七年级数学从面积到乘法公式测试题1

合集下载

(新版)苏科版七年级数学下册第9章从面积到乘法公式9.1乘法公式

(新版)苏科版七年级数学下册第9章从面积到乘法公式9.1乘法公式

课堂练习
参考答案: 解:S阴影=(20152-20142)+(20132-20122)+…+(32-22)+1 =2015+2014+…+3+2+1=2031120 cm2.答:所有阴影部分的面 积和是2031120cm2.
课后习题
1. 下列各式中,计算结果是 2mn m2 n2 的是( B )
第九章 整式乘法与因式分解
一、乘法公式
教学新知
完全平方公式:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
平方差公式: a2-b2= (a+b)(a-b) .
知识要点
1.会推导完全平方公式,并能正确运用公式进行计算。 2.会推导平方差公式,并能正确运用公式进行计算。 3.培养学生主动探索、敢于实践、勇于发现的科学精神似及 合作交流的能力和创新意识。
(1) x2 2y2 2
(2)(2x2 1)2
2
(3) 1 x 2 y 2 1 x 2 y 2
2
2

(4) (a b c)2
参考答案: x 4 4x 2 y 2 4 y 4
4x4 x2 1
a2 b2 c2 2ab 2bc 2ac
1 x2 8y2 2
课堂练习
6. 如图9.4-7,2015个正方形由小到大套在一起,从外向里相 间画上阴影,最外面一层画阴影,最里面一层画阴影,最外面 的正方形的边长为2005cm,向里依次为2014cm,2013cm, …,1cm,那么在这个图形中,所有画阴影部分的面积和是多 少?
图9.4-7
2. 填空:(-x+7)(-x-7)= x2-49 , (3x+5y)• 3x-5y =9x2-25y2.

苏科版七年级数学下册 乘法公式优生辅导测评(Word版含答案)

苏科版七年级数学下册 乘法公式优生辅导测评(Word版含答案)

苏科版七年级数学下册《9-4乘法公式》优生辅导测评(附答案)一.选择题(共8小题,满分40分)1.(2a﹣m)2=4a2+2a+,则m=()A.B.C.D.2.已知多项式4x2﹣2(m+1)x+1是完全平方式,则m的值为()A.﹣3或1B.﹣3C.1D.3或﹣13.已知a﹣b=2,a2+b2=20,则ab值是()A.﹣8B.12C.8D.94.已知(x﹣1)2=2,则代数式x2﹣2x+5的值为()A.4B.5C.6D.75.已知m﹣n=3,则m2﹣n2﹣6n的值是()A.7B.8C.9D.106.若n满足(n﹣2021)2+(2022﹣n)2=1,则(n﹣2021)(2022﹣n)的值为()A.﹣1B.0C.D.17.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为56,面积之和为58,则长方形ABCD的面积为()A.98B.49C.20D.108.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是()A.20B.30C.40D.60二.填空题(共8小题,满分40分)9.若a2﹣b2=6,a+b=2,则a﹣b=.10.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.11.若x2﹣(m﹣1)x+49是完全平方式,则实数m=.12.一个正方形的边长增加3,它的面积就增加39,这个正方形的边长是.13.现有甲、乙、丙三种不同的正方形或长方形纸片若干张(边长如图).要用这三种纸片无重合无缝隙拼接成一个大正方形,先取甲纸片1张,乙纸片4张,还需取丙纸片张.14.计算(x+y﹣z)(x﹣y+z)=.15.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.16.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.三.解答题(共5小题,满分40分)17.计算:(m﹣3)(m+3)﹣(m﹣3)2.18.(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20212﹣2022×2020.19.计算:(x﹣2y+3)(x+2y﹣3).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)运用你从(1)写出的等式,完成下列各题:①已知:a﹣b=3,a2﹣b2=21,求a+b的值;②计算:.参考答案一.选择题(共8小题,满分40分)1.解:∵(2a﹣m)2=4a2﹣4ma+m2,(2a﹣m)2=4a2+2a+,∴4a2﹣4ma+m2=4a2+2a+,∴﹣4m=2,解得:m=﹣,故选:D.2.解:∵4x2﹣2(m+1)x+1是完全平方式,∴﹣2(m+1)x=±2•2x•1,解得:m=﹣3或1.故选:A.3.解:∵a﹣b=2,∴(a﹣b)2=4,∴a2﹣2ab+b2=4,∴a2+b2=20,∴20﹣2ab=4,∴ab=8,故选:C.4.解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,∴原式=1+5=6,故选:C.5.解:∵m﹣n=3,∴m2=(n+3)2,∴m2=n2+6n+9,∴m2﹣n2﹣6n=9,故选:C.6.解:设n﹣2021=x,2022﹣n=y,∴x+y=n﹣2021+2022﹣n=1,∵(n﹣2021)2+(2022﹣n)2=1,∴x2+y2=1,∵x+y=1,∴(x+y)2=1,∴x2+2xy+y2=1,∴xy=0,∴(n﹣2021)(2022﹣n)=0,故选:B.7.解:设AB=DC=x,AD=BC=y,由题意得:化简得:将①两边平方再减去②得:2xy=20∴xy=10故选:D.8.解:设大正方形的边长为a,小正方形的边长为b,∵大正方形与小正方形的面积之差是40,∴a2﹣b2=40,由正方形的性质得:BC⊥AB,BD⊥AB,BC=AB=a,BD=BE=b,∴AE=AB﹣BE=a﹣b,∴阴影部分的面积=S△ACE+S△AED=AE•BC+AE•BD=AE•(BC+BD)=(a﹣b)(a+b)=(a2﹣b2)=×40=20,即阴影部分的面积是20.故选:A.二.填空题(共8小题,满分40分)9.解:∵a2﹣b2=6,∴(a+b)(a﹣b)=6,∵a+b=2,∴a﹣b=3,故答案为:3.10.解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.11.解:∵x2﹣(m﹣1)x+49是完全平方式,∴﹣(m﹣1)=±14,解得:m=15或﹣13.故答案为:15或﹣13.12.解:设原正方形的边长为a,则变化后的正方形的边长为a+3,由题意得,(a+3)2﹣a2=39,解得a=5,故答案为:5.13.解:∵a2+4ab+4b2=(a+2b)2,∴还需取丙纸片4张.故答案为:4.14.解:(x+y﹣z)(x﹣y+z)=[x+(y﹣z)][x﹣(y﹣z)]=x2﹣(y﹣z)2=x2﹣y2+2yz﹣z2.故答案为:x2﹣y2+2yz﹣z2.15.解:∵x+y=0.34,x+3y=0.86,∴2x+4y=1.2,即x+2y=0.6,则x2+4xy+4y2=(x+2y)2=0.36.故答案为:0.36.16.解:(1)∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17,∴x2+y2+2xy﹣(x2+y2)=8,∴xy=4,∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12,∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12,∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12,∴(x﹣2021)2=5.故答案为:5.三.解答题(共5小题,满分40分)17.解:原式=m2﹣9﹣(m2﹣6m+9)=m2﹣9﹣m2+6m﹣9=6m﹣18.18.解:(1)图1中阴影部分的面积等于两个正方形的面积差,即a2﹣b2;拼成的图2的长方形的长为(a+b),宽为(a﹣b),因此长方形的面积为(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b);(2)由(1)中两种方法表示阴影部分的面积可得a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b);(3)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1=1.19.解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.20.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.21.解:(1)图1剩余部分的面积为a2﹣b2,图2的面积为(a+b)(a﹣b),二者相等,从而能验证的等式为:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵a﹣b=3,a2﹣b2=21,a2﹣b2=(a+b)(a﹣b),∴21=(a+b)×3,∴a+b=7;②(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)×…×(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
9.如果4a2﹣ka+1是完全平方式,那么k的值是()
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】

,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,

=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,

七年级下册数学课课练电子版苏科版

七年级下册数学课课练电子版苏科版

七年级下册数学课课练电子版苏科版第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一) 9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确13.2 可能性七年级数学三角形复习内容1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。

2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角) 5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点7)三角形的外角和是360°8)等底等高的三角形面积相等9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

3、三角形的分类1)按边分①不等边三角形②等腰三角形(含等腰直角三角形、等边三角形 )2)按角分①锐角三角形②直角三角形③钝角三角形(锐角三角形和钝角三角形可统称为斜三角形 )4、三角形的有关定义 1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。

七年级下数学第九章从面积到乘法公式单元测验[1]

七年级下数学第九章从面积到乘法公式单元测验[1]

从面积到乘法公式单元测验姓名 班级 学号___________ 成绩____________一、选择题(本大题共10题,每题2分,共20分)1.计算(1-m )(-m-1),结果正确的是( )A .m 2-2m-1B .m 2-1C .1-m 2D .m 2-2m+12.若a 的值使得x 2+4x+a=(x+2)2-1成立,则a 的值为A.5B.4C.3D.23. 下列从左到右的变形,属于因式分解的是( )A .(x+3)(x -2)=x 2+x -6B .ax -ay -1=a (x -y )-1C .8a 2b 3=2a 2·4b 3D .x 2-4=(x+2)(x -2)4.(x+2)(x-2)(x 2+4)的计算结果是A.x 4+16B.-x 4-16C.x 4-16D.16-x 4 5.计算(a+b )2-(a-b )2的结果是( ) A .2a 2+2b 2 B .2a 2-2b 2 C .4ab D .-4ab6.若(x+4)(x-2)= q px x ++2,则p 、q 的值是( )A 、2,8B 、-2,-8C 、-2,8D 、2,-87.19922-1991×1993的计算结果是A.1B.-1C.2D.-2 8.小明在计算一个二项整式的平方时,得正确 结果x 2-6xy+ , 但最后一项不慎被污染了,这一项应该是( )。

A.9y 2B.y 2C.3yD.6y 29.若()()212-+-x mx x 的运算结果中x 的二次项系数为零,则m 的值是( )。

A .1 B .–1 C .–2 D .210.两个连续奇数的平方差一定是( )A.3的倍数B.5的倍数C.8的倍数D.16的倍数.二、填空题(每空2分,共20分)11、计算: 2x ·(-3x 2 )2 = ;(2x +5)(x -5) =_____________.12、计算:(3x -2)2=_______________;(—a+2b)(a+2b)= ______________.13.计算: ·c b a c ab 532243—=; ()()b a b b a a --+=_______________.14、计算742-262=_______________=______________15.多项式x 2+kx+25是另一个多项式的平方,则k= .16.若x 2-- y 2=12,x+y=-2,则x —y= .三、计算(本大题共4题,每题5分,共20分)17. (-2ab 2)2·(3a 2b-2ab-1) 18. (x+3)2-(x+2)(2-x)19.923×1013 20.(a+b--c )(a-b+c)四、分解因式:(每小题4分,共20分)21.-8a 3b 2+12ab 3c -6a 2b 22.3a (x -y )+9(y -x )23.(2m -3n )2-2m+3n 24.16mn 4-m 25.a 2-3a -4五、解答题(本大题3题,26题6分,27题8分,28题6分)26.已知a+b=-5,ab=6,求下列各式的值:(1)a 2+b 2.(2)(a -b)2.(3)(a -2)(b -2).27.已知x(x -1)-(x 2-y)=-2.求 的值28.观察下面的各式的规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……先写出第10行式子,然后再写出第n 行式子,并说明你的结论。

9.4乘法公式(1)

9.4乘法公式(1)
试说出这 3 个公式的特点。 教学素材: A 组题: 1.计算:1022 1992
1 1 ( x 2 y )( x 2 y ) 2 2 计算: (1) 2
(2)(-4a-1)(4a-1)
B 组题:
1.思考: ( a b) 与 (a b) 相等吗? ( a b) 与 (b a ) 相等吗
2 2 2 2
作业
第 82 页 1、2、4
板 复习 …… …… …… …… …… 教


计 例1 …… …… 例2 …… …… 板演 …… …… …… …… ……



完全平方公式、平方差公式通常称为乘法公式,在计算时可以直接使用。 练习:第 80 页 第 1、2、3、4 小结: 今天我们学习了乘法公式
(a b) 2 = a 2 2ab b 2 (a b) 2 a 2 2ab b 2 (a b)( a b) a 2 b 2
(a b) 2 a 2 2ab b 2
也可利用多项式乘法法则证明对于任意 a、b 上式都成立
(a b) 2 = a 2 2ab b 2 (a b) 2 a 2 2ab b 2
例题 1:计算 板演 —— 完全平方公式

( x 2)
2
1 ( y )2 2 ⑵
教学方法 教 师
学 生 活 动
情景设置:
b a ab a
学生回答
b
ab
怎样计算上图的面积?它有哪些表示方法? 新课讲解: 1.完全平方公式 如果把上图看成一个大正方形,它的面积为 ( a b)
2
由学生自己先做(或互 相讨论),然后回答,若 有答不全的,教师(或其 他学生)补充.

七年级数学乘法公式

七年级数学乘法公式
《数学》( 苏科版 标题 .七年级 下册 ) 第九章 从面积到乘法公式
标题
授课人:高邮市南海中学
俞永毅
数学——来源于生活 如图,一块边长为a米的正方形试验田, 因需要将其边长增加 b 米。 形成四块实验田,以种植不 b 同的新品种(如图). 用不同的形式表示实验田 的总面积, 并进行比较. a 探索: 你发现了什么?

熟练运用——掌握公式
用完全平方公式计算:
1. (-3a+2)2 2. (2m-3n)2 3. (-2x- y)2
学以致用——简化计算
用完全平方公式计算: (1)1022
=(100+2)2 =1002+2×100×2+22
=10000+400+4
(2)9972
=(1000-3)2
=10404
=10002-2×1000×3+32 =1000000-6000+9 =994009
在解题过程中要准确确定a和b、对照公式原形的 两边, 做到不丢项、不弄错符号、2ab时不少乘2;
转化思想在数学中有广泛的运用
乘法公式给我们的运算带来了方便.
作业 :课本P 69. 4(1~4),6,7(1~2)

mqv60hnp
有些过意不去地说:“可要辛苦娃娃们了!”耿直说:“还有送俺们回来的大白骡!”耿兰笑着说:“二哥啊,看你,怎么又把人和骡 子说一块儿去了!”大家都会心地笑了„„15第百二七回 全盘考虑巧筹划|(耿老爹想着种水稻,拟将大任交耿正;建筑图纸既已定, 明儿吉日就动工。)在家门口送走了义子李尚武后,耿老爹一家人返回堂屋。耿老爹坐在那个大大的餐桌边上招呼妻子和儿女们:“来 来来,都坐下!”耿兰说:“俺想叫姐姐教俺打算盘呢!”耿老爹说:“打算盘以后再教,现在咱得商讨一下接下来要办的几件大事儿 了!”耿直还没有从尚武离去的伤感中恢复过来,一句话也不说,默默地坐下了。耿老爹先问耿正和耿英:“这些天儿,你俩联系土木 工匠和预备石料、木料和砖瓦等各种建筑物材的事儿进展得如何了?还有建筑图纸,正儿,你可跟工匠头儿们商量过了?”耿正说:“ 土木工匠都已经联系好了,石料和木料也都有专人负责给咱们提供。至于建筑图纸,俺倒是已经找那几个土木工匠头儿们仔仔细细地推 敲过几次了,但还拿不准是不是可以就这样确定了。”耿英说:“砖瓦也没有问题,俺已经和咱们镇上的那几家窑主都说好了,他们现 在还没有卖出去的,和以后半年内新出窑的砖瓦全部都给咱们留着。他们都给俺打了保票啦,说是绝对不会影响咱们的修建进度!”耿 老爹听了很满意,轻咳一声清清嗓子说:“爹是这样想的,俺先一边育秧,一边简单地初编一部适合于一年级小学童采用的教材,无非 就是简单的认字、儿歌和加减计算什么的。然后哇,正儿你和英子、小直子,你们商量着再在这个基础上做一些增增减减,进行修改完 善也就可以了。另外啊,俺也考虑过了,咱们的小学堂确定为五年制比较合适。至于二、三、四、五年级都开些什么课程,咱们最好也 能早点儿确定下来。不过,适合采用什么样的教材眼下并不着急呢,咱们以后一边教着,一边再考虑着慢慢编写哇。”看耿正、耿英和 耿直都在认真听着,耿老爹接着说:“俺已经考虑过了,咱们就以朱熹的《小学集注》和《近思录》为编写基础,但也不完全拘泥于《 四书》、《五经》一类的东西。还有,这今后哇,俺想把主要精力放在试种水稻上,咱们家的学堂,包括下一步的新建和以后的管理, 就由正儿执掌起来哇!英子和小直子你俩要全力协助你们哥哥,谁也不许偷懒。兰兰就好好地做个小学生哇,争取早日学成了,也好为 咱们家的小学堂出点儿力!当然啦,如果遇到什么难以排解的事情,你们还是要和俺商量的,爹毕竟比你们多吃了二十多年的干饭哪! ”兄妹四人或默默地听着,或轻轻点头。耿老爹想一想,又说:“还有戏台,也最好是能够同步盖起来。至于戏台以后怎么管理,都主 要做些什么,俺现在还没有想

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

章节测试题1.【题文】化简求值.()求的值,其中.()若,求的值.【答案】(1)22;(2)6【分析】(1)根据平方差公式,单项式乘多项式的运算法则,进行运算,然后和合并同类项后把的值代入进行计算即可得解;根据完全平方公式,单项式乘多项式的运算法则进行运算,然后和合并同类项后,把已知式子的值整体代入即可得解;【解答】解:(),,,∵,∴原式,,.(),,,∵,∴,∴原式.2.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得3.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.4.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为5.【题文】先化简,再求值:(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n满足方程组【答案】(1) -2x2-y,0;(2) 2mn,-6.【分析】(1)根据多项式除以单项式和平方差公式化简,然后代入求值;(2)根据完全平方公式和平方差公式化简,然后解方程组求出m、n的值后再代入求值.【解答】解:(1)原式=-3x2+4y2-y-4y2+x2=-2x2-y.当x=1,y=-2时,原式=-2+2=0.(2)①+②,得4m=12,解得m=3.将m=3代入①,得3+2n=1,解得n=-1.故方程组的解是(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn,当m=3,n=-1时,原式=2×3×(-1)=-6.6.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式.【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.7.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。

初一数学经典考试备考综合习题及重点题及易错题

初一数学经典考试备考综合习题及重点题及易错题

经典考试备考综合习题初一下册数学重点题及易错题一,知识点整理:1,平行线的判定和性质 2,三角形的内外角知识 3,幂的运算 4,从面积到乘法公式单项式与单项式 单项式与多项式 多项式与多项式 因式分解 5,二元一次方程组 6,一元一次不等式 7,三角形全等二.典型例题:【例1】:.若2a =3,4b =6,8c =12,试求a ,b ,c 的数量关系.比较6111,3222,2333的大小. 比较3555,4444,5333的大小.【例2】关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.【例3】:已知453)5(31+=++n n x x x ,求x 的值.【例4】已知2x +5y -3=0,求yx324•的值.【例5】()()212-+-x mx x 的积中x 的二次项系数为零,则m 的值是: ( )A .1B .–1C .–2D .2【例6】已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值三,随堂练习:1,若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是 。

2,下列说法正确的是( )A .三角形的角平分线是射线。

B.三角形三条高都在三角形内。

C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。

D. 三角形三条中线相交于一点。

3.已知b a 92762==,求ab a 222+的值.4,小贝在进行多边形内角和的计算时,求得一多边形的内角和为1500°,当她发现错了之后,重新检查,发现少加一个内角,你知道她少加的这个内角是多少度吗?她求的这个多边形是几边形? 5,已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。

6,已知13x x -=,求441x x +的值。

7,已知a 2+a+1=0,求a 3+2a 2+2a+1的值.8,k 为何值时,方程组⎩⎨⎧-=+=-1872253k y x ky x 中x 与y 绝对值相等,并求出方程组的解9.计算9910022)()(-+-所得的结果是( ) A .-2 B .2 C .-992 D .992(2)若的值求n m m n b a b b a +=2,)(1593.11,已知;,012=-+a a 求1999223++a a 的值四,随堂测试:1,不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥12,若n m n n m x x x ++==求,2,162的值.3,小明在求一个多边形的内角和时,由于疏忽,把一个内角加了两遍,而求出的结果为2004°,请问这个内角是多少度?这个多边形是几边形?4,甲,乙同学分解因式:mx 2+ax+b ,甲仅看错了a ,分解结果为2(x -1)(x -9);•乙仅看错了b ,分解结果为2(x -2)(x -4),你能确定正确的结果吗?试试看.5,如果的值求12),0(020*******++≠=+a a a a a .6,若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围7,如图,△ABD 和△BCE 是两个等边三角形,且A 、B 、C 三点共线,AE 与BD 交于点M ,BE 与CD 交于点N ,试证明(1)AE=CD(2)MN//AC.8,某校准备组织290名学生进行野外考察活动,行李共100件,学校计划租用甲乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多载40人和10件行李;乙种汽车每辆最多载30人和20件行李。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

2013七年级数学从面积到乘法公式测试

2013七年级数学从面积到乘法公式测试

从面积到乘法公式★A 卷二 基础知识点点通班级 姓名 成绩一、选择题(每题3分,共30分)1. 下列计算中正确的是( )A.623a a a =∙B.22))((b a b a b a -=-+C.222)(b a b a +=+D.222)2)((b a b a b a -=-+2. 计算))((x y y x ---的结果是( )A.22y x +-B.22y x --C.22y x -D.22y x +3. 与)9(b a -之积等于2281a b -的因式是( )A.b a -9B.b a +9C.b a --9D.a b 9-4. 22)(b a --的运算结果为( )A.2242b b a a +-B.2242b b a a ++C.2242b b a a ---D.222b ab a ++5. 若22)(y x p y x -=∙--,那么p 等于( )A.y x --B.y x +-C.y x -D.y x +6. 若1622+-mx x 是完全平方式,则m 的值是( )A.2B.2±C.4D.4±7. 下列各式,能用平方差计算的是( ) A.)231)(312(a b b a --- B.)23)(23(22a b b a ++- C.)2)(2(22-+-n m n m D.)3)(3(a bc bc a ---8. 当2-=x 时,代数式122-+-x x 的值等于( )A.9B.9-C.1D.1-9. 已知4=-y x ,12=xy ,则22y x +的值为( )A.28B.40C.26D.2510.计算结果为12224+-y x y x 的是( )A.222)1(-y xB.22)1(+y xC.22)1(-y xD.22)1(--y x二、填空题(每空1分,共20分)11.22)()()1)(1(-=-+--y x y x ,])2[()()2(22a b b a --=- 12.22)(6=++xy x ,222)(23)(=++y xy 13.=-=+n n n n 2223)()32(14.=+-+)4)(2)(2(2a a a ,4416)()2)(2(a x a x a x -=+-15.若m y x =+,n xy = ,则=+22y x ,=-2)(y x ,=+-22y xy x 16.已知m c b a =++,n c b a =++222,则=++ca bc ab17.如果2294y Mxy x +-是一个完全平方式,则=m 18.计算==-22267419.计算==29.8 三、解答题(第20题、第21题每题3分,第22题、第23题、第24题每题4分,第25题5分)20.简便计算⑴2002200420032⨯- ⑵2298⑶8110879⨯ ⑷28.9921.计算⑴)212)(212(22--+-x x ⑵))((n m n m y x y x +- ⑶22)3121()3121(b a b a -+ ⑷2)(z y x ++22.化简求值:)2)(2()2)(2(a b a b a b b a -+-+-,其中1=a ,2=b23.解方程:x x x x x 12)63)(2()3(2)1(522-+-=+--24.利用乘法公式计算⑴)4)(2)(16)(2(24+++-x x x x ⑵)231)(132(a b b a -+--25.已知1=+b a ,1-=ab ,求2)(3b a -的值。

板桥初中三轮复习资料——回归课本

板桥初中三轮复习资料——回归课本

回归课本——课本例、习题梳理七年级(上)(执笔:许殿斌,统稿:顾厚春)例题1:按如图所示的方式搭正方形,则搭n 个正方形所需的火柴棒数是 根.练习:1.为庆祝“六 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n + C .44n + D .8n 2.找规律:用火柴棒搭三角形.搭1个三角形需要火柴棒 根; 搭2个三角形需要火柴棒 根; 搭3个三角形需要火柴棒 根; 搭10个三角形需要火柴棒 根; 搭100个三角形需要火柴棒 根;3.、用正方形的普通水泥砖和彩色水泥砖按下图的方式铺人行道: ⑴图①中有彩色水泥砖 块, 图②中有彩色水泥砖 块, 图③中有彩色水泥砖 块;⑵像这样,第n 个图形需要彩色水泥砖 块; ⑶第n 个图形需要普通水泥砖 块.。

4.剪绳子:⑴将一要挟绳子对折1次后从中间剪一刀,绳子变成 段;将一根绳子对折2次后从中间剪一刀,绳子变成 段;将一根绳子对折3次后从中间剪一刀,绳子变成 段; ⑵将一根绳子对折n 次后从中间剪一刀,绳子变成 段;⑶根据⑵的结论,计算一根绳子对折10次后从中间剪一刀,绳子变成 段。

5.已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式。

根据上图所示,一个四边形可以分成____个三角形;于是四边形的内角和为______度:一个五边形可以分成______个三角形,于是五边形的内角和为______度,……,按此规律,n 边形可以分成_______个三角形,于是n 边形的内角和为________________度.例2:观察公式:公式1:3223333)(a xa a x x a x +++=+ 公式2:4322344464)(a xa a x a x x a x ++++=+ (1)这两个公式有什么特点?(2)利用公式计算: )21()21(24)21(26)21(24232234-+-⨯⨯+-⨯⨯+-⨯⨯+ 练习1.观察下列等式,并回答问题:23)31(6321⨯+==++ ,24)41(104321⨯+==+++,25)51(1554321⨯+==++++ ,…=++++n 321 ,1000321++++ = .2.223214111⨯⨯==,22333241921⨯⨯==+,22333434136321⨯⨯==++,…. (1)猜想填空:⨯=++++413213333n ( )2⨯( )2(2)若2333324041321⨯=++++n ,试求n 的值.例题3:观察日历:⑴同一列中相邻两数之差为;⑵月历中方框内的4个数之间有何关系?再找一个这样的方框,是否仍有这样的关系?⑶若方框内有9个数,它们之间有何关系?⑷小明一家外出旅游5天,这5天的日期和是25,问小明几号出发的?练习:1.、在如图所示的1月份的日历中,用一个方框圈出任意3×3个数(1) 从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日?(2) 用这样的方框能否圈出总和为162的9个数?2.请你观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为()A.20、29、30 B.18、30、26 C.18、20、26 D.18、30、28例题4:合情推理题:观察右面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:①11 1122⨯=-②22 2233⨯=-③33 3344⨯=-④444455⨯=-表二表三表四11235...(1) 写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;⑤(2)猜想并写出与第n 个图形相对应的等式.练习1:意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…, 其中从第三个数起,每一个数都等于它前面两上数的和。

4.14七年级数学下册_第九章从面积到乘法公式复习教案_苏科版 2

4.14七年级数学下册_第九章从面积到乘法公式复习教案_苏科版 2

第九章从面积到乘法公式单元总结提升班级____________姓名____________学号___________备课时间: 主备人:单元总结归纳一、本章的知识框图二、重点、难点突破重点:(一)单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(二)单项式乘以多项式1.单项式与多项式的相乘,用单项式乘多项式的每一项,再把所得的积相加.即a(b+c+d)= ab+ac+ad.2.其几何意义为:3.单项式与多项式相乘的步骤:(1)按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式;(2)进行单项式的乘法运算.(三)多项式乘以多项式1.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.其几何意义为:3.多项式与多项式相乘的步骤:(1)用一个多项式的每一项乘另一个多项式的每一项;(2)把所得的积相加.(四)乘法公式1. 完全平方式公式:(a±b)2= a2±2ab+b2.(1)特征:完全平方公式的左边是一个二项式的完全平方,右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.可概括为“首平方,尾平方,乘积2倍放中央,中央符号回头望”.(2)语言叙述:两个数的和的平方等于这两个数的平方和与它们的积的2倍的和;两个数的差的平方等于这两个数的平方和与它们的积的2倍的差(3)几何意义:(a+b)2= a2+2ab+b2、(a-b)2=a2-2ab+b22.平方差公式:(a+b)(a-b)=a2-b2.(1)特征:公式的左边是两个数的和乘以这两个数的差,而公式的右边恰好是这两个数的平方差.(2)语言叙述:两个数的和乘以这两个数的差等于这两个数的平方差.(3)几何意义:5.因式分解(1)因式分解与整式乘法的区别与联系:把一个多项式写成几个整式积的形式叫做多项式的因式分解. 它与整式乘法是两种互逆的恒等变形.(2)提公式法分解因式:提公因式的依据是乘法分配律,其实质是分配律的“逆用”;提公因式分解因式的步骤是:a.找出多项式各项的公因式;b.提出多项式的公因式;提公因式分解因式的关键是正确找出各项的公因式,当一个多项式的公因式正确找出后,需要提取公因式,此时可以直接观察出提出公因式后剩下的另一个公因式;也可以用原多项式去除以公因式,所得的商即为提出公因式后,剩下的另一个因式.(3)公式法分解因式:平方差公式分解因式:a2-b2=(a+b)(a-b),两个数的平方差等于这两个数的和与这两个数的差的积.完全平方公式分解因式:a2±2ab+b2=(a±b)2,两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.难点:1. 单项式与单项式相乘,应注意:(1)先把各因式里的系数组成一组,积的系数等于各因式系数的积,即进行有理数的乘法运算,先确定积的符号,再计算绝对值;(2)相同字母相乘时,利用同底数幂的乘法法则“底数不变,指数相加”;(3)对于只在一个单项式中出现的字母,应连同它的指数一起写在积里,注意不能漏掉这部分因式;(4)单项式乘法中若有乘方、乘法等混合运算,应按“先乘方,再乘法”的顺序进行;(5)单项式与单项式相乘的积仍是单项式,对于字母因式的幂的底数是多项式形式的,应将其作为一个整体来运算;(6)对于三个或三个以上的单项式相乘,法则仍适用.2. 单项式与多项式相乘应注意:(1)单项式与多项式相乘,结果仍是多项式,其项数与因式中多项式的项数相同;(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,为了避免发生符号上的错误,计算时可以分为两步:先把“-”号放在括号外,把单项式与多项式相乘,然后去括号;(3)在混合运算时,要注意运算顺序,结果有同类项的要进行合并.3. 多项式乘以多项式应注意:(1)运算时要按一定的顺序进行,防止漏项,积的项数在没有合并同类项之前,应是两个多项式项数的积;(2)多项式是几个单项式的和,每项都包括前面的符号,在计算时要正确确定积中各项的符号;(3)运算结果有同类项的要合并同类项,并按某个字母的升幂或降幂排列.4.乘法公式(1)运用完全平方公式时应注意:明确使用和的完全平方公式还是差的完全平方公式;分清公式中的a、b分别代表什么;结果是三项式,首尾两项分别是左边二项式的每一项的平方,中间项是左边两项的积的二倍,尤其是中间项的二倍不能忘记.(2)运用平方差公式时应注意:首先明确能否利用平方差公式计算(能利用平方差的标准是一个二项式是两数的和,另一个二项式是这两数的差,我们把符号相同的数看作是a,把符号相反的项看作是b);结果是平方差,且两个数(项)的位置不能弄错;必须注意系数、指数的变化(3)灵活应用乘法公式首先必须做到心中牢记公式的“模样”,在此前提下再认真地对题目进行细致观察,想法设法通过调整项的位置和添括号等变形技巧,把式子凑成公式的“模样”,然后就可以应用公式进行计算了,这里关键是要善“变”.5.因式分解(1)对因式分解结果的约定:a.与原多项式相等;b.为积的形式,即从整体上看,最后结果应是一些因式的乘积;c.每个因式都是整式;d.在指定数集里,每个多项式不能再分解.e.形式最简.(2)用提公因式法分解因式应注意:a.公因式要提尽;b.小心漏项,提公因法分解因式后,括号里多项式的项数与原多项式的项数应该相同;c.提取公因式后的多项式首项一般取正号;d.分解因式与整式的乘法是互逆的过程,所以可以用整式的乘法来验证因式分解的正确性;e.把含有相同字母的式子作为公因式提出来时,要特别注意统一式子中字母的顺序;f.提公因式要干净彻底,也就是说当把多项式提出公因式后,剩下的另一个因式中应该再不能提出公因式了.(3)使用公式法分解因式:如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式;如果多项式是三项,其中两项同号,且能写成两数的平方和的形式,另一项是这两数乘积的2倍,可以运用完全平方公式分解.有时多项式不能直接使用公式时,还可以适当将它们变形.(4)综合运用提公因式法和运用公式法分解因式时要注意: 1.如果多项式各项有公因式,应先提公因式,再进一步分解; 2.分解因式必须分解到每个多项式的因式都不能再分解为止; 3.因式分解的结果必须是几个整式的积的形式.即:“一提”、“二套”、“三查”.特别强调“三查”,检查多项式的每一个因式是否还能继续分解因式,还可以用整式乘法检查因式分解的结果是否正确.整合拓展创新类型之一、基本概念型例1 下列变形中哪些变形是因式分解,哪些是整式乘法? (1)8a 2b 3c=2a 2b ·2b 3·2c (2)3a 2+6a=3a(a+2)(3)x 2-21y=(x+y1)(x -y1)(4)x 2-4+3x=(x+2)(x -2)+3x (5)ma+mb+na+nb=m(a+b)+n(a+b) (6)(2a+5b)(2a -5b)=4a 2-25b 2【思路分析】因式分解必须是左边是多项式,右边整体是积,且每个因式都是整式,它与整式乘法是互逆的恒等变形.变式题 下列变形中,因式分解对不对?为什么? (1)x 2y -xy 2=xy(x -y)(2)a 3-2ab+ab 2=a(a -b)2=a(a 2-2ab+b 2) (3)62ab -4ab 2+2ab=2ab(3a -2b) (4)4a 2-100=(2a+10)(2a -10) (5)a 2-b 2=(a -b)2提示: 第(2)题提取公因式a 后,括号里是a2-2b+b2,不是完全平方式;第(3)出现了漏项;第(4)题没有分解彻底,应先提取公因式4,再用平方差公式;第(5)题混淆了两个乘法公式.解:只有(1)是正确的.类型之二、基本运算型 1.整式乘法的运算例2 先规定一种运算:a *b=ab+a-b ,其中a 、b 为有理数,则a *b+(b-a )*b 等于( )A.a 2-b ;B.b 2-b ;C.b 2;D.b 2-a. 【点评】解决这类问题,理清题目意思是解题关键. 变式题 已知:A=2x 2+3xy-y 2,B=-21xy ,C=81x 3y 3-41x 2y 4.求:2AB 2-C.提示:直接代入计算,在复杂的式子计算中,先算乘方,再算多项式乘法,最后合并同类项例3 计算:(1)3(m+1)2-5(m+1)(m-1)+2(m-1)2(2)[(4x n+1-21y )2+4y (x n-16y )]÷8x 2.变式题 计算:(1)(a+b+c-d )(a-b+c+d ); (2)(x+1)(x+2)(x+3)(x+4).解:(1)观察运算符号,两多项式中a 、c 符号相同,b 、d 符号相反,因此可以把a 、c 结合在一起,看成一项,把b 、d 结合在一起,看成另一项,应用平方差公式计算.(2)经过观察1+4=2+3,因此将(x+1)(x+4)和(x+2)(x+3)先分别相乘,出现相同部分x 2+5x ,再视其为整体进行运算.2.因式分解例4 (1)分解因式:2x 2-18= ; (2) 分解因式:a 3-2a 2b+ab 2= ; (3) 分解因式:x 2-y 2+ax+ay= .【思路分析】(1)、(2)先提公因式,再用公式法;(3)要利用分组分解法.【点评】中考对因式分解的要求不太高,都以基本题为主.但有不少学生在解答第(1)、(2)题时常常在提公因式后就结束答题,从而失分.因此,在做因式分解时,最后一定要检验,使每个因式不能再分解才能结束.变式题 先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2+2x+2)(x 2-2x-2). 仿照这种方法把多项式644+x 分解因式.提示 仿照例题,运用添项、减项(配方),使其可以用平方差公式分解. 解:644+x =(x 4+16x 2+64)-16x 2=(x 2+8)2-(4x )2=(x 2+4x+8)(x 2-4x+8) 类型之三、基本应用型例5 若x 2-4x +y 2-10y +29=0,求x 2y 2+2x 3y 2+x 4y 2的值.【思路分析】一个方程求两个未知数显然不容易,考虑已知等式的特点,将其整理为两个完全平方式的和,利用其非负性求出x 、y ,再化简所求代数式后代入求值.解:因为x 2-4x +y 2-10y +29=0,所以(x 2-4x+4)+(y 2-10y +25)=0, (x-2)2+(y-5)2=0,所以x=2,y=5.x2y2+2x3y2+x4y2= x2y2(1+2x+x2)= (xy)2(1+x)2=(2×5)2×(1+2)2=900.【点评】利用因式分解,根据完全平方式的非负性是由一个方程解两个未知数的常用方法之一.变式题矩形的周长是28cm,两边长为x,y,若x3+x2y-xy2-y3=0,求矩形的面积.提示把已知等式分解因式,利用矩形边长的非负性寻求解题途径.解:因为x3+x2y-xy2-y3=0,所以(x3+x2y)-(xy2+y3)=0,x2(x+y)-y2(x+y)=0,(x2-y2)(x+y)=0,(x+y)(x-y)(x+y)=0,(x+y)2(x-y)=0,又因为矩形的边长总是非负数,即(x+y)2>0,所以有x-y=0,即x=y.而由矩形的周长是28cm得到x+y=14,所以x=y=7.矩形的面积为49C㎡.答:矩形的面积为49C㎡.例6 若x2+7xy+my2-5x+43y-24可以分解成x,y的两个一次因式的积,试确定m的值.【思路分析】令x2+7xy+my2-5x+43y-24=(x+a y+b)(x+cy+d),再对比系数求得m.解:设x2+7xy+my2-5x+43y-24=(x+a y+b)(x+cy+d)=x2+(a+c)xy+a cy2+(b+d)x+(a d+bc)y+bd.对比多项式的系数得由③,⑤两式可得b=-8,d=3,或b=3,d=-8.(1)当b=-8,d=3时,得a=9,c=-2,⑥(2)当b=3,d=-8时,得a=-2,c=9.⑦∴m=-18.【点评】本题实质考查了学生对待定系数法的理解与运用能力. 变式题 已知多项式2x 3-x 2+m 有一个因式(2x+1),求m 的值.解答: 由已知条件可以设2x 3-x 2+m=(2x+1)(x 2+a x+b),则2x 3-x 2+m=2x 3+(2a +1)x 2+ (a +2b)x+b.对比多项式系数可得类型之四、思想方法型 1.整体转化思想例7 a 、b 互为相反数,c 、d 互为倒数,e 的绝对值是2,并且x=e+3ba 3+2cd+21e 2,求9x 2+[x (4x-3)-2x (x-3)]的值.【思路分析】整体确定a+b 、cd 的值,进而得到x 的值,将求值式化简后再代入. 解:根据题意,a+b=0,cd=1,|e|=2,所以x=e+b a 33+2cd+21e 2=e)+b a (3+2cd+21e 2=e 03×+2×1+21×22=2+2=4.原式=9x 2+(4x 2-3x-2x 2+6x )=11x 2+3x=11×42+4×3=6+12=188.【点评】本题综合性强,涉及到以前学过的互为相反数的和为0,互为倒数的积为1,绝对值的意义,题目较复杂,但还是应依据先化简,再求值的原则.变式题 (1)已知(a+b )2=144 , (a-b)2=36, 求ab 与a 2 + b 2 的值. (2)设m 2+m-1=0,求m 3+2m 2+2004的值. 提示:本题在解题时要运用整体思想. 解:(1)已知(a+b )2=144, (a-b)2=36,a2 +2ab+ b2=144,a2 -2ab+ b2=36,把ab 与a2 + b2分别看作是整体,两式相加得到2(a2 + b2)=180,即a2 + b2=90,两式相减,得到4ab=108,即ab=27.答:ab=27,a2 + b2=90.(2)∵m2+m-1=0,∴m2+m=1.∴m3+2m2+2004=m(m2+m)+m2+2004=m·1+m2+2004=m2+m+2004=1+2004=2005.答:m3+2m2+2004=2005.2.数形结合思想例8 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)(a-b)=a2-b2;B.(a+b)2=a2+2ab+b2;C.(a-b)2=a2-2ab+b2;D.(a+2b)(a-b)=a2+ab-2b2.a图2图1【思路分析】先写出图中面积的不同表达形式,再比较作出判断.解:原阴影部分的面积为a2-b2,移动后阴影部分的面积为(a+b)(a-b),因此有(a+b)(a-b)=(a-b)2,选A.【点评】从面积到乘法公式,从乘法公式到面积表达式,充分展示了数学里的“数”与“形”的和谐美.由“数”到“形”,有“形”到“数”,这样反复观察思考、操作运算,对提高我们对数学的认识,锻炼我们的数学思维是大有益处的.变式题(苏科版课课练P63 6)如图,利用图形因式分解:a2+7ab+12b2. Array提示:结合图形寻求答案.解:a2+7ab+12b2=(a+3b)(a+4b).五、实践型1.思维实践型例9 多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是 .(填上一个你认为正确的即可)【思路分析】许多学生在解答此题时,由于受思维定势的影响,习惯于依据课本上的完全平方公式得9x 2+1+6x=(3x+1)2,或9x 2+1-6x=(3x-1)2,只要再动动脑筋,还可以得出:9x 2+1+481x 4=(29x 2+1)2,9x 2+1-1=(3x )2,9x 2+1-9x 2=12.解:所加的单项式可以是±6x 或481x 4或-1或-9x 2.【点评】这是一个适度的开放题,对思维要求能力比较高.变式题 观察一组式子:32+42=52,52+122=132,72+242=252,92+402=412,… 猜想一下,第n 个式子是 .提示: 通过观察几个具体的等式,而抽象出一般规律,本题可以通过变形产生平方差,再反复用平方差公式得解.解:观察已知式子,可知每个等式左边第二项的底数与右边的结果的底数为相邻的两个连续整数,变形可得52-42=32,132-122=52,252-242=72,412-402=92,…且有关系5=2×1×(1+1)+1,13=2×2×(2+1)+1,25=2×3×(3+1)+1,41=2×4×(4+1)+1,…从而第n 个式子中右边的底数为2n (n+1)+1,因此有:[2n ·(n+1)+1]2-[2n (n+1)]2={[2n ·(n+1)+1]+[2n (n+1)]}{[2n (n+1)+1]-[2n (n+1)]}=4n 2+4n+1=(2n+1)2.故第n 个式子为(2n+1)2+(2n 2+2n )2=(2n 2+2n+1)2. 2.动手实践型例10 现有足够的2×2,3 ×3的正方形和2×3的矩形图片A 、B 、C (如图),先从中各选取若干个图片拼成不同的图形,请你在下面给出的方格纸(每个小正方形的边长均为1)中,按下列要求画出一种拼法的示意图(要求每两个图片之间既无缝隙,也不重叠,画图时必须保留作图痕迹).(1)选取A 型、B 型两种图片各1块,C 型图片2块,拼成一个正方形;(2)选取A型图片4块、B型图片1块,C型图片4块,拼成一个正方形;(3)选取A型图片3块、B型图片1块,再选取若干块C型图片,拼成一个矩形.【思路分析】按常规思路是用画图(或实物图片)尝试去拼接,这样费时费力,效率低.若设A形纸片的边长是a,B型纸片的边长为b(b>a),则C型纸片的长为b、宽为a,抓住“拼接前后面积不变”这一条件,运用因式分解,可使解题目标的实施更明确,过程更简明.如(1)因拼接前后的总面积不变是a2+b2+2ab,分解因式得(a+b)2,则所拼接正方形边长为a+b.可拼接如图1所示的草图(注:没在提供的方格图中画).(2)由拼接前后的面积是4a2+b2+4ab,分解因式得(2a+b)2,则所拼接正方形边长为2a+b.可拼接如图2所示的草图.(3)拼接图形面积为3a2+b2+()ab,()为整数,能够拼接为某一图,则其必能分解,结合因式分解,知b2+4ab+3a2=(b+a)(b+3a),即选4张C型纸片即可拼接成一矩形,由分解因式的特点,可拼出如图3的草图.变式题(苏科版课课练P63 6)已知3种形状的长方形和正方形纸片(如图1):用它们拼成一个长为(3a+2b)、宽为(a+b)的长方形,各需多少块?并画出图形.提示:根据拼接前后面积不变知道长方形的面积为(3a+2b )(a+b )=3a 2+5ab+2b 2,显然需要A 正方形纸片3张、B 正方形纸片2张、C 长方形纸片5张,共10张纸片.解:需要A 正方形纸片3张、B 正方形纸片2张、C 长方形纸片5张,共10张纸片. 画图如图2所示. 中考名题欣赏1.计算:(-1-2a )(2a-1)= ; 化简:(21m+n )(m-2n )= .解:(1)方法1:(-1-2a )(2a-1)=-2a+1-4a 2+2a=1-4a 2;方法2:(-1-2a )(2a-1)=-(2a+1)(2a-1)=-(4a 2-1)=1-4a 2; 方法3:(-1-2a )(2a-1)=(-1-2a )(-1+2a )=(-1)2-(2a )2=1-4a 2. (2)方法1:原式=21m 2-mn+mn-2n 2=21m 2-2n 2;方法2:原式=21(m+2n )(m-2n )=21(m 2-4n 2)=21m 2-2n 2; 方法3:原式=2(21m+n )(21m-n )=2(41m 2-n 2)=21m 2-2n 2.【点评】该题考查乘法的基本运算和灵活运用乘法公式的能力,可以按多项式乘多项式的法则进行,也可以通过适当变形巧用乘法公式来简化计算.【方法技巧】对多项式进行适当变形,可达到运用乘法公式来简捷解题的目的.中考中对整式乘法知识的考查难度不大,但很灵活,在解题时我们一定要透过现象看本质,抓住特点,创造性地解题.2.(1)把代数式xy 2-9x 分解因式,结果正确的是( ) A.x (y 2-9) B.x (y+3)2 C.x (y+3)(y-3) D.x (y+9)(y-9)(2)把代数式a 3+ab 2-2a 2b 分解因式的结果是 . 解:(1)xy 2-9x=x (y 2-9)= x (y+3)(y-3),故选C ; (2)原式=a (a 2+b 2-2ab )=a (a 2-2ab+b 2)=a (a-b )2.【点评】该题既考查因式分解的概念,又考查因式分解的方法,先提公因式,再根据项数确定应用什么公式.在中考中,对因式分解的考查一般以填空题、选择题的形式出现,比较容易,但失分率却比较高,主要是对因式分解的概念模糊,分解不彻底所致.如第(1)题,不少考生可能选A ,第(2)题误填a (a 2+b 2-2ab ).3. (1)如图1是一个正方形与一个直角三角形所组成的图形,则该图形的面积为 ( )A.m 2+21mn B.2-m2mn c.2+m2mn D.2+nm22(2)三种不同类型的矩形地砖长宽如图2所示若先有A 类4块,B 类4块,C 类2块,要拼成一个正方形,则应多余出一块 型地砖;这样的地砖拼法表示了一个两数和的平方的几何意义,这个两数和的平方是 .解:(1)S=m 2+21·m ·(n-m )=m 2+21mn-21m 2=2+m2mn ,选C ;(2)通过动手操作可得如图3(答案不唯一),易知多了一块C 型地砖,其面积为(2m+n )2或4m 2+4mn+n 2.因此,依次填入C ,(2m+n )2= 4m 2+4mn+n 2.【点评】第(1)题可分别求出正方形和直角三角形的面积,再求和;第(2)题可通过动手操作,摆出图形来寻求答案. 该题考查学生数形结合的能力以及对单项式乘以多项式和乘法公式——完全平方公式的理解和掌握.利用几何的面积法与代数的计算法相结合,考查了学生的数形结合的能力,提升了难度,更体现了新课标的基本理念.4.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27,王华又接着写出了两个具有同样规律的算式:112-52=8×12,152-72=8×22,……(1)请你再写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出反映上述算式的规律; (3)证明这个规律的正确性.解:(1)写出两个正确的算式,如:32-12=8×1,72-32=8×5等等; (2)规律:任意两个奇数的平方差等于8的倍数;(3)证明:设m 、n 为两个整数,两个奇数可表示为2m+1和2n+1, 则(2m+1)2-(2n+1)2=4(m-n )(m+n+1).当m 、n 同是奇数或偶数时,m-n 一定为偶数,所以4(m-n )一定是8的倍数;当m 、n 一奇一偶时,则m+n+1一定是偶数,所以4(m+n-1)一定是8的倍数.所以,任意两奇数的平方差是8的倍数.(说明:规律说成是:“两奇数的平方差是4的倍数”且证明正确也可得满分,如果证明中加设m >n 的条件,不扣分).【点评】这是一则探索规律题,等式左边是两个奇数的平方差,(大数减小数),右边是8的倍数.【方法技巧】解决探索规律题,要认真观察已给的等式和自己写出的等式,充分联想已有的知识,大胆猜想相应的结论,再进行严密推理说明,即认真观察,广泛联想,大胆猜测,小心论证.5.化简:(2x-1)2-(3x-1)(3x-1)+5x (x-1),再选一个你喜欢的数代替x 求值. 解:分别用完全平方公式、平方差公式、单项式乘以多项式的法则进行计算,再去括号,合并同类项.原式=4x 2-4x+1-(9x 2-1)+5x 2-5x=4x 2-4x+1-9x 2+1+5x 2-5x=-9x+2. 取一个x 值,代入求值即可.取x=0,则原式=2.【点评】这是一道自编自解题,先化简,后取一个x 值代入求值,但取x 值既要使原代数式有意义,又要使计算简捷方便.6.物资调运是国民经济的重要问题,安排得当可以为国家节省大量资金和物力,下面是一个车床调运的实例.北京与上海分别制造同种型号的车床10台和6台,这些车床计划分配到武汉和西安两地,运送一台车床的费用(单位:元)如下图1所示,如果北京发往武汉x 台,上海发往西安y 台,求总运费.图1解:作出如图2的网络图,并标上相关的数据,由图易知总运费W=500x+400(10-x )+950y+700(6-y)=100x+250y+8200(元)(答略).【点评】这是一道实际应用题,先从题目中(特别是表格中)提取相关信息,借助于整式运算的知识来解答.这里运用“词、数、图、式”一体化的解题思路,架起“示意图”这座桥梁,达到解决数学问题的目的.这种方法将数化形,其优越性在于直观、形象,是将具体问题抽象为数学模型的一种普遍使用的方法.章内专题阅读如何用乘法公式?乘法公式是初一代数的重要内容,对今后学习数学影响很大.也是中考考查的重要知识点.本文介绍如何使用乘法公式.1.直接用例1 计算(3x2+y)(3x2-y)分析本题符合平方差公式的结构特征,其中3x2相当于公式中的a、y相当于公式中的b,故可直接使用平方差公式.解原式=(3x2)2-y2=9x4-y2.2.连续用例2计算(x+1)(x2+1)(x4+1)(x8+1)(x-1).分析按顺序直接计算量很大,把最后一个因式放到前面,则可连续使用平方差公式.解原式=(x-1)(x+1)(x2+1)(x4+1)(x8+1)=(x2-1)(x2+1)(x4+1)(x8+1)=(x4-1)(x4+1)(x8+1)=(x8-1)(x8+1)= x16-1.3.整体用例3计算2)y-(新教案9.4(3)例4变式题)x-(z32分析将x-3y看成一个整体,原式可用完全平方公式计算.解原式=[(x-3y)-2z]2=(x-3y)2-4(3x-y)z+4z2=x2-6xy+9y2-12x+4y+4z2.4.逆向用例4 求证:无论x为何值,代数式4x2-12x+2都不小于-7.分析乘法公式是恒等式,必要时可逆向使用.本题配方后用完全平方式的非负性判断原式的取值范围.解 原式=(4x 2-12x+9)-7=(2x-3)2-7, 因为(2x-3)2≥0,所以 原式=(2x-3)2-7≥-7. 5.变序用例5 计算22)32()32(-+x x分析 先用积的乘方化为[(2x+3)(2x-3)]2,对用平方差公式,再用平方公式计算,改变运算顺序,要比先用完全平方公式将(2x+3)2、(2x-3)2展开后再计算要简便得多.解 原式=[(2x+3)(2x-3)]2=(4x 2-9)2=16x 4-72x 2+81.6.凑项用例6 计算(5+4)(52+42)(54+44)(58+48)…(5256+4256)分析 直接计算显然太麻烦.注意到从第二个因式开始每个因式的前项(或后项)都是前一个因式的前项(或后项)的平方,如果式子的开头能使用平方差公式,则后面就能反复循环使用.而式子的开头没有(5-4)这一因式,因此必然要拼凑因式(5-4).7.裂项用例7已知a 2-2a+b 2+4b+5=0,求(a+b)2005的值. (新教案9.6(2)例3)分析 一个方程两个未知数一般是不能确定其解的.但本题中的条件可通过裂项、分组、配方后求出a 、b 的值.8.搭配用例8 求证(x-1)(x-3)(x-5)(x-7)+16是完全平方式.分析 考察四个因式有序变化的结构特征,可让它们“均衡”搭配.即一、四两个因式与二、三两个因式分别搭配运算后,把得到的其中某一个因式看成一个整体再作恒等变形.9.消元用例9 已知实数x、y、Z满足z2=xy+y-9,x+y=5,求(x+z)-y.分析条件z2=xy+y-9是三个未知量的复杂关系,可通过x+y=5消元,化为二个未知量的关系,实现“减肥瘦身”.解 x=5-y,所以z2=(5-y)y+y-9,所以(y2-6y+9)+z2=0,所以(y-3)2+z2=0,解得y=3,z=0,所以x=2,故.(x+z)-y=(2+0)-3= 18.。

初中数学北师大版七年级下册第一章 整式的乘除1.5平方差公式-章节测试习题

初中数学北师大版七年级下册第一章 整式的乘除1.5平方差公式-章节测试习题

章节测试题1.【题文】通过学习同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5)①=2002-52②=39975.(1)例题求解过程中,第②步变形是利用____________(填乘法公式的名称);(2)用简便方法计算:①9×11×101×10 001;②(2+1)(22+1)(24+1)…(232+1)+1.【答案】(1)平方差公式;(2)①999999;②264【分析】(1)、根据平方差公式可以进行简便计算;(2)、①、利用平方差公式来进行简便计算,将99转化成(100-1),将101转化成(100+1),从而得出答案;②、在式子的前面加上(2-1),然后分别利用平方差公式进行简便计算.【解答】解:(1)、平方差公式;(2)①原式=99×101×10001=(100-1)×(100+1)×10001=9999×10001=(10000-1)×(10000+1)=10002-1=999999.②原式=(2-1)(2+1)(22+1)(24+1)⋯(232+1)+1=(22-1)(22+1)(24+1)⋯(232+1)+1=(24-1)(24+1)⋯(232+1)+1=⋯=264-1+1=264.2.【题文】用简便方法计算:20152-2014×2016【答案】1【分析】利用平方差公式将后面的进行简便计算,从而得出答案.【解答】解:原式.3.【题文】用简便方法计算:1002-992+982-972+…22-12【答案】5050【分析】分别将相邻的两个利用平方差公式进行简便计算,从而将原式转化为1到100的加法计算,从而得出答案.【解答】解:原式=(100+99)×(100-99)+(98+97)×(98-97)+…(2+1)×(2-1)=100+99+98+97+…2+1=5050.4.【题文】小红家有一块L形菜地,要把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a=10,b=30时,面积是多少平方米?【答案】(1)(b2-a2)平方米;(2)800平方米.【分析】(1)根据梯形的面积公式列出代数式,然后根据整式的乘法公式进行计算;(2)只需把字母的值代入(1),计算即可.【解答】解:(1)小红家的菜地面积共有:2××(a+b)(b-a)=(b2-a2)(平方米).(2)当a=10,b=30时,面积为900-100=800(平方米).5.【题文】乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达).【答案】(1)a2﹣b2;(2)a﹣b;a+b;(a﹣b)(a+b);(3)(a+b)(a﹣b)=a2﹣b2 .【分析】(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;(2)利用矩形公式即可求解;(3)利用面积相等列出等式即可;【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b),故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2.6.【题文】计算:.【答案】【分析】本题考查了多项式乘多项式及平方差公式. 与可用平方差公式相乘,然后再根据多项式的乘法法则把得到的结果与相乘即可.【解答】解:原式===.7.【题文】如图,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.【答案】李某吃亏了,理由见解析.【分析】计算阴影部分面积和原正方形面积作比较.【解答】解:李某吃亏了.理由如下:∵(a+5)(a-5)=a2-25<a2,∴李某少种了25 m2地,李某吃亏了.8.【题文】先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.【答案】原式=xy﹣y2=-2.【分析】先把原多项式化简,再求得x=1,然后代入计算.【解答】解:(x+y)(x﹣y)﹣x(x+y)+2xy=x2﹣y2﹣x2﹣xy+2xy=xy﹣y2,∵x=(3﹣π)0=1,y=2,∴原式=2﹣4=﹣2.9.【题文】已知一个长方体的长为2a,宽也是2a,高为h.(1)用a 、h的代数式表示该长方体的体积与表面积.(2)当a=3,h=时,求相应长方体的体积与表面积.(3)在(2)的基础上,把长增加x,宽减少x,其中0<x<6,问长方体的体积是否发生变化,并说明理由.【答案】(1) 体积=4a h;表面积=8a+8ah ;(2)体积是18,表面积是84;(3)18-x<18,体积缩小了.【分析】(1)根据长方体的体积与表面积公式进行计算即可;(2)把a,h代入(1)的关系式进行计算;(3)根据长方体的体积与表面积公式进行计算即可;【解答】解:(1)长方体体积=2a×2a×h=4a2h,长方体表面积=2×2a×2a+4×2ah=8a2+8ah;(2)当a=3,h=时,长方体体积=4×32×=18;长方体表面积=8×32+8×3×=84.(3)当长增加x,宽减少x时,长方体体积=×(6+x)(6-x)= <18,故长方体体积减小了.10.【题文】求30 ×29的值.【答案】899【分析】把原式变成(a-b)(a+b)的形式,符合平方差公式的结构,再利用平方差公式进行计算即可.【解答】解:原式==.11.【题文】计算9x-4y,当x=1,y=1时的结果【答案】5【分析】先逆用平方差公式,然后代入求值即可.【解答】解:9x-4y=(3x+2y)(3x-2y)当x=1,y=1时,原式=5×1=5.12.【题文】计算:【答案】【分析】两次运用平方差公式计算即可.【解答】解:13.【题文】小明化简(2x+1)(2x﹣1)﹣x(x+5)的过程如图,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程.解:原式=2x2﹣1﹣x(x+5)…①=2x2﹣1﹣x2+5x…②=x2+5x﹣1 …③【答案】见解析.【分析】利用平方差公式和单项式乘多项式的计算法则去括号,然后合并同类项.【解答】解:①:4x2﹣1﹣x(x+5).②:4x2﹣1﹣x2﹣5x.③:3x2﹣5x﹣1.14.【题文】利用公式计算:①103×97 ② 20152﹣2014×2016.【答案】①9991.②1.【分析】(1)把103看成是100+3,把97看成是100-3,根据平方差公式即可得出结果;(2)把2014看成是2015-1,把2016看成是2015+1,根据平方差公式计算后合并即可得出结果.【解答】解:原式 =(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991② 20152﹣2014×2016.解:原式 =20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=115.【答题】如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为______.【答案】±4【分析】根据平方差公式解答即可.【解答】∵(2a+2b+1)(2a+2b-1)=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=±8,∴a+b=±4.故答案为:±4.16.【答题】已知实数a,b满足a2-b2=10,则(a+b)3·(a-b)3的值是______.【答案】1000【分析】根据平方差公式解答即可.【解答】因为a2-b2=10 ,所以(a+b)3·(a-b)3=(a2-b2)3=1000.17.【答题】已知a+b=3,a-b=5,则代数式a2-b2的值是______【答案】15【分析】根据平方差公式解答即可.【解答】解:=(a+b)(a-b)=3×5=15.故答案为:15.18.【答题】计算:1.222×9-1.332×4=______.【答案】6.32【分析】根据平方差公式解答即可.【解答】原式=(1.22×3)2-(1.33×2)2=3.662-2.662=(3.66+2.66)(3.66-2.66)=6.32.故答案是:6.32.19.【答题】已知x+y=5,x-y=1,则代数式x2-y2的值是______.【答案】5【分析】根据平方差公式解答即可.【解答】x2− y2=(x+y)(x-y),∵x+y=5,x-y=1,∴x2− y2=(x+y)(x-y)=5×1=5,故答案为:5.20.【答题】计算:2017×1983______.【答案】3999711【分析】根据平方差公式解答即可. 【解答】解:2017×1983=。

苏科版七年级下数学第九章从面积到乘法公式提高题

苏科版七年级下数学第九章从面积到乘法公式提高题

单乘单 1、计算(-3x 2y)3·(-2xy 3z)2[2(a -b)3][-3(a -b)2][-32(a -b)]3423332435⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-⋅c ab b a ab·c b a c ab 532243—=2、计算(-4x n +1y n )3[(-xy)n ]2的结果是( )A .64x 5n+3y 5n B. -64x 5n+3y 5n C .12x 5n+1y 5n D.-12x 5n+1y 5n 3、若992213yx yxyx n nm m =⋅++-,则n m 43-的值为( ) (A )3(B )4 (C )5 (D )6多乘多1、(x+5)(x-7)=2、计算()()514+-y y(3x 2-2x -5)(-2x +3)(x -1)(2x -3)(3x +1)()()()()4321----x x x x3、若()()1532-+=++kx x m x x ,则m k +的值为( )(A )3- (B )5 (C )2- (D )2完全平方公式 1、(2x-4y)2 = 2、(-3a-5b)2= 3、(m -n -3)24、(2x +3y -z)25、下列式子中一定相等的是( )A 、(a- b )2 = a 2 - b 2B 、(a+ b)2 =a 2 + b 2C 、(a - b)2 = b 2 -2ab + a 2D 、(-a - b)2 = b 2 -2ab + a26、已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;7、若二项式4m 2+1加上一个单项式后是一含m 的完全平方式,则单项式为8、有个多项式,它的中间项是12xy ,它的前后两项被墨水污染了看不清,请你把前后两项补充完整,使它成为完全平方式,你有几种方法?(要求至少写出两种不同的方法). 多项式:+12xy+=( )2多项式:+12xy+=( )2完全平方公式的关系1、x 2+y 2=(x+y )2- =(x -y )2+ .2、已知若3,2a b ab +=-=,则22a b += ,()2a b -= ; 已知(a+b )2=144 (a-b)2=36, 求ab 与a 2+ b 2的值3、已知x+y=0,xy=-6,则x 3y+xy 3的值是( )A .72B .-72C .0D .6 4、若a +351=a ,则221aa +=______若,41=+x x 求 441xx + = *5、已知a 2-3a +1=0.求aa 1+、221a a +和21⎪⎭⎫ ⎝⎛-a a 的值;平方差公式1、(2x-3y)(3x-2y )= ______________2、(—a+2b)(a+2b)= ______________.3、(6x-7y)(-6x-7y) = ______________4、(2a+b+3)(2a+b -3)5、(a -2b +3)(a +2b -3)6、下列计算是否正确?为什么(5x +2y)(5x -2y)=(5x)2-(2y)2=25x 2-4y 2(-1+3a)(-1-3a)=(-1)2+(3a)2=1+9a 2(-2x -3y)(3y -2x)=(3y)2-(2x)2=9y 2-4x 27、下列算式能用平方差公式计算的是( ) A.(2a +b )(2b -a ) B.)121)(121(--+x x C.(3x -y )(-3x +y ) D.(-m -n )(-m +n )妙用公式化简22222)()()(b a b a b a ++-(x +y) ( x 2+y 2) ( x -y))(44y x +2)5241(y x -2)5241(y x +[(x -y)2+(x +y)2](x 2-y 2)(2a +1)2-(1-2a )220092)1()1()1(1x x x x x x --∙∙∙------十字相乘公式1、计算: (1) (x +2)(x +1) (2) (x +2)(x -1) (3)(x -2)(x +1) (4) (x -2)(x -1) (5)(x +2)(x +3) (6) (x +2)(x -3) (7) (x -2)(x +3) (8) (x -2)(x -3) (9)(x +a )(x +b )你通过计算发现了什么规律 2、若)3)((62++=++x m x px x ,则___________==p m3、若(x+4)(x-2)= q px x ++2,则p 、q 的值是( )A 、2,8B 、-2,-8C 、-2,8D 、2,-84、两式相乘结果为1832--a a 的是( ) (A )()()92-+a a (B )()()92+-a a (C )()()36-+a a (D )()()36+-a a 整式混合运算1、(2a +1)2-(2a +1)(-1+2a)2、(1-y)2-(1+y)(-1-y)3、(1-2x)(1-3x)-4(3x -1)24、下面是小明和小红的一段对话: 小明说:“我发现,对于代数式()()()x x x x x 1033231++-+-,当2008=x 和2009=x 时,值居然是相等的.”小红说:“不可能,对于不同的值,应该有不同的结果.”在此问题中,你认为谁说的对呢?说明你的理由.5、试说明331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+ ⎪⎪⎝⎭⎝⎭的值与n 无关.面积公式1、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是: ( )A .()2222——b ab a b a +=B .()2222b ab a b a ++=+C .()ab a b a a 2222+=+D .()()22——b a b a b a =+2、按图中所示的几种方法分割正方形,你有何发现?请将你发现的结论分别用等式表示出来.3、(1)如图1,可以求出阴影部分的面积是 (写成两数平方的差的形式); (2)如图2,若将图1的阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2的阴影部分面积,可以得到乘法公式 (用式子表达).4、如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.5、例如,由两个边长分别a 、b 、c 为的直角三角形和一个两条直角边都是c 的直角三角形拼成一个新的图形,试用不同的方法计算这个图形的面积,你能发现什么?简便计算1982 10.5×9.52.39×91+156×2.39-2.39×4722234.0766.3468.0766.3+⨯+个个个m m m 9991999999∙∙∙+∙∙∙⨯∙∙∙()117)17)(17)(17(6842+++++()()()()12121212)12(2842+∙∙∙++++n2006200420052⨯-999910199⨯⨯222)119899(100++200220022001200120012000⨯-⨯222222100994321-+∙∙∙+-+-)1011()411)(311)(211(2222-∙∙∙---数学内应用1、解方程:()()()21212322--+=-a a a2、已知a 、b 、c 、d 为四个连续的奇数,设其中最小的奇数为d=2n-1(n 为正整数),当ac-bd=88时,求出这四个奇数。

初中数学浙教版七年级下册第3章 整式的乘除3.4 乘法公式-章节测试习题

初中数学浙教版七年级下册第3章 整式的乘除3.4 乘法公式-章节测试习题

章节测试题1.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.2.【题文】考古学家从幼发拉底河附近的一座寺庙里,发掘出数千块泥板书,他们从泥板书中发现美索不达米亚的祭祀已经知道平方表的用法,并能够利用平方表算出任意两个自然数的乘积.例如:计算乘以,祭祀们会按下面的流程操作:第一步:加上,将和除以得;第二步:减去,将差除以得;第三步:查平方表,得的平方是;第四步:查平方表,得的平方是;第五步:减去,得到答案.于是他们便得出.请你利用所学的代数知识,设两个自然数分别为、,对泥板书计算两个自然数乘积的合理性做出解释.【答案】见解析【分析】按照题中所给的步骤进行推导即可.【解答】解:.3.【题文】计算:.【答案】【分析】先利用平方差公式进行计算,然后再利用完全平方公式进行计算即可.【解答】解:原式.4.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.5.【题文】计算:(m-n)(m+n)+(m+n)2-2m2.【答案】2mn【分析】原式第一项利用平方差根式化简,第二项利用完全平方公式展开,计算即可得到结果.【解答】解:(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn.6.【题文】用乘法公式计算:99.82.【答案】9960.04.【分析】把99.8写成(100-0.2),然后利用完全平方公式计算即可得解;【解答】解:99.82=(100﹣0.2)2=1002﹣2×100×0.20+22=9960.04.7.【题文】已知(x+y)2=25,xy=,求x﹣y的值.【答案】±4【分析】首先,根据完全平方公式将(x+y)2打开,并根据xy的值求出x2+y2;然后,根据完全平方公式求出(x-y)2的值,开平方即可求解.【解答】解:∵(x+y)2=25,∴x2+2xy+y2=25,又∵xy=94,∴x2+y2=412,∴(x-y)2=x2-2xy+y2=412-2×94=16,∴x-y=±4.8.【题文】现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)尝试解决:(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是______;(2)小聪想用几何图形表示等式(a+b)(2a+b)=2a2+3ab+b2,图2给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取1张Ⅰ号卡片、3张Ⅱ号卡片、4张Ⅲ号卡片拼接成一个长方形,那么拼接的几何图形表示的等式是______;拓展研究:(4)如图3,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有______.(填写序号)①ab=;②a+b=m;③a2+b2=m2;④a2+b2=.【答案】(1)(a+b)2=a2+2ab+b2;(2)答案见解析;(3)(a+b)(a+3b)=a2+4ab+3b2;(4)①③.【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,如图所示;(3)根据题意列出关系式,分解因式后即可得到结果.根据完全平方公式判断即可.【解答】解:(1)这个几何图形表示的等式是(2)如图:(3)拼接的几何图形表示的等式是根据图③得:∴∵∴∴①③正确,故答案为:①③9.【题文】已知,,求下列代数式的值:(1);(2).【答案】(1)10;(2)±8.【分析】(1)把两边平方,利用完全平方公式化简,再将代入计算即可求出值;(2)利用完全平方公式及平方根定义求出的值,原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:(1)把x+y=4两边平方得:将xy=3代入得:(2)∵∴∴x−y=2或x−y=−2,则原式=(x+y)(x−y)=8或−8.10.【题文】利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值吗?【答案】(1)详见解析;(2)3.【分析】(1)已知等式右边利用完全平方公式化简,整理即可作出验证;(2)把a,b,c的值代入已知等式右边,求出值即为所求式子的值.解:(1)等式右边= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)= (2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac=等式左边,所以等式是成立的.(2)原式= [(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.11.【题文】计算:(2x﹣1)2﹣2(x+3)(x﹣3).【答案】2x2﹣4x+19.【分析】用完全平方公式和平方差公式展开后,再合并同类项.【解答】解:(2x﹣1)2﹣2(x+3)(x﹣3)=4x2﹣4x+1﹣2x2+18=2x2﹣4x+19.12.【题文】已知,,求下列代数式的值.(1);(2).【答案】(1)30;(2)8.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.13.【题文】已知a-b=5,ab=,求a2+b2和(a+b)2的值.【答案】a2+b2=28,(a+b)2=31【分析】用完全平方公式变形解答即可.【解答】解:,∴=25+3=28,=28+3=31.14.【题文】阅读材料:若,求,的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(),则__________,__________.()已知,求的值.()已知的三边长、、都是正整数,且满足,求的周长.(提示:三角形任意两边之和大于第三边,任意两边之差小于第三边)【答案】(1)a=3,b=1;(2)16(3)9【分析】(1) (2)(3) 将已知化为完全平方形式,利用非负性求值.【解答】解:()∵,,,∵,,∴,,,.(),,,∵,,∴,,,,∴,∴.(),,,∵,,∴,,,,∵,∴,,∴,∵、、为正整数,∴,∴周长.15.【题文】(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【答案】(1)原式=x2﹣3x+10;(2)a2+b2+ab=13﹣6=7.【分析】(1)x(4x﹣1)按照单项式乘多项式的法则计算,(2x﹣3)(2x+3)根据平方差公式计算,(x﹣1)2根据完全平方公式计算;(2)把(a+b)2=1,(a ﹣b)2=25的左边按照完全平方公式乘开,然后把两个式子相加可得a2+b2=13,把两个式子相减可得ab=﹣6.【解答】解:(1)原式=4x2﹣x﹣(4x2﹣9)+(x2﹣2x+1)=4x2﹣x﹣4x2+9+x2﹣2x+1=x2﹣3x+10;(2)∵(a+b)2=1,∴a2+2ab+b2=1①,∵(a﹣b)2=25,∴a2﹣2ab+b2=25②,由 ①+‚②得:a2+b2=13,由①•﹣②‚得:ab=﹣6,∴a2+b2+ab=13﹣6=7.16.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得17.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.18.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为19.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式. 【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.20.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。

七下9.3多项式乘多项式(1)

七下9.3多项式乘多项式(1)

用心
-2 爱心 -
专心
2.判断题: (1)(a+b)(c+d)= ac+ad+bc;( (2)(a+b)(c+d)= ac+ad+ac+bd;( (3)(a+b)(c+d)= ac+ad+bc+bd;( (4)(a- b)(c-d)= ac+ ad+bc- ad.( ) ) ) )
六、小结 启发引导学生归纳本节所学的内容: 1.多项式的乘法法则 (a+ b)(c+d)= ac+ ad+bc+bd. 2. 解题(计算)步骤(略).
);
); ); ); ); ); ); ); ).
(10)(5m+ 2)(4m2- 3)=(
2. 长方形 的长是(2a+ 1),宽是(a+b),求长方形的面积. B 组题 1. 计算:
用心
-3 爱心 -
专心
(1)(xy-z)(2xy+z);(2)(10x3 - 5y2)(10x3 +5y2). 2.计算: (1)(3a- 2)(a- 1)+ (a+ 1)(a+2);(2)(3x+2)(3x- 2)(9x2 +4). 在学生练习的同时,教师巡回辅导,因材施教,并注意根据信息反馈,及 时提醒学生正确运用多项式的乘法法则,注意例题讲解时总结的三条.
作业
书 76 页 1.2.3.4.5.6.
板 复习 „„ „„ „„ „„ „„ 例1 „„ „„ 例2 „„ „„ 教


计 板演 „„ „„ „„ „„ „„

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 从面积到乘法公式
★A 卷一 基础知识点点通 班级 姓名 成绩
一、选择题(每题2分,共20分)
1. 计算)3
4
)(3(42y x y x -的结果是( )
A.263
5
y x B.y x 84- C.264y x - D.26y x 2. 计算2322)(ab b a --的结果是( )
A.83b a
B.83b a -
C.84b a
D.84b a - 3. 下列运算中正确的是( )
A.2510a a a =÷
B.743)(a a =
C.222)(y x y x -=-
D.63312)3(4a a a -=-∙ 4. 下列计算正确的是( )
A.n n n n n x x x x x x 3)3(222+-=+-+
B.xy xy y x xy y x 20128)4)(32(22-=--=-+
C.233222126)3)(42(y x y x xyz y x xy +=---
D.yz x yz x xz y x xyz 32227))(17(+-=-+-
5. 下列五个算式:⑴643232422b a b a b a =+⑵323232422b a b a b a =+⑶
323232422b a b a b a =∙⑷643232422b a b a b a =∙⑸2
63232632b a b a b a =+其中正确的是( )
A.1个
B.2个
C.3个
D.4个 6. 如果23222686)43(xy y x x by y x x ax +-=+-成立,则a 、b 的值为( )
A.23==b a ,
B.32==b a ,
C.23=-=b a ,
D.32=-=b a , 7. 利用形如ac ab c b a +=+)(的分配性质,求)5)(23(-+x x 的积的第一步骤
是( )
A.)5)(23()23(-+++x x x
B.)5(2)5(3-+-x x x
C.101332--x x
D.101732--x x
8. 要使)6)(1(32x ax x -++的展开式中不含4x 项,则a 应等于( )
A.6
B.1-
C.6
1
D.0
9. 化简)5(61
)12(31)1(21-+--+a a a 应得( )
A.3
2- B.a 31 C.0 D.3234-a
10.三个连续奇数,若中间一个为n ,则它们的积是( )
A.n n 663-
B.n n -34
C.n n 43-
D.n n -3
二、填空题(每空2分,共20分)
11.=
∙--)5(313n x x ,=-∙)4(2
1
32y x xy
12.=---)433)(2(22b ab a ab ,=
-+-)3
1
)(126(22x x x
13.=
+-)2)(2(y x y x ,=
---)21)(21(p p
14.=
--+--)4)(56()32)(13(y y y y =
----)3)](2
1
(2)3([322b a b b a b ab
15.=⨯-⨯⨯)104()103(48,=
⨯⨯⨯⨯⨯)102()103()104(456
三、解答题(第16题每题3分,第17题每题6分,第18题、第19
题每题7分,共50分)
16.计算:
⑴523232)()3(b a b a -- ⑵)3
2
()143(74322xy y x y x -∙-∙-
⑶)12)(3(2-+-ab b a ab ⑷)2)(1326(223b a ab ab ab -+-+
⑸)32)((2--+x x y x ⑹2003112)1(23[-+-+-n n n ab b b a
⑺)1(2)2()(42322-+---xy x y x x ⑻)34)(34()3)(3(y x y x x y y x +--+-
17.化简求值
⑴)1(3)1(2)3(222-+--++m m m m m m m ,其中5
2=m
⑵)5)(3(2)3)(2(-++--a a a a ,其中3
1=a
18.计算下列图形的体积
19.某蔬菜基地用大棚种植蔬菜,已知每个长方形大棚的长比宽多3米,拟将大棚的长与宽分别增加2米,这样每个大棚的面积将增加20平方米,问现在大棚的宽是多少米?
四、思考题(共10分)
20.阅读下列材料:
∵311)311(21⨯=-,531)5131(21⨯=-,751
)7151(21⨯=-,……
19
171
)191171(21⨯=-
∴19
9191121)1911717171515131311(21)19
1171(21)7151(21)5131(21)311(2119171
751531311=-=-+⋯-+-+-+-=-⋯+-+-+-=⨯+⋯+⨯+⨯+⨯)(
回答下列问题:
⑴在和式⋯+⨯+⨯+⨯7
51531311中,第五项为 ,第n 项为 ,上述求和的思路方法是:通过逆用 法则,将和式中各分数转化为两个数之差,使得除首末两项外的中间各项可以 ,从而达到求和的目的。

⑵利用从上述过程中发现的规律,解决下题。

)
1()1(1751531311+⨯-+⋯+⨯+⨯+⨯n n。

相关文档
最新文档