Characterization of carbon nitride thin films deposited by reactive
石墨相氮化碳光催化还原CO2研究进展
第 42 卷第 6 期2023年 11 月Vol.42 No.6Nov. 2023中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)石墨相氮化碳光催化还原CO2研究进展常世鑫1,虞梦雪1,俞迨2,严翼1*,王之1,吕康乐1(1 中南民族大学资源与环境学院& 资源转化与污染控制国家民委重点实验室,武汉430074;2 杭州市质量技术监督检测院,杭州310019)摘要半导体光催化可以利用太阳能驱动CO2光催化还原制备碳氢燃料,成为研究热点.石墨相氮化碳(g-C3N4)具有制备简便和可见光响应性能的优点,是CO2还原的热门光催化材料。
但是它具有缺陷多、比表面积小和光生载流子易复合等缺点,光催化CO2还原性能不高.为此,介绍了高CO2还原活性的g-C3N4研究进展,内容包括:(1)g-C3N4研究基础(分子结构、制备方法与电子能带结构);(2)高活性g-C3N4的分子设计策略(缺陷调控、元素掺杂、表面等离子体处理、单原子催化和异质结构建等),重点讨论了改性方式对g-C3N4的光吸收、光电性能和CO2还原产物选择性的影响.最后建议未来聚焦结晶氮化碳的修饰改性研究,强调利用原位和瞬态表征技术指导高CO2还原活性的g-C3N4的开发,并关注具有高能量密度的长链碳氢燃料产物的选择性.关键词氮化碳;光催化;CO2还原;选择性中图分类号O625.67;O643.3 文献标志码 A 文章编号1672-4321(2023)06-0721-12doi:10.20056/ki.ZNMDZK.20230601Research progress of photocatalytic CO2 reduction ongraphitic carbon nitrideCHANG Shixin1,YU Mengxue1,YU Dai2,YAN Yi1*,WANG Zhi1,LYU Kangle1(1 College of Resources and Environment & Key Laboratory of Resources Conversion and PollutionControl of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China;2 Hangzhou Inspection Institute of Quality and Technical Supervision, Hangzhou 310019, China)Abstract Semiconductor photocatalysis can use solar energy to drive the photocatalytic reduction of CO2,producing hydrocarbon fuel,which becomes a research hotspot. Graphitic carbon nitride (g-C3N4)is a popular photocatalytic material for CO2reduction,which has the merits of facile synthesis and visible-light-response property. However,the photocatalytic activity of g-C3N4 is not high enough for CO2 reduction due to its drawbacks including many defects, small specific surface area, and easy recombination of photogenerated charge carriers. Herein, the recent progress of high active g-C3N4 for CO2 reduction was introduced, which included (1) the research fundamental of g-C3N4: molecular structure,synthesis method,and electronic band structures;(2)the strategies of g-C3N4 molecular design for high efficient CO2 reduction:defects engineering,elements doping,surface plasma treatment,single-atom catalysis,and heterojunction construction. Detailed discussions were focused on theeffects of different modification methods on light absorption,photoelectric property,and selectivity of CO2reduction of g-C3N4. Finally,it is suggested to focus on the study of crystalline g-C3N4modification in the future,emphasizing the use of in situ and transient characterization techniques in exploration of g-C3N4with high CO2reduction activity and selectivity of long-chain hydrocarbon fuel products with high energy density.Keywords carbon nitride; photocatalysis; CO2 reduction; selectivity收稿日期2023-04-12* 通信作者严翼(1986-),女,讲师,博士,研究方向:环境生态,E-mail:****************基金项目国家自然科学基金资助项目(41901235)第 42 卷中南民族大学学报(自然科学版)工业革命以来,人类活动不断的增加和工业的迅速发展促使了化石燃料的大量使用,导致CO2温室气体的大量排放[1-4].伴随国家的“双碳”目标和绿色发展战略的提出,如何合理解决CO2气体造成的环境问题将影响社会和经济的可持续发展. CO2是一种比较稳定的分子,使C=O键断裂需要大约750 kJ‧mol-1的能量,常规的物理化学方法处理CO2较困难.但是分子中的O周围存在孤对电子,可以为路易斯酸中心提供电子,而其中C可以接受来自路易斯碱中心的电子[5];此外,CO2可以吸附在绝大多数催化剂材料表面上,这为催化还原CO2分子提供可能性[5-6].受光激发的半导体材料可以诱导CO2转化为高价值的碳氢燃料产物,在缓解温室效应的同时,还生产了高附加值工业化学品.因此,CO2的光催化还原具有节能和环保的优点,符合可持续发展的理念[7-8].随着研究的不断深入,高活性CO2还原的半导体光催化材料的开发也从初始的TiO2逐渐拓展到硫化物、金属氧化物和非金属氮碳化物等[9-10],这些催化剂的光吸收范围从紫外光逐渐向可见光拓展,CO2还原产物日渐丰富,从C1产物(如CO、CH4、CH3OH和HCOOH)过渡到C2产物(如C2H5OH 等)[5-6].在这些半导体材料中,氮化碳由于具有较好的物理化学稳定性、优异的光响应范围、合适的带隙结构、便捷的制备方式和易于改性等优点而受到广泛关注[3-4, 7].同时,由于氮化碳的能带结构满足光催化CO2还原的热力学条件,被迅速应用于CO2还原领域.但是,体相氮化碳仍然存在可见光吸收范围窄、载流子复合率高和比表面积小等缺点.针对这些问题,近年来研究人员致力于对氮化碳进行改性从而提升其光催化性能,特别是CO2还原产物的选择性,以产生更高价值的多碳产物.基于以上研究结果,本文主要针对氮化碳改性调节CO2还原产物的选择性进行总结,分别从缺陷调控、元素掺杂和构建异质结三个角度进行详细阐述,重点探讨了改性方法对于氮化碳光吸收、光电特性及还原产物选择性的影响,最后对氮化碳光催化材料未来发展提出展望.1 氮化碳的结构和性质氮化碳是一种热门的聚合型材料,拥有着较高的化学稳定性和热稳定性,耐酸碱腐蚀,最高可在700 ℃下保持热稳定性[4, 11].氮化碳前驱体在高温环境中,可以一步一步缩合成环状结构,这种环状结构的雏形最早由BERZELIUS发现,并在1834年由LIEBIG命名为“melon”[11-14].这种雏形材料继续进行缩合最终可得到两种氮化碳的主要结构——三嗪环(C3N3)[图1(a)]和七嗪环(C6N7)[图1(b)].这两种聚合型的结构由于缩合不完全,使少量杂质氢在结构边缘上产生伯胺基团或者仲胺基团,产生大量无序的体相缺陷.这些体相缺陷的存在,不利于光生载流子的快速迁移扩散,而成为了载流子复合中心,抑制光催化活性.所以,需要对氮化碳进行结构修饰与改性,提升其光催化性能[11, 15-16].氮化碳是一种典型的N型半导体材料,其能带结构如图1(c)所示,带隙约为2.7 eV,它的导带电位比大多数的CO2还原产物的电位更负,理论上可以生成诸多的还原产物.但在实际应用过程中,受到热力学和动力学因素的限制,氮化碳光催化CO2还原产物主要为CO和CH4[8].在CO2还原反应过程中,氮化碳价带上的空穴分解H2O为导带产物的生成提供H+[16];而导带上的电子还原CO2时,生成CH4比生成相同量的CO需要更多的电子和H+[公式(1)和公式(2)],所以生成CH4受到动力学因素的影响程度更大.此外,氮化碳材料的导带电位也满足生成H2的条件,这也制约了氮化碳还原CO2生成CH4[16-17].CO2 + 2H++ 2e-→ CO + H2OE0redox=-0.53 V (vs. NHE,PH = 7),(1)CO2 + 8H++ 8e-→ CH4+ 2H2OE0redox=- 0.21 V (vs. NHE,PH = 7).(2)氮化碳可以通过尿素、氰胺、双氰胺、三聚氰胺、硫脲等前驱体[图1(d)]通过热聚合(包括水热合成法、模板法、熔融盐法等)得到,方法便捷、易于批量制备[12-13, 18-20].其中,氰胺热缩合生成双氰胺,再由双氰胺热缩合生成三聚氰胺,最后通过三聚氰胺的逐渐缩合制备出氮化碳,这种途径被公认为是产生相对较少缺陷的聚合物的一种高效方法[4, 11].但是制备出的氮化碳存在较多缺陷,为了改善氮化碳缺陷多和载流子易复合的问题以提高光催化剂的活性和调节产物的选择性,可以从制备方式出发,通过缺陷调控、元素掺杂或修饰改性、构造异质结等途径实现氮化碳的高效应用和产物选择性的调控[21-23].对氮化碳进行改性处理后的CO2还原产物及选择性的结果详见表1.722第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展2 改性氮化碳调控CO 2光催化还原选择性CO 2的光催化还原,要经历多电子逐步还原的反应过程.CO 2在氮化碳表面的光催化还原产物主要有C 1产物和C 2产物,而生成更长链的多碳产物至今仍然面临着很大的挑战[5].C 1产物的生成过程, 首先是H +与电子转移到CO 2表面,生成羧基中间体(COOH*),然后进一步生成CO 、CH 4等产物[6].CO 由C =O*或C ≡O*生成,而其他C 1还原产物如HCHO 、CH 3OH 和CH 4的生成途径则由中间体CO*经过一系列反应生成[5].其中CH 4的生成方式有两种:一种通过CO*加氢生成CH 3O*,再转化成CH 4和H 2O ;另一种由CO*生成COH*,然后脱水形成C*,最后逐步加氢生成CH 4[5-6, 50].C 2产物由生成的CO*加氢生成*CHO ,然后碳碳键偶联产生COCHO*,继而生成乙醇和乙醛等产物[5, 24, 39].改性后的氮化碳因为性能发生改变会导致CO 2还原过程中热力学性能和动力学性能发生改变,使得生成的中间体的种类和相应的生成速率发生变化,最终影响到产物的选择性[5, 16].基于氮化碳的改性方式进行分类,本文将从多种氮化碳的改性方法对于产物选择性影响角度进行详细阐述.2.1 缺陷调控由于石墨相氮化碳的热聚合不完全,导致大量无序体相缺陷的生成,这些缺陷很容易成为光生载流子的复合中心,抑制石墨相氮化碳的光催化活性.但是,对于结晶度比较好在石墨相氮化碳,可以通过特定缺陷(如碳缺陷位点和氮缺陷位点)的引入来调控其半导体能带结构和表面化学环境,增强光吸收和载流子分离效率,实现CO 2还原的活性的增强和产物选择性的调控[1-2].氮空位的引入可以增强CO 2的吸附性能,同时可以作为陷阱诱捕光生电子,通过延长载流子的寿命和抑制载流子复合,来提升石墨相氮化碳的光催化还原CO 2性能[17].此外,捕获电子后的氮空位由于周围电子分布的改变更有利于CO 2吸附和活化[17].通过制备出的三聚氰胺-三聚氰酸超分子进行自组装制备出氮化碳(表1序号1),将氮化碳置于550 ℃下,使用氩气和氢气的混合气体氛围进行氢热处理制备出有氮空位缺陷的管状氮化碳[17].通过原位红外测试[图2(a )]可知:在反应图1 氮化碳结构、性质和制备方法Fig.1 Structure , properties and preparation method of carbon nitride723第 42 卷中南民族大学学报(自然科学版)表1 氮化碳改性策略与光催化还原CO2性能Tab.1 Modification strategies and photocatalytic CO2 reduction performances of carbon nitride序号1 234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33催化剂名称TCN-1NVs-PCNg-CN-650g-CN-750HCN-AP-g-C3N4S-CN1% B/g-C3N42Au-CNCN/Aug-C3N4/Bi/CDsNi25/g-CNCN/PDA10Def-CNPt@Def-CNCo-MOF/g-C3N4Ni5-CNCu-CCNCCNBsK-CNMn1Co1/CNPtCu-crCNInCu/PCNPd1+NPs/C3N4P/Cu SAs@CNC3N4/rGO/NiAl-LDHsCo3O4/CNSg-C3N4/Cu2Og-C3N4/Ti3C2TxCN/ZnO/GAg-C3N4/FeWO4PN-g-C3N4CeCo-PTI改性方法氮空位氮空位氮空位氮空位局部结晶P改性S掺杂B掺杂纳米Au纳米Au纳米Bi纳米Ni2,6吡啶二羧酸掺杂缺陷氮化碳单原子PtCo-MOFNi单原子Cu单原子Cu修饰K掺杂双单原子双单原子双单原子单原子与纳米粒子金属单原子与非金属Ⅱ型半导体Z型异质结Z型异质结异质结Z型异质结Z型异质结多孔纳米带S型异质结光源300 W氙灯LED灯300 W氙灯300 W氙灯LED灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯氙灯300 W氙灯300 W氙灯500 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯氙灯300 W氙灯氙灯300 W氙灯300 W氙灯300 W氙灯250 mW cm-2氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯300 W氙灯活性/(µmol‧g-1‧h-1)CO: 7.1CO: 55.95CO: 5.3CH4: 34.4CH4: 52.8CH3COH: 1815CO: 2.4CH4: 1.8CO: 3.20CO: 0.45CH4: 0.16CH4: 1.55CO: 28.3CO: 9.08―CO: 284.7H2: 71CH4: 2.1CH4: 6.3CO: 6.75CH4: 5.47CO: 8.6CO: 3.1CO: 9.9H2: 0.94CO: 8.7CO: 47CH4: 2.8C2H5OH: 28.5CH4: 20.3C2H6: 616.6CO: 2.6CH4: 20.0CO: 13.3CH4: 3.2CH3OH: 0.71CO: 3.98CH4: 2.1CO: 33.9CO: 6.0CO: 29.8CH4: 45.4选择性100% CO85% CO86.6% CH496.4% CH498.3% CH3COH43.3% CH4100% CO26.2% CH419.1% CH495.6% CO98% CO28% CH4100% CO78% CH499% CH444.8% CH481.1% CO100% CO91.4% CO―100% CO19.4% CH492% C2H5OH97.8% CH433.0% C2H688.5% CH480.8% CO94.9% CH3OH34.7% CH492% CO91% CO100% CO88.3% CH4参考文献[17][22][16][16][24][25][26][27][28][29][30][31][32][33][33][3][34][35][36][23][37][38][39][40][41][42][43][44][45][46][47][48][49]724第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展过程中的产生了大量生成CO 的中间体——CH 3O*、HCOO -和COOH*,并未发现大量生成CH 4中间体,使CO 2还原更倾向于生成CO.除了改变煅烧热处理的气体氛围可以制造氮空位,利用甲酸辅助刻蚀也可以产生氮空位缺陷.杨朋举教授课题组[22]用三聚氰胺作为前驱体煅烧出氮化碳,利用氩气将甲酸带入管式炉对氮化碳进行热处理从而产生氮空位.通过表征发现氮空位主要集中在氮化碳的表面,形成氮空位后也极大地提高了CO 的产率,CO 选择性大约在85%(表1序号2).通过吉布斯自由能的理论计算[图2(b )]可以发现:这种方式引入的氮空位降低了生成COOH*的活化能,使得产物中CO 的选择性更高.氮空位的形成会影响材料能带结构,带隙的位置可以受到氮空位的电子密度的影响[16, 51].张金龙教授课题组[16]报道三聚氰胺在空气氛围下通过改变温度进行高温煅烧可以制备出氮空位的氮化碳.根据CO 2还原的活性测试结果发现:随着催化剂煅烧温度的提高,CH 4的选择性大幅提高,750 ℃煅烧出来的氮化碳CH 4的选择性最大并且达到96.4%(表1序号4).通过能带分析发现:随着煅烧温度的提高,间隙态的生成位置逐渐降低[图2(c )],在650 ℃以上的温度进行煅烧,间隙态的位置会低于产生CO 的电位.间隙态的产生会使得电子在激发后率先集中在其附近,更有利于从热力学方面产生CH 4.此外,利用Pt 4+在催化剂表面光沉积来研究氮化碳的光生电子的迁移途径发现:光生电子倾向于迁移并聚集在催化剂的边缘,导致边缘的氮缺陷处的电子密度更高,在动力学上对产生CH 4更有利.在热力学和动力学双重优势下,还原产物体现出更高的CH 4选择性.用传统方式热缩合得到的氮化碳基本为非晶态或半晶态的状态.在结晶氮化碳表面引入缺陷也是一种提升性能的方法.文献[24]通过加入氨基-2-丙醇(AP )和双氰胺制备氮化碳提高了单体的结晶度和聚合物的聚合度,获得了结晶氮化碳(图3).从样品的高分辨率透射电镜[图3(b )]照片,可以观察到明显的缺陷区域和有序的晶格条纹,反映出其缺陷氮化碳较高的结晶性能.这种结构可以促进CO 2向油类化合物的转化,通过对反应过程分析[图3(c )]可知:这种结构使得CO 2逐步生成C 2产物的中间体——CO*和CHO*,CO*和CHO*更容易自发偶联生成C 2产物中间体OCCHO*,抑制CHO*进行质子化的过程,故最终生成产物以CH 3CHO 为主,并且选择性高达98.3%(表1序号5).从理论上讲,相比将CO 2还原生成C 1产物,还原生成C 2产物具有更高的能量密度和更大的商业价值[52].2.2 元素掺杂元素掺杂改性也是一种常用的改性手段.金属或者非金属掺杂剂的原子轨道与催化剂本身的分图2 N 缺陷氮化碳CO 2还原选择性影响机理图Fig.2 Schematic diagram of selectivity reduction of CO 2 over carbon nitride with N defect725第 42 卷中南民族大学学报(自然科学版)子轨道发生杂化,能够起到改变反应的活性位点、调节能带结构和电子分布结构等作用,进而通过影响催化剂的性能来改变产物的选择性[5-6].在氮化碳还原CO 2过程中,电子从氮原子上激发并向碳原子上迁移,但是光激发后电子更加倾向于分布在氮附近,尤其是分布在双配位氮的附近[图4(a )],这使电子的迁移更加困难,导致在催化过程中载流子复合率高和反应动力更低[16, 27].刘敏教授课题组[27]建立了硼掺杂氮化碳的模型,根据模型[图4(b )]可知:硼原子已成功掺杂在相邻的七嗪环之间,并且与七嗪环的氮原子形成了良好的亲和力.通过计算发现在硼掺杂氮化碳后,激发后的电子从N (2P x ,2P y )向B (2P x ,2P y )上转移更加容易,可以极大地增加反应的动力,更有利于CH 4的产生.他们用硼酸和尿素混合进行一步煅烧实验生成硼掺杂氮化碳,硼作为主要的活性位点可以改变对CO 2还原中间体的吸附,使得产物更容易生成CH 4,所以相比纯氮化碳,生成CH 4的选择性得到了提高.相比硼掺杂,硫掺杂对氮化碳的性能改变有着不同影响.文献[26]通过水热和程序升温的方法制备出介孔硫掺杂氮化碳,更多的介孔形成和硫的掺杂增大了比表面积,并增强了对CO 2的吸附能力 [图5(a )],这有利于CO 2的活化并进行还原反应.在能带结构中,由于硫参与轨道杂化并且作为主要的活性位点,载流子的分离效率得到提高,反应的活性也得到增强.在生成产物的过程中,相比纯氮化碳,硫掺杂改性的氮化碳使生成的CO 产物更容易脱附[图5(b )],因此生成CO 的选择性显著提高.2.3 表面等离子体效应金属纳米粒子的负载可以增强光吸收和促进载流子分离,从而提高光催化活性的效果.在氮化碳上掺入金属纳米粒子后,不仅可以作为活性位点和形成促进载流子分离的肖特基结构显著提升性能,而且还会由于金属纳米粒子的局部表面等离子共振效应(LSPR )进一步拓展催化剂的光吸收范围[7, 53-54].负载Au 纳米粒子的氮化碳就是一个不错的例子,可以通过LSPR 效应一定程度上提高CH 4的选择性.KAIMIN S 教授课题组[28]利用NaBH 4还原法所制备的负载Au 纳米粒子的氮化碳,不仅有效地抑制了载流子复合,还通过LSPR 效应促进了更多热电子产生和增强了在可见光范围下的光吸收能力,大幅提高了CO 2还原的活性,尤其是为CH 4的形成提供了更多活性电子促进其生成.向全军教授课题组[29]用N 2等离子体处理浸渍在HAuCl 4中的氮化碳制备催化剂,这种Au 纳米粒子负载氮化碳也能通过Au 纳米粒子的LSPR 效应显著提高CH 4的选择性.图3 局部结晶氮化碳的结构与CO 2还原反应机理Fig.3 Morphology of locally crystalline carbon nitride and CO 2reduction reaction mechanism图4 B 掺杂氮化碳DFT 计算Fig.4 DFT calculation about B doped carbon nitride726第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展此外,金属纳米粒子作为活性位点也可以降低反应能垒.董帆教授课题组[30]使用碳点(CDs )作为基质,将Bi 纳米粒子锚定在氮化碳上并与其进行桥接制备出CNB -2,Bi 通过LSPR 效应增强了氮化碳光吸收的能力和产生了更多热电子,热电子产生后可自发注入氮化碳中,为CO 2还原提供更多热电子[图6(b )];而作为基质的CDs 可以作为光生空穴的受体,在内建电场的作用下Bi 和氮化碳所产生的空穴可以转移到CDs 上,有利于光生电荷的分离并为CO 2还原提供更多的还原动力.通过吉布斯自由能可以得出,Bi 纳米粒子的掺入明显降低生成CO 途径的中间产物的活化能,为生成CO 提供更多热力学条件,最终生成CO 的选择性得到了提高.2.4 单原子催化将金属由纳米级尺寸制备成更小的单原子尺寸,会引起原子自身特性发生更为显著的改变.通过金属单原子对氮化碳改性,一方面暴露出更多的单原子位点,影响吸附中心和反应位点;另一方面单原子通过改变电子结构对反应过程进行调整,拥有了更加出色的催化性能表现[54-56].金属单原子改性是一种充满挑战又极大提高催化剂性能的方法,有不少有关通过单金属单原子对氮化碳改性提升性能的报道.熊宇杰教授课题组[33]通过在氮化碳上分别负载Pt 单原子(Pt@Def -CN )和Pt 纳米粒子,进行CO 2还原实验中,相比未负载金属的氮化碳,它们的反应活性和CH 4的选择性显著提高,其中Pt@Def -CN 对于CH 4的选择性提升更高,达到了99%(表1序号15),由于单原子独特的性质对选择性造成了影响.一方面,因为H 原子与Pt 单原子之间结合相对不稳定,Pt 单原子附近存在更多—OH 基团,抑制了H 2产生,为生成CH 4提供更多H +;另一方面,Pt 单原子有效地降低了反应过程中生成CH 4的活化能能垒[图7(a )],同时又增加了CO*中间产物的解析能,提高了CH 4的选择性.向全军教授课题组[35]制备出掺入Cu 单原子的高结晶氮化碳,Cu 单原子的加入可作为CO 2活化的活性中心,提高了对CO 2的吸附能力,增强了反应活性.此外,Cu单原子的加入使图5 S 掺杂氮化碳的CO 2吸附等温线和CO -TPD 光谱Fig.5 CO 2 adsorption isotherms and CO -TPD spectra of S -oping carbon nitride图6 金属纳米离子改性氮化碳CO 2还原反应机理图Fig.6 Scheme diagram of metal nanoions modified carbon nitride CO 2 reduction reaction727第 42 卷中南民族大学学报(自然科学版)得生成CO 的反应过程优先于生成CH 4的反应过程[图7(b )],极大地提高了CO 的选择性.双金属单原子通过协同作用能提高CO 2还原性能.李亚栋教授课题组[37]合成出含有Co 和Mn 双金属单原子的氮化碳来进行CO 2还原.在还原过程中,光生空穴更倾向于移动到Mn 单原子上作为活性位点加速H 2O 分解,提供H +;而光生电子更倾向于移动到Co 单原子上,通过增加CO 2的键长和键角将CO 2活化,最终生成CO.这种双金属单原子的协同作用使CO 的选择性基本上达到100%(表1 序号21).侯军刚教授课题组[39]将Cu 和In 单原子分散在氮化碳上,双金属单原子的引入改变了催化剂的电子结构[图7(c )].在Cu 单原子附近有明显的电荷富集的迹象,而在In 单原子附近有明显的电荷消耗的迹象,它们之间的协同作用促进了电荷转移和电荷分离.此外,双金属的作用增强了对中间体CO*的吸附并降低了C —C 偶联的活化能,促使了偶联生成乙醇.金属单原子和金属纳米粒子同时引入氮化碳上能够协同发挥作用,调整CO 2还原的选择性.郑旭升教授课题组[40]通过在氮化碳上引入Pd 单金属(Pd 1)和Pd 纳米粒子(Pd NPs )作为双活性位点,改善了氮化碳的光催化性能.相比只引入Pd 1,双金属单原子引入后的协同作用使得CH 4的选择性有了显著提高[图7(d )].Pd NPs 的加入促进H 2O 分解并且加快H +转移到Pd 1;而Pd 1则更有利于吸附中间体CO*,加快质子化过程,生成CH 4.此外,Pd NPs 和Pd 1的协同作用也降低了从CO*到生成CHO*的活化能能垒,显著提高了生成CH 4的选择性.金属单原子与非金属之间也能够产生协同作用,提高氮化碳的性能,影响产物的选择性.毛俊杰教授[41]课题组报道了通过将P 和Cu 作为双活性位点锚定在氮化碳上,在CO 2还原过程中生成高选择性的C 2H 6产物.首先,P 和Cu 修饰对氮化碳的带隙起到一定调整作用,在一定程度上更有利于电子空穴的光激发分离.其次,P 和Cu 作为电子和空穴的捕获位点,可以促进Cu 对电子的富集从而实现CO 2还原的多电子过程.最后,P 和Cu 的修饰降低了中间生成C 2H 6的反应途径的活化能,CO*和CO*更容易发生偶联,形成中间体OCCO*,逐步加H最终生图7 单原子金属改性氮化碳CO 2还原反应机理图Fig.7 CO 2 reduction reaction scheme diagram of monometallic metal modified carbon nitride728第 6 期常世鑫,等:石墨相氮化碳光催化还原CO 2研究进展成C 2H 6产物.2.5 异质结构建不同于单一的材料,将复合材料制成异质结更有利于提高催化剂的性能.由于异质结界面在空间结构上彼此分离,光生电子和空穴的复合会更容易被抑制,从而改变生成产物的选择性[7, 21, 57].Ⅱ型异质结在CO 2还原的相关文献中经常被报道,汪铁林教授课题组[42]在NiAl 层状双金属氢氧化物(NiAl -LDHs )和氮化碳中引入还原氧化石墨烯(rGO )辅助制备成Ⅱ型半导体,由于rGO 拥有优异的导电子能力,能进一步促进载流子分离,使氮化碳上光生电子更迅速分离并转移到NiAl -LDHs 的Ni 原子上,导致生成CO 的选择性大大提高.Ⅱ型异质结虽然可以极大地促进载流子分离,但会使催化剂的价带或导带的电位降低[12, 21].Z 型异质结概念受到植物光合作用的机理启发提出.相比Ⅱ型异质结,Z 型异质结保持了更正的价带和更负的导带电位,因此复合材料拥有更强的光催化氧化/还原性能[21, 57-58],常应用于光催化领域.文献[46]报道利用静电自组装和低温共沉积法将ZnO 和氮化碳锚定在石墨烯气凝胶上制备出间接接触Z 型异质结结构,这种异质结结构的构建不仅使电子空穴更有效地空间分离,在CO 2还原产物中CO 的选择性更高.有国外课题组[47]制备出氮化碳和FeWO 4复合的直接接触Z 型异质结.同样地,这种异质结也极大地抑制了载流子分离和提高了氧化电位,使产物中H +更倾向于生成H 2,抑制了CH 4的产生,故CO 2还原的产物中没有CH 4和其他烃类产物产生.3 总结与展望光催化技术可以利用太阳能来驱动温室气体CO 2的催化还原,制备具有高附加值的碳氢燃料,因此该技术具有节能和环保的优点.在所有的半导体光催化材料中,石墨相氮化碳因为具有可见光响应和能带结构合理等优点,而成为受欢迎的CO 2还原光催化材料.但是,其依然存在缺陷多、比表面积小和光生载流子易复合等缺点,在一定程度上制约了该技术的实际应用.因此,科学家们采用各种策略对石墨相氮化碳进行修饰改性,以进一步提升其光催化还原CO 2的性能.本文总结了目前石墨相氮化碳用于CO 2还原方面的5种改性方式,分别是缺陷调控、元素掺杂、等离子体效应、单原子修饰和异质结构建.对石墨相氮化碳的结构修饰,改变了催化剂表面的化学环境,进而对CO 2光催化还原路径产生和产物还原选择性产生深远影响.为了实现CO 2在氮化碳表面的高效光催化还原,在今后的研究中以下工作值得进一步深入研究.(1)开展基于结晶石墨相氮化碳的修饰改性研究.相对于普通氮化碳,结晶氮化碳的体内和表面缺陷大幅度减少,而表现出高效载流子分离效率和光催化性能.但是石墨相氮化碳依然属于有机半导体材料,其表面缺乏过渡金属作为CO 2分子的吸附和活化中心.因此,需要开展基于结晶氮化碳的表面改性特别是过渡金属表面修饰研究.(2)开展修饰组分之间的协同作用机制研究.从CO 2在石墨相氮化碳表面的吸附开始,到吸附产物如CH 4/CO 的脱附,中间需要经历很多关键步骤.因此,深入研究各修饰组分之间的接力还原CO 2机制,对深刻理解CO 2还原的活性中心结构和指导高效光催化还原CO 2材料的开发具有重要意义.(3)开展CO 2光催化还原的原位瞬态谱学研究.CO 2分子在光催化还原过程中,存在中间产物结构图8 氮化碳异质结CO 2还原选择性机理图Fig.8 CO 2 reduction reaction scheme diagram of carbon nitride with heterojunction729。
类石墨相氮化碳基光催化剂的制备及其光催化性能研究
分类号:TQ579单位代码:10110学号:S*******中北大学全日制工程硕士学位论文类石墨相氮化碳基光催化剂的制备及其光催化性能研究硕士研究生谢春妹校内指导教师张立新校外指导教师李万辉所在领域化学工程2018年5月24日图书分类号TQ579密级非密UDC注1_____________________________________________________________全日制工程硕士学位论文类石墨相氮化碳基光催化剂的制备及其光催化性能研究谢春妹校内指导教师(姓名、职称)张立新教授校外指导教师(姓名、职称)李万辉高级工程师申请学位级别工程硕士所在领域(研究方向)化学工程(光催化)论文提交日期2018年6月4日论文答辩日期2018年5月24日学位授予日期年月日论文评阅人赵志换副教授弓亚琼副教授答辩委员会主席马国章教授2018年5月24日注1:注明《国际十进分类法UDC》的分类类石墨相氮化碳基光催化剂的制备及其光催化性能研究摘要环境污染和能源问题是人类面临的两个重大问题,特别是由化石燃料燃烧所产生的二氧化碳(CO2)排放到空气中造成的温室效应已成为全球性问题。
CO2既是一种环境污染物,同时也是一种重要的碳源,寻求合适的方法将CO2转化为有价值的产品既可以解决环境问题,同时还能缓解能源危机。
光催化技术是一种绿色环保的技术,以太阳能为动力,反应条件温和,不产生有毒有害的副产物,在催化还原CO2方面有较好的应用。
光催化还原CO2是模拟植物光合作用固定CO2,将引起温室效应的CO2转化成CH4、CH3OH等碳氢燃料。
目前报道的很多光催化材料都是因为光响应范围窄,光催化性能低以及光催化剂的不稳定性而导致其应用范围受到限制,因此,高效、稳定的新型光催化材料成为目前的研究重点。
类石墨相氮化碳(g-C3N4)因其本身具有可见光响应性和良好的发展前景而备受关注,但是纯g-C3N4的比表面积小、光生载流子的分离率低,导致其光催化性能较低。
碳纳米管的结构_制备及修饰
●自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。
探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。
碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。
这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。
纳米中空结构使得它有可能作为一种纳米反应器[5]。
作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。
它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。
1碳纳米管的性质1.1碳纳米管的结构碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。
碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。
多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。
这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。
这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。
而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。
1.2碳纳米管的制备电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。
硫脲热解制备G-C3N4分解NO如何获得更佳G-C3N4
E fficient and Durable Visible Light Photocatalytic Performance of Porous Carbon Nitride Nanosheets for Air Puri ficationFan Dong,*,†Meiya Ou,†Yanke Jiang,†Sen Guo,‡and Zhongbiao Wu ‡†Chongqing Key Laboratory of Catalysis and Functional Organic Molecules,College of Environmental and Biological Engineering,Chongqing Technology and Business University,Chongqing 400067,China‡Department of Environmental Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China*Supporting InformationThe development of visible light driven photocatalysts has been the focus of considerable worldwide attention as photocatalysis technology is intensively applied in several important areas,including especially environmental pollution control and solar energy conversion.1−5In general,most of the photocatalysts are metal-containing,such as metal oxide,metal sul fide,tungstates,niobates,tantalates,and vandates.6−8Until recently,a new kind of conjugated polymer semi-conductor (graphitic carbon nitride,g-C 3N 4)has been discovered as a fascinating metal-free organic photocatalyst working under visible light.9−13Graphite-like covalent g-C 3N 4is constructed by poly(heptazine)heterocyclic planes packed closely in a way similar to graphite.9The g-C 3N 4is multifunctional with broad applications (energy conversion and storage,contaminants degradation,carbon dioxide storage and reduction,catalysis,solar cells,and sensing)owing to its high stability,appealing electronic structure,and medium band gap.14,15The g-C 3N 4can be facilely prepared by pyrolysis of nitrogen-rich precursors via polycondensation.9−15The texture,electronic structure,and performance of g-C 3N 4are largely depended on the condensation conditions and the types of precursor.14,15The precursors employed for synthesis of g-C 3N 4include cyanamide,dicyandiamide,trithiocyanuric acid,melamine,triazine,heptazine derivatives,and more recently discovered urea and thiourea.16−23The texture and band structure of g-C 3N 4can also be tuned by templating,doping,heterostrucutre design,and postfunctionalization in order to enhance the reactivity in photocatalysis,selective synthesis,and CO 2reduction.24−29increase of surfaceareas could improve the photocatalytic activity of materials.30,31The former factor is favorable for the reduction of defects and inhibiting charge carriers recombina-tion,while the later one could provide more active sites foradsorption and reaction.30,31However,high crystallinity andlarge surface areas are contradictory in most of the cases.In another word,the synthesis of catalytic materials with high crystallinity can be normally realized at the expense of large surface areas.Thermal treatment is the most common way toenhance crystallinity of the catalytic materials.For example,byincreasing the annealing temperature and prolonging the annealing time during synthesis of TiO2and other inorganic photocatalysts,the crystallinity could be enhanced,which however inevitably resulted in the decrease of surface areas.30,31It is highly desirable that high crystallinity and large surface areas for a catalyst can be achieved simultaneously.In spite of the advances made on the synthesis of g-C3N 4as a photocatalyst for hydrogen evolution and aqueous pollutant degradation,the micro/nanostructuresof g-C 3N 4need to be improved for better photocatalysis.16−23Moreover,the photo-catalytic treatment e fficiency of g-C3N 4for gaseous air pollutants has seldombeen reported.Previously,we have synthesized g-C3N 4by pyrolysis of urea and found that the pyrolysis conditions have signi ficant e ffects on the microstructure and photocatalytic activity of g-C 3N 4.16,22Received:November 11,2013Revised:January 21,2014Accepted:January 23,2014Published:January 23,2014In the present work,we develop a simple method to engineer the micro/nanostructures of g-C 3N 4from pyrolysis of thiourea and apply the as-prepared g-C 3N 4in visible light photocatalytic air puri fication.The easily available thiourea is a superior precursor because it is nontoxic,low-cost,and earth-abundant.A layer-by-layer coupled with layer-splitting process was proposed for the gradual reduction of layer thickness and size of g-C 3N 4obtained at elevated temperature and prolonged time.The formation mechanism of g-C 3N 4from thiourea was also revealed.Interestingly and importantly,we find that both the crystallinity and the surface areas of g-C 3N 4increase spontaneously with elevated pyrolysis temperature and prolonged pyrolysis time,which is very important to enhance the activity of g-C 3N 4.The morphology and band structure of g-C 3N 4can also be simply engineered by variation of pyrolysis conditions.The optimized g-C 3N 4nanosheets exhibit e fficient and durable visible light photocatalytic performance in NO removal.This unique finding will shed new light on synthesis and engineering of organic photocatalysts for large-scale environmental applications.2.EXPERIMENTAL SECTION 2.1.Synthesis of g-C 3N 4from Thiourea.All chemicalsused in this study were analytical grade and were used without further puri fication.In a typical synthesis,10g of thiourea powder was put into an alumina crucible with a cover.The crucible was heated to 550°C at a heating rate of 15°C/min in a tube furnace in air and maintained for 120min.The released air products during thermal treatment were absorbed by dilute NaOH solution of 0.05M.The resulted final yellow powder was ground and collected for use without further treatment.In order to investigate the e ffects of pyrolysis temperature,g-C 3N 4was synthesized at 500,525,550,575,and 600°C for 120min,respectively.The resulted samples were labeled as CN-500°C,CN-525°C,CN-550°C,CN-575°C,and CN-600°C.In order to investigate the e ffects of pyrolysis time,g-C 3N 4was synthesized at 550°C for 0,15,30,60,120,and 240min,respectively.The resulted samples were labeled as CN-0min,CN-15min,CN-30min,CN-60min,CN-120min,and CN-240min.Note that the pyrolysis time does not include the time the furnace spent to raise the temperature to 550°C.2.2.Characterization Methods.The crystal phase was analyzed by X-ray di ffraction with Cu K αradiation (XRD:model D/max RA,Japan).The scan rate was 0.02deg/s.The accelerating voltage and the emission current were 40kV and 40mA,respectively.FT-IR spectra were recorded on a Nicolet Nexus spectrometer on samples embedded in KBr pellets.To perform the thermogravimetric-di fferential scanning calorim-etry analysis (TG-DSC:NETZSCH STA 409PC/PG,German),20mg of dry sample was sealed in an Al 2O3cruciblewith a lid and scanned at a rate of 20°C/min.A scanningelectron microscope (SEM,JEOL model JSM-6490,Japan)was used to characterize the morphology of the samples.The morphology and structure were examined by transmissionelectron microscopy (TEM:JEM-2010,Japan).The UV −visdi ffuse re flection spectra were obtained for the dry-pressed disksamples using a Scan UV −vis spectrophotometer (UV −vis DRS:UV-2450,Shimadzu,Japan)equipped with an integrating sphere assembly,using BaSO4as re flectance sample.Nitrogenadsorption −desorption isotherms were obtained on a nitrogen adsorption apparatus (ASAP 2020,USA)with all samplesdegassed at 150°C prior to measurements.2.3.Visible Light Photocatalytic Performance for NO Puri fication.The photocatalytic activity was investigated by removal of NO at ppb levels in a continuous flow reactor as shown in Figure 1(Figure S1shows the photo of the reactorsystem).The volume of the rectangular reactor,made ofstainless steel and covered with Saint-Glass,was 4.5L (30cm ×15cm ×10cm).A 150W commercial tungsten halogen lampwas vertically placed outside the reactor.A UV cuto fffilter (420nm)was adopted to remove UV light in the light beam.Photocatalyst (0.2g)was coated onto a dish with a diameter of 12.0cm.The coated dish was then pretreated at 70°C to remove water in the suspension.The catalyst adhesion on the dish was firm enough to avoid the erosion (or removal)of the catalyst during air flowing.The NO gas was acquired from a compressed gas cylinder at a concentration of 100ppm of NO (N2balance,BOC gas).The initial concentration of NO was diluted to about 600ppbby the air stream.The desired relative humidity (RH)level of the NO flow was controlled at 50%by passing the zero air streams through a humidi fication chamber.The gas streamswere premixed completely by a gas blender,and the flow rate was controlled at 2.4L/min by a mass flow controller.After the adsorption −desorption equilibrium was achieved,the lamp was turned on.The concentration of NO was continuously measured by a chemiluminescence NO analyzer (ThermoEnvironmental Instruments Inc.,42i-TL),which monitors NO,NO 2,and NO x (NO x represents NO +NO2)with a samplingrate of 1.0L/min.The removal ratio (η)of NO was calculatedas η(%)=(1−C /C0)×100%,where C and C0areconcentrations of NO in the outlet streamand the feeding stream,respectively.Figure 1.Schematic flow diagram of the reactor system.3.RESULTS AND DISCUSSION 3.1.Phase Structure and Transformation.Figure 2a shows the XRD patterns of the prepared g-C 3N 4samplestreated under di fferent temperatures in the range of 500−600°C.All of the g-C 3N 4samples in Figure 2a have similardi ffraction patterns,suggesting that all samples are similar in crystal structure.A typical (002)peak around 27.5°is observed,which indicates the graphite-like stacking of the conjugated aromatic units of CN with an interlayer distance of 0.33nm.9A typical (100)di ffraction peak around 13.0°corresponding to a distance of 0.68nm could be assigned to the in-plane repeated units.9Further observation on an enlarged view of (002)peak in Figure 2b shows that the di ffraction angle 2θof (002)peak increases from 27.31°for the CN-500°C sample to 27.73°for the CN-600°C sample when the pyrolysis temperature increases from 500to 600°C.This result implies that g-C 3N 4becomes more compact when thiourea is treated at ahigher pyrolysis temperature.Figure 2c shows the XRD patterns of the prepared g-C 3N4treated at 550°C for di fferenttimes in the range of 0−240min.The two peaks at around 27.5°and 13°can be observed for all the as-prepared samples in Figure 2c.From Figure 2d,we can see that the di ffraction angle 2θof (002)peak increases from 27.24°for CN-0min to 27.66°for CN-240min when the pyrolysis time increases from 0to 240min (Figure 2d).This result suggests that the interlayer distance of g-C 3N 4decreases with prolongedpyrolysis time,which is similar to the e ffects of pyrolysis temperature on the crystal structure.Figure 2also illustrates that the di ffraction peak intensity become stronger when the pyrolysis temperature is increased and pyrolysis time is prolonged.This fact implies that the crystallinity of g-C 3N 4is improvedwith the elevated pyrolysis temperature and prolonged pyrolysis time.In order to understand the phase transformation during pyrolysis of thiourea,TG-DSC was carried out.The range of temperature is from room temperature to 800°C at a heatingrate of 20°C/min.An alumina crucible with a cover was used during thermal analysis to simulate the actual thermal environment of thiourea pyrolysis.The DSC and TG thermograms for thiourea (Figure 3)clearly show that several phase transformations can be observed in the semiclosed system.An endothermic peak at 190°C is the melting point of thiourea.The strongest endothermic peak appears in the temperature range 210−295°C,and the weight of the sample decreased rapidly by 70.5%.The peak at 236°C (overlapped bythe strong peak)indicates the reaction of thiourea into cyanamide.Cyanamide is a common precursor to synthesize g-C 3N 4.The sharp peak at 266°C implies that the thermal condensation of cyanamide into melamine occurred in this temperature range.The weak endothermic peak at 312°C corresponds to the further condensation processwhereFigure 2.XRD pattern of g-C 3N 4treated under di fferent temperatures (a)and enlarged view of (002)peak (b),XRD pattern of g-C 3N 4treated fordi fferent times (c)and enlarged view of (002)peak (d).melamine is transformed to melem.The weight loss in this temperature range is about 10.4%.The further weight loss (about 6.4%)with an endothermic peak at 422°C can be ascribed to the phase formation from melem to graphitic carbon nitride.Finally,the endothermic peak at 707°C with a weight loss of 12.7%can be attributed to the sublimation of carbon nitride.The TG-DSC results imply the mechanistic transformation process of carbon nitride from pyrolysis of thiourea.93.2.Chemical Composition.The FT-IR spectra of all the samples are shown in Figure 4.We can observe the absorption band at 801cm −1corresponding to a breathing mode of triazine,the absorption bands in the range of 1200−1600cm −1attributing to stretching mode of C −N heterocycles,and the broad bands in the range of the 3000−3700cm −1region attributing to the adsorbed H 2O molecules and N −H vibration.22For the samples treated under lower temperature and for shorter time,the incomplete condensation of thiourea results in the weak vibration of the C 6N 7units.This poor condensation can be improved by increasing the pyrolysis temperature and time to promote the formation process of g-C 3N 4.3.3.Morphology and Nanostructure Formation Mechanism.The typical SEM images of the as-prepared samples are illustrated in Figure 5.Figure 5a shows that the CN-500°C sample is composed of thick layers attached with some agglomerated particles.Figure 5b demonstrates that the CN-550°C sample is mainly composed of interconnected thin layers with some pores that may result from the gas bubbles during pyrolysis of thiourea.In the case of the CN-600°C sample,as shown in Figure 5c,a large number of small thin layers with abundant pores can be observed.The gas bubbles play a key role in the formation of porous structure.Figure 5d demonstrates that the CN-0min sample is composed of large irregular particles with some layered structure.For the CN-30min sample as shown in Figure 5e,thick plates with some particles can be observed.Increasing the pyrolysis time to 240min,the thickness of the sample is signi ficantly reduced,and porous structure is generated at the same time (Figure 5f).By summarizing the above observations,we can conclude thatelevating the pyrolysis temperature and prolonging the pyrolysis time could make the resulted g-C 3N 4samples possess small size,thin layers,and porous structure.This is a facile way to tune the microstructures of g-C3N 4.The EDX elemental mapping of the typical CN-120min sample (Figure 5g)is shown in Figures 5h,5i,and 5j.It can be seen that the C 3N 4sample prepared from thiourea was composed of C,N,and O elements,indicating S was released from the pyrolysis.The microstructure was further investigated by TEM.Figure 6a shows that the CN-500°C sample has a bulk structure composing of large particles with a layer structure.When the pyrolysis temperature was increased to 550°C,the resulted g-C 3N 4sample was of a sheetlike structure with reduced thickness (Figure 6b).When the pyrolysis temperature was further raised up to 600°C,the resulted g-C 3N4sample was composed of a thinner sheetlike porous structure due to the successful introduction of mesopores of several tens of nanometers in the CN-600°C sample (Figure 6c).Further observation in Figure 6a and Figure 6c implies that the average size of the sheets are decreased with increasing temperature probably because the large layers are split into smaller ones under higher temperature.For the g-C3N 4samples prepared at 550°C for di fferent times,Figure 6d shows that the CN-0min sample consists of large particles with irregular shape.A thick and smoothsheetlike structure is clearly observed for the CN-60min in Figure 6e.The morphology of the CN-240min samplewas Figure 3.TG-DSC thermograms for heatingthiourea.Figure 4.FT-IR spectra of g-C 3N 4treated under di fferent temperatures (a)and g-C 3N 4treated for di fferent times (b).quite di fferent,and many thin flat sheets and some mesopores can be clearly seen in Figure 6f.This typical sheetlike morphology imparts CN-240min with a large speci fic surface bining the SEM and TEM results,we can find that the thickness and the size of the g-C 3N 4sheetlike nanostructureswere reduced simultaneously when the pyrolysis temperature was increased and the pyrolysis time was prolonged.Such variation in structure would lead to the formation of g-C 3N4with high surface areas and large pore volumes,which is bene ficial for enhancing the photocatalytic activity.The mass of g-C3N 4products obtained under di fferenttemperatures and times with the same amount of thiourea wasmeasured.The weight of g-C 3N 4products was decreasedwithFigure 5.SEM images of CN-500°C (a),CN-550°C or CN-120min (b),CN-600°C (c),CN-0min (d),CN-30min (e),CN-240min (f),SEM image (g),and EDX elemental maping of C,N,and O (h,i,j)in image (g).elevated pyrolysis temperature and prolonged pyrolysis time,resulting from gradual decomposition of solid g-C 3N4due tothermal oxidation in air.The conjugated layered g-C 3N 4isconstructed by the hydrogen bonding between aromatic CN units.The energy of the hydrogen bond is weak and can be destroyed by thermal oxidation.As a result,the layer of CN units would be gradually oxidized and removed in a layer-by-layer way during thermal treatment.16Subsequently,the thickness of g-C 3N 4samples would be decreased with elevated pyrolysis temperature and prolonged pyrolysis time (Figures 5and 6).Meanwhile,large g-C 3N 4layers were split into smaller layers to reduce surface energy (Figures 5and 6).16On this basis,a layer-by-layer coupled with layer-splitting process can be proposed for the explanation of reduction of layer thickness and size of g-C 3N 4samples obtained at elevated temperatureand prolonged time.3.4.Texture Property.The nitrogen adsorption −desorp-tion isotherms and Barrett −Joyner −Halenda (BJH)pore-size distribution of selected samples are displayed in Figure 7.Figures 7a and 7b show that the CN-500°C sample exhibits nonporous structure.When the pyrolysis temperature exceeds 550°C,signi ficant enlargement of surface areas and thegeneration of nanopores (mesopores)can be observed (Figure7b and Table 1).The CN-600°C sample is type IV (Brunauer,Deming,Deming,and Teller,BDDT classi fication)with a hysteresis loop at high relative pressure between 0.5and 1.0,suggesting the presence of mesopores (2−50nm)and macropores (>50nm).32There are type H3hysteresis loops at 0.45<P /P0<1.00in the isotherms of the optimized samples(CN-600°C and CN-240min),which are often observed onthe aggregates of platelike particles giving rise to slit-shaped pores which agrees well with the nanosheet-like morphology (Figures 5c and 5f).32It can be seen from Figure 7a and Table 1that increasing the condensation temperature from 500to 600°C causes a great enhancement of surface area and pore volume from 5m 2/g and 0.029cm 3/g for the CN-500°C sample to 36m 2/g and 0.25cm 3/g for the CN-600°C sample.The creation of a porous structure can also be observed directly from SEM images (Figures 5a-5c).The e ffects of pyrolysis time on the texture property of the as-prepared g-C 3N 4samplesareFigure 6.TEM images for CN-500°C (a),CN-550°C or CN-120min (b),CN-600°C (c),CN-0min (d),CN-60min (e),and CN-240min (f).similar.With increasing thermal treating time,the hysteresis loops shift to the region of lower relative pressure,and the areas of the hysteresis loops gradually become large.Prolonging the pyrolysis time from 0to 240min leads to signi ficant enlargement of surface area from 6m 2/g for the CN-0min sample to 71m 2/g for the CN-240min sample,together with pore volume from 0.036to 0.35cm 3/g (Figures 8a and 8b and Table 1).The change of peak pore size with pyrolysis time also con firms the introduction of mesopores in the CN-240min sample treated for a longer time (Table 1).The high surface area and large pore volume of CN-600°C and CN-240min samples can be attributed to the reduced layer thickness and size.This interesting result is consistent with SEM and TEM observations (Figures 5and 6).The crystallinity and the surface areas of g-C 3N 4organic photocatalyst can be enhanced with elevated pyrolysis temper-ature and prolonged pyrolysis time (Figures 2and 8).This thermal behavior of g-C 3N 4is contrary to most porous inorganic photocatalysts,which typically undergo structure deformation/pore collapse with decreased surface area upon increasing the heating temperature in order to improve the crystallinity,as it is known that the creation of porous structures with high surface area in g-C3N 4relied largely ontemplates (for example SiO 2,zeolite,and Triton X-100)followed by etching of the templates.33−36Such a process is relatively tedious and thus prevents the large scale applications.This drawback can be overcome by our remarkable observation in this research.The porous nanostructure of g-C 3N 4can be self-generated by a facilely optimized thermal treatment.Porous g-C3N 4with high surface area has been readily synthesized by a template-free method though treating thiourea at higher temperature for a longer time.The creation of porous nanostructure could facilitate catalytic sorption and promote the localization of light-induced electrons in theconjugatedFigure 7.N 2adsorption −desorption isotherms of CN-500°C,CN-550°C,and CN-600°C (a)and the corresponding pore-size distribution curves (b),N 2adsorption −desorption isotherms of CN-0min,CN-30min,CN-60min,CN-120min,and CN-240min (c)and corresponding pore-size distribution curves (d).Table 1.S BET ,Pore Volume,Peak Pore Size,and NO Removal Ratio for Selected g-C 3N 4Samples a sample name S BET (m 2/g)total pore volume (cm 3/g)peak pore size (nm)η(NO)(%)CN-500°C 50.029nonporous 10.2CN-550°C 270.142 2.6/4.122.0CN-600°C 360.25 2.6/3.8/32.632.7CN-0min 60.036 3.87.7CN-30min 100.060 3.814.1CN-60min 120.073 3.817.6CN-120min 270.142 2.6/4.122.0CN-240min 710.35 2.8/3.8/31.132.3C-doped TiO 2451230.25 3.521.8BiOI 5060.027 3.7/18.314.9a The data for C-doped TiO 2and BiOI were collected from references.systems,which are bene ficial for photocatalysis by carbon nitride.113.5.Variation of Band Gap.The relationship between optical property and pyrolysis conditions is investigated by UV −vis DRS,as shown in Figure 9.An absorption edge located in a visible light region is observed for all the samples,which originates from band gap transitions from valence band to conduction band.The absorption edges of g-C 3N 4samples change with the variation of pyrolysis temperature and time.The band gap energy can be estimated from the intercept of thetangents to the plots of (αh ν)1/2vs photon energy,as shown in Figures 9b and 9d.Figures 9a and 9b indicate that when the temperature increases from 400to 550°C,slight reduction band gap energy from 2.49to 2.42eV can be detected.This bathochromic shift in band gap is ascribed to the enhanced structural connections with enhanced van der WaalsinteractionFigure 8.The correlation between S BET and the pyrolysis temperature and time for selected samples (a)and the correlation between pore volume and the pyrolysis temperature and time for selected samples(b).Figure 9.UV −vis DRS (a,c)and plots of (αh ν)1/2vs photon energy (b,d)of g-C 3N 4samples treated under di fferent temperatures and treated for di fferenttimes.between the tri-s-triazine cores as higher pyrolysis temperature results in a higher degree of polymerization and a denser packing of the tri-s-triazine units (Figure 2).37This,in turn,leads to a stronger overlapping of molecular orbitals of the aromatic sheet stacks.Further increasing the temperature from 550to 600°C leads to the hypsochromic shift of the absorption edges from 2.42eV for CN-550°C to 2.57eV for CN-600°C due to the quantum con finement e ffects induced by nanozised particles as high temperatures could signi ficantly reduce the size of g-C 3N 4through layer-by-layer oxidation coupled with layer splitting (Figures 5and 6).38Figures 9c and 9d imply that prolonging the pyrolysis time from 0to 240min causes the band gap energy of g-C 3N 4samples to increase from 2.37to 2.90eV obviously.The relationship between band gap energy of g-C 3N 4and pyrolysis conditions can be found in Figure 9.Recently,Wang et al.developed a novel comonomer strategy to tentatively modify the texture and band structure of g-C 3N 4by chemical incorporation of monomer building blocks into the conjugated polymeric network of g-C 3N 4.39In this research,we can find a simple approach to control the microstructure and band gap of g-C 3N 4by tuning the pyrolysis temperature and time,being a potentially valuable way to alter the physical and chemical properties of polymeric semiconductors.3.6.Visible Light Photocatalytic Activity and Stability for NO Removal.3.6.1.Photocatalytic Removal of NO and Monitoring of Reaction Intermediates.The as-prepared g-C 3N 4samples were applied for gaseous NO degradation under visible light irradiation in a continuous reactor in order to demonstrate their potential ability for air puri fication.Figures 10a and 10b show the variation of NO concentration (C /C 0%)with irradiation time over g-C 3N 4samples treated under di fferent temperatures.Here,C 0is the initial concentration of NO,and C is the concentration of NO after photocatalytic reaction at time t .Previous investigation indicated that NO could not be photolyzed under light irradiation.40It can be found in Figure 10a that NO could not be degraded without photocatalyst under light irradiation or with photocatalyst (CN-600°C)for lack of light irradiation.In the presence of photocatalyst,the NO reacted with the photogenerated reactive radicals to produce the final product of HNO 3.Because g-C 3N 4has a suitable band gap that can be directly excited by visible light,all g-C 3N 4samples treated under di fferent temperatures and for di fferent times show decent visible light photocatalytic activity toward NO removal,as shown in Figure 10.Figure 10a indicates that the NO removal ratio of g-C 3N 4samples increases from 10.2%to 32.7%when the pyrolysis temperatures increase from 500to 600°C after 45min irradiation.Figure 10b implies that the NO removal ratio of g-C 3N 4samples increases from 7.7%to as high as 32.3%when the pyrolysis time increases from 0to 240min (Table 1).The visible light activity of CN-600°C and CN-240min samples exceeds that of C-doped TiO 2(21.8%)and BiOI (14.9%),suggestingthatFigure 10.Visible light photocatalytic activities of g-C 3N 4samples treated under di fferent temperatures (a)and g-C 3N 4samples treated for di fferent times (b)for removal NO in air (continuous reactor,NO concentration:600ppb).Monitoring of the fraction of NO 2intermediate over g-C 3N 4samples treated under di fferent temperatures (c)and g-C 3N 4samples treated for di fferent times (d)during photocatalytic reaction.variation of thermal treatment conditions is an e ffective approach to enhance the activity of g-C 3N 4.Under the optimized thermal conditions,the photocatalytic activity of g-C 3N 4from thiourea is higher than that of the sample from urea,demonstrating the advantage of thiourea as precursor.16The reaction intermediate of NO 2during photocatalytic oxidation of NO is monitored online as shown in Figures 10c and 10d.The fraction of NO 2generated over g-C 3N 4samples during irradiation decreases with increased pyrolysis temper-ature and prolonged pyrolysis time,which can be ascribed to the fact that the surface areas and pore volumes are increased accordingly.The di ffusion rate of reaction intermediate over g-C 3N 4samples with high surface areas and large pore volume is faster,thus promoting the oxidation of intermediate NO 2tofinal NO 3−,as shown in the following reactions.40The final oxidation products (nitric acid or nitrate ions)can be simply washed away by water wash.Note that as the photocatalytic reaction was going on,the NO concentration in the outlet was decreased gradually due to the conversion of NO to NO 3−.The NO concentration would reach minima until the photocatalytic reaction reached equilibrium.The slight rising of NO concentration was due to the accumulation of NO 3−product on the catalyst surface.40,44After long-term irradiation,the NO concentration in the outlet would reach a steady state.+•→+NO 2OH NO H O 22(1)+•→+−+NO OH NO H 23(2)++→NO NO H O 2HNO 222(3)+•→−−NO O NO 23(4)Thermal treatment is a general process employed to crystallize catalytic materials.The e ffects of thermal treatment conditions on the microstructure and photocatalytic activity of di fferent types of photocatalysts have been widely inves-tigated.23,30,31,41−43Yu et al.studied the e ffects of calcination temperature on the photocatalytic activity of TiO 2from titanate and found that activity of TiO 2deceased with an increase in calcination temperature in the range of 400to 900°C due to the sintering and crystallite growth and decrease of surface areas and pore volume.41In most cases,there was a medium calcination temperature (not too high and not too low)to make a balance between the surface areas and crystallinity in order to optimize the activity of photocatalysts.For example,Zaleska et al.42found that the optimal preparation temperature for boron-doped TiO 2with the highest activity was 400°C in the range of 300−600°C.However,in our case,the activity of the g-C 3N 4sample is enhanced progressively with continuous elevated temperature and prolonged pyrolysis time (Table 1).This unique variation of the activity should be related to theunusual change of texture property and band gap of g-C 3N4with di fferent thermal treatment conditions (Figures 5,6,8,and 9).The remarkably improved photocatalytic activities of the g-C 3N 4samples with respect to elevated temperature and prolonged pyrolysis time demonstrated above can be explained as the synergistic e ffects of enhanced crystallinity,nanosheet-like morphology,large surface area,large pore volume,and increased band gap.First,for the g-C 3N 4sample treated at high temperature and for a long time,the enhancement of crystallization (Figure 2)is advantageous to reduce the recombination rate of photogenerated electrons and holes due to a decrease in the number of the defects.43Second,thenanosheet-like structure (Figures 5and 6)enhances thetransport of photogenerated electrons along the nanosheet,thus lowering the hole −electron recombination.44−47Third,the thin thickness and porous character result in a large surface area for pollutant adsorption.48,49Fourthly,large pore volume (Figure 8)provides more active site for quick reactantdi ffusion.31,49,50Lastly and importantly,the increase in theband gap increases the redox ability of charge carriers generatedunder irradiation (Figure 9).46All these favorable factorscocontribute to the signi ficantly improved photocatalytic activities of g-C 3N 4samples synthesized at elevated temper-ature (600°C)and treated for a long time (240min).3.6.2.Photochemical Stability with Multiple Runs.To further test the stability of the optimized CN-600°C and CN-240min samples for practical application,repeated reaction tests were carried out.The sample after one run was useddirectly without further treatment for the next photocatalyticreaction run.As shown in Figure 11,the NO removal ratios ofCN-600°C and CN-240min samples could be well maintainedafter five cycles under visible light irradiation.Except for a slight drop in the activity during the third running,no further decrease in activity in the following runs can be observed.These results clearly demonstrate that nanostructured porous g-C3N 4photocatalysts with enhanced and durable activity canbe successfully synthesized and applied for e fficient airpuri fication.Figure 11.Multiple photocatalytic reaction over the CN-600°C sample (a)and the CN-240min sample (b)for removal of NO in air.。
尿素加热在钛酸盐上生成G-C3N4
149
S Sustainable Chem. Eng. 2014, 2, 149−157
Research Article /journal/ascecg
Poly Tri-s-triazines as Visible Light Sensitizers in Titania-Based Composite Photocatalysts: Promotion of Melon Development from Urea over Acid Titanates
S Supporting Information *
ABSTRACT: Photocatalysis has become increasingly popular for applications in the energy and environmental fields. However, in its conventional form as a pristine (white) semiconductor oxide, e.g., titania (TiO2), the photocatalyst has a wide band gap and does not respond to a large fraction of the solar power available across the visible region. Recently, some success has been reported in the in situ synthesis and deposition of melon [poly (tri-s-triazine) with an empirical formulation of H3C6N9] onto TiO2 to act as a visible sensitizer. In the present contribution, we report the interesting finding that composites based on hydrogen titanate cores bearing shells of melon and the related graphitic carbon nitride (g-C3N4) as sensitizers are far superior in simulated solar (visible) light-driven photodegradation of methyl orange (MO) dye and ethanol photo-oxidation as compared to the individual components. These layered titanate nanotubes/nanobelts also offer a practical advantage by promoting the build-up of melon from urea as compared to anatase TiO2. This is believed to be linked to the higher density coverage of titanates by surface OH groups and their Brønsted acidic properties, which promote polymerization. Development of the melon structure was verified by diffuse reflectance infrared spectroscopy (DRIFTS) and solid-state nuclear magnetic resonance (13C NMR). The melon layer was found to be fully developed after thermal activation at ∼400 °C and photostable under open beam irradiation. More severe heat treatment led to melon degradation, as confirmed by TGA, and loss of visible-responsive photocatalytic activity. KEYWORDS: Photocatalysis, Hydrogen titanates, Melon, Graphitic carbon nitride, Visible light sensitization
英文论文写作
❸挖掘和强调自己研究的重要性或创新性可从以下角度。 如:(1)时间问题;(2)研究手段问题;(3)研究区域问题;(4)存在不确定性; (5)研究的完全创新性(We aim to test the feasibility (reliability) of the……It is hoped that the question will be resolved with our proposed method (approach). )
3.2 Proton transfer dynamics control the mechanism of O2 reduction by a nonprecious metal electrocatalyst. (Nature Materials, 2016, 15,754–759 )
3.3 Femtosecond control of electric currents in metallic ferromagnetic heterostructures. (Nature Nanotechnology 2016, 11,455–458)
4.4 Optimized quantum sensing with a single electronspin using real-time adaptive measurements. (Nature Nanotechnology, 2016,11,247–252)
有些表征手段或者研究方法生来就是让人膜拜的,特别是一些原位的表 征手段,能够直观地告诉人们以前得不到的一些信息。
展望我们工作的价值
Abstract写作举例(更简洁版)
溶剂热法制备纳米氮化碳
STUDY ON SPECTRA AND SPECTRAL LINESABSTRACTSpectroscopy is a branch of Optics, it study the production of a spectrum of various substances and their interaction with matter. By spectroscopy, one can obtain atoms, molecules level structure, level lifetime, electron configuration, molecular geometry, chemical nature, and many other substances kinetics knowledge of the structure. Currently, spectroscopic studies of many quantitative and semi-quantitative analysis of the composition and structure must fit in the band on the basis of calculation, therefore, many of the relevant bands fitting calculation method and the problem has always been among the most popular academic research spectrum one of the topics. In the band fitting mathematical processing, linear functions, and half- width is bound to involve.This article describes: 1. Spectroscopy formation, history, application and prospects. (2) The introduction of spectral line broadening of spectral lines as well as the physical meaning. And in this thesis, we discuss the natural broadening, Doppler broadening, Lorentz broadening, Voigt broadening and external fields (mainly discussed the electric and magnetic fields) line broadening of the physical mechanism, and we give out the expression of the half-width for different widen mechanisms. Especially the application of the Fourier transform discussed Voigt broadening mechanism half-width expression research methods, which provides a method and ideas for the closest to the actual spectral line broadening Voigt profile.KEY WORDS: Spectroscopy,Spectral profile,Spectral widenning,half-width参考文献[1] 母国光.光学(2).北京:高等教育出版社,1999:217-219.[2] 姚启均.光学教程(4).北京:高等教育出版社,2009:216-219.[3] 赵凯华.新概念物理教程——量子物理(2).北京:高等教育出版社,2008:21-23.[4] Nikolic D, Mijatovic Z, Djurovic S, et al. Journal of Quantitative Spectroscopy & Radiative Transfe, 2001, 70: 67.[5] Dong Lifang, Ran Junxia, Mao Zhiguo. Appl. Phys. Lett., 2005, 86: 1.[6] Nikolic D, Djurovic S, Mijatovic Z, et al. Journal of Research in Physics, 1999, 28(3): 185.[7] 王国文.原子与分子光谱导论.北京:北京大学出版社,1985:125-132.[8] 蔡建华.原子物理与量子力学.北京:人民教育出版社,1962:115-119.[9] 杨德田.原子光谱中强弱磁场的标准与估算.物理通报,1988,(9),22-25.[10] 褚圣麟.原子物理学.北京:高等教育出版社,1987:245-248.[11] DONG L-i fang, RAN Jun-xia, YIN Zeng-qian, et al. Acta Physica Sinica, 2005, 54(5):21-67.[12] Milosavljevic V, DjeniÑe S. Eur. Phys. Journal D, 2003, 23(10): 385.[13] Konjevic N. Plasma Sources Sci. Technol., 2001, 10(2): 356.[14] 李安模.原子吸收及原子荧光光谱分析.北京:科学出版社,2005:225-227.[15] 曾谨言.量子力学教程(2).北京:科学出版社,2003:124-128.[16] 张庆国.大学物理学.北京:机械工业出版社,2007:256-259.[17] Jian He, Chunmin Zhang. The accurate calculation of the Fourier transform of the pure Voigt function[J]. J.Opt.A: Pure and Appl.Opt. 2005,7:613-616.[18] Jian He, Qingguo Zhang. The calculation of the resonance escape factor of helium for Lorentzian and Voigt profiles[J]. Phys.Lett.A. 2006,359:256-560. [19] Jian He, Qingguo Zhang. An exact calculation of the Voigt spectral line profile in spectroscopy[J]. J.Opt.A: Pure and Appl.Opt. 2007,9:565-568. [20] Olivero J J, Longbothum. Empirical ÿts to Voigt line-width—brief review[J]. J . Quant . Spectrosc. Radiat . 2007,5:226-230.溶剂热法制备纳米氮化碳摘要本论文通过查阅文献的调研方式认识和了解纳米材料的特点,以及应用前景。
碘氧化铋光催化复合材料的制备及其应用进展
碘氧化铋光催化复合材料的制备及其应用进展刘著扬; 丁旋; 董慧玲; 陈梦云【期刊名称】《《广州化工》》【年(卷),期】2019(047)013【总页数】3页(P24-26)【关键词】碘氧化铋; 光催化复合材料; 进展; 制备; 应用【作者】刘著扬; 丁旋; 董慧玲; 陈梦云【作者单位】南昌航空大学环境与化学工程学院江西南昌 330063【正文语种】中文【中图分类】TB3311972年Fujishima和Honda利用TiO2薄膜电极成功光解水[1]以来,光催化技术由于巨大的潜力受到了研究者的广泛关注。
TiO2在紫外光下具有良好的光催化性能,但由于其禁带宽度较大(3.2 eV),不能利用可见光。
太阳能是很好的清洁能源,而太阳光的能量仅4%在紫外波段,可见光波段占43%[2]。
能利用可见光进行光催化反应的半导体材料具有重要的应用价值。
众多材料中,BiOI因为具有窄的禁带宽度和独特的层状结构而受到关注。
禁带宽度越窄,能利用的光的波长就越大。
BiOI的禁带宽度为1.77~1.92 eV,其吸收带约为635 nm[3]。
卤氧化铋的间接半导体特性使得光生电子在穿越k空间(k-space)才会到达导带,这降低了电子和空穴的复合速率[4]。
此外,卤氧化铋的晶体结构使它很容易形成内电场,帮助分离光生载流子[4]。
但BiOI在可见光下的降解效率并不好,可能是由于光生电子与空穴分离效率不高或其价带太低使得氧化能力弱[5]。
复合改性是是改善光催化性能的重要手段,目前已有许多对于BiOI基复合材料的研究。
本文主要从合成方法和应用两方面对相关研究予以介绍。
1 BiOI复合材料的制备方法BiOI复合材料的合成方法,如水热法、溶剂热法、浸渍法、沉淀法、煅烧法、静电纺丝法和溶胶凝胶法等。
Yang等[6]通过温和水热法原位合成了AgI/BiOI异质结构。
AgI和BiOI可以形成良好的异质结。
并且它们都是碘化物,所以作者使用了一锅法合成。
高氮化合物4,4,6,6-四叠氮基偶氮-1,3,5-三嗪的理论研究
高氮化合物4,4,6,6-四叠氮基偶氮-1,3,5-三嗪的理论研究耿志远;王冬梅【摘要】在B3LYP/6-31+G(d)水平上对高氮化合物4,4,6,6四叠氮基偶氮-1,3,5-三嗪进行了几何构型优化,并对此化合物进行红外振动、键级及自然键轨道分析.计算结果表明,该化合物无虚频,为势能面上的稳定结构,分子中存在一个大的共轭体系.根据前线分子轨道能级差确定了该化合物的稳定性,计算得到的热焓、热容、熵值为进一步研究具有复杂结构的高氮化合物提供信息,从而为设计多氮高能量密度化合物提供基础数据.%High-nitrogen compound 4,4,6,6-tetra(azido)azo-l ,3,5-triazine are optimized at the B3LYP/6-31 + G(d)level. The infrared vibrations, bond orders and natural bond orbital analysis are obtained. The harmonic frequency analysis shows that has no imaginary frequencies so it is a stable point on the potential energy surface. Based on frontier molecular orbital energy gap, the stability of the compound is determined. The calculated enthalpy, heat capacity and entropy provide information for further study of high-nitrogen compounds with complex structure.【期刊名称】《西北师范大学学报(自然科学版)》【年(卷),期】2012(048)005【总页数】5页(P53-56,60)【关键词】4,4,6,6-四叠氮基偶氮-1,3,5-三嗪;结构优化;振动分析;密度泛函理论(DFT)【作者】耿志远;王冬梅【作者单位】西北师范大学化学化工学院,甘肃兰州 730070;西北师范大学化学化工学院,甘肃兰州 730070【正文语种】中文【中图分类】O641.12高氮化合物是指以含碳和氮的杂环为主要骨架而氮含量相对较高的有机含能化合物,其中氮元素的质量百分比高于碳氢元素,它的能量主要来源于环结构中含有的更多高能N—N键、C—N键和更大的环张力.高氮化合物普遍具有高的正生成焓,大多不含硝基基团,感度较低,热稳定性好,分子结构中的高氮低碳氢含量使其更容易实现氧平衡[1],且燃烧产物多为N2,不污染环境.这类化合物含有高能基团—叠氮基,因此高氮化合物在能量上非常有吸引力[2,3].已成为近年来发展起来的一类具有良好应用前景的新型含能材料[4,5],吸引了众多国内外研究者投身于这一领域[6-8].三嗪类化合物中引入叠氮基可以得到高生成热的含能材料.关于三嗪类化合物的实验研究有很多报道[9-11].最早合成的2,4,6-三叠氮基1,3,5-三嗪虽有很高的生成热,但由于稳定性差,敏感度低,几乎没有实用价值.1976年Loew等[10]合成了一系列联氨三嗪和偶氮三嗪化合物,但并非用于含能材料.2007年,李小童等[12]合成出了性能较好的4,4,6,6-四叠氮基偶氮-1,3,5-三嗪(TAAT),与早期合成的三嗪类化合物相比,分解温度升高、摩擦感度降低、稳定性显著增强,并具有很高的生成热.TAAT除了可以作为含能材料,还应用在生物材料、电池电极、防腐和传感等领域[13].以上研究初步展示了三嗪类化合物广阔的应用前景,但还未见有理论方面的研究报道.故笔者以TAAT为研究对象,运用密度泛函理论在B3LYP/6-31+G(d)水平上对其分子结构进行了全几何优化,并在此构型下,分析了电荷布居、前线分子轨道组成,得到了相关热力学函数,并根据频率分析的结果,模拟出红外光谱图,理论与实验结果十分吻合.文中量子化学计算采用Gaussian 03软件包完成.用量子化学中的密度泛函理论(DFT),在B3LYP/6-31+G(d)水平上,对TAAT进行全几何优化.经频率分析,无虚频,确认其为势能面的稳定点.在此构型基础了进行了电荷布居分析、前线分析轨道分析、热力学分析,并与实验得到的红外光谱数据进行对照.2.1 TAAT的几何构型在B3LYP/6-31+G(d)水平下,TAAT优化得到的构型见图1,主要键长、Wiberg键级、键角、二面角参数见表1.结果表明,三嗪环上所有C—N、C2—N 24、C11—N 15键键长均介于C—N单键(0.147 nm)和C=N双键(0.127 nm)之间,Wiberg键级在1.0254~1.9519之间,处于标准的单键(1.0)和标准的双键(2.0)的键级值之间,由于分布的范围较宽,故目标化合物TAAT的共轭性较弱;C5—N21、C13—N18是与三嗪环相连的2个键,键长均大于C—N 单键,弱于一般的C—N键,Wiberg键级在0.8104~0.8270之间,是所有键中最小、键强度最弱的,可能是目标化合物TAAT高温裂解的引发键[14].N7—N8键长介于N≡N叁键(0.110 nm)和N=N双键(0.125 nm)之间,叠氮基上的N—N键长分布范围较宽.2个三嗪环各连接2个叠氮基,由偶氮基相连.由于空间位阻效应,构型在空间发生了一定的扭转,扭转角为33.8°.2.2 电荷布居分析化合物的反应活性与分子中原子所带净电荷的多少有关,电荷集中的原子是分子反应的活性中心.原子的正电荷越多,受亲核试剂进攻的可能性越大.反之,原子的负电荷越多,受亲电试剂进攻的可能性越大.化合物TAAT的电荷布居见图2,正电荷集中在2个三嗪环的C原子上,平均值为0.6127,负电荷集中在2个三嗪环的N原子上,平均值为0.5025.2.3 前线分子轨道分析化合物的最高占据轨道(HOMO)能量越低,最低空轨道(LUMO)能量越高,即分子轨道能级差ΔE(L-H)越大,电子跃迁越不容易,分子越稳定.在最优几何优化基础上得到了化合物的最高占据轨道及最低空轨道能量(图3),从HOMO轨道到LUMO轨道,电子需要从1个叠氮基三嗪环经过偶氮基而跃迁到另1个叠氮基三嗪环,这相当困难.另外,分子轨道能级差为7.22 eV,进一步说明该化合物较稳定.2.4 自然键轨道(NBO)分析采用NBO计算了该化合物的二阶稳定化相互作用能E(E是用来描述电子从供体轨道i到受体轨道j所产生的能降).E越大,表示i和j的相互作用越强,即i提供电子给j的倾向越大.其中,BD表示成键自然轨道,BD*表示反键自然轨道,LP表示孤对电子.BD(1)中的(1)表示σ键,BD(2)中的(2)表示π键,LP (1)、LP(2)分别表示第一对、第二对孤对电子.由表2可见,三嗪环上N4的孤对电子LP(2)对N1—C5和N3—C6的π成键轨道所产生的能降分别为90.54和100.4 kJ·mol-1,N4的孤对电子LP(2)对N1—C5和N3—C6的π反键轨道所产生的能降分别为473.59和256.28 kJ·mol -1,说明分子轨道上的孤对电子向反键轨道上转移的倾向比较大.这主要是孤电子对之间的强烈相互作用,N4原子参与了共轭体系的形成,孤对电子与相邻的π键形成了p→π共轭,键呈离域形式.而环上N14的孤对电子LP(2)对C9—N10和C13—N18的π成键轨道所产生的能降分别为98.06和90.41 kJ·mol-1.同理,N1—C5和N3—C6的π成键轨道对C2—N24的π反键轨道所产生的能降分别为84.69和100.36 kJ·mol-1,N12—C13的π成键轨道对C11—N15的π反键轨道所产生的能降为88.95 kJ·mol-1.可以看出,对稳定化能贡献较大的键或原子都来自于三嗪环,这些原子间有较强的相互作用力,使整个环处于稳定状态.2.5 振动分析红外振动光谱(IR)是物质的基本性质之一,也是分析和鉴定物质的有力手段.IR谱与物质的热力学性质也有直接的联系,因为基本的热力学数据(熵、热容等)对预测化学反应方向、平衡浓度和反应速度都非常必需.文中在B3LYP/6-31+G (d)水平下计算的体系能量为:-3.48×10-6kJ·mol-1,热能为483.90 kJ·mol-1,恒容摩尔热容为251.70 kJ·mol-1·K-1,熵为548.26 kJ·mol-1·K -1(压力为1.01×105Pa,温度为298.15 K).IR计算谱图见图4,计算值与实验值[12]具有良好的一致性.在B3LYP/6-31+G(d)水平上对高氮化合物4,4,6,6-四叠氮基偶氮-1,3,5-三嗪进行了几何全优化计算,得到了稳定的几何构型.振动分析结果均无虚频,表明其为势能面上的稳定点,并对该化合物进行了NBO分析.结果表明,该化合物共轭性较弱,叠氮基与环相连的键相对较弱,为热分解时比较容易断裂的位置.计算得到的热焓、热容、熵值为进一步研究具有复杂结构的高氮化合物提供信息,并为多氮高能量密度化合物的分子设计提供基础数据.【相关文献】[1] HISKEY M A,NIR G,JAMES R S.High nitrogen energetic material derived from azotetrazolate[J].J Energy Mater,1998,16:119-127.[2] SWAIN P K,SINGH H,TEWARI S P.Energetic ionic salts based on nitrogen-rich heterocycles:A prospective study[J].J Mol Liq,2010,151:87-98.[3] ZHANG Jian-guo,HENG Hui-hui,ZHANG Tonglai,et al.Theoretical study forhigh-energy-density compounds from cyclophosphazeneⅢ.A quantum chemistry study:High nitrogen-contented energetic compound of 1,1,3,3,5,5,7,7-octaazido-cyclotetraphosphazene:N4P4(N3)8[J].Inorg Chim Acta,2008,361:4143-4147. [4] KERTH J,LÖBBECKE S.Synthesis and characterization of 3,3′-azobis(6-amino-1,2,4,5-tetrazine)DAAT-A new promising nitrogen-rich compound[J].Propellants Exoplos Pyrotech,2002,27:111-115.[5] HISKEY M,CHAVEZ D E.Progress in highnitrogen chemistry in explosives,propellants and pyrotechnics[C]//27th International Pyrotechnics A:Colorado,2000:3-14.[6] SUN Zheng,ZENG Xiao-qing,WANG Wei-gang,et al,Photoelectron spectroscopy and UV absorption spectroscopy studies on some nitrogen catenation compounds[J].Acta Chim Sinica,2006,64:218-222.[7] LI Sheg-hua,SHI Hong-gang,SUN Cheng-hui,et al.Synthesis and crystal structure of nitrogen-rich compound:2,5,2′-triazido-1,1′-azo-1,3,4-triazole[J].J Chem Crys Chin,2009,39:13-16.[8] HAMMERL A,KLAPÖTKE T M,ROCHA R.Azide-tetrazole ring-chain isomerism in polyazido-1,3,5-triazines,triazido-s-heptazine,and diazidotetrazines[J].Eur J Inorg Chem,2006,16:2210-2228.[9] GILLAN E G.Synthesis of nitrogen rich carbon nitride net works from an energetic molecular azide precursor[J].Chem Mater,2000,12:3906-3912.[10] LOEW P,WEIS C D.Azo-1,3,5-triazines[J].J Hete Chem,1976,13:829-833. [11] HUYNH M H V,HISKEY M A,POLLARD C J.4,4,6,6-Tetrasubstituted hydrazo and azo1,3,5-triazines[J].J Energy Mater,2004,22:217-229.[12] LI Xiao-tong,PANG Si-ping,YU Yong-zhong. Synthesis of high-nitrogen compound of 4,4,6,6-tetra(azido)azo-1,3,5-triazine[J].Chin J Energ Mater,2007,15:485-489.[13] HUYNH M H V,HISKEY M A,ARCHULETA J G.Preparation of nitrogen rich nanolayered,nanoclustered,and nanodendritic carbon nitrides[J].Angew Chem Int Ed,2005,44:737-739.[14] SU Xing-fang,CHENG Xin-lu,MENG CHuanmin.Quantum chemical study on nitroimidazole,polynitroimidazole and their methyl derivatives[J].J Hazardous Materials,2009,161:551-558.。
石墨相氮化碳负载钴酞菁光催化还原二氧化碳的性能分析
碳 的 复 合 催 化 剂 C o T A P c /g -Q jN u 利 用 扫 描 电 子 显 微 镜 、透 射 电 子 显 微 镋 以 及 X 射 线 二 维 衍 射 仪 等 对 CoTAPc/
g-C3N4的 微 观 形 貌 和 晶 体 结 构 进 行 表 征 ;利 用 荧 光 光 谱 和 光 电 流 测 试 对 CoTAPc/g-C3N4 的 催 化 机 理 进 行 分 析 。表
Key words:g-C3N4 ;tetraaminocobalt phthalocyanine;photocatalysis;reduction of carbon dioxide
收稿日期:2021_01 —09 网络出版日期: 2021 —03—30 基金项 目 :国家自然科学基金项目(51103133) 作者简 介 :王 纯 ( 1997— ),女 ,安徽安庆人,硕士研究生,主要从事光催化方面的研究。 通信作者:吕汪洋,E-mail: lUWy@zstu.
本文通过回流法将四氨基钴酞菁负载到片状 g-C3N4 上 ,制备得到具有宽光谱响应的复合催化剂 CoTAPc/g-C3N4,采 用 扫 描 电 镜 、透射电镜、紫外分 光 光 度 计 和 红 外 光 谱 仪 等 对 其 进 行 表 征 ,在氙灯照 射下 进 行 C〇TA Pc/g-C3N4 的光催化还原二氧化碳 实 验 ,并通过荧光分光光度计和光电流测试研究光 催化机理,为 阐 明 C o T A P c 与 g-C3N4 协同催化的 机制提供理论依据。
浙 江 理 工 大 学 学 报 , 2021,45(4): 462-469 Journal of Zhejiang Sci-Tech University D ()I:10. 3969/j.issn.l673-3851(n).2021. 04.004
h-BN掺杂对金刚石晶体结构的影响
h-BN掺杂对金刚石晶体结构的影响李沛航;崔梦男;万玉春【摘要】报道了在Fe70Ni30合金触媒和石墨系体中,掺杂六角立方氮化硼(h-BN)和硼(B)生长金刚石单晶的过程.研究发现,h-BN和B掺杂对于金刚石生长条件及形貌等具有较大的影响,其中h-BN掺杂生长金刚石的最低生长压力达到了6.2 GPa,同时晶体呈绿色条状.说明h-BN和B在金刚石晶体生长以及取代碳原子进入晶格时起到了不同的作用.通过X射线衍射及光电子能谱等表征手段,分析了硼氮对金刚石晶体结构的影响,以及硼氮在金刚石中的化学环境及成键方式.在此基础上阐述了硼氮掺杂的形成机制.%In this work, we report the growth process of single crystal diamond by doping boron (B) and hexagonal boron nitride (h-BN) in the system of Fe70Ni30 alloy catalyst and graphite. The doping of B and h-BN has signifi-cant effect on the growth condition and morphology of diamonds. The lowest growth pressure of h-BN doped diamond is 6.2Gpa and the crystals have a green strip morphology. This results indicates that B and h-BN have different effects on the diamond growth and have different ways to replace carbon atoms. We analyze the effect of doping B and N at-oms on the structure of diamond,and the chemical environment of B and N atoms in diamond by using X-ray diffrac-tion and photoelectron spectroscopy. The mechanism of B and N doped diamond is also demonstrated.【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2015(038)005【总页数】4页(P72-75)【关键词】h-BN;金刚石;成键方式;高温高压【作者】李沛航;崔梦男;万玉春【作者单位】长春理工大学材料科学与工程学院,长春 130022;长春理工大学材料科学与工程学院,长春 130022;长春理工大学材料科学与工程学院,长春 130022【正文语种】中文【中图分类】TP391.41自20世纪50年代人们利用静高温高压方法合成出金刚石和立方氮化硼以来,金刚石和立方氮化硼作为超硬材料已得到了深入的研究和广泛的应用。
石墨相氮化碳纳米片负载的钯纳米片催化4-硝基苯酚还原
石墨相氮化碳纳米片负载的钯纳米片催化4-硝基苯酚还原段兆磊【摘要】将Pd纳米片(Pd NSs)负载到石墨相氮化碳纳米片(CNNSs)表面,制备了Pd NSs/CNNSs催化剂,并采用透射电镜、X射线衍射、红外光谱和X射线光电子能谱对催化剂进行表征.结果表明,Pd NSs和CNNSs通过面面接触,形成紧密接触界面.负载后,Pd NSs具有较高分散性,没有发生明显团聚.将Pd NSs/CNNSs用于催化4-硝基苯酚还原生成4-氨基苯酚.结果表明,Pd NSs/CNNSs能够高效催化4-硝基苯酚还原.室温下,在Pd NSs/CNNSs催化剂、4-硝基苯酚和NaBH4浓度分别为2.1mg·L-1、0.14mmol·L-1和20mmol·L-1的条件下,反应速率常数达0.154min-1,是以Pd NSs为催化剂时的1.77倍.【期刊名称】《工业催化》【年(卷),期】2018(026)008【总页数】5页(P61-65)【关键词】催化剂工程;二维纳米材料;贵金属催化剂;钯纳米片;石墨相氮化碳;4-硝基苯酚还原【作者】段兆磊【作者单位】中国石油天然气股份有限公司大庆石化公司,黑龙江大庆163714【正文语种】中文【中图分类】TQ426.6;O643.36以石墨烯为代表的二维纳米片具有特殊的物化和电子性能,被广泛应用于催化领域[1]。
然而石墨烯对大多数化学反应没有催化活性。
受石墨烯的启发,贵金属纳米片引起广泛关注[2]。
贵金属纳米片表面原子含量高,表面原子处于配位不饱和态。
在催化反应中这些原子的催化活性远高于体相结构中的原子[3]。
因此,与传统催化剂相比,贵金属纳米片具有更为优异的催化性能。
近年来开发了多种制备贵金属纳米片的方法[4]。
然而高昂的价格和较差的稳定性限制了贵金属纳米片在催化中的应用。
以CO限域生长法制备的钯纳米片(Pd NNs)为例,当Pd NNs置于空气中时会被氧化,并降解为纳米颗粒[5]。
立方氮化硼中离氮原子最近的硼原子个数
立方氮化硼中离氮原子最近的硼原子个数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!立方氮化硼中离氮原子最近的硼原子个数介绍立方氮化硼(cubic boron nitride,简称cBN)是一种重要的无机材料,具有许多优异的物理和化学性质。
碳氮硼实验报告
碳氮硼实验报告实验目的本实验旨在通过合成碳氮硼化合物,了解其化学性质和结构特点。
实验原理碳氮硼是一种具有特殊化学性质的化合物。
它由碳、氮和硼元素组成,具有较高的硬度和熔点,且具有优异的光学和电子性能。
碳氮硼在电子、光电子和材料工业中有广泛的应用前景。
本实验采用聚合反应制备碳氮硼化合物,主要通过将含有NH2基团的有机化合物与含有BCl基团的有机化合物反应生成目标产物。
实验步骤1. 试剂准备:将氯硼烷(BCl3)和乙酰胺(CH3CONH2)溶于干燥的乙醚,并用搅拌棒充分搅拌均匀。
2. 混合反应物:将溶液1和溶液2缓慢滴加到反应瓶中,同时进行搅拌,保持反应温度在0以下。
3. 反应:在控制温度下反应48小时。
4. 过滤和洗涤:将反应产物用冰醋酸洗涤数次,使其除去杂质,然后用乙醚重结晶。
5. 干燥和纯化:将分离得到的固体产物放在无水环境中干燥,然后进行纯化和结晶处理。
实验结果经过反应和纯化处理,最终得到了白色结晶的固体产物。
使用红外光谱仪对产物进行表征,并与已知的碳氮硼化合物的光谱进行比对,发现它们具有相似的谱线特征,说明制备得到的产物可能是碳氮硼化合物。
结果分析通过本实验的反应条件,我们成功地合成出了碳氮硼化合物。
该化合物具有白色结晶的固体形态,其红外光谱特征与已知的碳氮硼化合物相符合。
这表明我们的合成方法是可行的,可以进一步研究和应用碳氮硼在材料学和电子学领域的性质和应用。
结论本实验成功合成了碳氮硼化合物,并对其进行了物理性质和化学结构的表征。
实验结果表明,我们的合成方法是有效的,可以进一步研究和应用碳氮硼化合物的性质和应用。
在材料学和电子学领域中,碳氮硼化合物有着广泛的应用前景,可用于制备高硬度材料和高温电子器件等。
参考文献- Smith, J. S. et al. Synthesis and characterization of carbon nitride borides. J. Mater. Chem. C 2015, 3, 2252-2256.- Zhang, L. et al. Carbon-based inorganic materials for rechargeable batteries. Chem. Soc. Rev. 2017, 46, 797-815.。
氮化碳负载铂催化剂的制备、表征及对肉桂醛加氢的催化性能
Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(1), 18-26 Published Online February 2016 in Hans. /journal/japc /10.12677/japc.2016.51003文章引用: 王呈呈, 孔丽萍, 赵俊俊, 朱伟东, 钟依均, 叶向荣. 氮化碳负载铂催化剂的制备、表征及对肉桂醛加氢的Preparation and Characterization of Carbon Nitride Supported Pt Catalyst and Its Catalytic Performance on Hydrogenation of CinnamaldehydeChengcheng Wang, Liping Kong, Junjun Zhao, Weidong Zhu, Yijun Zhong, Xiangrong Ye * Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua ZhejiangReceived: Feb. 3rd , 2016; accepted: Feb. 22nd , 2016; published: Feb. 25th , 2016Copyright © 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/Abstract Layered carbon nitride g-C 3N 4 was prepared through high temperature polymerization of urea, and highly dispersive Pt nanoparticles were loaded onto g-C 3N 4 by ethylene glycol reduction to fa-bricate Pt/g-C 3N 4 catalyst. The catalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, surface area/porosity analy-sis and inductively coupled plasma atomic emission spectrometer (ICP-AES), and tested in the hy-drogenation of cinnamelaldehyde. The results indicated that the support contains a large amount of N-containing groups which help to stabilize metal nanoparticles effectively; Pt nanoparticles uniformly dispersed in the surface of the g-C 3N 4 and its size is between 2 - 3 nm; the calcination temperature in g-C 3N 4 preparation had a significant effect on the performance of the catalyst for selective hydrogenation. Pt supported on g-C 3N 4 being calcinated at 550˚C exhibited an appreci a-ble activity, 30% conversion of cinnamic aldehyde and 66% selectivity for cinnamic alcohol under relatively mild condition. No obvious deterioration of the activity is observed after three times of usage, implying a good stability of the catalyst. KeywordsCarbon Nitride, Pt Catalyst, Cinnamic Aldehyde, Selective Hydrogenation*通讯作者。
2,4,6-三萘基-1,3,5-三嗪的合成与光谱行为
2,4,6-三萘基-1,3,5-三嗪的合成与光谱行为徐莉;吴伟;王华【摘要】本文通过Suzuki偶联反应高效合成了两种三萘基三嗪化合物,即2,4,6-三(1-萘基)-1,3,5-三嗪(T1NT)和2,4,6-三(2-萘基)-1,3,5-三嗪(T2NT).考察了介质的极性、温度以及THF-H2O二元溶剂体系中的溶解性等因素对它们吸收和发射光谱行为的影响.研究发现,由于T1NT比T2NT具有更好的分子平面性,其激发态下分子内电荷转移的程度较大,导致其在溶液中吸收光谱、发射光谱比T2NT呈现显著红移.冻结态下,分子平面性较差的T2NT显示出较短波长的发光.【期刊名称】《影像科学与光化学》【年(卷),期】2013(031)005【总页数】8页(P375-382)【关键词】2,4,6-三(1-萘基)-1,3,5-三嗪;2,4,6-三(2-萘基)-1,3,5-三嗪;光物理【作者】徐莉;吴伟;王华【作者单位】河南大学化学化工学院,河南开封475004;河南大学特种功能材料教育部重点实验室,河南开封475004;河南大学化学化工学院,河南开封475004;河南大学特种功能材料教育部重点实验室,河南开封475004【正文语种】中文【中图分类】O64三嗪衍生物应用广泛,可用作抗菌剂[1]、除草剂[2]、活性染料[3]、含能材料[4]等,还可用作光引发剂[5]与碳纤维复合材料的结构性粘合剂[6].作为缺电子芳香体系,三嗪化合物可参与Diels-Alder反应[7]、催化反应[8]等;作为含氮杂环体系,三嗪衍生物还可应用于配位化学领域[9]、超分子化学领域[10,11];芳基取代的三嗪衍生物,由于其具有良好的稳定性和光电性能,近年来在有机功能材料领域获得应用[12-14],本文工作是在前期合成与光谱学研究工作基础上[15],设计合成了两种三萘基均三嗪化合物,即2,4,6-三(1-萘基)-1,3,5-三嗪(T1NT)和2,4,6-三(2-萘基)-1,3,5-三嗪(T2NT),研究了介质的极性、温度等因素对它们吸收和发射光谱行为的影响,同时考察了它们在四氢呋喃-水二元体系中的发光行为,得到了一些有趣的构效关系方面的结果.1 实验部分1.1 试剂仪器三氯均三嗪(Acros)、1-萘硼酸(Alfa Aesar)、2-萘硼酸(Alfa Aesar)、PdCl2(PPh3)2(Aldrich)、无水碳酸钾(天津科密欧化学试剂)、甲苯等试剂为分析纯;光谱测试所用溶剂均为光谱纯.熔点用显微熔点测定仪(TX4-100)测定(温度没有校准);核磁共振谱在AVANCE 400M (Bruker)核磁共振仪上测试;HRMS在 Micromass GCT (TOF MS EI+)质谱仪上测试;红外光谱在AVATAR 360(Nicolet)傅立叶变换红外光谱仪上测得;吸收光谱在Lambda 35(Perkin Elmer)紫外-可见吸收光谱仪上测得;荧光光谱在Fluoro SENS-9000荧光光谱仪上测得.1.2 合成实验2,4,6 -三(1-萘基)-1,3,5-三嗪(T1NT)和2,4,6-三(2-萘基)-1,3,5-三嗪(T2NT)是参考相关文献合成[16].合成路线如下.1.2.1 2,4,6-三(1-萘基)-1,3,5-三嗪的合成(T1NT)25mL的 Schlenk瓶中加入1,3,5-三氯三嗪(103mg,0.558mmol)、1-萘硼酸(303.4mg,3.16eq)、PdCl2(PPh3)2(41.6mg,0.10eq)和 K2CO3(676mg,9eq).置换氩气后加入甲苯10mL,90℃下反应17h,再加入30mL水终止反应.反应液用氯仿(3×20mL)萃取,无水硫酸镁干燥,减压移除溶剂得粗品370mg,粗品经硅胶柱层析分离(淋洗液为石油醚∶氯仿=3∶1)得白色固体237mg(92.4%).M.p.:192—193℃;1 HNMR (400MHz,CDCl3):9.31(3H,d,J=8.2Hz),8.66(3H,d,J=7.2Hz),8.11(3H,d,J=8.1Hz),7.99(3H,d,J=7.2Hz),7.70(3H,t,J=7.8Hz),7.57—765(6H,m);13CNMR(100MHz,CDCl3):173.95,134.25,133.68,132.50,131.41,130.96,128.72,127.36,126.22,126.14,125.22;IR (KBr):3047,1594,1506,1459,1435,1313,1040,950,873,838,797,766,637,543,527,415cm-1;HRMS(TOF MS EI+)m/zcalcd for[C45H27N3]459.1735,found 459.1739.1.2.2 2,4,6-三(2-萘基)-1,3,5-三嗪的合成(T2NT)25mL的Schlenk瓶中加入1,3,5-三氯三嗪(34mg,0.184mmol)、2-萘硼酸(100 mg,3.16eq)、PdCl2(PPh3)2(12.8mg,0.09eq)和K2CO3(229mg,9eq).置换氩气后加入甲苯4mL,90℃下反应过夜,加入30mL水终止反应.反应液用氯仿(3×30mL)萃取,无水硫酸镁干燥,减压移除溶剂得粗品110mg,粗品经硅胶柱层析分离(淋洗液为石油醚∶氯仿=6∶1至3∶1)得白色固体80mg(93.4%).M.p.:305—306℃;1 HNMR (400MHz,CDCl3):9.41(3H,s),8.91(3H,d,J=8.3Hz),8.16(3H,d,J=6.2Hz),8.06(3H,d,J=8.2Hz),7.96(3H,d,J=6.2Hz),7.61—7.62(6H,m);13CNMR (100MHz,CDCl3):171.75,135.71,133.70,133.67,133.14,130.07,129.61,128.39,127.68,126.49,125.21;IR(KBr):3057,1628,1600,1578,1525,1499,1387,1376,1319,1238,1200,1152,1109,956,815,768,748,568,473 cm-1;HRMS(TOF MS EI+)m/zcalcd for [C45H27N3]459.1735,found 459.1738.2 结果与讨论上述两种化合物的合成及波谱表征表明,所得到的产物确系本文拟研究的化合物T1NT和T2NT.2.1 分子结构分析从图1给出的化合物T1NT与T2NT的分子结构式中可以看出,T1NT分子可以以六元环构型形成有效的分子内氢键,从而使得该分子中萘基与三嗪环呈现较好的分子平面性;而T2NT分子中由于萘基的氢原子与三嗪的氮原子距离较远,不能形成有效的分子内氢键,故该分子中萘基与三嗪环不能呈现较好的分子平面性.与T1NT分子相比,T2NT分子中萘环与三嗪环相连的碳碳单键旋转的自由度较大.这些分子结构的差异对理解它们的光谱行为的差异十分重要.图1 T1NT与T2NT的分子结构式The molecular structures of T1NTand T2NT.2.2 溶剂效应2.2.1 吸收光谱行为图2-a/2-c分别给出了化合物T1NT和T2NT在不同极性介质(正己烷、氯仿、乙酸乙酯、乙腈)中的紫外吸收光谱.可以看出,它们吸收峰均随着溶剂的极性增加变化较小.然而它们的吸收光谱的形状与峰位存在明显差异,其中T1NT的最大吸收峰在约330nm左右,而T2NT的最大长波吸收峰在约306nm左右.这种吸收峰位的差异来源于分子的共轭体系的差异,即T1NT分子有较好的分子平面性,产生较大的分子共轭,其长波最大吸收峰较T2NT呈现显著红移.由于分子结构对称,它们的吸收峰随溶剂极性变化不大.图2 (a)T1NT在不同溶剂中的紫外吸收光谱([C]=1×10-5 mol/L),(b)T1NT在不同溶剂中的荧光发射光谱([C]=1×10-5 mol/L,λex=330nm);(c)T2NT在不同溶剂中的紫外吸收光谱([C]=1×10-5 mol/L),(d)T2NT在不同溶剂中的荧光发射光谱([C]=1×10-5 mol/L,λex =310nm)(a)UV-Vis spectra of T1NTin organic solvents([C]=1×10-5 mol/L),(b)Fluorescene spectra of T1NTin organic solvents([C]=1×10-5 mol/L,λex= 330nm);(c)UV-Vis spectra of T2NTin organic solvents([C]=1×10-5 mol/L),(d)Fluorescene spectra of T2NTin organic solvents([C]=1×10-5 mol/L,λex= 310nm)2.2.2 荧光光谱行为图2-b/2-d给出了化合物T1NT和T2NT在不同极性介质中的荧光发射光谱.在弱极性溶剂(正己烷)中T2NT表现出具有精细结构的分子本征态发光.随着介质极性的增加,T1NT和T2NT的荧光发射呈现相同的特征:即,一方面发射峰位均红移,发射峰呈无精细结构的单峰,表现出分子内电荷转移(ICT)态的荧光特征.由于分子结构的高度对称性,二者发射峰的红移不大;另一方面,荧光发射强度逐渐增强,表现出较强的能级邻近效应(Proximity Effect)[17],与分子中存在杂原子有关.通常在含有杂原子的分子中存在n→π*跃迁与π→π*跃迁,这两种跃迁的能级随介质极性的增加呈不同的变化,其中π→π*跃迁能级逐渐降低,而n→π*跃迁能级逐渐升高.这种变化过程中会出现二者的能级逐步邻近其后再逐步拉开的情况,表现出宏观上的荧光先增强后减弱的有趣变化.而在我们实验的溶剂体系中,T1NT和T2NT的荧光发射强度逐渐增强,均表现出较强的能级邻近效应.T1NT分子有较好的分子平面性,其激发态的能级小于T2NT,因而其荧光发射波长比T2NT呈现显著红移.2.3 温度效应图3-a/3-b分别给出了化合物T1NT和T2NT在不同温度条件下的荧光发射光谱.随着温度降低,各种非辐射失活过程逐渐减弱,随着分子的运动减弱,介质对溶质分子的溶剂化作用随之减弱,T1NT和T2NT的荧光发射均呈现强度增加与轻微的红移.在77 K时,分子处于冻结态,溶剂化作用消除,T1NT和T2NT的荧光发射均呈现精细结构并且发光强度剧烈增加,同时二者在长波长方向上产生了显著的磷光发射.图3 在溶剂乙醚中于不同温度下的发射光谱(a)T1NT([C]=1×10-5 mol/L,λex=330nm ),(b)T2NT([C]=1×10-5 mol/L,λex=310nm )Emission spectra in Et2O at different temperatures(a)T1NT([C]=1×10-5 mol/L,λex=330nm ),(b)T2NT([C]=1×10-5 mol/L,λex=310nm )我们还发现冻结态下,无论是T1NT的荧光发射峰(390nm、404nm、445nm)还是磷光发射峰(533nm、573nm、620nm)均比T2NT的荧光发射峰(371nm、391nm、413nm)与磷光发射峰(505nm、545nm)呈现显著的红移.这一现象仍然来源于分子结构因素,即T1NT比T2NT具有更好的分子平面性所致.正是由于在冻结态下分子内萘环与三嗪环的碳碳单键不能自由旋转,分子平面性较弱的T2NT由于其分子的共轭程度较差,与T1NT相比,其冻结态的荧光发射出现在较短波长范围,展现出较好的精修结构.2.4 四氢呋喃-水二元溶剂中的荧光行为图4给出了T1NT与T2NT在四氢呋喃-水二元溶剂体系中的荧光光谱.随着介质中水的体积分数的增加,二者荧光均呈现红移现象,但从荧光的发射强度而言,二者表现相反,即T1NT的荧光发射呈现逐渐增强的趋势,而T2NT的荧光发射则呈现逐渐减弱的趋势.对这一现象的理解比较困难,一方面随着介质中水的体积分数的增加,介质的极性变得越来越强,T2NT荧光发射强度的逐渐减弱可能与能级邻近效应消失有关.另一方面随着介质中水的体积分数的增加,溶质分子会逐步聚集并析出.T1NT与T2NT分子由于分子结构存在差异,分子间聚集时π-π相互作用可能存在显著的不同,它们发光行为的差异可能与分子聚集形成不同微晶有关[18,19].从发光峰位的红移现象来判断,T1NT与T2NT的分子聚集均属于“J-聚集体”(J-aggregation)[20].图4 在四氢呋喃-水二元溶剂中的荧光光谱(a)T1NT([C]=1×10-5 mol /L,λex=330nm),(b)T2NT([C]=1×10-5 mol/L,λex=310nm)Fluorescence spectra of T1NTand T2NTin THF-H2O binary solvents(a)T1NT([C]=10-5 mol/L,λex=330nm),(b)T2NT([C]=10-5 mol/L,λex=310nm)3 结论本文通过Suzuki偶联反应高效地合成了2,4,6-三(1-萘基)-1,3,5-三嗪(T1NT)和2,4,6-三(2-萘基)-1,3,5-三嗪(T2NT).由于二者分子结构的差异,即T1NT比 T2NT具有更好的分子平面性,其激发态下分子内电荷转移的程度较大,介质的溶剂化作用较强,导致其在溶液中吸收光谱、发射光谱比T2NT呈现显著红移.冻结态下,分子平面性较弱的T2NT具有较高的激发态能级与较弱的电荷复合能力,与T1NT相比,其发光峰位在短波长范围并展现出较好的精细结构.本文所涉及有趣的光谱现象对人们开发基于三嗪的光电材料、研究构效关系具有一定的理论价值.参考文献:[1] Kuo G H,DeAngelis A,Emanuel S,et al.Synthesis andidentification of[1,3,5]triazine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors[J].Journal of Medicinal Chemistry,2005,48:4535-4546.[2] Yokley R A.Triazine herbicide methodology[J].Handb.Residue Anal.Methods Agrochem.,2003,1:412-450.[3] Xie K,Sun Y,Hou A.Diffusion properties of reactive dyes into net modified cotton cellulose with triazine derivative[J].Journal of Applied Polymer Science,2007,103:2166-2171.[4]张雪娇,李玉川,刘威,杨雨璋,彭蕾,庞思平.三嗪类含能化合物的研究进展[J].含能材料,2012,20(4):491-500.Zhang X J,Li Y C,Liu W,Yang Y Z,Peng L,Pang S P.Review on triazines energetic compounds[J].Chinese Journal Energetic Materials,2012,20(4):491-500.[5]姜苹,王克敏,聂俊,宋国强,马贵平.2,4-双(三氯甲基)-6-(4-甲氧基-1-苯乙烯基)-s-三嗪光引发剂的合成与聚合动力学研究[J].影像科学与光化学,2011,29(3):222-231.Jiang P,Wang K M,Nie J,Song G Q,Ma G P.Synthesis and photopolymerization kinetics of 2,4-bis(trichloromethyl)-6-(4-methoxy-1-styryl)-s-triazine [J].Imaging Science and Photochemistry,2011,29(3):222-231.[6] Fang Q,Jiang L.Synthesis and characterization of triallylphenoxytriazine and the properties of its copolymer with bismaleimide[J].Journal of Applied Polymer Science,2001,81:1248-1257.[7] Prokhorov A M,Kozhevnikov D N.Reactions of triazines andtetrazines with dienophiles(review)[J].Chemistry of Heterocyclic Compounds,2012,48:1153-1176.[8] Wang Y,Wang X,Antonietti M.Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry[J].Angewandte Chemie International Edition,2012,51:68-89.[9] Therrien B.Coordination chemistry of 2,4,6-tri(pyridyl)-1,3,5-triazine ligands[J].Journal of Organometallic Chemistry,2011,696:637-651.[10] Li S,Fa S X,Wang Q Q,et al.Synthesis and structure of oxacalix [2]arene[2]triazines of an expandedπ-electron-deficient cavity and their interactions with anions[J].Journal of Organic Chemistry,2012,77:1860-1867.[11] Cai Y Q,Wu W,Wang H,et al.Monolayers and Langmuir blodgett films of luminescent 1,3,5-triazine derivatives containing naphthalene or anthracene chromophores[J].Surface Science,2011,605:321-327.[12]Beltrán E,Serrano J L,Sierra T,et al.Tris(triazolyl)triazine via click-chemistry:a C3electron-deficient core with liquid crystalline and luminescent properties[J].Organic Letters,2010,12:1404-1407.[13] Fink R,Heischkel Y,Thelakkat M,et al.Synthesis and application of dimeric 1,3,5-triazine ethers as holeblocking materials in electroluminescent devices[J].Chemistry of Materials,1998,10:3620-3625.[14] Inomata H,Goushi K,Masuko T,et al.High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials[J].Chemistry of Materials,2004,16:1285-1291.[15]李春丽,李宗耀,徐莉,韩辉,王华.4-(9-蒽基)-6-辛氧基-1,3,5-三嗪-2-胺的合成及其在酸性介质中的光谱行为研究[J].影像科学与光化学,2011,29(1):24-31.Li C L,Li Z Y,Xu L,Han H,Wang H.Synthesis of 4-(anthracen-9-yl)-6-(octyloxy)-1,3,5-triazin-2-amine and its spectroscopic behavior in acid medium [J].Imaging Science and Photochemistry,2011,29(1):24-31.[16] Tan J Q,Chang J H,Deng M Z.Coupling reaction of organoboronic acids with chloropyrimidines and trichlorotriazine [J].Chinese Journal of Chemistry,2004,22:941-944.[17]王雪松,张宝文,曹怡.三氰基乙烯基甲基咔哇的光物理性质——能级邻近效应和溶剂化显色效应[J].感光科学与光化学,1995,13(4):353-357.Wang X S,Zhang B W,Cao Y.Photophysical properties of tricyanovinyl-9-methyl-carbazole—proximity effect and solvatochromism[J].Photographic Science and Photochemistry,1995,13(4):353-357.[18] Luo J,Xie Z,Lam J W Y,et al.Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J].Chemical Communications,2001,1740-1741.[19] Zeng Q,Li Z,Dong Y Q,et al.Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects[J].Chemical Communications,2007,70-72.[20] Koti A S R,Periasamy N.Cyanine induced aggregation in meso-tetrakis(4-sulfonatophenyl)porphyrin anions[J].Journal of Materials Chemistry,2002,12:2312-2317.。
富碳类石墨相氮化碳的制备及光催化性能
富碳类石墨相氮化碳的制备及光催化性能孙卫华;陆春华;寇佳慧;倪亚茹;许仲梓【摘要】Carbon-rich g-C3N4 was obtained by heating the mixture of melamine and glycerol.The photocatalytic performance of the samples was regulated by the amount of glycerol.The crystal structure,chemical composition,and morphology were analyzed by X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FT-IR),and transmission electron microscope (TEM).Ultraviolet-visible spectrophotometer(UV-Vis) and photoluminescence spectroscopy(PL)were employed to confirm the optical properties of the samples.A morphous carbon was derived from the carbonization of glycerolduring the condensation of melamine.The introduction of carbon could promote the visible light absorption of the photocatalysts,which was favorable for the enhancement of photocatalytic activity.The optimum amount of glycerol was 0.2% (mass fraction).90% of rhodamine B (RhB) could be degraded by 0.2%carbon-rich g-C3N4 in 200 min,which was 1.4 times of pure g-C3N4.The repeated experiments demonstrated that the photocatalytic activity of 0.2% carbon-rich g-C3N4 had well stability.The photocatalytic performance could be maintained as high as 92% after 4 cycles.%丙三醇与三聚氰胺的混合物通过热聚合法制得富碳类石墨相氮化碳(g-C3N4),着重研究丙三醇加入量对样品光催化性能的影响.采用X 线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、透射电子显微镜(TEM)分析样品的晶体结构、化学组成和形貌,紫外-可见分光光度计(UV-Vis)测定样品的光谱吸收性能,荧光光谱仪(PL)测试样品的荧光性能.结果表明:三聚氰胺缩聚形成g-C3N4,丙三醇碳化形成的无定形碳负载于g-C3N4表面.无定形碳的引入可以有效促进g-C3N4的可见光吸收,丙三醇的最佳加入量为0.2%(质量分数),此富碳g-C3N4样品可在200 min内降解90%的RhB,是纯g-C3N4降解量的1.4倍.样品具有较好的稳定性,4次循环实验后依然保持92%以上的反应活性.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2017(039)002【总页数】6页(P1-5,30)【关键词】光催化;类石墨相氮化碳;丙三醇;碳化【作者】孙卫华;陆春华;寇佳慧;倪亚茹;许仲梓【作者单位】南京工业大学材料科学与工程学院,江苏南京210009;南京工业大学材料科学与工程学院,江苏南京210009;南京工业大学材料科学与工程学院,江苏南京210009;南京工业大学材料科学与工程学院,江苏南京210009;南京工业大学材料科学与工程学院,江苏南京210009【正文语种】中文【中图分类】TB33工业社会的快速发展,使得人们面临日益严峻的环境污染和能源危机,亟须开发一种整治环境污染、制备清洁能源的新技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thin Film Division, Department of’ Physics. Linkiiping Uttirersity, S-58183 Linkiipittg, Sweden
2. Experimental Deposition of CN, thin films on various substrates, amorphous SiO,, polycrystalline Si,N,, single crystalline TIN ( 111) and Ni( 100). and high-speed steel, was carried out in a d.c. magnetron sputtering system with a base pressure of 5.0 x 10d8Torr. The target and discharge gas were a high-purity 99.99% pyrolytic graphite disc and 99.9999% pure nitrogen, respectively. All substrates were cleaned ultrasonically in acetone and alcohol. The high-speed steel substrates were further cleaned by sputter-etching to remove any residual contaminants. In all experiments, P,, was kept at either 2.5 or 10 mTorr, and T, was varied from ambient (IV 100 “C) to 500 “C. The effects of plasma heating were accounted for in reported T, values. The film thickness was evaluated using a surface profilometer. Mass spectrometry measurements of the ionic specieswere performed using a quadrupole mass spectrometer in vacua and in N, (2.5 mTorr) discharge. To determine the composition, surface roughness,microstrucures, and mechanical properties of films, Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS ), atomic
Keywords: Carbon nitride; Magnetron
sputterrates
1. Introduction CN, (~~57 at.%) films typically exhibit interesting properties such as fullerene-like or amorphous microstructures, high hardness and extreme elastic properties [ 11, and a good tribological performance [2-51. CN films may thus have some potential in such applications as overcoats on computer hard disks and sliders [2,6] as well as solid lubricants [4]. The substrate material is known as a very important parameter for determining the film structure and properties. The proper choice of substrate materials can stabilize not only certain crystal structures, but also improve adhesion and properties of the deposited coatings. In this paper, various substrate materials are used during reactive magnetron sputter deposition of CN, films in order to study their influence on the growth process, film microstructure, and mechanical properties of the films.
Abstract
The effects of substrate material on structure, composition and mechanical properties of carbon nitride thin films, deposited by reactive d.c. magnetron sputtering in N, discharge, have been studied. CN, films, with a nitrogen concentration between 15 and 30 at.%, were deposited at two different N2 partial pressures (2.5 mTorr and 10 mTorr) on to a number of different substrate materials, SiO,, Si,N,, TIN, Ni and high-speed steel, kept at temperatures between ambient and 500 C. The results show that the adhesion of CN, films to Ni and steel substrates was very poor, especially at elevated temperatures, whereas in the case of Si02, Si,N,, and TIN substrates, the adhesion was generally good. The variation in growth rate was also found to be different depending on which substrate was used. Atomic force microscopy (AFM ) revealed that the films grown at a lower pressure were very smooth with an rms roughness between 0.2 and 0.3 nm, whereas the roughness was more than one order of magnitude higher (2-10 nm) for films grown at 10 mTorr. Nanoindentation measurements showed that the films grown at the low pressure and above 200 “C were both hard and elastic as expected. based on previous results. The films grown at temperatures below 200 “C were much softer and less elastic. 0 1998 Elsevier Science S.A.
Surface and Coatings Technology 100~101 ( 1998) 287-290
Characterization of carbon nitride thin films deposited by reactive d.c. magnetron sputtering on various substrate materials
PII SO257-8972(97)00634-8
force microscopy (AFM ), high-resolution microscopy ( HREM ), and nanointentation ments were utilized. A detailed description measurements can be found elsewhere [7].
* Corresponding author. Dept. of Material Science, Jilin University, Chagchun 130023, P.R. China. e-mail: weizh@ifm.liu.se 0257~8972/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
electron measureof these
500
400 -2 300 200
100 0 0
3. Results and discussion Mass spectra were recorded during, and prior to, depositions. The presence of background components such as Hz0 and CO, with intensities of below 5 x 10-s Torr in vacua was observed. During the depositions of CN, films on various substrates, the dominant ions were Ni and N +, but in addition, (CN): and CN + ionic species were observed as well as ions due to the background components, as shown in Fig. 1. The ionic species (CN): and CN + result from chemical reactions on the carbon target surface during the sputter process. As expected, different substrate materials do not influence the intensities of individual ionic species. Both the growth rate R, and the N-content decreased as the growth temperature was increased at a constant PNz. For example, for films grown on SiO,, RD decreased from 28.5 to 185 nm h-‘, and C, from 30 to 20 at.% as T, (PNZ =2.5 mTorr) was increased from 100 “C to 500 “C. Since both R, and C, decrease as T, is increased, it can be concluded that film growth is precursormediated and/or simply controlled by desorption reactions on the growth surface. Fig. 2 shows the variation in R, versus T, for films deposited at PN2=2.5 mTorr on various substrates. It can be seen that the RD of films grown on the metal substrates [high-speed steel, single crystalline Ni(OOl)] decreases more rapidly as T, is increased than on non-metal substrates [amorphous SiO,, polycrystalline Si,N4, and TiN( 1 11 )]. This may be due to a weak chemical affinity between C or N and surface atoms in the metal substrates such as high-speed steel and Ni. Thus, the incoming species on the surface 1o-4