向上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长.【详解】如图,当点E旋转至y轴正方向上时DE最小.∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC.∵AB=BC=2,∴AD=AB•sin∠3.∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,1),∴OA=1.∴D E OA AD OE43'=--'=故选B.7.如图,已知直线y=23x与双曲线y=kx(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式23kxx-<0的解集为x<﹣3或0<x<3;④若双曲线y=kx(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数()A.4个B.3个C.2个D.1个【答案】A【分析】①由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;②根据直线和双曲线的性质即可判断;③结合图象,即可求得关于x的不等式23kxx-<0的解集;④过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由点C 的纵坐标为6,可求得点C的坐标,继而求得答案.【详解】①∵直线y=23x与双曲线y=xk(k>0)交于A、B两点,A点的横坐标为3,∴点A的纵坐标为:y=23×3=2,∴点A(3,2),∴k=3×2=6,故①正确;②∵直线y=23x与双曲线y=xk(k>0)是中心对称图形,∴A点与B点关于原点O中心对称,故②正确;③∵直线y=23x与双曲线y=xk(k>0)交于A、B两点,∴B(﹣3,﹣2),∴关于x的不等式23kxx-<0的解集为:x<﹣3或0<x<3,故③正确;④过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵点C的纵坐标为6,∴把y=6代入y=6x得:x=1,∴点C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=12×(2+6)×(3﹣1)=8,故④正确;故选:A .【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想的应用.8.将函数2y x 的图象向右平移1个单位,再向下平移3个单位,可得到的抛物线是( )A .()213y x =--B .()213y x =-+ C .()213y x =++D .()213y x =+- 【答案】A 【分析】根据图象平移的过程易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:原抛物线的顶点为(0,0),向右平移1个单位,再向下平移3个单位,那么新抛物线的顶点为(1,3)-;可设新抛物线的解析式为2()y x h k =-+,代入得:2(1)3y x =--,故选:A .【点睛】主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.9.如图,两条直线被三条平行线所截,若4,6,3AC CE BD ===,则BF =( )A .32B .23C .94D .152【答案】D【解析】先根据平行线分线段成比例定理求出DF 的长,然后可求出BF 的长.【详解】////AB CD EF , ∴=AC BD CE DF ,即436DF=, 解得,92DF =, 152BF BD DF ∴+==, 故选:D .【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.10.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD=2OA=6,AD :AB=3:1,则点C 的坐标是( )A .(2,7)B .(3,7)C .(3,8)D .(4,8)【答案】A 【解析】过C 作CE ⊥y 轴于E ,∵四边形ABCD 是矩形,∴CD =AB ,∠ADC =90°,∴∠ADO +∠CDE =∠CDE +∠DCE =90°,∴∠DCE =∠ADO ,∴△CDE ∽△ADO ,∴CE DE CD OD OA AD==, ∵OD =2OA =6,AD :AB =3:1,∴OA =3,CD :AD =13,∴CE =13OD =2,DE =13OA =1, ∴OE =7,∴C (2,7),故选A .11.如图,点A ,B ,C 都在O 上,若34C ∠=︒,则AOB ∠为( )A.34︒B.56︒C.60︒D.68︒【答案】D【分析】直接根据圆周角定理求解.【详解】∵∠C=34°,∴∠AOB=2∠C=68°.故选:D.【点睛】此题考查圆周角定理,解题关键在于掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为A.3:4 B.4:3C3:2 D.23【答案】C【分析】根据相似三角形面积比等于相似比的平方,周长的比等于相似比解答.【详解】解:∵△ABC∽△DEF,且S△ABC:S△DEF=3:4,∴△ABC与△DEF32,∴△ABC与△DEF3 2.故选C【点睛】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方,周长的比等于相似比.二、填空题(本题包括8个小题)13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为_____.【答案】1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在20%左右得到比例关系,列出方程求解即可.。

(汇总3份试卷)2018年上海市金山区九年级上学期数学期末调研试题

(汇总3份试卷)2018年上海市金山区九年级上学期数学期末调研试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cosB 的值( ) A .45B .35C .34D .43【答案】B【分析】根据勾股定理计算出BC 长,再根据余弦定义可得答案. 【详解】如图所示:∵AC =4,AB =5, ∴BC 22AB AC -2516-3,∴cosB =CB AB =35. 故选:B . 【点睛】考查了锐角三角函数,解题关键是掌握余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cosA . 2.关于x 的二次函数y =x 2﹣mx+5,当x≥1时,y 随x 的增大而增大,则实数m 的取值范围是( ) A .m <2 B .m =2C .m≤2D .m≥2【答案】C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可. 【详解】解:二次函数y =x 2﹣mx+5的开口向上,对称轴是x =2m, ∵当x ≥1时,y 随x 的增大而增大, ∴2m≤1, 解得,m ≤2, 故选:C . 【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.3.若()1A 4,y -,21B ,y 4⎛⎫- ⎪⎝⎭,()3C 3,y 为二次函数2y (x 2)9=+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】试题分析:根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣2,根据x>﹣2时,y随x的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,A(﹣4,y1)关于直线x=﹣2的对称点是(0,y1),∵﹣<0<3,∴y2<y1<y3,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.4.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.【答案】C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.5.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为()A.14B.25C.23D.59【答案】B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为3的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率.【详解】根据题意可得所有的线段有15条,长度为3的线段有AE 、AC 、FD 、FB 、EC 、BD 共6条,则P (长度为3的线段)=62155=. 故选:B 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用. 6.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac >;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>④当1x >时,y 随x 的增大而减小.不.正确的说法有( )A .①B .①②C .①③D .②④【答案】A【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可. 【详解】二次函数的图象的开口向下,与y 轴正半轴相交0,0a c ∴<>0ac ∴<,则①不正确二次函数的对称轴为1x =,与x 轴的一个交点为(3,0)∴与x 轴的另一个交点为(1,0)-∴方程20ax bx c ++=的根是121,3x x =-=,则②正确二次函数的图象上,1x =所对应的点位于第一象限,即0y >0a b c ∴++>,则③正确由二次函数的图象可知,当1x >时,y 随x 的增大而减小,则④正确 综上,不正确的说法只有① 故选:A . 【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.7.把抛物线()2y x 1=+向下平移2个单位,再向右平移1个单位,所得到的抛物线是 A .()2y x 22=++ B .()2y x 22=+- C .2y x 2=+ D .2y x 2=-【答案】D【解析】根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动,根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”,顶点(-1,0)→(0,-2).因此,所得到的抛物线是2y x 2=-.故选D .8.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 【答案】D【解析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x+1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k≤54且k≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键 9.下列事件中,是必然事件的是( ) A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°【答案】D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A .购买一张彩票中奖,属于随机事件,不合题意; B .射击运动员射击一次,命中靶心,属于随机事件,不合题意; C .经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意; D .任意画一个三角形,其内角和是180°,属于必然事件,符合题意; 故选D . 【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件. 10.如图所示,已知圆心角100BOC ∠=︒,则圆周角BAC ∠的度数是( )A .50︒B .100︒C .130︒D .200︒【答案】A【详解】,BOC BAC ∠∠是同弧所对的圆周角和圆心角,2BOC BAC ∠=∠,因为圆心角∠BOC=100°,所以圆周角∠BAC=50° 【点睛】本题考查圆周角和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答 11.如图,正六边形ABCDEF 内接于O ,连接BD .则CBD ∠的度数是( )A .15︒B .20︒C .30D .45︒【答案】C【解析】根据正六边形的内角和求得∠BCD ,然后根据等腰三角形的性质即可得到结论.【详解】解:∵在正六边形ABCDEF 中,∠BCD=(62)1806︒-⨯ =120°,BC=CD , ∴∠CBD ()11801202︒︒=- =30°, 故选:C . 【点睛】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.12.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a =D .43a b =【答案】B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 二、填空题(本题包括8个小题)13.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为_____【答案】1【分析】只要证明△ADC ∽△ACB ,可得AC AB =ADAC,即AC 2=AD•AB ,由此即可解决问题. 【详解】解:∵∠A=∠A ,∠ADC=∠ACB , ∴△ADC ∽△ACB , ∴AC AB =ADAC, ∴AC 2=AD•AB=2×8=16, ∵AC >0, ∴AC=1, 故答案为:1. 【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 14.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m 【答案】1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案. 【详解】解:∵21220h t t =-++ =2(23636)120t t -+-+- =2(6)56t --+, ∵10a =-<, ∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为1m . 故答案为:1. 【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.15.已知:如图,在ABC ∆中,AD BC ⊥于点D ,E 为AC 的中点,若8CD =,5DE =,则AD 的长是_______.【答案】6【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论. 【详解】解:∵△ABC 中,AD ⊥BC , ∴∠ADC =90°.∵E 是AC 的中点,DE =5,CD =8, ∴AC =2DE =1.∴AD 2=AC 2−CD 2=12−82=2. ∴AD =3. 故答案为:3. 【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.16.已知扇形的圆心角为120°,弧长为6π,则它的半径为________. 【答案】1【分析】根据弧长公式L =180n Rπ求解即可. 【详解】∵L =180n Rπ, ∴R =1806120ππ⨯=1.故答案为1. 【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n Rπ. 17.如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间为_________________【答案】167秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.AP AQAB AC=,则AP=2t,CQ=3t,AQ=16-3t.于是167=163t8-,解得,t=16 7(2)当△APQ∽△ACB时,AP AQ AC AB=,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是1616=738t-,解得t=1.故答案为t=167或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.18.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.【答案】24米.【分析】先设建筑物的高为h 米,再根据同一时刻物高与影长成正比列出关系式求出h 的值即可. 【详解】设建筑物的高为h 米,由题意可得: 则4:6=h :36, 解得:h=24(米). 故答案为24米. 【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键. 三、解答题(本题包括8个小题)19.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕,,,A B C D 表示) 【答案】(1)200(人);(2)详见解析;(3)16【解析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可. 【详解】解:(1)本次随机调查的学生人数为3015%200÷=(人);(2)书画的人数为20025%50⨯=(人),戏曲的人数为200(508030)40-++=(人), 补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为401200240200⨯=(人); (4)列表得:AB C DAABAC ADBBABCBDCCACBCDDDADBDC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果, ∴恰好抽到“器乐”和“戏曲”类的概率为21126= 【点睛】本题考查的是用列表法或画树状图法求概率的知识.解题关键在于注意概率=所求情况数与总情况数之比.20.在平面直角坐标系xOy 中,已知抛物线2124y x x =--+,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)直线BC 平行于x 轴,交这条抛物线于B 、C 两点(点B 在点C 左侧),且cot 2ABC ∠=,求点B 坐标.【答案】(1)开口方向向下,点A 的坐标是(2,3)-,在对称轴直线2x =-左侧部分是上升的,右侧部分是下降的;(2)点B 的坐标为(4,2)-【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线BC 与对称轴交于点D ,则AD BD ⊥,设线段AD 的长为m ,则·cot 2BD AD ABC m =∠=,可求点B 坐标,代入解析式可求m 的值,即可求点B 坐标.【详解】解:(1)抛物线22112(2)344y x x x =--+=-++的开口方向向下, 顶点A 的坐标是(2,3)-,抛物线的变化情况是:在对称轴直线2x =-左侧部分是上升的,右侧部分是下降的; (2)如图,设直线BC 与对称轴交于点D ,则AD BD ⊥.设线段AD 的长为m ,则·cot 2BD AD ABC m =∠=,∴点B 的坐标可表示为(22,3)m m ---,代入2124y x x =--+,得213(22)(22)24m m m -=------+. 解得10m =(舍),21m =,∴点B 的坐标为(4,2)-.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点B 坐标是本题的关键. 21.解方程:x 2﹣x ﹣12=1.【答案】x 1=﹣3,x 2=2.【解析】试题分析:方程左边利用十字相乘法分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解.试题解析:解:分解因式得:(x+3)(x ﹣2)=1,可得x+3=1或x ﹣2=1,解得:x 1=﹣3,x 2=2. 22.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?【答案】(1)y= -3x 2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【分析】(1)根据毛利润=销售价−进货价可得y 关于x 的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x 2+330x-8568;(2)y=-3x 2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y 有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.23.国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)请直接写出y 关于x 之间的关系式 ;(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是 .(可借助二次函数的图象直接写出答案)【答案】 (1)y=-x+100;(2)-x 2+150x-5000(50≤x≤70),x=70时p 最大为600;(3)60≤x≤70.【分析】(1)采用待定系数法求一次函数解析式;(2)由题意,每件的利润为()50x -元,再根据总利润=单件利润×销量,即可得出关系式,x 的取值范围可由题目条件得到,再求二次函数对称轴和最值即可;(3)利用二次函数图像性质可得出x 的取值范围.【详解】(1)设y 与x 的函数关系式为:y=kx+b ,函数图象经过点(60,40)和(70,30),代入y=kx+b 得,40603070k b k b =+⎧⎨=+⎩,解得1100k b =-⎧⎨=⎩,∴y 关于x 之间的关系式为100=-+y x .(2)由题意得:()()2501001505000=--+=-+-P x x x x ,∵销售单价不低于成本价,又不高于每件70元∴x 的取值范围为5070≤≤x故P 与x 之间的函数关系式为()2150********=-+-≤≤P x x x . ∵()15075221-=-=⨯-b a ,10a =-<, ∴函数21505000=-+-P x x 图像开口向下,对称轴为75x =,∴当5070≤≤x 时,P 随x 的增大而增大,∴当x=70时,P 最大=270150705000600-+⨯-=.(3)当P=400时,21505000400-+-=x x ,解得:160x =,290x =,∵10a =-<,抛物线开口向下,∴当P ≥400时,60≤x ≤90,又∵x 的取值范围为5070≤≤x∴利润低于400元时,求销售单价x 的取值范围为6070≤≤x .【点睛】本题考查了二次函数应用中的营销问题,关键是根据总利润公式得到二次函数关系式,再根据二次函数的性质解决最值问题.24.如图,一次函数y= -x+b 的图象与反比例函数k y x=(x>0)的图象交于点A (m , 3)和B (3 , n ).过A 作AC ⊥x 轴于C ,交OB 于E ,且EB = 2EO(1)求一次函数和反比例函数解析式(2)点P 是线段AB 上异于A ,B 的一点,过P 作PD ⊥x 轴于D ,若四边形APDC 面积为S ,求S 的取值范围.【答案】(1)y=-x+4,3y x=,(2)0<S<4 【分析】(1)由 2EB EO =得:13OE OB =,由B 点横坐标为3得A 点的横坐标为1,将点()1?3A ,代入解析式即可求得答案; (2)设P 的坐标为() ,4?a a -+,由于点P 在线段AB 上,从而可知4PD a =-+, OD a =,由题意可知:13a <<,从而可求出S 的范围.【详解】(1)由 2EB EO =得:13OE OB =, ∵B 点横坐标为3,∴A 点的横坐标为1,即1m =. ∵点()1?3A ,在直线y x b =-+ 及k y x =上, ∴31b =-+及31k =, 解得:4?,?3b k ==, ∴一次函数的解析式为:4y x =-+,反比例函数的解析式为:3y x=; (2)设P 点坐标为(),4?(13)a a a -+<<, S=1()2AC PD CD +=12()() 341a a +-- ()219422a =--+, ∵1 02-< , ∴当4a <时,S 随a 的增大而增大,∵当1a =时,0S =;3a =时4?S =,∵13a <<,∴04S <<.【点睛】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,学会设参数解决问题.25.现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.【答案】(1)13;(2)13.【分析】(1)利用概率公式求解即可;(2)利用画树状图得出全部可能的情况,再找出符合题意的情况,即可得出所求概率.【详解】解:(1)()1P33=,∴抽到标有数字3的卡片的概率为13;(2)解:用树状图列出所有可能出现结果:共有6种等可能结果,其中2种符合题意.∴P(数字之和为负数)=13.【点睛】本题考查的知识点是用树状图法求事件的概率,根据题意找出全部可能的情况,再找出符合题意的情况是解此题的关键.26.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得5a,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC ,在△OAD 和△OCD 中,OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,∵AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB 22AC BC +22(2)a a +5,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a , 在△AED 中,DE 22AD AE -225a a -2a , ∴OD=OE+DE=52a , 在△AOD 中,AO 2+AD 2=(52a )2+5)2=254a 2,OD 2=(52a )2=254a 2, ∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.27.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?【答案】(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可; (2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =; ∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.42D.22【答案】D【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB=90°,再根据等腰直角三角形的性质即可求出AB的长.【详解】连接OA、OB,如图,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB为等腰直角三角形,∴AB=2OA=22.故选:D.【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.2.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交【答案】B【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【详解】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴12,2CD==BC cm即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.3.斜坡AB坡角等于30,一个人沿着斜坡由A到B向上走了20米,下列结论①斜坡的坡度是1:3;②这个人水平位移大约17.3米;③这个人竖直升高10米;④由B看A的俯角为60.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】由题意对每个结论一一分析即可得出其中正确的个数.【详解】解:如图,斜坡的坡度为tan30°3=13,正确.②AB=20米,这个人水平位移是AC,AC=AB•cos30°=20×32≈17.3(米),正确.③这个人竖直升高的距离是BC,BC=AB•sin30°=20×12=10(米),正确.④由平行线的性质可得由B看A的俯角为30°.所以由B看A的俯角为60°不正确.所以①②③正确.故选:C .【点睛】此题考查的知识点是解直角三角形的应用-坡度坡角-仰角俯角问题,关键是熟练掌握相关概念. 4.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0【答案】C 【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.5.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC ,设CD 交AB 于点F ,连接AD ,当旋转角α度数为________,△ADF 是等腰三角形.A .20°B .40°C .10°D .20°或40°【答案】D 【分析】根据旋转的性质可得AC=CD ,根据等腰三角形的两底角相等求出∠ADF=∠DAC ,再表示出∠DAF ,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD ,然后分①∠ADF=∠DAF ,②∠ADF=∠AFD ,③∠DAF=∠AFD 三种情况讨论求解.【详解】∵△ABC 绕C 点逆时针方向旋转得到△DEC ,∴AC=CD ,∴∠ADF=∠DAC=12(180°-α),∴∠DAF=∠DAC-∠BAC=12(180°-α)-30°, 根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF 是等腰三角形,分三种情况讨论,①∠ADF=∠DAF 时,12(180°-α)=12(180°-α)-30°,无解, ②∠ADF=∠AFD 时,12(180°-α)=30°+α, 解得α=40°,③∠DAF=∠AFD 时,12(180°-α)-30°=30°+α, 解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D .【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.6.已知二次函数2() 0y ax bx c a =++≠的图象如图所示,有下列结论:①0a b c -+>;②0abc >; ③420a b c -+>;④0.a c ->⑤3+a c 0>;其中正确结论的个数是( )A .2B .3C .4D .5【答案】B 【分析】利用特殊值法求①和③,根据图像判断出a 、b 和c 的值判断②和④,再根据对称轴求出a 和b 的关系,再用特殊值法判断⑤,即可得出答案.【详解】令x=-1,则y=a-b+c ,根据图像可得,当x=-1时,y <0,所以a-b+c <0,故①错误; 由图可得,a >0,b <0,c <0,所以abc >0,a-c >0,故②④正确;令x=-2,则y=4a-2b+c ,根据图像可得,当x=-2时,y >0,所以4a-2b+c >0,故③正确;12b x a=-=,所以-b=2a ,∴a-b+c=a+2a+c=3a+c <0,故⑤错误;故答案选择B.【点睛】本题考查的是二次函数,难度偏高,需要熟练掌握二次函数的图像与性质.7.在△ABC 中,C ∠=90°, AC =4,2cos 3A =那么AB 的长是( ). A .5B .6C .8D .9 【答案】B【分析】根据余弦值等于邻边比斜边即可得到答案.【详解】在△ABC 中,C ∠=90°, AC =4,2cos 3A =, ∵cos AC A AB =, ∴423AB =, ∴AB=6,故选:B.【点睛】此题考查三角函数,熟记余弦值的边的比的关系是解题的关键.8.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,2【答案】C【解析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.10.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π【答案】A【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【详解】解:连接OC、OB∵六边形ABCDEF为正六边形,∴∠COB=13606︒⨯=60°,∵OA=OB∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为:6062180ππ⨯=.故选:A.【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.11.如图,▱ABCD 的对角线相交于点O ,且AB AD ≠,过点O 作OE BD ⊥交BC 于点E ,若CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .18【答案】C 【解析】由平行四边形的性质得出AB CD =,BC AD =,OB OD =,再根据线段垂直平分线的性质得出BE DE =,由CDE 的周长得出BC CD 6cm +=,即可求出平行四边形ABCD 的周长. 【详解】解:四边形ABCD 是平行四边形,AB CD ∴=,BC AD =,OB OD =,OE BD ⊥,BE DE ∴=, CDE 的周长为10,DE CE CD BE CE CD BC CD 10∴++=++=+=,∴平行四边形ABCD 的周长()2BC CD 20=+=;故选:C .【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .1【答案】C。

〖汇总3套试卷〗上海市金山区2018年九年级上学期数学期末质量跟踪监视试题

〖汇总3套试卷〗上海市金山区2018年九年级上学期数学期末质量跟踪监视试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( )A .B .C .D .【答案】A【解析】分析:从主视图上可以看出上下层数,从俯视图上可以看出底层有多少小正方体,从左视图上可以看出前后层数,综合三视图可得到答案.解答:解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选A .2.对于非零实数a b 、,规定11a b b a ⊕=-,若()22x 11⊕-=,则x 的值为 A .56 B .54 C .32 D .16- 【答案】A【解析】试题分析:∵11a b b a ⊕=-,∴()1122x 12x 12⊕-=--. 又∵()22x 11⊕-=,∴1112x 12-=-. 解这个分式方程并检验,得5x 6=.故选A . 3.已知两个相似三角形的相似比为4:9,则这两个三角形的对应高的比为( )A .2:3B .4:9C .16:81D .9:4【答案】B【分析】根据相似三角形的性质即可得出答案.【详解】根据“相似三角形对应高的比等于相似比”可得对应高的比为4:9,故答案选择B.【点睛】本题考查相似三角形的性质,相似三角形对应边、对应高、对应中线以及周长比都等于相似比. 4.一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是( )A.13B.23C.14D.16【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵地口袋中共有2+4=6个球,其中黄球3个,∴随机抽取一个球是黄球的概率是4263=.故选B.考点:概率.5.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=1-2;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为32+10,其中,正确的个数为()A.2个B.3个C.4个D.5个【答案】D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到930a b ca b c++=⎧⎨-+=⎩,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC 是等腰直角三角形时,C (﹣1,2),可设抛物线的解析式为y =a (x+1)2+2,把(1,0)代入解得a =﹣12,故④正确, 如图,连接AD 交抛物线的对称轴于P ,连接PB ,则此时△BDP 的周长最小,最小值=PD+PB+BD =PD+PA+BD =AD+BD ,∵AD =2233+=32,BD =2231+=10,∴△PBD 周长最小值为32+10,故⑤正确.故选D .【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.6.已知扇形的圆心角为60°,半径为1,则扇形的弧长为( )A .2πB .πC .6πD .3π 【答案】D【解析】试题分析:根据弧长公式知:扇形的弧长为601=1803ππ⨯. 故选D .考点:弧长公式.7.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .3【答案】C 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出122OF OE ==,由勾股定理得出11DF =,即可得出答案. 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG ==, ∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=,∴2211CD DF ==;故选C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.8.下列说法正确的是( )A .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖B .可能性很大的事件在一次试验中必然会发生C .相等的圆心角所对的弧相等是随机事件D .掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等【答案】C【分析】根据概率的意义对A 进行判断,根据必然事件、随机事件的定义对B 、C 进行判断,根据可能性的大小对D 进行判断.【详解】A 、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误. B 、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C 、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D 、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C .【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键. 9.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么AB 的值为( )A .3B .33C .23D .2【答案】A【详解】解:∵AB=BC ,∴∠BAC=∠C .∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C 和∠D 是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD 为直径,∴∠ABD=90°.∵AD=6,∴AB=12AD=1.故选A .10.要使方程()()2310a x b x c -+++=是关于x 的一元二次方程,则() A .a≠0 B .a≠3C .a≠3且b≠-1D .a≠3且b≠-1且c≠0【答案】B【分析】根据一元二次方程的定义选出正确选项.【详解】解:∵一元二次方程二次项系数不能为零,∴30a -≠,即3a ≠.故选:B .【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.11.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件【答案】D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误; C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 12.小刚在解关于x 的方程ax 2+bx+c=0(a ≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是x=-1D .有两个相等的实数根 【答案】A【分析】直接把已知数据代入进而得出c 的值,再解方程求出答案.【详解】解:∵小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得:c=3,∵所抄的c 比原方程的c 值小2.故原方程中c=5,即方程为:x 2+4x+5=0则∆=b 2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选:A .【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c 的值是解题关键.二、填空题(本题包括8个小题)13.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.【答案】34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC ,∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.14.为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的约用水量,下列说法错误的是( )A .中位数是5吨B .极差是3吨C .平均数是5.3吨D .众数是5吨【答案】B【详解】解∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A 正确;∴众数是:5吨,故D 正确;∴极差是:9﹣4=5吨,故B 错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故C 正确.故选B .15.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.【答案】1 6【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为1 6 .故答案为1 6 .【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.16.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).【答案】不可能【分析】根据随机事件的概念进行判断即可.【详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【点睛】本题考查了随机事件的概念,掌握知识点是解题关键.17.比较sin30°、sin45°的大小,并用“<”连接为_____.【答案】<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=、sin45°=,∴sin30°<sin45°.故答案为:<.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.【答案】12﹣43 【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2, ∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S 正方形DNMF =2(3﹣1)×2(3﹣1)×12=8﹣43, S △ADF =12×AD×AFsin30°=1, ∴则图中阴影部分的面积为:4S △ADF +S 正方形DNMF =4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.三、解答题(本题包括8个小题)19.分别用定长为a 的线段围成矩形和圆.(1)求围成矩形的面积的最大值;(用含a 的式子表示)(2)哪种图形的面积更大?为什么?【答案】(1)矩形面积的最大值为2a 16;(2)圆的面积大. 【分析】(1)设矩形的一边长为b ,则另外一边长为2a -b ,由S 矩形=b (2a -b )=﹣(b 4a -)2216a +可得答案;(2)设圆的半径为r ,则r 2a π=,知S 圆=πr 224a π=,比较大小即可得.【详解】(1)设矩形的一边长为b ,则另外一边长为2a -b ,S 矩形=b (2a -b )=﹣(b 4a -)2216a +,∴矩形面积的最大值为216a ; (2)设圆的半径为r ,则r 2a π=,S 圆=πr 224a π=. ∵4π<16,∴22416a a π>,∴S 圆>S 矩,∴圆的面积大. 【点睛】本题考查了列代数式与二次函数的最值,用到的知识点是圆的面积公式、矩形的面积公式、二次函数的最值,关键是根据题意列出代数式.20.如图,在△ABC 中,AB=AC ,点D 、E 在边BC 上,∠DAE=∠B=30°,且32ADAE =,那么DE BC的值是______.【答案】133118-.【分析】由已知可得ABE DAE ,从而可知32AB AD BE AE ==,2AE BE DE =, 设AB=3x ,则BE=2x ,再利用勾股定理和等腰三角形性质用x 表示DE 和BC ,从而解答【详解】解:∵∠BAE=∠DAE+∠BAD ,∠ADE=∠B+∠BAD ,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE ,∴ABEDAE , ∴32AB AD BE AE ==,2AE BE DE =, 过A 点作AH ⊥BC ,垂足为H ,设AB=3x ,则BE=2x ,∵∠B=30°,∴1322 AH AB x ==,333322BH AB x==,∴332EH BH BE x⎛⎫=-=-⎪⎪⎝⎭,在Rt AHE中,()2222223332136322AE AH EH x x x x⎛⎫⎛⎫=+=+-=-⎪⎪ ⎪⎝⎭⎝⎭,又∵2AE BE DE=,∴()213632x x DE-=,∴1363DE x-=,∵AB=AC,AH⊥BC,∴233BC BH x==,∴13136313323xDEBC x=-=-,故答案为:13136313323xDEBC x=-=-.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质以及勾股定理,利用三角形相似得到AB与BE 的关系是解题的关键.21.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.【答案】直线AD与⊙O相切,理由见解析【分析】先由AB是⊙O的直径可得∠ACB=90°,进而得出∠ABC+∠BAC=90°;接下来再由∠CAD=∠ABC,运用等量代换可得∠CAD+∠BAC=90°,再运用切线的判定即可求解.【详解】直线AD与⊙O相切.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直线AD与⊙O相切【点睛】本题考查了圆周角定理,直线与圆的位置关系. 半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径;经过半径外端点并且垂直于这条半径的直线是圆的切线.22.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:BF=EF;【答案】见解析【解析】分析:(1)连接OD,由已知易得∠B=∠C,∠C=∠ODC,从而可得∠B=∠ODC,由此可得AB∥OD,结合DF⊥AB 即可得到OD⊥DF,从而可得DF与⊙O相切;(2)连接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,从而可得DE=BD,结合DF⊥AB即可得到BF=EF.详解:(1)连结OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC 是⊙O 的直径,∴AD ⊥BC ,又AB=AC ,∴BD=DC ,∠BAD=∠CAD ,∴DE=DC ,∴DE=DB ,又DF ⊥AB ,∴BF=EF .点睛:(1)连接OD ,结合已知条件证得OD ∥AB 是解答第1小题的关键;(2)连接AD 结合已知条件和等腰三角形的性质证得DE=DC=BD 是解答第2小题的关键.24.如图,一次函数y kx b =+与反比例函数4y x=的图象交于(),4A m 、()2,B n 两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出40kx b x +->中x 的取值范围; (3)求AOB 的面积.【答案】 (1)y=-2x+6;(2) 0x <或12x <<;(1)1.【解析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标; (2)由图直接解答;(1)将△AOB 的面积转化为S △AON -S △BON 的面积即可.【详解】(1)∵点A 在反比例函数4y x=上,∴44m =,解得1m =, ∴点A 的坐标为()1,4,又∵点B 也在反比例函数4y x =上, ∴42n =,解得2n =, ∴点B 的坐标为()2,2,又∵点A 、B 在y kx b =+的图象上,∴422k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩, ∴一次函数的解析式为26y x =-+.(2)根据图象得:40kx b x+->时,x 的取值范围为0x <或12x <<; (1)∵直线26y x =-+与x 轴的交点为N ,∴点N 的坐标为()3,0,113432322AOB AON BON S S S =-=⨯⨯-⨯⨯=△△△. 【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,利用图像解不等式,及割补法求图形的面积,数形结合是解题的关键.25.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .【答案】(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.26.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了户贫困户;(2)本次共抽查了户C类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?【答案】(1)500户;(2)120户,图见解析;(3)5200户【分析】(1)用A类贫困户的人数除以它所占的百分比即可得出答案;(2)用总人数减去A,B,D类贫困户的人数即可得到C类贫困户,然后补全条形统计图即可;(3)用总人数乘以C,D类所占的百分比的和即可得出答案.【详解】解:(1)260÷52%=500(户);(2)500-260-80-40=120(户),如图:(3)13000×(24%+16%)=13000×40%=5200(户)答:估计至少得到4项帮扶措施的大约有5200户.【点睛】本题主要考查条形统计图与扇形统计图,能够将条形统计图和扇形统计图相结合并掌握用样本估计整体的方法是解题的关键.27.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【答案】(1)①∠BAE=90°,②∠EAC=∠ABC;(2)EF是⊙O的切线【分析】(1)若EF是切线,则AB⊥EF,添加的条件只要能使AB⊥EF即可;(2)作直径AM,连接CM,理由圆周角定理以及直径所对的圆周角是直角即可.【详解】(1)∠BAE=90°;∠CAE=∠B ;(2)EF是⊙O的切线.作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列几何图形中,是中心对称图形但不是轴对称图形的是 ( )A .圆B .正方形C .矩形D .平行四边形 【答案】D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A . 圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B . 正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C . 矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D . 平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D .【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.2.计算()42a a -的结果是( ) A .0B .22aC .4aD .4a - 【答案】C【分析】根据二次根式的性质先化简()4-a ,再根据幂运算的公式计算即可得出结果. 【详解】解:()42a a -=22a a =4a , 故选C .【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.3.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①②③④四个三角形.若OA OC OB OD =∶∶,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .③和④相似 【答案】B【解析】由题图可知,AOB COD ∠=∠,由OA OC OB OD =∶∶,可得OA OBOC OD= 即可得出 【详解】由题图可知,AOB COD ∠=∠,结合OA OC OB OD =∶∶,可得AOB COD ∽. 故选B . 【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS ").4.27的立方根是( )A .±3B .C .3D .【答案】C【分析】由题意根据如果一个数x 的立方等于a ,那么x 是a 的立方根,据此定义进行分析求解即可. 【详解】解:∵1的立方等于27, ∴27的立方根等于1. 故选:C . 【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 5.在Rt△ABC 中,∠C=90°,各边都扩大2倍,则锐角A 的锐角三角函数值( ) A .扩大2倍 B .缩小12C .不变D .无法确定【答案】C【解析】∵在Rt △ABC 中,∠C =90°, ∴BC sin A AB =,AC cos A AB =,BCtan A AC=, ∴在Rt △ABC 中,各边都扩大2倍得:2BC BC sin A 2AB AB ==,2AC AC cos A 2AB AB ==,2BC BC tan A 2AC AC==, 故在Rt △ABC 中,各边都扩大2倍,则锐角A 的锐角三角函数值不变. 故选C. 【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A 的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A 的三角函数值是不会变的. 6.关于x 的一元二次方程x 2﹣2x +k=0有两个相等的实数根,则k 的值为( ) A .1B .﹣1C .2D .﹣2【答案】A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2x+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【答案】B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.8.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2233π-B.2433πC.4233π-D.23π【答案】A【详解】解:∵D为AB的中点,∴BC=BD=12AB,∴∠A=30°,∠B=60°.∵AC=∴BC=AC•tan30°=3=2,∴S 阴影=S △ABC ﹣S 扇形CBD =2160222360π⨯⨯-=23π-.故选A . 【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键. 9.平面直角坐标系内一点P (2,-3)关于原点对称点的坐标是( )A .(3,-2)B .(2,3)C .(-2,3)D .(2,-3) 【答案】C 【解析】略10.在平面直角坐标系中,把点(3,2)P -绕原点O 顺时针旋转180,所得到的对应点P'的坐标为( ) A .(3,2) B .(2,3)-C .(3,2)-D .(3,2)-【答案】C【分析】根据题意得点P 点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解. 【详解】∵P 点坐标为(3,-2), ∴P 点的原点对称点P′的坐标为(-3,2). 故选C . 【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点. 11.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .15【答案】D【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.12.如图,在△ABC 中,中线AD 、BE 相交于点F ,EG ∥BC ,交AD 于点G ,则AGAF的值是( )A .23B .32C .34D .43【答案】C【分析】先证明AG=GD ,得到GE 为△ADC 的中位线,由三角形的中位线可得GE 12=DC 12=BD ;由EG ∥BC ,可证△GEF ∽△BDF ,由相似三角形的性质,可得12GF GE FD BD ==;设GF=x ,用含x 的式子分别表示出AG 和AF ,则可求得答案.【详解】∵E 为AC 中点,EG ∥BC , ∴AG=GD ,∴GE 为△ADC 的中位线, ∴GE 12=DC 12=BD . ∵EG ∥BC , ∴△GEF ∽△BDF , ∴12GF GE FD BD ==, ∴FD=2GF .设GF=x ,则FD=2x ,AG=GD=GF+FD=x+2x=3x ,AF=AG+GF=3x+x=4x , ∴3344AG x AF x ==. 故选:C . 【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.二、填空题(本题包括8个小题)13.如图,AOB ∆三个顶点的坐标分别为()()8,0, 0,0(8, )6A O B -,, 点M 为OB 的中点.以点O 为位似中心,把或AOB ∆缩小为原来的12,得到''A OB ∆,点'M 为'OB 的中点,则'MM 的长为________.【答案】52或152【分析】分两种情形画出图形,即可解决问题.【详解】解:如图,在Rt△AOB中,OB=2268=10,①当△A'OB'在第四象限时,OM=5,OM'=52,∴MM'=52.②当△A''OB''在第二象限时,OM=5,OM"=52,∴MM"=152,故答案为52或152.【点睛】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC 的长为__________.【答案】3【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB 为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB , ∵PA ,PB 是⊙O 的切线, ∴PA=PB , ∵∠P =60°,∴△ABP 为等边三角形, ∴AB=6, ∵∠P =60°, ∴∠CAB=30°,易得△ABC 为直角三角形, ∴BCtan 30AB=︒, ∴BC=AB ×tan30︒=23, 故答案为:23. 【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键. 15.在ABC ∆中,90C ∠=︒,8AB =,3cos 4A =,则AC 的长是__________. 【答案】1【分析】根据∠A 的余弦值列出比例式即可求出AC 的长. 【详解】解:在Rt △ABC 中,3cos 4AC A AB ==,8AB = ∴AC=338644AB =⨯= 故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.16.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红。

[试卷合集5套]上海市2018年九年级上学期期末学业水平测试数学试题

[试卷合集5套]上海市2018年九年级上学期期末学业水平测试数学试题
(2)根据等腰三角形三线合一的性质证得∠BAD= ∠BAC=30°,由30°的直角三角形的性质即可求得BD.
【详解】(1)证明:连接OD,AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD是△BAC的中位线,
【答案】 .
【解析】试题分析:将△ABC绕点B旋转60°,顶点C运动的路线长是就是以点B为圆心,BC为半径所旋转的弧,根据弧长公式即可求得.
试题解析:∵AB=4,∴BC=2,
所以弧长= .
考点:1.弧长的计算;2.旋转的性质.
14.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.
【答案】60°
【分析】直接利用圆周角定理,即可求得答案.
【详解】∵A、B、C是⊙O上三点,∠ACB=30°,
∴∠AOB的度数是:∠AOB=2∠ACB=60°.
故答案为:60°.
【点睛】
考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.
15.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)
【详解】解:∵∠BCA=90°,∠BAC=30°,
∴AB=2BC=8,AC= BC=4 ,
∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,
∴ห้องสมุดไป่ตู้CAE=∠BAD=90°,
∴BC扫过的阴影面积=S扇形BAD-S△CAE
= .
故答案为:4π.
【点睛】
本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= 或S扇形= (其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2)B.(0,﹣4 3)C.(0,﹣53)D.(0,﹣54)【答案】B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M 点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得2{211pp p-=--+-=,解得4{2pq==,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M 、N′代入函数解析式,得22{1k b k b -+-+-==, 解得13{43k b -==, MN′的解析式为y=13x-43, 当x=0时,y=-43,即P (0,-43), 故选:B .【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P 点的坐标是解题关键.2.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .23 【答案】B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|3|0a b -+-=2=3a b ∴=,2=(3)3a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.如图,正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点.现随机向正方形ABCD 内投掷一枚小针,则针尖落在阴影区域的概率为( )A .18B .14C .13D .12【答案】B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段B.三角形C.平行四边形D.正方形【答案】B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.5.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了45次手,这次参加会议到会的人数是x 人,可列方程为:( )A .(1)45x x +=B .1(1)452x x -=C .1(1)452x x +=D .(1)45x x -=【答案】B【分析】设这次会议到会人数为x ,根据每两个参加会议的人都相互握了一次手且整场会议一共握了45次手,即可得出关于x 的一元二次方程,此题得解.【详解】解:设这次会议到会人数为x ,依题意,得:1(1)452x x -=. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.若函数 k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A .B .C .D .【答案】A【分析】首先根据二次函数及反比例函数的图象确定k 、b 的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴2b x a=->0 ∴a>0,b<0, 又∵反比例函数k y x=-的图形位于二、四象限, ∴-k <0,∴k >0 ∴函数y=kx-b 的大致图象经过一、二、三象限.故选: A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.7.如图,是二次函数2y ax bx c =++图象的一部分,在下列结论中:①0abc >;②0a b c -+>;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-;其中正确的结论有( )A .1个B .2 个C .3 个D .4个【答案】C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a >0,与y 轴的交点为在y 轴的负半轴上可推出c=-1<0, 对称轴为210b ax >=->,a >0,得b <0, 故abc >0,故①正确; 由对称轴为直线12b x a =->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y >0,所以a-b+c >0,故②正确;抛物线与y 轴的交点为(0,-1),由图象知二次函数y=ax 2+bx+c 图象与直线y=-1有两个交点, 故ax 2+bx+c+1=0有两个不相等的实数根,故③错误; 由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以-4a <b <-2a ,故④正确.所以正确的有3个,故选:C .【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.8.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( ) A .4B .5C .6D .7【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13,∴盒子中球的总数=1263÷=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.9.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【答案】B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10.在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A .(60+2x)(40+2x)=2816B .(60+x)(40+x)=2816C .(60+2x)(40+x)=2816D .(60+x)(40+2x)=2816【答案】A【解析】根据题意可知,挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为x cm ,则挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,可列方程(60+2x)(40+2x)=2816故答案为A.【点睛】本题考查一元二次方程的应用,找出题中的等量关系是解题关键.11.给出下列一组数:227,0.3•38-•010010001, 3.14π-,其中无理数的个数为( ) A .0B .1C .2D .3 【答案】C【分析】直接利用无理数的定义分析得出答案.【详解】解:227,•0.3,38-•010010001, 3.14π-,其中无理数为•010010001, 3.14π-,共2个数.故选C .【点睛】此题考查无理数,正确把握无理数的定义是解题关键.12.对于题目“抛物线l 1:2(1)4y x =--+(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,确定m 的值”;甲的结果是m =1或m =2;乙的结果是m =4,则( )A .只有甲的结果正确B .只有乙的结果正确C .甲、乙的结果合起来才正确D .甲、乙的结果合起来也不正确【答案】C【分析】画出抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x =1,顶点为(1,4),如图所示:∵m 为整数,由图象可知,当m =1或m =2或m =4时,抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C .【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.二、填空题(本题包括8个小题)13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .【答案】1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD , ∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为114.一个反比例函数的图像过点()2,3A -,则这个反比例函数的表达式为__________.【答案】6y x=-【分析】设反比例函数的解析式为y=k x (k≠0),把A 点坐标代入可求出k 值,即可得答案. 【详解】设反比例函数的解析式为y=k x (k≠0), ∵反比例函数的图像过点()2,3A -,∴3=2k -, 解得:k=-6,∴这个反比例函数的表达式为6y x =-, 故答案为:6y x=-【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键. 15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.【答案】1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:16.如图,某景区想在一个长40m ,宽32m 的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m ,如果横向小桥的宽为xm ,那么可列出关于x 的方程为__________.(方程不用整理)【答案】()()402321140x x --=【分析】横向小桥的宽为xm ,则纵向小桥的宽为2xm ,根据荷花的种植面积列出一元二次方程.【详解】解:设横向小桥的宽为xm ,则纵向小桥的宽为2xm根据题意,()()402321140x x --=【点睛】本题关键是在图中,将小桥平移到长方形最边侧,将荷花池整合在一起计算.17.如图,在矩形ABCD 中,点E 为AB 的中点,EF EC ⊥交AD 于点F ,连接()CF AD AE >,下列结论:①AEF BCE ∠=∠;②AF BC CF +>;③CEF EAF CBE S S S =+; ④若32BC CD =,则CEF CDF ≅. 其中正确的结论是______________.(填写所有正确结论的序号)【答案】①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB ,FE 交于点G ,根据ASA 可证明△AEF ≌△BEG ,可得AF=BG ,EF=EG ,进一步即可求得AF 、BC 与CF 的关系,S △CEF 与S △EAF +S △CBE 的关系,进而可判断②与③;由32BC CD =,结合已知和锐角三角函数的知识可得30BCE ∠=︒,进一步即可根据AAS 证明结论④;问题即得解决.【详解】解:∵EF EC ⊥,90AEF BEC ∴∠+∠=︒,∵四边形ABCD 是矩形,∴∠B=90°,∴90BEC BCE ∠+∠=︒,AEF BCE ∴∠=∠,所以①正确;延长CB ,FE 交于点G ,如图,在△AEF 和△BEG 中,∵∠FAE=∠GBE=90°,AE=BE ,∠AEF=∠BEG ,∴△AEF ≌△BEG (ASA ),∴AF=BG ,EF=EG ,∴S △CEG =S △CEF ,∵CE ⊥EG ,∴CG=CF ,∴AF+BC=BG+BC=CG=CF ,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若32 BCCD=,则132311tan222BC BC BCBCE BE AB CD====⨯=∠,30BCE∴∠=︒,30DCF ECF∴∠=∠=︒,在CEF∆和CDF∆中,∵∠CEF=∠D=90°,ECF DCF∠=∠,CF=CF,CEF∴≌()CDF AAS,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.18.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.【答案】-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x 的方程x2+1x-5=0的两个根,∴x1+ x2=-41=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.三、解答题(本题包括8个小题)19.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的1C处,点D落在点1D处,11C D交线段AE于点G.(1)求证:11BC F AGC ∆∆;(2)若1C 是AB 的中点,6AB =,9BC =,求AG 的长.【答案】(1)证明见解析;(2)94AG =.【分析】(1)利用有两组对应角相等的两个三角形相似证明即可;(2)先利用勾股定理求出BF 的长,再利用(1)中相似,列比例式即可.【详解】(1)证明:由题意可知190A B GC F ∠=∠=∠=︒,∴1190BFC BC F ∠+∠=︒,1190AC G BC F ∠+∠=︒,∴11BFC AC G ∠=∠.∴11BC F AGC ∆∆.(2)∵1C 是AB 的中点,6AB =,∴113AC BC ==.在1Rt BC F 中由勾股定理得()22239BF BF +=-,解得:4BF =.由(1)得11BC F AGC ∆∆,∴11AC AG BC BF =,即334AG =, ∴94AG =. 【点睛】此题考查的是相似三角形的判定和勾股定理,掌握用两组对应角相等证两个三角形相似、及折叠问题中相等的边和勾股定理求边是解决此题的关键.20.如图,已知在△ABC 中,AD 是∠BAC 平分线,点E 在AC 边上,且∠AED=∠ADB .求证:(1)△ABD ∽△ADE ; (2)AD 2=AB·AE.【答案】 (1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE ,结合∠AED=∠ADB 得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE 又∵∠AED=∠ADB ∴△ABD∽△ADE(2)、∵△ABD∽△ADE ,∴AB ADAD AE=∴AD2=AB·AE.考点:相似三角形的判定与性质21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=_______,m=_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?【答案】(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°35100⨯=126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30020100⨯=60(万人). 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A ,C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为213222y x x =--+;(2)抛物线存在点M ,点M 的坐标(32)-,或(0)2,或(2,3)-或(5,18)- 【分析】(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据函数值相等的两点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x =0时,y =2,即C (0,2),当y =0时,12x+2=0,解得x =﹣4,即A (﹣4,0). 由A 、B 关于对称轴对称,得B (1,0).将A 、B 、C 点坐标代入函数解析式,得164002a b c a b c c ⎧-+=⎪++=⎨⎪=⎩, 解得12322a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 抛物线的解析式为y =﹣12x 2﹣32x+2; (2)①当点M 在x 轴上方时,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,如图,设M (m ,﹣12x 2﹣32x+2),N (m ,0). AN =m+4,MN =﹣12m 2﹣32m+2, 由勾股定理,得AC 2225AO OC +=,BC 225OB OC +=∵AC 2+BC 2=AB 2,∴∠ACB =90°,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时点M 与点C 重合,M (0,2).当△ANM ∽△BCA 时,∠MAN =∠ABC ,此时M 与C 关于抛物线的对称轴对称,M (﹣3,2). ②当点M 在x 轴下方时,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时直线AM 的解析式为y =﹣12x ﹣2, 由212213222y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得40x y ⎧=-⎨=⎩或23x y ⎧=⎨=-⎩, ∴M (2,﹣3),当△ANM ′∽△BCA 时,∠MAN =∠ABC ,此时AM ′∥BC ,∴直线AM ′的解析式为y =﹣2x ﹣8, 由22813222y x y x x ⎧=--⎪⎨=--+⎪⎩,解得40x y ⎧=-⎨=⎩或518x y ⎧=⎨=-⎩, ∴M (5,﹣18)综上所述:抛物线存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,点M 的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.23.数学兴趣小组对矩形面积为9,其周长m 的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x ,y ,由矩形的面积为9,得xy =9,即y =9x ;由周长为m ,得2(x+y )=m ,即y =﹣x+2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象.函数y=9x(x>0)的图象如图所示,而函数y=﹣x+2m的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=9x(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=9x(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.【答案】(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=9x和y=﹣x+2m整理得:2x﹣12mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y =9x (x >0)的图象有唯一交点(3,3)时, 由y =﹣x+2m 得:3=﹣3+12m ,解得:m =1, 故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y =9x 和y =﹣x+2m 并整理得:x ²﹣12mx+9=0, ∵△=14m ²﹣4×9, ∴0个交点时,m <1;1个交点时,m =1; 2个交点时,m >1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.24.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE .(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG 的长.【答案】(1)见解析;(2)BG=BC+CG=1.【分析】(1)利用正方形的性质,可得∠A=∠D ,根据已知可得AE :AB=DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2)14.【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:41164=. 考点:列表法与树状图法.26.在面积都相等的一组三角形中,当其中一个三角形的一边长x 为1时,这条边上的高y 为1. (1)①求y 关于x 的函数解析式;②当3x ≥时,求y 的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?【答案】(1)①6y x=;②02y <≤;(2)小明的说法不正确. 【分析】(1)①直接利用三角形面积求法进而得出y 与x 之间的关系;②直接利用3x ≥得出y 的取值范围;(2)直接利用x y +的值结合根的判别式得出答案.【详解】(1)①11632S =⨯⨯=, ∵x 为底,y 为高, ∴132xy =, ∴6y x =; ②当3x =时,2y =,∴当3x ≥时,y 的取值范围为:02y ≤<;(2)小明的说法不正确,理由:根据小明的说法得:64x x +=, 整理得:2460x x -+=,∵1a =,4b =-,6c =,∴()224441680b ac =-=--⨯⨯=-<⊿,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【点睛】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.27.如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线.【答案】见解析.【分析】如图①中连接PA,根据等弧所对得圆周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分线;如图②中,连接AO延长交⊙O于E,连接PE,由垂径定理和圆周角定理易知∠EPB=∠EPC.【详解】如图①中,连接PA,PA就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴∠APB=∠APC.如图②中,连接AO延长交⊙O于E,连接PE,PE就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴BE=EC,∴∠EPB=∠EPC.【点睛】本题主要考查圆周角定理和垂径定理,根据等弧所对的圆周角相等得到角平分线是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程()2340a x x --+=,则a 的条件是( ) A .1a ≠B .2a ≠C .3a ≠D .4a ≠【答案】C 【解析】根据一元二次方程的定义即可得.【详解】由一元二次方程的定义得30a -≠解得3a ≠故选:C .【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键.2.若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .﹣35【答案】C【分析】将x y y-变形为x y ﹣1,再代入计算即可求解. 【详解】解:∵52x y =, ∴x y y -=x y ﹣1=52﹣1=32. 故选:C .【点睛】考查了比例的性质,解题的关键是将x y y-变形为1x y -. 3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°,∴BE=12CE ,∵AB ∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=12AE,∴12AE AEEB AE=2,故选B.【点睛】本题考查翻折变换(折叠问题).4.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A.B.C.D.【答案】A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y 轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.6.已知反比例函数1y x=-,下列结论;①图象必经过点(1,1)-;②图象分布在第二,四象限;③在每一个象限内,y 随x 的增大而增大.其中正确的结论有( )个. A .3B .2C .1D .0 【答案】A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点(1,1)-,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y 随x 的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数k y x=(k 是常数,k≠0)的图像是双曲线,当k >0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 k <0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.7.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8.如图,网格中小正方形的边长为1个单位长度,△ABC 的顶点均在小正方形的顶点上,若将△ABC 绕着点A 逆时针旋转得到△AB′C′,点C 在AB′上,则'BB 的长为( )A .πB .2πC .7πD .6π【答案】A 【分析】根据图示知∠BAB′=45°,所以根据弧长公式l =180n r π求得BB '的长. 【详解】根据图示知,∠BAB′=45°,。

上海初三九年级2018届金山区中考数学一模试卷及参考答案

上海初三九年级2018届金山区中考数学一模试卷及参考答案

1
(2)
3
(3) Q(0,-
1)

Q æçççè0,
1 2
ö÷÷÷ø
25. (1)12
(2) y = 60x - 12x2 , (0 < x < 5) 25
25 125
(3) 或
32 32
3- 5
18.
2
13. (0,- 1)
第6页
uuur r r 求向量 MN 关于 a 、 b 的分解式.
第2页
21. (本题满分 10 分)
如图,已知 AB 是 e O 的弦, C 是 AB 的中点, AB = 8, AC = 2 5 ,求 e O 半径的长.
22. (本题满分 10 分)
如图, MN 是一条东西方向的海岸线,在海岸线上的 A 处测得一海岛在南偏西 32°的方向上, 向东走过 780 米后到达 B 处,测得海岛在南偏西 37°的方向上,求小岛到海岸线的距离.(参考数 据: tan 37o = cot 53o » 0.755, cot 37o = tan 53o » 1.327, tan 32o = cot 58o » 0.625, cot 32o = tan 58o » 1.600 )
2018年上海市金山区九年级第一学期期末考试数学试题一选择题每小题4分共24是不等于0的实数那么下列等式中正确的是将抛物线平移使平移后所得抛物线经过原点那么平移的过程为向下平移3个单位向上平移3个单位向左平移3个单位向右平移3个单位adbcabdcdeababdcuuuruuurdedcuuuruuurabeduuuruuuraduuuruur一个三角形框架模型的三边长分别为20厘米30厘米40厘米木工要以一根长为60厘米的木条为一边做一个与模型三角形相似的三角形那么另两条边的木条长度不符合条件的是30厘米45厘米40厘米80厘米80厘米120厘米90厘米120厘米的重心abcacbacbc如果以点为圆心为圆心半径为的圆相交那么的取值范围是二填空题每小题4分共482sin45tan45如果两个相似三角形对应边上的高的比为1

上海市2018-2019年九年级上期末考试数学试卷含答案

上海市2018-2019年九年级上期末考试数学试卷含答案

九年级上学期期末考试数学试卷考试内容:人教版九年级上册全册。

考试时间: 100 分钟满分: 120 分一、选择题(每题 3 分,共 42 分)在以下各题中只有一个是正确的,请把答案填在下列表格中。

题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案、一元二次方程 x 2﹣ 5x=0 的根是 () 1 A .5B .0C .0 或 5D .0 或﹣52、用配方法解方程 x 2+8x+9=0 ,变形后的结果正确的选项是( )A .(x+4)2 =-7B.(x+4) 2=-9C.( x+4)2=7D. (x+4)2=253、已知方程2x 2+4x-3=0 的两根分别为 x 1 和 x 2,则 x 1+x 2 的值等于( )C.3 D.322、假如对于 x 的一元二次方程 2 x 2 (2k 1)x 1 0 有两个不相等的实数根,那么 k 的 4 k取值范围是()A. k >1B. k > 1且 k 0C. k <1D. k1且 k 044445、对于抛物线 y1( x 5)2 3 ,以下说法错误的选项是( )A. 对称轴是直线 x 5B.函数的最大值是 3C. 张口向下,极点坐标(,)当x 5时, y随x 的增大而增大.53 D.6、以下四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完整重合的是()A.B.C.D.7、抛物线 y=x2- 2x+ 1 与坐标轴的交点个数为 ( )A.无交点B.1个C.2个D.3个8、随机掷一枚质地平均的硬币两次,落地后至多有一次正面朝下的概率为()A. 3B. 2C. 1D. 14 3 2 49、以下说法正确的选项是()A.抛一枚硬币,正面必定向上;B.掷一颗骰子,点数必定不大于6;C.为认识一种灯泡的使用寿命,宜采纳普查的方法;D.“明日的降水概率为80%”,表示明日会有 80%的地方下雨.10、分别标有数字0, 2,1,3, 1的五张卡片,除数字不一样外其余均同样,从中任抽一张,那么抽到负数的概率是()A.1B.2C.3D.4 5 5 5 511、一个箱子里装有8 个球,此中 5 个红球, 3 个白球,每个球除颜色外其余完整相同,从中随意摸出一个球,是白球的概率是()A. 1B. 5C. 3D.38 8 5 812、如图12,从圆 O 外一点P引圆 O 的两条切线 PA,PB ,切点分别为 A,B .假如APB 60,PA 8 ,那么弦AB的长是()A.4B.8C.4 3D.8 313. 如图 13,在⊙ O中,∠ ABC=50°,则∠ AOC等于()°°°°14、如图14,角三角形ABC 两锐角极点 A,B 为圆心作等圆,⊙ A 与⊙ B 恰巧外切,若 AC=2,那么图中两个扇形 (即暗影部分 )的面积之和为 ()ππ2πA. 4B. 2C. 2D. 2πA APO BOBC图 12图 13图 14 二、填空题:(总合 16 分)15、若 3a 2 a 2 0 ,则 5 2a 6a 2.16、时钟 上的时 针不 停地旋转 ,从上 午 8 时到上 午 11 时,时针旋转 的角度是.、二次函数 = x 2+2x - 4 的图象的对称轴是 ____ ,极点坐标是 ___。

2018上海初三数学一模卷

2018上海初三数学一模卷

2018上海初三数学一模卷全文共四篇示例,供读者参考第一篇示例:2018年上海初三数学一模卷是学生们备战中考的第一道考题,这份试卷的设计和命题将直接影响着学生们的中考成绩。

数学作为中考科目之一,在学生们的中考成绩中占据着重要的比例,因此对于这份试卷的复习和备考是至关重要的。

2018年上海初三数学一模卷的命题从往年来看会有所变化,但它会涵盖初中阶段所学的各个知识点,涉及到的题型会比较多样化,涉及的难度也会有一定的提升。

数学考试的命题会分为选择题和解答题两部分,选择题考查学生对知识点的掌握和运用能力,解答题则考查学生们的解决问题的能力和思维逻辑能力。

在备考这份试卷的过程中,学生们需要系统地复习和总结初中数学的知识点,包括代数、几何、数学应用等各个方面。

针对选择题的备考,学生们需要熟练掌握各种题型的解题方法和技巧,提高解题速度和准确率;针对解答题的备考,学生们需要多做一些综合性的练习题,培养自己的解决问题的能力和思维逻辑能力。

2018年上海初三数学一模卷的命题具有一定的难度和挑战性,对学生们的综合能力和解决问题的能力提出了较高的要求。

在备考这份试卷的过程中,学生们需要克服困难,坚持不懈地努力学习,保持积极的心态和良好的学习状态,相信自己能够取得优异的成绩。

2018年上海初三数学一模卷是学生们备战中考的第一道考题,对学生们的数学综合能力和解决问题的能力提出了一定的挑战。

在备考这份试卷的过程中,学生们需要系统地复习和总结数学知识点,注重解题方法和技巧的掌握,提升解题思维和逻辑推理能力。

相信只要学生们保持努力和坚持,认真备考,一定能够取得令人满意的成绩,实现自己的中考梦想。

希望各位学生都能在这份试卷上取得理想的成绩,为自己的中考之路打下坚实的基础。

加油!第二篇示例:2018年上海初三数学一模卷是对初中生进行数学学科综合能力和知识掌握情况的考核。

本次考试分为选择题和主观题两个部分,旨在通过考试内容的涵盖全面,考查学生对数学理论知识的掌握能力,解题技巧的运用和灵活应用能力。

2018-2019金山区初三数学一模(试卷+解析)

2018-2019金山区初三数学一模(试卷+解析)

上海新东方中考数学教研组2018学年上海市金山区初三第一学期调研测试九年级数学试卷(满分150分,考试时间100分钟)(2019.1)考生注意:1.本试卷含三个大题,共25题;2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列函数是二次函数的是( )A .B .C .D .2.在中,,那么等于( )A .B .C .D .3.如图,已知与相交于点,,,,,那么的长等于( ) A .4B .9C .12D .164.已知是一个单位向量,、是非零向量,那么下列等式正确的是( ) A .B . C .D .5.已知抛物线如图所示,那么、、的取值范围是( )A .、、B .、、C .、、D .、、xy =x y 1=22x x y +−=21x y =ABC Rt ∆o90=∠C B ∠sin ABAC ABBC BC AC ACBCBD CE A BC ED //8=AB 12=AC 6=AD AE e a b a e a=e b b =1a e a=11a bab=()02≠++=a c bx ax y a b c 0<a 0>b 0>c 0<a 0<b 0>c 0<a 0>b 0<c 0<a 0<b 0<c xyOABCDEABC第6题图6.如图,在中,,,,⊙的半径为3,那么下列说法正确的是( )A .点、点都在⊙内B .点在⊙内,点在⊙外C .点在⊙内,点在⊙外D .点、点都在⊙外 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】7.已知二次函数,那么 _ .8.已知抛物线,那么抛物线在轴右侧部分是 _ (填“上升的”或“下降的”). 9.已知,那么 _ . 10.已知是锐角,,那么 _ . 11.一个正边形的中心角等于,那么 _ .12.已知点是线段上的黄金分割点,,,那么 _ . 13.如图,为了测量铁塔的高度,在离铁塔底部(点)60米的处,测得塔顶的仰角为,那么铁塔的高度 _ 米.14.已知⊙、⊙的半径分别为2和5,圆心距为,若⊙与⊙相交,那么的取值范围是 _ .15.如图,已知为内一点,点、分别在边和上,且,,设、,那么 _ (用、表示).16.如图,已知⊙与⊙相交于、两点,延长连心线交⊙于点,联结、,若,,那么⊙的半径等于 _ .ABC Rt ∆o90=∠C 2=BC 60=∠B A B C A C A B A B A C A B C A ()132+−=x x x f ()=2f 1212−=x y y 25=y x =+yy x α21sin =α=αcos n18=n P AB BP AP >4=AB =AP AB B C A30=AB 1O 2O d 1O 2O d O ABC ∆D E AB AC 52=AB AD BC DE //b OB =c OC ==DE b c 1O 2O A B 21O O 2O P PA PB 60=∠APB 6=AP 2O ABC第13题图 BA CDEO第15题图17.如图,在中,、分别是边、上的中线,,,那么 _ .18.如图,在中,,,.在边上取一点,使,以点为旋转中心,把逆时针旋转,得到(点、、的对应点分别是点、、),那么与的重叠部分的面积是 _ .三、解答题(19—22题,每题10分,23—24每题12分,25题14分,共78分)19.计算:. 20.已知二次函数,与轴的交点为,与轴交于、两点.(点在点的右侧)(1)当时,求的值.(2)点在二次函数的图像上,设直线与轴交于点,求的值.21.如图,已知某水库大坝的横断面是梯形,坝顶宽是6米,坝高24米,背水坡的坡度为1:3,迎水坡的坡度为1:2. 求(1)背水坡的长度. (2)坝底的长度.ABC ∆AD BE BC AC 5==AC AB 54cos =∠C =GE ABC Rt ∆o90=∠C 8=AC 6=BC AB O BC BO =O ABC ∆ 90C B A '''∆A B CA 'B 'C 'ABC ∆C B A '''∆30sin 45cot 60ta 60sin 230cot 45cos 22⋅−+−n 542−−=x x y y P x A B B A 0=y x ()m M ,6542−−=x x y MP x C MCB ∠cot ABCD AD AB CD AB BC A PO 1 O 2B第16题第21题图ABCD1:31:2G A BCD E第17题xyO第20题图ABC第18题O22.如图,已知是⊙的直径,为圆上一点,是弧BC 的中点,于,垂足为,联结交弦于,交于,联结. (1)求证:∽.(2)若,,求的长.23.如图,是平行四边形的对角线上的一点,射线与交于点,与的延长线交于点.(1)求证:.(2)若,求证:.24.已知抛物线经过点,点,直线:,直线:,直线经过抛物线的顶点,且与相交于点,直线与轴、轴分别交于点、.若把抛物线上下平移,使抛物线的顶点在直线上(此时抛物线的顶点记为),再把抛物线左右平移,使抛物线的顶点在直线上(此时抛物线的顶点记为). (1)求抛物线的解析式.(2)判断以点为圆心,半径长为4的圆与直线的位置关系,并说明理由.(3)设点、在直线上(点在点的下方),当与相似时,求点、的坐标(直接写出结果).AB O C D AB CH ⊥H H OD BC E CH F EH BHE ∆BCO ∆4=OC 1=BH EH M ABCD AM BC F DCH MH MF AM ⋅=2DM BD BC ⋅=2ADC AMB ∠=∠c bx x y ++=2()6,0A ()3,1B 1l ()0≠=k kx y 2l 2−−=x y 1l c bx x y ++=2P 1l 2l C 2l x y D E 2l M 1l N c bx x y ++=2N 2l F H 1l H F MHF ∆OAB ∆F H 第24题yxOE BAO C F H 第22题图DABCDHF M第23题25.已知多边形是⊙的内接正六边形,联结、,点是射线上的一个动点,联结,直线交射线于点,作交的延长线于点,设⊙的半径为.(1)求证:四边形是矩形.(2)当经过点时,⊙与⊙外切,求⊙的半径(用的代数式表示). (3)设,求点、、、构成的四边形的面积(用及含的三角比的式子表示).ABCDEF O AC FD H AF CH CH DF G CH MH ⊥CD M O ()0>r r ACDF CH E M O M r ()900<<=∠ααHCD C M H F r αA B C D E F G O H M第25题图 第25题备用图ABCD EFO试题解析第1-17题难度不大,填空题考了不少解三角形的问题。

1九年级上学期金山区金山初级中学第一次月考数学测试卷2018

1九年级上学期金山区金山初级中学第一次月考数学测试卷2018

九年级第一学期第一次月考测试卷2018.9一、选择题:(本大题共6题,每题4分,满分24分)1. 若ac bd =,则下列比例式中不正确的是( )(A )a b d c = (B )b a c d = (C )a b c d = (D )b c a d= 2. 如图,已知AB CD ∥,AD 与BC 相交于点O ,:1:2AO DO =,那么下列式子错误的是( )(A ):1:2BO CO =(B ):1:2CO BC =(C ):DO 3:2AD =(D ):1:2AB CD =3. 如图,点P 是ABC ∆边AB 上一点(AB AC >),下列条件不一定能使ACP ABC ∆∆∽的是( )(A )ACP B ∠=∠ (B )APC ACB ∠=∠ (C )AC AP AB AC = (D )PC AC BC AB=4. 已知线段a 、b 、c ,作线段x ,使::a b c x =,则正确的作法是( )(A )(B )(C )(D )5. 下列命题一定正确的是( )(A )两个等边三角形一定相似 (B )两个等腰三角形一定相似 (C )两个直角三角形一定相似 (D )两个含有30︒的等腰三角形一定相似 D C OBAa cbc a x b a x c b cx6. 如图,在ABC ∆中,D 、E 分别在AB 、AC 上,DE BC ∥,EF CD ∥交AB 于F ,那么下列比例式中正确的是( )(A )AF DE DF BC = (B )AF AD BDAB = (C )DF AF DB DF = (D )EF DE CD BC=二、填空题:(本大题共12题,每题4分,满分48分)7. 在比例尺为1:50000的地图上量出A 、B 两地的距离是12cm ,那么A 、B 两地的实际距离是______千米.8. 已知a 与单位向量e 的方向相反,且长度为2,那么用e 表示a ,a =______.9. 已知点P 是线段AB 上的一个黄金分割点,且10AB cm =,AP BP >,那么AP =______.10. 在ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE BC ∥,12AB cm =,11AE cm =,4CE cm =,那么DB =_____cm .11. 某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为_______米.12. 已知点G 是ABC △的重心,4AG =,那么点G 与边BC 中点之间的距离是_________.13. 如图,123l l l ∥∥,25AB AC =,10DF =,那么DE =_______.14. 已知ABC ∆与'''A B C ∆相似,并且点A 与点'A 、点B 与点'B 、点C 与点'C 是对应顶点,其中80A ∠=︒,'60B ∠=︒,则C ∠=_______度.15. 两个相似三角形的对应中线的比为3:4,那么它们的周长比是________.E C B DF Al 3l 2l 1C F E BD A16. 如图,ABC ∆中,9AB =,点D 在边AB 上,5AD =,B ACD ∠=∠,则AC =________.17. 如图,ABC ∆中,12BC =,点D 、E 分别在边AB 、AC 上,DE BC ∥,且ADE DBCE S S ∆=四边形,则DE =__________.18. 如图,在等腰ABC ∆中,AB AC =,30B ∠=︒,以点B 为旋转中心,顺时针旋转30︒,点A 、C 分别落在点'A 、'C 处,直线AC 、''A C 交于点D ,那么AD AC的值为 .三、解答题:(本大题共7题,19-22题每题10分,23-24题每题12分,25题14分,满分78分)19. 已知235a b c ==,求3452a b c a b -++的值.20. 如图,在ABC ∆中,BD CD =,联结AD ,点G 是AD 上一点,过G 作直线EF BC ∥,交边AB 与点E ,交边AC 于点F ,求证:EG FG =.B CDA21. 如图,在ABC ∆和ADE ∆中,BAD CAE ∠=∠,ABC ADE ∠=∠.(1)求证:ABC ∆∆∽ADE ;(2)判断ABD ∆与ACE ∆是否相似?并证明.22. 如图,已知ABC ∆的边16BC =,高8AD =,矩形EFGH 的边FG 在ABC ∆的边BC 上,顶点E 、H 分别在边AB 、AC 上,且6FG =,求边EF 长.M H G F ED C B A23. 如图,点P 是菱形ABCD 的对角线BD 上一点,联结CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:2PC PE PF =⋅(2)若菱形边长为8,2PE =,6EF =,求FB 的长.24. 如图在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD BDFC DC =;(2)若54BCFC =,求BDDC 的值.FED A25.如图,已知等腰ABCDB=,==,点D在边BC的反向延长线上,且3AB AC∆中,2点E在边BC的延长线上,且EAC D=,BC y∠=∠,设AD x=.(1)求线段CE的长;(2)求y关于x的函数解析式,并写出定义域;(3)当AC平分BAE∠时,求线段AD的长.AD CB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市金山区2018届九年级上学期期末(一模)数学试卷
(满分150分,考试时间100分钟)(2018.1)
一、选择题:(本大题共6题,每题4分,满分24分)
1.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) (A )
23a b =; (B )32a b =; (C )b 43a b +=; (D )b 5
3
a b +=. 2.在Rt △ABC 中,︒=∠90C ,BC a =,AC b =,AB c =,下列各式中正确的是()
(A )cos a b A =⋅; (B )sin c a A =⋅; (C )cot a A b ⋅=; (D )tan a A b ⋅=. 3.将抛物线()2
14y x =-++平移,使平移后所得抛物线经过原点,那么平移的过程为( ) (A )向下平移3个单位; (B )向上平移3个单位; (C )向左平移4个单位; (D )向右平移4个单位. 4.如图1,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB , 下列各式正确的是( ) (A )AB DC = ; (B )DE DC =
; (C )AB ED = ; (D )AD BE = .
5.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( ) (A )30厘米、45厘米; (B )40厘米、80厘米; (C )80厘米、120厘米; (D )90厘米、120厘米.
6.在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点
D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( ) (A )5r <; (B )5r >; (C )10r <; (D )510r <<. 二、填空题:(本大题共12题,每题4分,满分48分)
7.计算:3(2)a a b --=

8.计算:2o o 2sin 45tan 45-= .
9.如果两个相似三角形对应边上的高的比为1∶4,那么这两个三角形的周长比是 . 10.在Rt △ABC 中,∠C =90°,sin A =
1
2
,那么cos A= . 11.已知一个斜坡的坡度13i =︰,那么该斜坡的坡角为 .
图 1
A
B
C
D
E
12.如图2,E 是□ABCD 的边AD 上一点,AE=
1
2
ED , CE 与BD 相交于点F ,BD=10,那么DF= . 13.抛物线221y x =-的顶点坐标是 .
14.点(-1,a )、(-2,b )是抛物线223y x x =+-上的两个点,
那么a 和b 的大小关系是a b (填“>”或“<”或“=”). 15.如图3,AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,
若OC=6,则AB 的长等于 .
16.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 . 17.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于 . 18.如图4,在矩形ABCD 中,E 是AD 上一点,把△ABE 沿直线BE 翻折,点A 正好落在B C 边上
的点F 处,如果四边形CDEF 和矩形ABCD 相似,那么四边形CDEF 和矩形ABCD 面积比是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒
︒⋅︒+︒

20.(本题满分10分)
如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设=AB a ,=AD b ,
求向量MN
关于a 、b 的分解式.
A B
C
D
图 4
A
B
C
D
E F 图 2 O C B
A
图3
21.(本题满分10分)
如图,已知AB是⊙O的弦,C是 AB的中点,AB=8,AC=25,求⊙O半径的长.
22.(本题满分10分)
如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.
(参考数据:tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,
tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)
23.(本题满分12分,每小题6分)
如图,已知在Rt△ABC中,∠ACB=90°,AC > BC,CD是Rt△ABC的高,E是AC的中点,ED 的延长线与CB的延长线相交于点F.
(1)求证:DF是BF和CF的比例中项;
(2)在AB上取一点G,如果AE·AC=AG·AD,
求证:EG·CF=ED·DF.。

相关文档
最新文档