绝对值不等式
有关绝对值的不等式
有关绝对值的不等式一、绝对值的定义我们知道,绝对值的定义为数与零的距离,即:- 当一个实数x大于或等于0时,|x|=x;- 当一个实数x小于0时,|x|=-x。
二、绝对值的性质绝对值有以下几个性质:1. 非负性:|x|≥0,即绝对值是非负数;2. 正反性:若x≥0,则|x|=x;若x<0,则|x|=-x;3. 三角不等式:|a+b|≤|a|+|b|,即两数之和的绝对值不大于它们绝对值的和;4. 乘法性:|ab|=|a|×|b|,即两数之积的绝对值等于它们绝对值的积;5. 倒数性:若a≠0,则|1/a|=1/|a|。
三、绝对值的应用绝对值在数学中有着广泛的应用,特别是在不等式中的应用更为常见。
下面介绍几个绝对值不等式的例子。
例1:|x-a|<b的解集为(a-b,a+b)。
解析:首先,我们假设a≥0(a<0同理可证),那么由于|x-a|≥0,所以|x-a|<b等价于-a<x-a<a。
解不等式得到 x<a+b 且 x>a-b,即x∈(a-b,a+b)。
例2:|x|<a的解集为(-a,a)。
解析:当a>0时,由|x|≥0,得出|x|<a等价于-x<a且x<a,即解不等式得到x∈(-a,a)。
例3:|x-2|-|x+2|≤0的解集为[-2,2]。
解析:当x≤-2或x≥2时,|x-2|-|x+2|≤0显然成立,因为两个绝对值的差值不大于0。
当-2<x<2时,不等式可化为(x-2)-(x+2)≤0,即-4≤0,也是成立的。
所以,综合起来,解集为[-2,2]。
总结:以上是一些关于绝对值不等式的例子,通过这些例子可以体会到绝对值在不等式中的应用和威力,希望对大家学习数学有所帮助。
绝对值不等式公式
绝对值不等式公式绝对值不等式公式是以一元函数形式表示的绝对值的不等式,比如:|x|<a,它描述的是变量x的值范围在-a到a之间,其中a是一个正实数。
本文将主要介绍绝对值不等式公式的性质、表达式、特点及应用。
首先,让我们来看一下绝对值不等式公式的定义和性质:对于任意正实数a和变量x,绝对值不等式公式有如下形式:|x|<a它的性质是,如果一个变量x的值满足这个不等式,则它取值范围为-a到a之间,即:-a<x<a我们也可以将上述不等式的定义和属性表示为等价的函数形式,即:f(x)=|x|<a同时,我们也可以用一个单调函数来表示绝对值不等式公式:g(x)=x+|x|绝对值不等式公式有两个非常明显的特点:一是它表示的范围是一个确定的正实数a;二是它描述的变量x是一个周期函数,边界点为-a和a之间。
绝对值不等式公式应用十分广泛,在数学中,它可以用来描述一个变量的取值范围,例如,我们可以用它来解决有关刻度尺的问题,如果我们想要测量一个物体的长度,我们可以用它来计算长度的精确值。
此外,它还可以用来解决一些复杂的数学问题,例如求解偏微分方程,求解线性规划等。
绝对值不等式公式定义了变量x的有效取值范围,它可以帮助我们解决许多实际问题,并且这种表达式也被广泛应用于工程领域。
举个例子,在机器学习中,绝对值不等式公式可以用来描述模型衰减率的大小。
当模型学习率减小到一定水平时,绝对值不等式公式可以表达模型学习率减小的趋势。
同样,绝对值不等式公式也可以用来描述图像质量,体现图像质量随时间变化的趋势。
总之,绝对值不等式公式具有显著的作用,它可以用来表达变量x的取值范围,可以应用于数学建模和工程设计,也可以应用于机器学习和图像处理等。
尽管它的表达式很简单,但它对我们的生活和工作有很大的帮助。
绝对值方程与不等式
绝对值方程与不等式一、绝对值不等式的基本性质绝对值不等式的定义与绝对值方程类似,只是将等号换成不等号。
对于任意实数a,绝对值不等式可以写成如下形式:a,≤b或,a,≥b其中b为实数。
绝对值不等式的解集可以用区间表示。
例如,对于,a,≤b,解集为闭区间[-b,b];对于,a,≥b,解集为两个开区间(负无穷,-b)和(b,正无穷)的并集。
与绝对值方程类似,可以利用绝对值的定义解绝对值不等式。
对于,a,≤b,我们可以将绝对值去掉,得到两个不等式,然后分别求解,并将解集取交集。
对于,a,≥b,我们可以将不等式拆解为两个绝对值不等式,再分别求解,并将解集取并集。
在解绝对值不等式时,需要注意以下几个性质:1.两个非负实数的绝对值相等,当且仅当这两个实数相等。
也就是说,如果,a,=,b,那么a=b或a=-b。
2.如果,a,=c,c≥0,那么a=c或a=-c。
这些基本性质对于解决绝对值不等式非常有帮助,可以帮助我们化简不等式,提取出能够直接进行计算的部分。
二、绝对值不等式的解法解绝对值不等式的方法包括图像法、分段讨论法和代数法。
1.图像法:使用数轴上的图像表示法,通过观察图像来找到解集。
例如,对于不等式,2x-1,≤3,可以先画出2x-1的图像,然后找出使得,2x-1,≤3的x的取值范围。
这种方法在直观上很直接,但对于复杂的不等式可能不太适用。
2.分段讨论法:将不等式分成几个条件,然后分别讨论每个条件下的解集,并将解集取并集。
例如,对于不等式,x-2,>3,可以将不等式分成两个条件,即x-2>3和x-2<-3,分别求解得到x>5和x<-1,最后将解集取并集得到(-∞,-1)∪(5,+∞)。
3.代数法:利用绝对值的定义和基本性质,将绝对值不等式转化为一系列等价的不等式,然后求解。
这种方法在理论上较为严谨,适用范围更广。
例如,对于不等式,3x+2,≥5,可以将不等式拆解为3x+2≥5和3x+2≤-5,分别求解得到x≥1和x≤-7/3,最后将解集取并集得到(-∞,-7/3]∪[1,+∞)。
含绝对值的不等式
含绝对值的不等式
当 x < 1时, 1–x+2–x>x+3 x<0 所以x < 0, 综上得x > 6或者x < 0。
复习导入
二、不等式 1、用不等号(> ,< ,>= ,<=)连接的式子叫 做不等式 2、不等式的性质: ①a>b b<a(对称性); ②a>b,b>c a>c(传递性); ③a>b a+c>b+c(数加) ④不等式的两边同时乘以或者除以一个正数, 不等号的方向不变;不等式的两边同时乘以 或者除以一个负数,不等号的方向改变。
含绝对值的不等式
一、解绝对值不等式的依据: ①|x|<a(a>0) x2<a2 -a<x<a; ②|x|>a(a>0) x2>a2 x>a或x<-a。
二、解绝对值不等式的方法:①绝对值பைடு நூலகம் 等式的依据;②平方法;③零点分段讨论 法。
含绝对值的不等式
题型一、用绝对值不等式的依据解不等式 例1:解不等式|2x - 3| < 1 解:根据绝对值不等式的依据 -1 < 2x – 3 < 1 2 < 2x < 4 1<x<2
含绝对值的不等式
题型二、用平方法解不等式 例2:|x – 2| < |x + 1| 解:由上式 (x – 2)2 < (x + 1) 2 x2 - 4x + 4 < x2 + 2x +1 6x > 3 x > 0.5
绝对值不等式性质及公式
|a|-|b|小于等于|a+b|小于等于|a|+|b|
2.|a|<|b|可逆a&sup2;<b&sup2;
另外
|a|-|b|小于等于|a+b|小于等于|a|+|b|,当且仅当ab小于等于0时左边等
号成立,ab≥0时右边等号成立。
|a|-|b|小于等于|a-b|小于等于|a|+|b|,当且仅当ab≥0时左边等号成
立,ab小于等于0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹙b的距离等于它
们到原点的距离之和。2.当a,b异号时它们பைடு நூலகம்别位于原点的两边,此时a
与﹙b的距离小于它们到原点的距离之和。
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹙a,(a<0),}
因此,有
﹙|a|小于等于a小于等于|a|
﹙|b|小于等于b小于等于|b|
同样地
①,②相加得
﹙﹙|a|+|b|)小于等于a+b小于等于|a|+|b|
即|a+b|小于等于|a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b|小于等于|a+b|+|-b|,
即|a|-|b|小于等于|a+b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对
绝对值不等式
绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。
定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。
绝对值不等式
绝对值不等式绝对值不等式是数学中常见的一类不等式,它与绝对值的性质和运算相关。
通过研究绝对值不等式,我们可以解决许多实际问题,同时也提升了我们的数学思维和解题能力。
一、绝对值的定义绝对值是表示一个数离原点的距离。
对于一个实数x,它的绝对值记作|x|,定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。
例如,|5|=5,|-3|=3。
二、绝对值不等式的性质1. 绝对值的非负性质:对于任意实数x,有|x|≥0。
2. 绝对值的等价性:若|x|=0,则x=0。
3. 绝对值的三角不等式:对于任意实数x和y,有|x+y|≤|x|+|y|。
三、一元绝对值不等式的求解方法当我们遇到一元绝对值不等式时,可以采用以下两种方法求解:1. 列举法:根据不等式的性质及绝对值的定义,列举出满足不等式条件的数。
例题1:|x-2|<3根据绝对值的定义,可以得到以下两个不等式:x-2<3 ==> x<5;-(x-2)<3 ==> -x+2<3 ==> 2-x<3 ==> x>-1。
综合以上两个不等式的解,得到-1<x<5。
2. 分类讨论法:将绝对值拆分成正负两种情况,分别求解。
例题2:|2x-3|>4当2x-3>0时,可以得到以下不等式:2x-3>4 ===> 2x>7 ===> x>3.5。
当2x-3<0时,可以得到以下不等式:-(2x-3)>4 ===> -2x+3>4 ===> -2x>1 ===> x<-0.5。
综合以上两个情况的解,得到x>3.5或x<-0.5。
四、二元绝对值不等式的求解方法对于二元绝对值不等式,我们需要分别对两个变量进行分类讨论,并结合不等式的特点进行求解。
例题3:|x-2|+|y+1|<5当x-2>0且y+1>0时,可以得到以下不等式:x-2+y+1<5 ==> x+y<6。
绝对值不等式
2.[课本改编]不等式|2x-1|>3 的解集为( ) A.(-∞,-2)∪(1,+∞) B.(-∞,-1)∪(2,+∞) C.(-2,1) D.(-1,2) 解析 由|2x-1|>3 得 2x-1<-3 或 2x-1>3, 解得 x<-1 或 x>2.故选 B.
3.[课本改编]函数 y=|x-4|+|x-6|的最小值为( )
【变式训练 1】 (1)不等式|x-5|+|x+3|≥10 的解集是( )
A.[-5,7]
m-2<2 m+2>3
,解得实数 m 的取值范围是(1,4).
用“零点分段法”解|x-a|+|x-b|≥c 或|x-a|+|x-b|≤c(c>0)型不等式的一般步骤 (1)令每个含绝对值符号的代数式为零,并求出相应的根. (2)将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间. (3)由所分区间去掉绝对值符号可得若干个不等式,解这些不等式,求出解集. (4)取各个不等式解集的并集即原不等式的解集.
A.2
B.4
C.6
D.10
解析 解法一:y=|x-4|+|x-6|=|4-x|+|x-6|≥|(4-x)+(x-6)|=2. 解法二:|x-4|+|x-6|表示在数轴上,x 对应的点到 4 与 6 对应点的距离之和,随着 x 在数轴上的移动 易看出|x-4|+|x-6|≥2,故选 A.
4.[课本改编]不等式|2x-1|-|x-2|<0 的解集为___{_x_|-__1_<_x_<_1_}____.
|x|>a {x|x>a 或 x<-a}
a=0 a<0
∅
∅
{x|x≠0} R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法|ax+b|≤c⇔ -c≤ax+b≤c (c>0),|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c (c>0).
高考数学 绝对值不等式
绝对值不等式[知识梳理]1.绝对值不等式(1)定理如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当(a -b)(b-c)≥0时,等号成立,即b落在a,c之间.(3)由绝对值不等式定理还可以推得以下几个不等式①|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|.②||a|-|b||≤|a±b|≤|a|+|b|.2.绝对值不等式的解法(1)形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)①绝对值不等式|x|>a与|x|<a的解集.②|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.|ax+b|≤c⇔-c≤ax+b≤c(c>0),|ax+b|≥c⇔ax+b≤-c或ax+b≥c(c>0).[诊断自测]1.概念思辨(1)不等式|x-1|+|x+2|<2的解集为∅.()(2)若|x |>c 的解集为R ,则c ≤0.( )(3)|ax +b |≤c (c ≥0)的解集,等价于-c ≤ax +b ≤c .( )(4)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )答案 (1)√ (2)× (3)√ (4)√2.教材衍化(1)(选修A4-5P 19T 5)解不等式|2x +1|+|x -2|>4.解 当x ≤-12时,原不等式可化为-2x -1+2-x >4,所以x <-1,此时x <-1;当-12<x <2时,原不等式可化为2x +1+2-x >4,所以x >1,此时1<x <2;当x ≥2时,原不等式可化为2x +1+x -2>4,所以x >53,此时x ≥2.综上,原不等式的解集为(-∞,-1)∪(1,+∞).(2)(选修A4-5P 20T 9)设函数f (x )=|x -4|+|x -3|.①解不等式f (x )≥3;②若f (x )≥a 对一切x ∈R 恒成立,求实数a 的取值范围.解 ①当x ≤3时,原不等式可化为4-x +3-x ≥3,即x ≤2,所以x ≤2;当3<x <4时,原不等式可化为4-x +x -3≥3,即1≥3,无解; 当x ≥4时,原不等式可化为x -4+x -3≥3,即x ≥5,所以x ≥5. 综上,原不等式的解集为{x |x ≤2或x ≥5}.②f (x )≥a 对一切x ∈R 恒成立的充要条件是a ≤f (x )min .因为f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1,即f (x )的最小值为1,所以a ≤1.即实数a 的取值范围是(-∞,1].3.小题热身(1)(优质试题·山东高考)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)答案 A解析 ①当x <1时,原不等式等价于1-x -(5-x )<2,即-4<2,∴x <1.②当1≤x ≤5时,原不等式等价于x -1-(5-x )<2,即x <4,∴1≤x <4.③当x >5时,原不等式等价于x -1-(x -5)<2,即4<2,无解.综合①②③知x <4.故选A.(2)(2014·重庆高考)若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,12 解析 令f (x )=|2x -1|+|x +2|,易求得f (x )min =52,依题意得a 2+12a +2≤52⇔-1≤a ≤12.题型1 绝对值不等式的解法典例 (优质试题·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.(1)去绝对值符号转化为分段函数;(2)根据(1)作出的图象,采用数形结合方法求解.解 (1)f (x )=⎩⎪⎨⎪⎧ x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或1<x <3或x >5. 方法技巧解|x -a |+|x -b |≥c 或|x -a |+|x -b |≤c 的一般步骤1.零点分段法(1)令每个含绝对值符号的代数式为零,并求出相应的根;(2)将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间;(3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集;(4)取各个不等式解集的并集求得原不等式的解集.2.利用|x -a |+|x -b |的几何意义数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.3.图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.见典例.提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.冲关针对训练(优质试题·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.题型2 绝对值不等式性质的应用典例 (优质试题·全国卷Ⅲ)已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.(1)将不等式化为|x -a |≤c 的形式求解;(2)利用绝对值不等式性质消去a .解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).[条件探究]将典例(1)中条件“a=2时”变为“g(x)=|2x-1|,若g(x)≤5时,恒有f(x)≤6”,试求a的最大值.解g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有a-3≤-2,a≤1.故a的最大值为1.方法技巧绝对值不等式性质的应用利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|a-c|+|c-b|(a,b ∈R),通过确定适当的a,b,利用整体思想或使函数、不等式中不含变量,可以(1)求最值,(2)证明不等式.见典例.冲关针对训练(2018·福建漳州模拟)已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a 的取值范围.解因为对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围为[-1,+∞)∪(-∞,-5].1.(优质试题·河西区三模)若存在实数x,使|x-a|+|x-1|≤3成立,则实数a的取值范围是()A.[-2,1] B.[-2,2] C.[-2,3] D.[-2,4]答案 D解析由|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,不等式|x-a|+|x-1|≤3有解,可得|a-1|≤3,即-3≤a-1≤3,求得-2≤a≤4.故选D.2.(优质试题·潍坊一模)若关于x的不等式|x+1|+|x-2|+m-7>0的解集为R,则实数m的取值范围为()A.(4,+∞) B.[4,+∞)C.(-∞,4) D.(-∞,4]答案 A解析不等式|x+1|+|x-2|+m-7>0,移项:|x+1|+|x-2|>7-m,根据绝对值不等式的几何意义,可知:|x+1|+|x-2|的最小值是3,解集为R,只需要3>7-m恒成立即可,解得m>4.故选A.3.(优质试题·北仑区校级期中)关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,则实数a的取值范围是()C .a <1或a >2D .a ≤1或a ≥2答案 B 解析 关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集, 则a 2-3a <(|x -1|-|x -3|)max 即可,而|x -1|-|x -3|的最大值是2, ∴只需a 2-3a -2<0,解得:3-172<a <3+172. 故选B.4.(优质试题·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].[基础送分 提速狂刷练]1.(优质试题·洛阳模拟)已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12;当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23;当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32.若f (x )≤log 2a 有解,则log 2a ≥-32,⎣⎭2.(优质试题·广东潮州二模)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝ ⎛⎭⎪⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围.解 (1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎪⎨⎪⎧ -3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4⇔⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧ -32≤x ≤1,x +4>4或⎩⎨⎧ x >1,3x +2>4⇔x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞).(2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,32. 3.(优质试题·湖北黄冈调研)已知函数f (x )=|2x -a |+|2x -1|(a ∈R ).(1)当a =-1时,求f (x )≤2的解集;(2)若f (x )≤|2x +1|的解集包含集合⎣⎢⎡⎦⎥⎤12,1,求实数a 的取值范围. 解 (1)当a =-1时,f (x )=|2x +1|+|2x -1|,f (x )≤2⇒⎪⎪⎪⎪⎪⎪x +12+⎪⎪⎪⎪⎪⎪x -12≤1,上述不等式的几何意义为数轴上点x 到两点-12,12距离之和小于或等于1,则-12≤x ≤12,即原不等式的解集为⎣⎢⎡⎦⎥⎤-12,12. (2)∵f (x )≤|2x +1|的解集包含⎣⎢⎡⎦⎥⎤12,1, ∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f (x )≤|2x +1|恒成立, ∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,|2x -a |+2x -1≤2x +1恒成立, ∴2x -2≤a ≤2x +2在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立, ∴(2x -2)max ≤a ≤(2x +2)min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1, ∴0≤a ≤3.故实数a 的取值范围是[0,3].4.(2018·山西八校联考)设函数f (x )=|x +1|+|x -a |.(1)若f (x )≥5对于x ∈R 恒成立,求实数a 的取值范围;(2)当a =1时,函数f (x )的最小值为t ,且正实数m ,n 满足m +n=t ,求证:1m +1n ≥2.解 (1)|x +1|+|x -a |表示数轴上的动点x 到两定点-1,a 的距离之和,故当a ≥4或a ≤-6时,|x +1|+|x -a |≥5对于x ∈R 恒成立,即实数a 的取值范围为(-∞,-6]∪[4,+∞).(2)证明:因为|x +1|+|x -1|≥|x +1+1-x |=2,所以f (x )min =2,即t =2,故m +n =2,又m ,n 为正实数,所以1m +1n =⎝ ⎛⎭⎪⎪⎫m +n 2⎝ ⎛⎭⎪⎫1m +1n =12⎝ ⎛⎭⎪⎫1+1+n m +m n ≥12×(2+2)=2,当且仅当m =n =1时取等号.5.(优质试题·沈阳模拟)设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a , 则-1a =-6,3a =2,无解;当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知h (x )在⎝ ⎛⎭⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎫-14,32 上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意,知-72≤7-3m ,则实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,72. 6.(2018·江西模拟)设f (x )=|x -1|+|x +1|(x ∈R ).(1)求证:f (x )≥2;(2)若不等式f (x )≥|2b +1|-|1-b ||b |对任意非零实数b 恒成立,求x 的取值范围.解 (1)证明:f (x )=|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2.(2)g (b )=|2b +1|-|1-b ||b |≤|2b +1-1+b ||b |=3, ∴f (x )≥3,即|x -1|+|x +1|≥3,当x ≤-1时,-2x ≥3,∴x ≤-1.5;当-1<x ≤1时,2≥3不成立;当x >1时,2x ≥3,∴x ≥1.5.综上所述x 的取值范围为(-∞,-1.5]∪[1.5,+∞).。
不等式第一讲--绝对值不等式
第一讲含绝对值的不等式一、知识梳理知识点一:绝对值的几何意义1、绝对值的意义⑴意义:在数轴上a表示a对应的点到原点的距离,a b-表示a与b之间的距离.代数表达式为:(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩它的一个重要性质是:a b a b a b-≤±≤+⑵(0)x a a<>:(0)x a a>>:2、基本绝对值不等式的解法(0)x a a<>的解集为:{}x a x a-<<x a>的解集为:{|x x a<-或}x a>巧记方法为“小于找中间,大于找两边”知识点二、绝对值不等式的基本解法类型一:ax>()0>a;ax<()0>a;cbax>+()0>c;cbax<+()0>c;()0,><+<dcdbaxc例1、⑴258x-≤⑵237x->⑶325x<-+⑷652x+≤例2、⑴329x≤-<⑵2227x≤--<类型二:含有多个绝对值的不等式(平方法、零点分段法、几何意义法)例3、142x--<例4、⑴12+>-xx⑵xx≥+2例5、⑴2133x x-++<⑵125x x-++<类型三:()()x gxf>和()()x gxf<型不等式例6、(1)143-<-xx;(2)3215+>-xx;类型四:含有参数的不等式例7、()Raax∈<-+132例8、已知关于x的不等式2(3)2ax a x+>--;若a R∈,求不等式的解集A;设不等式212x +<的解集为B ,使得A B ⋂ 1|12x x ⎧⎫=-<<⎨⎬⎩⎭,求a 的值课后练习1、不等式32-5>x 的解集是( )。
A .{}|4x x >B . {|1x x <或}4x >C . {}|14x x <<D . {|1x x <-或}4x >2、不等式210x -+<的解集是( )A .{}|13x x <<B . {|1x x <或}3x >C . RD . ∅3、已知集合{}|13A x x =-<,B ={}|13x x ->,则A B = ( )A .{}|24x x -<<B . {}20x -<<C . {|20x x -<<或24}x <<D . {|0x x <或}4x >4、已知集合{||2|5},{|A x x B x =+>=|3|2}x -<,则A B = ( )A .{|7x x ≤或1}x >B . {|17}x x -≤<C . {}|x x R ∈D . {|7x x ≤-或3}x ≥5、集合{|0|1|3}x N x ∈<-<的真子集个数为( )A .16B . 15C . 8D . 76、实数,a b 满足0ab >,那么( )A .||||||a b a b -<+B . ||||a b a b +>-C . ||||a b a b +<-D . ||||||||a b a b -<+7、已知{||1|2},{||M x x N x x =-<=+2|4}≥,则下列结论正确的是( )A .M N R =B . {|23}M N x x =≤<C . M N R =D . {|6}M N x x =<-。
绝对值与不等式
绝对值与不等式绝对值和不等式是代数学中非常重要的概念和工具。
绝对值是表示一个数与零的距离,通常用符号“|x|”表示,其中x可以是任何实数。
而不等式是用于描述两个数之间关系的数学语句。
本文将介绍绝对值和不等式的概念、性质以及在实际问题中的应用。
一、绝对值的定义和性质绝对值的定义:对于任意实数x,其绝对值|x|的值等于x与0之间的距离。
如果x≥0,则|x|=x;如果x<0,则|x|=-x。
绝对值的性质:1. 非负性:对于任意实数x,|x|≥0。
2. 正则性:对于任意正数x,|x|=x。
3. 负则性:对于任意负数x,|x|=-x。
4. 零的绝对值为零:|0|=0。
5. 三角不等式:对于任意实数x和y,有|x+y|≤|x|+|y|。
二、绝对值不等式的性质和解法绝对值不等式是以绝对值形式出现的不等式。
常见的绝对值不等式有以下几种类型:1. 线性绝对值不等式:形如|ax+b|<c,其中a、b、c为实常数,且a≠0。
解法:分别讨论ax+b的正负情况,得出满足不等式的解集。
2. 二次绝对值不等式:形如|ax^2+bx+c|<d,其中a、b、c、d为实常数,且a≠0。
解法:将二次绝对值不等式转化为二次不等式,再进行求解。
3. 分式绝对值不等式:形如|f(x)/g(x)|<h,其中f(x)、g(x)为有理函数,h为正实数。
解法:分别讨论f(x)/g(x)的正负情况和不等式中的分母g(x)≠0的情况,得出满足不等式的解集。
三、绝对值和不等式的应用1. 几何应用:绝对值可用于计算两点之间的距离,因为两点之间的距离是非负的。
2. 优化问题:绝对值不等式在优化问题中有广泛的应用。
比如,当我们需要求解一个函数的最小值或最大值时,可以利用绝对值不等式得到一些限制条件,帮助缩小解的范围。
3. 经济学问题:在经济学中,绝对值不等式可以用来描述供求关系、生产成本等经济现象。
通过求解绝对值不等式,可以得到一些对经济决策具有参考意义的结论。
含绝对值不等式
典型例题
例3、解不等法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
典型例题
xa 例4、已知不等式 x 3 的解集为A. 2 (1)若A= 求实数a 的取值范围;
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
f ( x ) g( x ) f 2 ( x ) g 2 ( x )
3、零点分段法:如 ax b cx d k
若ab 0, 则 a b a b , a b a b
二、含绝对值不等式的解法: 1、等价转化法: 2、平方法:
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
【思维点拨】 1、需分别证明充分性和心要性; 2、通过分类讨论利用结论:
若ab 0, 则 a b a b , a b a b
若ab 0, 则 a b a b , a b a b
典型例题
例2、解不等式:
1 x 2x 2
2
【思维点拨】 本题有多种解法: (1)定义法; (2)等价转化法; (3)函数图象法. 注意: f ( x) g( x) g( x) f ( x) g( x);
高中数学第六章《不等式》 第 5 课
含绝对值不等式
问题:
a>b是a2>b2的什么条件? 答案:既非充分又非必要条件.
知识梳理:
一、含绝对值不等式的证明:
绝对值不等式的解法
绝对值不等式的解法什么是绝对值不等式?绝对值不等式是数学中一类常见的不等式类型,它涉及到绝对值函数(|x|)。
绝对值函数定义了一个实数的非负值,即对于实数x,|x|的值总是与x的符号无关,而只与x的大小有关。
绝对值不等式的一般形式为:|f(x)| ≤ a 或|f(x)| ≥ a,其中f(x)是一个函数,a是一个正实数。
绝对值不等式的求解方法当遇到绝对值不等式时,我们需要找到使得不等式成立的x 的范围,也就是求解不等式的解集。
下面将介绍几种常见的绝对值不等式的解法。
1. 图形法图形法是解决绝对值不等式的直观方法。
我们可以通过绘制函数y = f(x)的图像来分析绝对值不等式。
对于不等式|f(x)| ≤ a,我们可以绘制函数y = f(x)的图像,并考察函数值在y轴上的绝对值是否小于等于a。
如果在x的某个范围内,函数图像位于y轴上的绝对值小于等于a,则该范围内的x属于解集。
对于不等式|f(x)| ≥ a,同样可以绘制函数y = f(x)的图像。
但在该情况下,我们需要考察函数图像位于y轴上的绝对值是否大于等于a。
如果在x的某个范围内,函数图像位于y轴上的绝对值大于等于a,则该范围内的x属于解集。
2. 分情况讨论法绝对值不等式的另一种解法是通过分情况讨论来找到解集的范围。
对于不等式|f(x)| ≤ a,我们可以将绝对值函数分为两种情况进行讨论: - 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≤ a。
- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≤ a,进一步化简为f(x) ≥ -a。
上述两种情况分别给出了绝对值不等式的解集范围。
我们需要根据具体函数f(x)和给定的a值来确定最终的解集。
对于不等式|f(x)| ≥ a,同样可以采用类似的分情况讨论法:- 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≥ a。
- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≥ a,进一步化简为f(x) ≤ -a。
绝对值不等式
绝对值不等式知识概述带绝对值符号的不等式叫绝对值不等式。
解绝对值不等式的关键是去绝对值符号,等价转化为不含绝对值符号的不等式,用已有方法求解。
去绝对值符号的方法就是解不等式的方法。
1、a x <与)0(>>a a x 型不等式的解: 不等式)0(><a a x 的解集是:a -<x <a 不等式)0(>>a a x 的解集是:x a >或x a <-2、不等式)0(><+c c b ax 可转化为:c -<b ax +<c 不等式)0(>>+c c b ax 可转化为:b ax +>c 或b ax +<c -〔含绝对值的不等式|ax +b |<c 转化-c <ax +b <c 的根据是由绝对值的意义确定,解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与解一般不等式或不等式组相同.〕3、绝对值不等式的一个性质:b a +<b a -ab ⇔<04、a 的几何意义:数轴上表示数a 的点离开原点的距离a x -的几何意义是数x 在数轴上的对应点与数a 在数轴上的对应点之间的距离5、解绝对值不等式的一般方法有:(1)定义公式法(2)平方法(3)零点分段法(4)数形结合法问题解决【例1】 解不等式5500≤-x .巩固练习:解不等式31≥+x【例2】解不等式||2331x x -<+巩固练习:解不等式1234+≥-x x【例3】解不等式||||x x +<+123巩固练习:32-x <1+x【例4】解不等式||||x x ++->213巩固练习:解不等式2-+x x >4【例5】解不等式:13+--x x <1巩固练习:解不等式3-+x x >4【例6】不等式a x x ≥-+-12对所有的实数x 都成立,则a 的最大值是【例7】解不等式 解不等式2<|2x -5|≤7.作业1、不等式x xxxx ≥+-+-168421的解是() A 、1616≤≤-x B 、11161116≤≤-xC 、21162116≤≤-xD 、2116-<x <21162、不等式3121+≤-x x 的所有整数解的和是() A 、0 B 、1 C 、-1 D 、23、不等式1<43+x ≤6的解是( )A 、-1≤x <32或310-<35-≤x B 、-1<x ≤32或310-≤x <35-C 、-1≤x <32或310-≤x <35- D 、-1<x ≤32或310-<x ≤35-4、不等式|2x -5|>3的解集是( )A . x >4B .1<x <4C .x <1或x >4D .x <-1或x >45、不等式4≥|6-2x|的解集是( )A .x ≤1或x ≥5B .1≤x ≤5C .-2≤x ≤5D .-5≤x ≤-16、关于x 的不等式|x +b|>a(a >0)的解集是( )A .x <-a +b 或x >a -b}B .x <a -bC 、-a -b <x <a -bD .x <-a -b 或x >a -b7、对于任意实数x ,若不等式12x x +-->k 恒成立,则k 的取值范围是()A 、k <3B 、k <-3C 、k ≤3D 、k ≤-38、满足32)1(2x x --+>127-x的整数x 为9、关于x 的不等式122+a x >a xa -24有解的条件是10、解不等式:1|32||5|<+--x x11、解不等式:2|53|1≤-≤x12、解不等式:3||3||3||>--+x x 。
绝对值不等式证明
绝对值不等式证明
要证明一个绝对值不等式,我们需要根据绝对值的定义逐个考虑不同的情况,并进行推导。
假设我们要证明的绝对值不等式为:|x| ≤a,其中a为一个正数。
情况1:x ≥0
在这种情况下,绝对值|x|就等于x本身。
因此我们可以将不等式简化为x ≤a。
由题设知x ≥0,因此可以得出结论x ≤a。
情况2:x < 0
在这种情况下,绝对值|x|就等于-x。
因此我们可以将不等式简化为-x ≤a。
由题设知x < 0,因此可以得出结论-x ≤a。
两边同时乘以-1,得到x ≥-a。
综合上述两种情况,我们可以得出结论:当x ≥0时,x ≤a;当x < 0时,x ≥-a。
将两种情况综合起来,即可得到整个不等式的证明:-a ≤x ≤a。
这就证明了绝对值不等式|x| ≤a。
绝对值不等式公式有哪些该如何解
绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。
下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。
绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
绝对值的不等式
绝对值的不等式什么是绝对值绝对值是一个数的非负值,也可以理解为该数到0的距离。
表示一个数a的绝对值记作|a|,定义如下:1.如果a ≥ 0,则|a| = a。
2.如果a < 0,则|a| = -a。
一元一次绝对值不等式一元一次绝对值不等式是指只含有一个未知数x的不等式,且该未知数的绝对值与常数的线性关系。
例子假设有如下不等式:|x + 2| ≤ 3。
要求解这个不等式,我们可以分成以下两种情况进行讨论:1.x + 2 ≥ 0当x + 2 ≥ 0时,|x + 2| = x + 2。
此时原不等式可以转化为x + 2 ≤3,解得x ≤ 1。
2.x + 2 < 0当x + 2 < 0时,|x + 2| = -(x + 2)。
此时原不等式可以转化为-(x + 2) ≤ 3,解得x ≥ -5。
综合以上两种情况的解集,得到最终解为-5 ≤ x ≤ 1。
绝对值不等式的解集可以表示为一个区间。
一元二次绝对值不等式一元二次绝对值不等式是指只含有一个未知数x的二次函数与常数的不等式。
假设有如下不等式:|x² - 4| > 3。
要求解这个不等式,我们可以分成以下两种情况进行讨论:1.x² - 4 ≥ 0当x² - 4 ≥ 0时,|x² - 4| = x² - 4。
此时原不等式可以转化为x² -4 > 3,解得x < -1 或 x > 3。
2.x² - 4 < 0当x² - 4 < 0时,|x² - 4| = -(x² - 4)。
此时原不等式可以转化为-(x² - 4) > 3,解得-1 < x < 3。
综合以上两种情况的解集,得到最终解为x < -1 或 -1 < x < 3 或 x > 3。
二元一次绝对值不等式二元一次绝对值不等式是指含有两个未知数x和y的一次函数与常数的不等式。
绝对值不等式总结
1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。
绝对值不等式
4.(2009广东) | x 1 | 1的解集为
.
|x2|
【答案】 {x | x 3 且x 2} 2
【解析】由| x 1| 1得到| x 1|| x 2 | (x 2). | x2|
两边平方得(x 1)2 (x 2)2,整理得到x 3 且x 2. 2
所以 | x 1| 1的解集为{x | x 3 ,且x 2}.
12.f(x)=|3-x|+|x-2|的最小值为
.
【 答 案 】 1 【 解 析 】 |3 x | |x 2 | |( 3 x ) ( x 2 )| 1 , f( x ) m in 1 .
13.不等式|x+3|-|x-2|≥3的解集为
.
【答案】{x| x1} 【解析】 当x2时,原不等式化为x3(x2)3.解得x2; 当3x2时,原不等式化为x3(2x)3,解得1x2; 当x3时,原不等式化为x3(2x)3,无解. 综上,x的取值范围为x1.
(2)解不等式|x-4|-|x-2|>1.
【例2】 解不等式|x-1|>|x|.
((第(--111)3,,作01节))出∪即 绝函(0对数,1x 值)y=2 不f(x等 )的式2 图x 象; D1 . x 2 ,解 B. 得 x 1 2 ,所 以 |x 1 | |x|的 解 集 为 { x|x 1 2 } .
【例2】 解不等式|x-1|>|x|.
值是 ( )
A.1
B.-1
C.0
D.2
【 答 案 】 D 【 解 析 】 |xa||1x| |xa 1x| |a 1|, |a 1|1 , a0 或 a2. a0. a2.
8.(2011广东)不等式|x+1|-|x-3|≥0的解集是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-5 第1讲
第 7页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
3 () 数形结合法:在研究曲线交点的恒成立问题时,若能数形结 合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各 自的优势,可直观解决问题.
选修4-5 第1讲
福建高考]设 不 等 式
|x-2 < | a(a∈N )的 解 集 为
*
3 A,且 2
1 () 求a的值; 2 () 求函数f(x)=|x+a|+|x-2|的最小值.
选修4-5 第1讲
第24页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
选修4-5 第1讲
第14页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
[想 一 想 ]
如 何 求 两 个 或 两 个 以 上 绝 对 值 和 的 函 数 最 小 值 或
两 绝 对 值 差 的 函 数 最 大 值 ? 提 示 : 关 键 是 根 据 含 绝 对 值 不 等 式 定 理 或 性 质 转 化 , 消 去 自 变 量 x. [填 一 填 ] 1 () 函 数 y=|x-1|+|x-2|的最小值为 1 . (2)函数y=|x|-|x-3|的最大值为 3 .
选修4-5 第1讲
第 6页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
3种必会方法——含绝对值不等式的恒成立问题的求解方法 (1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔ f(x)min≥a”可解决恒成立中的参数范围问题. (2)更换主元法:不少含参不等式恒成立问题,若直接从主元入 手非常困难或不可能解决问题时,可转换思维角度,将主元与 参数互换,常可得到简捷的解法.
选修4-5 第1讲
第12页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
考点2 绝对值不等式的应用 1. 定理:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当
ab≥0
时,等号成立. 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅
可求得f(x)的值域为[8,+∞),因为原不
等式无解,只需a≤8,故a的取值范围是(-∞,8 ]. 方法二:由绝对值不等式,得|x-5|+|x+3|≥|(x-5 ) -(x+ 3 ) | =8, ∴不等式|x-5|+|x+3 < | a无解时,a的取值范围为(-∞, 8 ].
选修4-5 第1讲
第18页
2.
当(a-b)(b-c)≥0时 , 等 号 成 立 .
选修4-5 第1讲
第13页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
3. 由绝对值不等式定理还可以推得以下几个不等式 1 () | a1+a2+„+an|≤|a1|+|a2|+„+|an|. 2 ( |) | 3 ( |) | a|-|b||≤|a+b|≤|a|+|b|. a|-|b||≤|a-b|≤|a|+|b|.
] 宁 夏 联 考 ]如 果 存 在 实 数 x使 不 等 式 |x+1|-|x-2|<k
成立,则实数k的取值范围是________.
选修4-5 第1讲
第22页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
解析:存在实数x使不等式|x+1|-|x-2 < | k成 立 , 等 价 于 k> ( | x+1|-|x-2 )|
3 1 3 1 解:(1)因为 ∈A,且 ∉A,所以| -2|<a,且| -2|≥a,解 2 2 2 2 1 3 得2<a≤2.又因为a∈N*,所以a=1. (2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3, 当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取到等号. 所以f(x)的最小值为3.
最 小 值
, 由 绝 对 值 几 何 意 义 知
|x+1|-|x-2|的最小
值为-3,故k>-3.
答案:(-3,+∞)
选修4-5 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
2. [ 2 0 1 3 · 1 ∈A,2∉A.
考向一 例1
绝对值不等式的解法 重庆高考]若关于实数x的不等式|x-5|+|x+ ________. x的不
1 () [ 2 0 1 3 ·
3 < | a无解,则实数a的 取 值 范 围 是 2 () [ 2 0 1 3 ·
陕西高考]设a,b∈R,|a-b> |2 , 则 关 于 实 数 ________.
[证明] y|, 1 1 2 1 5 由题设知|x+y|< ,|2x-y|< ,从而3|y|< + = ,所以 3 6 3 6 6 5 |y|< . 18
选修4-5 第1讲
第26页
因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
选修4-5 第1讲
第 5页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
2点必须注意——绝对值不等式应用中注意的事项 (1)含有多个绝对值符号的不等式,一般可用零点分段法求解, 对于形如|x-a|+|x-b|>m或|x-a|+|x-b|<m(m为正常数),利用 实数绝对值的几何意义求解较简便. (2)含绝对值不等式的证明,可考虑去掉绝对值符号,也可利用 重要不等式|a+b|≤|a|+|b|及推广形式|a1+a2+„+an|≤|a1|+|a2| +„+|an|进行放缩.
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
1个重要公式——绝对值三角不等式 |a± b|≤|a|+|b|,从左到右是一个放大过程,从右到左是缩小过 程,证明不等式可以直接用,也可利用它消去变量求最值. 绝对 值不等式是证明与绝对值有关的不等式的重要工具,但有时还 需要通过适当的变形使其符合绝对值不等式的条件.
第 3页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
2. 会利用绝对值的几何意义求解以下类型的不等式: |ax+b|≤c;|ax+b|≥c; |x-a|+|x-b|≥c.
选修4-5 第1讲
第 4页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
选修4-5 第1讲
第11页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
[填一填] 1 () 不等式|2x+1|≤3的解集是 {x|-2≤x≤1} |x+1| 3 2 () 不等式 ≥1的解集是{x|x≤- ,且x≠-2}. 2 |x+2| 3 () 不等式|x+3|-|x-2|≥3的解集为 {x|x≥1} .
等式|x-a|+|x-b> |2 的 解 集 是
选修4-5 第1讲
第17页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
[解析]
方 法 一 : 设
f(x)=|x-5|+|x+3|=
2x-2,x≥5, < x<5, 8,-3 -2x+2,x≤-3,
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
选修4-5 不等式选讲
选修4-5 第1讲
第 1页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
第1讲 绝对值不等式
绝对值不等式的解法
形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形
式转化为二次不等式求解. 2. 形如|ax+b|≤c(c> 0 ) 和|ax+b|≥c(c> 0 ) 型 不 等 式 1 () 绝对值不等式|x|>a与|x|<a的解集
选修4-5 第1讲
第10页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
∴
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
[奇思妙想]
本例1 () 中条件不变,当a=10时,不等式|x-5|
+|x+3 < | a的解集.
解:当x≥5时,2x-2 < 1 0 ,此时5≤x<6;
当-3<x<5时,8 < 1 0 成 立 ; 当x≤-3时-2x+2 < 1 0 4<x< 6 } . ,此时-4<x≤-3, 综 上 可 知 {x|-
选修4-5 第1讲
第15页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)
抓住2个必备考点 突破3个热点考向 迎战2年高考模拟 限时规范特训
02突破3个热点考向
选修4-5 第1讲
第16页
金版教程 · 高三一轮总复习 · 新课标 ·数学(理)