高考数学二轮复习:课时检测1 集合与逻辑
高考数学二轮复习专题1.1集合与简易逻辑(测)文
专题1.1 集合与简易逻辑总分 150分 时间 120分钟 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.已知集合{}2340Ax x x =--, {}|3B x x =≤,则A B ⋂=( ) A. [)3,4 B. (]4,3-- C. (]1,3 D. [)3,1-- 【答案】D2.命题: 20000,20x x x ∃>-->的否定是A. 20,20x x x ∀≤--≤B. 20,20x x x ∀>--≤C. 20000,20x x x ∃≤--≤D. 20000,20x x x ∃>--≤【答案】B【解析】命题: 20000,20x x x ∃>-->的否定是20,20x x x ∀>--≤,选B.3.【2018届江西省重点中学盟校第一次联考】已知R 是实数集,M ={x| <1},N ={y|y =},则=( )A. (1,2)B. [1,2]C. [1,2)D. [0,2] 【答案】D 【解析】∵ ∴∴∵∴∴故选D.4.【2018届北京市朝阳区上期中】已知非零平面向量a ,b ,则“|a +b |=|a |+|b |”是“存在非零实数l ,使b =λa ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A5.已知数列{}n a ,“{}n a 为等差数列”是“*n N ∀∈, 32n a n =+”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】B【解析】“{}n a 为等差数列”,公差不一定是3 , 32n a n =+不一定成立,即充分性不成立;“*n N ∀∈,32n a n =+”,则13n n a a --=,则{}n a 为等差数列,必要性成立,所以数列{}n a ,“{}n a 为等差数列”是“*n N ∀∈, 32n a n =+”的必要而不充分条件,故选B.6.【2018届北京市北京师范大学附属中学上期中】已知直线m ,n 和平面α,如果n α⊂,那么“m ⊥n ”是“m ⊥α”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B7.已知()1,1a x =-, ()1,3b x =+,则2x =是//a b 的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A【解析】已知()1,1a x =-, ()1,3b x =+。
高考数学二轮总复习专题训练一 集合与常用逻辑用语 理
高考专题训练一集合与常用逻辑用语班级________ 姓名________ 时间:45分钟分值:75分总得分________一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.(2011·福建)i是虚数单位,若集合S={-1,0,1},则( )A.i∈S B.i2∈SC.i3∈S D.2i∈S解析:i2=-1∈S,故选B.答案:B2.(2011·辽宁)已知M,N为集合I的非空真子集,且M、N不相等,若N∩∁I M=∅,则M∪N=( )A.M B.NC.I D.∅解析:用韦恩图可知N M,∴M∪N=M.答案:A3.(2011·广东)设S是整数集Z的非空子集,如果∀a,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( )A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的解析:取T={x|x=2n-1,n∈Z},V={x|x=2n,n∈Z}则此时T,V对乘法均封闭且满足条件取T ={x |x =2n -1,n ∈Z 且n ≠0,n ≠1},V ={x |x =-1或x =1或x =2n ,n ∈Z}则此时T ,V 均满足条件,但T 对乘法封闭,V 对乘法不封闭. 由此可知,V 、T 中至少有一个关于乘法封闭. 答案:A4.(2011·陕西)设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( ) A .若a ≠-b ,则|a |≠|b | B .若a =-b ,则|a |≠|b | C .若|a |≠|b |,则a ≠-b D .若|a |=|b |,则a =-b 解析:由互逆命题的关系知,选D. 答案:D5.(2011·湖北)若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补,记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件解析:φ(a ,b )=a 2+b 2-a -b =0 即a 2+b 2=a +b ,则a 2+b 2=a 2+b 2+2ab , ∴ab =0,∴a ≥0,b ≥0,且a 与b 互补. 答案:C6.已知下列各组命题,其中p 是q 的充分必要条件的是( ) A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点 B .p :f -x f x =1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A解析:对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由f -x f x =1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f -x f x 1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D ,故选D. 答案:D二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 7.(2011·上海)若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________. 解析:∵U =R ,A ={x |x ≥1}∪{x |x ≤0}={x |x ≤0或x ≥1}∴∁U A ={x |0<x <1}. 答案:{x |0<x <1}8.设集合M ={(x ,y )|x =(y +3)·|y -1|+(y +3),-52≤y ≤3},若(a ,b )∈M 且对M 中的其他元素(c ,d ),总有c ≥a ,则a =________.解析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M 中的其他元素(c ,d ),总有c ≥a ”?M 中的元素又有什么特点?依题可知,本题等价于求函数x =f (y )=(y +3)·|y -1|+(x +3)在-52≤y ≤3时的最小值.(1)当-52≤y ≤1时,x =(y +3)·|y -1|+(y +3)=-y 2-y +6=-⎝⎛⎫y +122+254,y =-52时,x min =94. (2)当1≤y ≤3时,x =(y +3)(y -1)+(y +3)=y 2+3y =⎝⎛⎭⎫y +322-94,当y =1时,x min=4.而4>94,因此当y =-52时,x 有最小值94,即a =94.答案:949.已知f (x )=x 2,g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[-1,3],∂x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析:由已知可得f min (x 1)≥g min (x 2),即0≥14-m ,∴m ≥14.答案:m ≥1410.(2011·安徽“江南十校联考”)给出下列命题:①y =1是幂函数;②函数f (x )=2x-x 2的零点有2个;③⎝⎛⎭⎫x +1x+25展开式的项数是6项; ④函数y =sin x (x ∈[-π,π])的图象与x 轴围成的图形的面积是S =⎠⎛-ππsin x d x ;⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2. 其中真命题的序号是________(写出所有正确命题的编号).解析:y =1不是幂函数,①是假命题;作出函数y =2x 、y =x 2的图象,知函数f(x)=2x -x 2有3个零点(1负2正,2正分别是2、4),②错误;⎝⎛⎭⎫x +1x +25的展开式含有x 5、x 4、 (x)-5共11项,③错误;⎠⎛-ππsin x d x =-cos x|π-π=0,④显然错误,函数y =sin x(x∈[-π,π])的图象与x 轴围成的图形的面积应为⎠⎛-ππ|sin x |d x ;如图,P (0≤ξ≤1)表示x =0、x =1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x =1、x =2与正态密度曲线围成区域的面积为0.3,P (ξ≥2)表示x ≥2与正态密度曲线围成区域的面积,P (ξ≥2)=1-2×0.320.2,⑤正确. 答案:⑤三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤. 11.(12分)已知p :方程x 2+mx +1=0有两个不相等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:若方程x2+mx +1=0有两个不相等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0,解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0,解得1<m <3,即q :1<m <3.因p 或q 为真,所以p 、q 至少有一个为真,又p 且q 为假,所以p 、q 至少有一个为假.因此,p 、q 两命题应一真一假,即p 真q 假,或p 假q 真.所以⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3,解得m ≥3或1<m ≤2.12.(13分)设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等,说明你的理由;(3)已知A ={x |x >4},B ={x ||x |<6},求A -(A -B )和B -(B -A ),由此你可以得到什么结论?(不必证明).解:(1)如A ={1,2,3},B ={2,3,4},则A -B ={1}.(2)不一定相等,由(1)B -A ={4},而A -B ={1},故A -B ≠B -A ;又如,A =B ={1,2,3}时,A -B =∅,B -A =∅,此时A -B =B -A .故A -B 与B -A 不一定相等.(3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4},A -(A -B )={x |4<x <6},B -(B -A )={x |4<x <6},由此猜测一般对于两个集合A 、B ,有A -(A -B )=B -(B -A ).。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高三第二轮复习专题测试题(一)(数学-集合、简易逻辑、函数)
2ex 1, x<2,
log3 (x2
1), x
则 f ( f (2)) 的值为 2.
( C)
( A) 0
( B) 1
( C) 2
(D) 3
8.如果函数 y f (x) 的图像与函数 y=3- 2 x 的图像关于坐标原点对称,则 y f ( x) 的表达式为
( D)
( A) y 2x 3 ( B) y 2x 3 ( C) y 2x 3 ( D) y 2x 3
ax 5
16.设函数 f (x)
lg x 2
的定义域为 A,若命题 p : 3 a
A 与 q:5
A 有且只有一个为真命题,求实数
a 的取值范围.
解: A
ax 5 x x2 a
0 ,若 p : 3
3a 5 A 为真,则
9a
0 ,即 5 a 3
9;
若 q : 5 A 为真,则 5a 5 0 ,即 1 a 25 ; 25 a
3 )
,
[1,
) ;单调减区间为 [ 2c 3 ,1] ;
3
3
( 2 )若 2c 3 1 ,即 c
3
3 时,则当 x ( ,1) 时, f '( x) 0 ;当 x (1, 2c 3 ) 时, f ' ( x) 0 ;当
3
2c 3
x(
,
) 时, f ' ( x)
0 ;从而 f ( x) 的单调增区间为 (
间.
解:依题意有 f (1)
2, f ' (1)
0 ,而 f ' (1) 3x2
2ax b,
1abc
故
2
ac
,解得
,
高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)
第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
高三数学二轮复习 专题一 集合与常用逻辑用语课件
[解析] 本题的难点在于理解为什么“对任意的x∈R,x3 -x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”,对这个
难点需要正确理解“命题的否定”的含义,命题的否定是
指“否定这个命题所得出的结论”,那么命题“对任意的 x∈R,x3-x2+1≤0”是指对所有的实数不等式x3-x2+1≤0 都成立,要否定这个结论,只要找到一个实数x使不等式x3 -x2+1≤0不成立即可,即存在x使x3-x2+1>0.
(2)要善于举出反例:如果从正面判断或证明一个命题的正 确或错误不易进行时,可以通过举出恰当的反例来说明;
(3)要注意转化:如果p是q的充分不必要条件,那么綈p是 綈q的必要不充分条件;同理,如果p是q的必要不充分条 件,那么綈p是綈q的充分不必要条件;如果p是q的充要条 件,那么綈p是綈q的充要条件.
(2)(2011·江西文,2)若全集U={1,2,3,4,5,6},M={2,3},
N={1,4},则集合{5,6}等于( )
A.M∪N
B.M∩N
C.(∁UM)∪(∁UN) [答案] D
D.(∁UM)∩(∁UN)
[解析] (∁UM)∩(∁UN)={1,4,5,6}∩{2,3,5,6}={5,6}.
用逻辑联结词“且”把命题p和命题q联结起来,就得到一 个新命题,记作“p∧q”;
用逻辑联结词“或”把命题p和命题q联结起来,就得到一 个新命题,记作“p∨q”; 对一个命题p全盘否定,就得到一个新命题,记作“綈p”.
6.全称量词与存在量词
(1)全称命题p:∀x∈M,p(x). 它的否定綈p:∃x0∈M,綈p(x0).
[例5] 已知命题p:2x2-9x+a<0,命题q:
x2-4x+3<0, x2-6x+8<0,
专题01集合和常用逻辑用语(6大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
考点题型一:集合的基本概念
【对点训练1】(2023·重庆沙坪坝·高三重庆八中校考开学考试)若 2 , 0, −1 = , , 0 ,则的值是(
A.0
B.1
C.−1
D.±1
【答案】C
【解析】因为 2 , 0, −1 = , , 0 ,
2 =
2 =
所以①
或②
,
= −1
= −1
0}.若 ⊆ ,则实数组成的集合为(
A.
1 1
,
3 5
1 1
B. − 3 , 5
2 − 8 + 15 = 0 , = { − 1 =
)
1 1
1 1
C. 0, 3 , 5
D. 0, − 3 , 5
【答案】C
【规律总结】
【解析】由 2 − 8 + 15 = 0得: = 3或 = 5,
A.{| − 2 ⩽ < 1}
B.{| − 2 < ⩽ 1}
C.{| ⩾ −2}
D.{| < 1}
3.(2023•天津)已知集合 = {1,2,3,4,5}, = {1,3}, = {1,2,4},则∁ ( = ڂA )
A.{1,3,5}
B.{1,3}
C.{1,2,4}
故选:D.
D. ��∁ ڂ
)
考点题型三:集合的运算
【对点训练5】(2023·全国·高三专题练习)《九章算术》是中国古代第一部数学专著,成于公元1世纪左右.该书内容十分
丰富,全书总结了战国、秦汉时期的数学成就.某数学兴趣小组在研究《九章算术》时,结合创新,给出下面问题:现有
100人参加有奖问答,一共5道题,其中91人答对第一题,87人答对第二题,81人答对第三题,78人答对第四题,88人答对第
高考数学二轮复习 专题01 集合与简易逻辑(讲)(含解析)理-人教版高三全册数学试题
专题一 集合与简易逻辑考向一 集合的运算【高考改编☆回顾基础】1.【补集运算】【2017·改编】已知U =R ,集合A ={x |x <-2或x >2},则∁U A =________. 【答案】 [-2,2]【解析】因为A ={x |x <-2或x >2},所以∁U A =∁R A ={x |-2≤x ≤2},即∁U A =[-2,2].2. 【集合与不等式相结合】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}{|0}AB x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.3.【集合元素的属性】【2017课标3,理1】已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为( ) A .3B .2C .1D .0【答案】B4.【集合运算】【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 【答案】C 【解析】【命题预测☆看准方向】集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.预计2018年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查.【典例分析☆提升能力】【例1】设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2--B .3(3,)2-C .3[1,)2D .3(,3)2【答案】C【趁热打铁】【2017某某,理1】设函数x 2y=4-的定义域A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( ) (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.【例2】【2018届某某省鄂东南联盟期中】对于任意两集合,定义且,记,则__________.【答案】 【解析】,,所以【趁热打铁】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值X 围是( )A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞ 【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【方法总结☆全面提升】在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解,常用到的技巧有: (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解;(4)注意转化关系(U C A)∩B=B ⇔B ⊆U C A,A ∪B=B ⇔A ⊆B,U C (A ∩B )=(U C A )∪(U C B ), U C (A ∪B )=(U C A )∩(U C B )等.注意两个问题:(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果. (2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.【规X 示例☆避免陷阱】【典例】已知集合23100,121{|}{|,}A x x x B x m x m A B A =--≤=+≤≤-⋃=若,某某数m 的取值X 围. 【规X 解答】,.A B A B A ⋃=∴⊆23{|}{10025,|}A x x x x x =--≤=-≤≤【反思提高】造成本题失分的根本原因是易于忽视“空集是任何集合的子集”这一性质.当题目中出现,,A B A B A A B B ⊆⋂=⋃=时,注意对A 进行分类讨论,即分为A φ=和A φ≠两种情况讨论.【误区警示】(1)在进行集合的运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2) 空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.在解决有关A B ⋂∅=的问题时,往往忽略空集的情况,一定要先考虑()A B ∅或=是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(3)五个关系式U UA B A B A A B B B A ⊆⋂⋃⊆,=,=,以及()U A B ⋂∅=是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.考向二 简易逻辑 【高考改编☆回顾基础】1.【四种命题及其关系】【2017课标1,理3】设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B【解析】2. 【三角函数与充要条件相结合】【2017·某某卷改编】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的条件.(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】充分而不必要条件 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但10,sin 2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件.3.【全称命题与复合命题】【2017某某卷改编】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是.①∧p q ②⌝∧p q ③⌝∧p q ④⌝⌝∧p q 【答案】②故填②.4.【全称命题与特称命题】【2016某某卷改编】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是 . A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】*x n ∃∈∀∈,R N ,使得2n x <【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故填*x n ∃∈∀∈,R N ,使得2n x <.【命题预测☆看准方向】常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式、立体几何中的线面关系、平面解析几何中的线线关系、直线与圆的位置关系等为载体,考查充要条件或命题的真假判断等,难度一般不大.预测2018年将对其中的一或二个知识点予以考查.【典例分析☆提升能力】【例1】【2018届某某省某某市12月模拟】已知l ,m 是空间两条不重合的直线,α是一个平面,则“m α⊥,l 与m 无交点”是“//l m ,l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【趁热打铁】设R y x ∈,,则"22"≥≥y x 且是"4"22≥+y x 的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分又不必要条件【答案】A【解析】由"22"≥≥y x 且可得"4"22≥+y x ,但"4"22≥+y x 不一定能够得到"22"≥≥y x 且 故选A .【例2】命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a ->B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤D .0x ∀≤,使2()1xx a -> 【答案】B【解析】由已知,命题的否定为0x ∀>,2(1xx a ⋅-≤使),故选B. 【例3】【2018届某某市第一次调研】设命题p :1x ∀<,21x <,命题q :00x ∃>,0012xx >,则下列命题中是真命题的是A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】B【解析】当2x =-时,241x =>,显然命题p 为假命题; 当01x =时,01221x x =>=,显然命题q 为真命题; ∴p ⌝为真命题,q ⌝为假命题 ∴()p q ⌝∧为真命题 故选:B【趁热打铁】已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D【解析】由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.【方法总结☆全面提升】(1)命题真假的判定方法:①一般命题p 的真假由涉及的相关知识进行辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,它的逆命题跟否命题同真假; ③形如p ∨q ,p ∧q ,⌝p 命题的真假根据真值表判定;④全称命题与特称命题的否定:全称命题():,p x M p x ∀∈,其否定形式是()00,x M p x ∃∈⌝;特称命题()00:,p x M p x ∃∈,其否定形式是(),x M p x ∀∈⌝.(2) 一些常用的正面叙述的词语及它们的否定词语表:(3) 充分条件、必要条件判断的定义法:先判断p q ⇒与q p ⇒是否成立,然后再确定p 是q 的什么条件. (4)用集合的观点看充分条件、必要条件:A ={x|x 满足条件p},B ={x|x 满足条件q},(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件. (5)对于充分条件、必要条件的判断要注意以下几点:①要弄清先后顺序:“A 的充分不必要条件是B”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A.②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以尝试通过举出恰当的反例来说明.③要注意转化:若⌝p 是⌝q 的必要不充分条件,则p 是q 的充分不必要条件;若⌝p 是⌝q 的充要条件,那么p 是q 的充要条件.④要善于利用集合间的包含关系判断:若A B ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件.【规X 示例☆避免陷阱】【典例】已知p :“向量a 与向量b 的夹角θ为钝角”是q :“a b •<0”的条件.【反思提高】判断条件与结论之间的关系时要从两个方向判断,解答本题易于判断一个方向就下结论,忽视对“a b •<0”成立时能否导出“向量a 与向量b 的夹角为钝角”的判断.充要条件的判断三种常用方法:(1)利用定义判断.如果已知p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;(2)利用等价命题判断;(3) 把充要条件“直观化”,如果p r ⇒,可认为p 是q 的“子集”;如果q p ⇒,可认为p 不是q 的“子集”,由此根据集合的包含关系,可借助韦恩图说明. 【误区警示】(1)区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.(2)p 或q 的否定:¬p 且¬q ;p 且q 的否定:¬p 或¬q .(3)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .。
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
高考数学二轮专题复习:集合与常用逻辑用语
集合与常用逻辑用语【考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系,知道常用数集及其记号,了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握补集的求法.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【考点预测】3.注意弄清元素与集合、集合与集合之间的包含关系.4.能根据Venn图表达的集合关系进行相关的运算.5.注意区分否命题与命题的否定,前者是同时否定条件和结论,而后者只否定结论.6.原命题与其逆否命题等价,当直接判定命题条件的充要性有困难时,可等价地转化为对该命题的逆否命题进行判断.7.全称命题的否定是存在性命题,存在性命题的否定是全称命题.【考点在线】考点一集合的概念例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.这类题目主要考察不等式的性质成立的条件,以及条件与结论的充要关系.【备考提示】:正确理解集合中的代表元素是解答好本题的关键.练习1:若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道【答案】B【解析】事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.考点二集合元素的互异性集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.(a2-3a-8), a3+例2.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-12a2+3a+7},且A∩B={2,5},则实数a的值是________.【答案】2【解析】∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5}.当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1.当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设.故a=2为所求.【解析】分两种情况进行讨论.(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,.∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-12考点三集合间的关系例3.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.【答案】A=B【解析】任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B⊆.①又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A⊆②由①、②知A=B.【名师点睛】这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.【备考提示】:集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.考点四要注意利用数形结合思想解决集合问题集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.例4.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A、B是________.【答案】A={1,3,5,7},B={2,3,4,6,8}.【解析】由题意,画出图如下:由图可知: A={1,3,5,7},B={2,3,4,6,8}.【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.【备考提示】:熟练数形结合的思想是解答好本题的关键.练习4.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.【答案】A∪B=R,A∩B={x|-6≤x<-3或0<x≤1}.【解析】本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}.【易错专区】问题1:空集例1.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.解:∵ A∪B=A,,∴⊆B A∵ A={1,2},∴ B=∅或B={1}或B={2}或B={1,2}.若B=∅,则令△<0得a∈∅;若B={1},则令△=0得a=2,此时1是方程的根;若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈∅;若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.1.(2011年高考山东卷文科1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3]【答案】A【解析】因为{}|32M x x =-<<,所以{}|12M N x x ⋂=≤<,故选A.2. (2011年高考海南卷文科1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为{}1,3M N ⋂=中有两个元素,所以其子集个数为224=个,选B. 3.(2011年高考安徽卷文科2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于( )(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 【答案】B【解析】{}1,5,6U T =,所以(){}1,6U S T =.故选B.4.(2011年高考广东卷文科2)已知集合(){,|A x y x y =、为实数,且}221x y +=,5. (2011年高考江西卷文科2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂【答案】D【解析】{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U .6.(2011年高考福建卷文科1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【答案】A【解析】因为{}{}{}1,0,10,1,20,1M N ⋂=-⋂=,故选A.7.(2011年高考湖南卷文科1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}答案:B解析:画出韦恩图,可知N ={1,3,5}。
高考数学二轮复习课时跟踪检测:(一) 集合、常用逻辑用语 含解析
课时跟踪检测(一)集合、常用逻辑用语1.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=() A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.已知命题q:∀x∈R,x2>0,则()A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.“x>1”是“x2+2x>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是()A.(-∞,-2) B.[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)解析:选D 因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,所以m ≥2或m ≤-2.7.已知集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是()A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x <1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈⎝⎛⎭⎫0,π2,tan x >sin x ,则下列命题为真命题的是()A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎫0,π2,且tan x =sin x cos x, ∴0<cos x <1,tan x >sin x ,∴q 为真命题,选C.9.祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q={x ||x -2|<1},则P -Q =()A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2,所以P ={x |0<x <2}.由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x -m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是()A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x 有正实数解,因为当x >0时,2x >1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q 真,所以⎩⎨⎧ m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1, 所以m <-2或1<m ≤10.12.下列选项中,说法正确的是()A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选DA 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错;B 中,若a ⊥b ,则m +m (2m -1)=0,解得m =0,故B 错;C 中,命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________. 解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18. 答案:1或-1814.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)15.已知非空集合A ,B 满足下列四个条件:①A ∪B ={1,2,3,4,5,6,7};②A ∩B =∅;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________;(2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个;当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32.答案:(1){6}(2)3216.下列说法中不正确的是________.(填序号)①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件; ②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件;③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a <1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确.答案:②④。
高考数学二轮复习 专题突破课时作业1 集合与常用逻辑用语 理-人教版高三全册数学试题
课时作业1 集合与常用逻辑用语1.[2018·全国卷Ⅱ]已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5} D.{1,2,3,4,5,7}解析:A∩B={1,3,5,7}∩{2,3,4,5}={3,5}.故选C.答案:C2.[2018·某某卷]设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}解析:∵A={1,2,3,4},B={-1,0,2,3},∴A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴ (A∪B)∩C={-1,0,1}.故选C.答案:C3.[2018·卷]设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.故选B.答案:B15.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).答案:(1,4)16.给出下列四个命题:①命题“∀x ∈R ,cos x >0”的否定是“∃x 0∈R ,cos x 0≤0”; ②若0<a <1,则函数f (x )=x 2+a x-3只有一个零点;③函数y =22sin x cos x 在⎣⎢⎡⎦⎥⎤-π4,π4上是单调递减函数;④若lg a +lg b =lg(a +b ),则a +b 的最小值为4. 其中真命题的序号是________.解析:由全称命题的否定是特称命题知①为真命题.在同一直角坐标系内作出y =3-x 2,y =a x(0<a <1)的图象如图所示.由图知两函数图象有两个交点,故②为假命题.由y =22sin x cos x =2sin2x ,又x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,2x ∈⎣⎢⎡⎦⎥⎤-π2,π2, 故y =22sin x cos x 在⎣⎢⎡⎦⎥⎤-π4,π4上是增函数,因此③为假命题.④中由lg a +lg b =lg(a +b )知,ab =a +b 且a >0,b >0.又ab ≤⎝⎛⎭⎪⎫a +b 22,所以令a +b =t (t >0),则4t ≤t 2,即t ≥4,因此④为真命题.答案:①④。
高三数学二轮复习专题一第一讲集合与常用逻辑用语课时作业1新人教A
课时作业1 集合与常用逻辑用语时间:45分钟一、选择题1.(2021·辽宁卷)已知全集U =R ,A ={x|x≤0},B ={x|x≥1},则集合∁U(A ∪B)=( )A .{x|x≥0}B .{x|x≤1}C .{x|0≤x≤1}D .{x|0<x<1}解析:依题意得A ∪B ={x|x≤0或x≥1},故∁U(A ∪B)={x|0<x<1},故选D.答案:D2.(2021·九江市七校联考)设集合M ={-1,0,1},N ={a ,a2},若M∩N =N ,则a 的值是( )A .-1B .0C .1D .1或-1解析:M∩N =N ,则N ⊆M ,当a =0时,N ={0,0},与集合互异性相矛盾,当a =1时,N ={1,1},与集合互异性相矛盾,当a =-1时,N ={-1,1},符合题意.答案:A3.(2021·广东茂名模拟)设条件p :a>0;条件q :a2+a≥0,那么p 是q 的( )条件.( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要解析:a2+a≥0即a≥0或a≤-1,故p 是q 的充分不必要条件.答案:A4.(2021·辽宁五校协作体摸底)已知命题p :∀x>2,x3-8>0,那么¬p 是( )A .∀x≤2,x3-8≤0B .∃x>2,x3-8≤0C .∀x>2,x3-8≤0D .∃x≤2,x3-8≤0解析:因为全称命题的否认是特称命题,所以命题p :∀x>2,x3-8>0的否认是∃x>2,x3-8≤0,故选B.答案:B5.(2021·山东潍坊模拟)已知命题p 、q ,“¬p 为真”是“p ∧q 为假”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由¬p 为真得p 为假,p ∧q 为假得p 假或q 假,故¬p 为真是p ∧q 为假的充分不必要条件.答案:A6.已知命题p :“a =1是x>0,x +a x ≥2的充分必要条件”;命题q :“存在x0∈R ,使得x20+x0-2>0”,下列命题正确的是( )A .命题“p ∧q”是真命题B .命题“(¬p)∧q”是真命题C .命题“p ∧(¬q)”是真命题D .命题“(¬p)∧(¬q)”是真命题解析:因为x>0,a>0时,x +a x ≥2x·a x =2a ,由2a ≥2可得:a≥1,所以命题p 为假命题;因为当x =2时,x2+x -2=22+2-2=4>0,所以命题q 为真命题.所以(¬p)∧q 为真命题,故选B.答案:B7.(2021·浙江卷)已知i是虚数单位,ab∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:当a=b=1时,(a+bi)2=(1+i)2=2i,反过来,(a+bi)2=a2-b2+2abi=2i,可得a2-b2=0且2ab=2,解得a=b=1或a=b=-1,故a=b=1是(a+bi)2=2i的充分不必要条件.故选A.答案:A8.设A:xx-1<0,B:0<x<m,若B是A成立的必要不充分条件,则m的取值范围是() A.(-∞,1) B.(-∞,1]C.[1,+∞) D.(1,+∞)解析:xx-1<0⇔0<x<1.由已知,得(0,1)(0,m),所以m>1.答案:D9.下列命题中的假命题是()A.命题“若x2-3x+2=0,则x=1”的逆命题B.“两非零向量a,b的夹角为钝角”的充要条件是“a·b<0”C.若p∨q为假命题,则p,q均为假命题D.命题“若x∈R,则x2+x+1<0”的否认解析:命题“若x2-3x+2=0,则x=1”的逆命题为:“若x=1,则x2-3x+2=0”,是真命题;若两非零向量a,b的夹角为钝角,则a·b<0;反之,若a·b<0,则两非零向量a,b的夹角为钝角或两向量标的目的反向,即得“两非零向量a,b的夹角为钝角”的必要不充分条件是“a·b<0”,即命题B是假命题;命题C显然正确;命题若x∈R,则x2+x+1<0为假命题,其否认为真命题.答案:B10.已知命题p:“∀x∈[1,3],x2-a≥0”,命题q:“∃x∈R,使x2+2ax+2-a=0”.若命题“p 且q”是真命题,则实数a的取值范围是()A.{a|a≤-2或a=1}B.{a|a≥1}C.{a|a≤-2或1≤a≤2}D.{a|-2≤a≤1}解析:若命题p成立,则a≤x2对x∈[1,3]恒成立.当x∈[1,3]时,1≤x2≤9,所以a≤1.命题q成立,即方程x2+2ax+2-a=0有实根,则Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.所以当a=1或a≤-2时,命题“p且q”是真命题.答案:A11.(2021·天津卷)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:若a,b>0,则a>b⇔a2>b2⇔a|a|<b|b|;若a ,b<0,则a>b ⇔⎩⎪⎨⎪⎧-a<-b |a|<|b|⇔-a|a|<-b|b|⇔a|a|>b|b|; 若a ,b 异号,则a>b ⇔a>0>b ⇔a|a|>0>b|b|.综上,a>b 是a|a|>b|b|的充要条件.答案:C12.(2021·广东卷)设集合A ={(x1,x2,x3,x4,x5)|xi ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A .60B .90C .120D .130解析:|x1|+|x2|+|x3|+|x4|+|x5|可取1,2,3,和为1的元素个数为:C12C15=10; 和为2的元素个数为:C12C25+A25=40;和为3的元素个数为:C12C35+C12C15C24=80.故满足条件的元素总的个数为10+40+80=130,选D.答案:D二、填空题13.(2021·江苏卷)已知集合A ={-2,-1,3,4},B ={-1,2,3},则A∩B =________.解析:由题意得A∩B ={-1,3}.答案:{-1,3}14.已知R 是实数集,M ={x|2x <1},N ={y|y =x -1+1},则N∩(∁RM)=________.解析:M ={x|2x <1}={x|x<0或x>2},N ={y|y =x -1+1}={y|y≥1|,∁RM ={x|0≤x≤2},∴N∩(∁RM)={x|1≤x≤2}=[1,2].答案:[1,2]15.设p :x x -2<0,q :0<x<m ,若p 是q 成立的充分不必要条件,则m 的取值范围是________. 解析:p :0<x<2,若p 是q 成立的充分不必要条件,则m>2.答案:(2,+∞)16.给出下列四个命题:①命题“若α=β,则cosα=cosβ”的逆否命题;②“∃x0∈R ,使得x20-x0>0”的否认是:“∀x ∈R ,均有x2-x<0”;③命题“x2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c},q :{a}⊆{a ,b ,c},p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)解析:对①,因命题“若α=β,则cosα=cosβ”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x0∈R ,使得x20-x0>0”的否认应是:“∀x ∈R ,均有x2-x≤0”,故②错;对③,因由“x2=4”得x =±2,所以“x2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.答案:①④17.(2021·广东揭阳测试)若命题:“对∀x ∈R ,kx2-kx -1<0”是真命题,则k 的取值范围是________.解析:命题:“对∀x ∈R ,kx2-kx -1<0”是真命题,当k =0时,则有-1<0;当k≠0时,则有k<0且Δ=(-k)2-4×k×(-1)=k2+4k<0,解得-4<k<0,综上所述,实数k 的取值范围是(-4,0]. 答案:(-4,0]18.(2021·江苏南京、盐城一模)设函数f(x)=cos(2x +φ),则“f(x)为奇函数”是“φ=π2”的________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)解析:必要性:当φ=π2时,f(x)=-sin2x 为奇函数;而当φ=π2+2π时,f(x)=-sin2x 也为奇函数,所以充分性不成立.答案:必要不充分19.已知向量a =(x ,y),b =(x -2,1),设集合P ={x|a ⊥b},Q ={x||b|<5},当x ∈P∩Q 时,y 的取值范围是________.解析:由a ⊥b 可得a·b =x(x -2)+y =0,即y =-x2+2x ,故P ={x|y =-x2+2x}=R.由|b|<5得|b|2<5,即(x -2)2+12<5,解得0<x<4,故Q ={x|0<x<4},P∩Q =Q.所以当x ∈P∩Q 时,y 的取值范围即为函数y =-x2+2x 在(0,4)上的值域.因为函数y =-x2+2x 图象的对称轴为x =1,所以函数在(0,1]上单调递增,在(1,4)上单调递减,故y 的最大值为-12+2×1=1,而x =0时,y =-02+2×0=0;x =4时,y =-42+2×4=-8.所以y 的取值范围为(-8,1]. 答案:(-8,1]20.(2021·皖南八校联考)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},b =0,1,2,3,4,则下列结论正确的为________(写出所有正确的编号) ①2021∈[3];②-1∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”;⑤命题“整数a ,b 满足a ∈[1],b ∈[3],则a +b ∈[4]”的原命题与逆命题都为真命题.解析:依题意2021被5除的余数为3,则①正确;-1=5×(-1)+4,则②错误;整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确;假设④中a =5n +m1,b =5n +m2,a -b =5(n1-n2)+m1-m2,a ,b 要是同类,则m1-m2=0,所以a -b ∈[0],反之也成立;因为a ∈[1],b ∈[3],所以可设a =5n1+1,b =5n2+3,∴a +b =5(n1+n2)+4∈[4],原命题成立,逆命题不成立,如a =5,b =9满足a +b ∈[4],但是a ∈[0],b ∈[4],⑤错误.答案:①③④。
天津市高三数学二轮专题复习测试 一《集合与简易逻辑、函数与导数》 新人教版
一、选择题(每小题5分,共60分) 1.若集合}{2-==x y y M ,}1{-==x y y P ,那么=P M ( )A .),1(+∞B .),1[+∞C .),0(+∞D .),0[+∞2.若函数)(x f y =的图象与函数)1lg(-=x y 的图象关于直线0=-y x 对称,则=)(x f ( )A .x 101-B .110+xC .110+-xD .110--x3.函数)1(21)(x x x f --=的最大值是( )A .49B .94C .47D .744.已知函数)(1x f y -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点( )A .)2,1(B .)1,2(C .)2,0(D .)0,2(5.设集合},,{c b a M =,}1,0{=N ,映射N M f →:满足)()()(c f b f a f =+,则映射N M f →:的个数为( )A .1B .2C .3D .4A .042,0200>+-∈∃x x R xB .042,2≤+-∈∀x x R xC .042,2>+-∈∀x x R x D .042,2≥+-∈∀x x R x 6.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是A .在区间(-2,1)上)(x f 是增函数B .在(1,3)上)(x f 是减函数C .在(4,5)上)(x f 是增函数D .当8. 若函数))(12()(a x x xx f -+=为奇函数,则a 的值为 ( )A .21 B .32 C .43D .1 9.已知定义域为R 的函数f(x)在区间(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( ) A .f(2)>f(3) B .f(3)>f(6) C .f(3)>f(5) D . f(2)>f(5)10.已知a>0且a≠1,若函数f (x )= log a (ax 2–x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞C .11[,)(1,)84+∞D .11[,)64 11. 用},,min{c b a 表示c b a ,,三个数中的最小值,}102,2m in{)(x x x f x-+=,, (x ≥0) ,则)(x f 的最大值为 ( )A .4B .5C .6D .712. 若函数f(x)=⎩⎨⎧>+≤0)( 1)ln(0)(x x x x ,若f(2-x 2)>f(x),则实数x 的取值范围是A .(-∞,-1)∪(2,+∞)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题(每小题4分,共16分.把答案填在题中的横线上)13.设全集U 是实数集R ,{}24M x|x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是___________。
2024_2025学年新教材高中数学课时素养检测二第一章集合与常用逻辑用语1
课时素养检测二集合的表示(30分钟60分)一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.集合{(x,y)|y=2x-1}表示( )A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的全部点组成的集合D.一次函数y=2x-1图象上的全部点组成的集合【解析】选D.本题中的集合是点集,其表示一次函数y=2x-1图象上的全部点组成的集合.2.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}【解析】选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中除给定集合中的元素外,还有-3,-7,-11,…;C中t=0时,x=-3,不属于给定的集合;只有D是正确的.3.下列集合的表示方法正确的是( )A.其次、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.{全体整数}D.实数集可表示为R【解析】选D.选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{ }”与“全体”意思重复.4.(多选题)下列集合中,表示相等集合的是( )A.{(-5,3)},{-5,3}B.{3,-5},{-5,3}C.{π},{3.141 5}D.{x|x2-3x+2=0},{y|y2-3y+2=0}【解析】选B、D.A中{(-5,3)}表示点集,{-5,3}表示数集,不相等;由集合中元素的无序性,B 中两集合相等;因为π≠3.141 5,故C中两集合不相等;D中两集合均为{1,2}.5.(多选题)已知集合A={x|x=2m-1,m∈Z},B={x|x=2n,n∈Z},且x1,x2∈A,x3∈B,则下列推断正确的是( )A.x1·x2∈AB.x2·x3∈BC.x1+x2∈BD.x1+x2+x3∈A【解析】选A、B、C.由题意,可知集合A表示奇数集,B表示偶数集,所以x1,x2是奇数,x3是偶数,所以x1+x2+x3应为偶数,即x1+x2+x3∉A.6.设集合A={-2,0,1,3},集合B={x|-x∈A,1-x∉A},则集合B中元素的个数为() A.1 B.2 C.3 D.4【解析】选C.若x∈B,则-x∈A,所以x的可能取值为:2,0,-1,-3,当2∈B时,则1-2=-1∉A,所以2∈B;当0∈B时,则1-0∈A,所以0∉B;当-1∈B时,则1-(-1)=2∉A,所以-1∈B;当-3∈B时,则1-(-3)=4∉A,所以-3∈B.综上,B={-3,-1,2},所以集合B含有的元素个数为3.二、填空题(每小题5分,共10分)7.用列举法表示集合{x|x=(-1)n,n∈N}为________.【解析】当n为奇数时,(-1)n=-1;当n为偶数时,(-1)n=1,所以{x|x=(-1)n,n∈N}={-1,1}.答案:{-1,1}【补偿训练】定义A*B={x|x∈A,x∉B},已知集合A={1,2,3},B={2,4},则集合A*B=________.【解析】由定义知集合A*B中的元素是由集合A中的元素1,2,3除去集合B中的元素2得到的,所以A*B={1,3}.答案:{1,3}8.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的全部元素之和是__________.【解析】当x=1或2,y=0时,z=0;当x=1,y=2时,z=2;当x=2,y=2时,z=4.所以A*B={0,2,4},所以全部元素之和为0+2+4=6.答案:6三、解答题(每小题10分,共20分)9.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集.(2)1 000以内被3除余2的正整数组成的集合.(3)二次函数y=x2-10图象上的全部点组成的集合.【解析】(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(2,-3)}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N且x<1 000}.(3)“二次函数y=x2-10图象上的全部点”用描述法表示为{(x,y)|y=x2-10}.10.已知集合A含有两个元素a-3和2a-1,a∈R.(1)若-3∈A,试求实数a的值.(2)若a∈A,试求实数a的值.【解析】(1)因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意;若-3=2a-1,则a=-1.此时集合A含有两个元素-4,-3,符合题意.综上所述,实数a的值为0或-1.(2)因为a∈A,所以a=a-3或a=2a-1.当a=a-3时,有0=-3,不成立;当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上所述,a=1.。
广东省广州大学附中2022年高考数学二轮简易通全套课时检测 集合与逻辑 新人教版
广州大学附中2022年创新设计高考数学二轮简易通全套课时检测:集合与逻辑本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分.满分150分.考试时间120分钟.第Ⅰ卷选择题 共60分一、选择题本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.下列命题为复合命题的是A .12是6的倍数B .12比5大C .四边形ABCD 不是矩形 D . 【答案】C2.“”是“对任意的正数,2a x x +≥”的 A .必要非充分条件B .充分非必要条件C .充分且必要条件D .非充分非必要条件【答案】B 3.命题“x ∃∈R ,3210x x -+>”的否定是A .x ∀∈R ,3210x x -+≤B .x ∀∈R ,3210x x -+>C .x ∃∈R ,3210x x -+≤D .x ∃∈R ,3210x x -+<【答案】A4.已知两个向量集合M={︱=(co ,22cos 7α-),∈R},N ={︱=(co ,+in )∈R},若M ∩N ≠,则的取值范围是A .(-3,5B .错误!,5C .2,5D .5,+∞ 【答案】B5.若,则集合B 有 个非空真子集 A .3B . 6C . 7D 8【答案】B 6.已知是实数,则“00a b >>且”是“00a b ab +>>且”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C7.下列命题中的说法正确的是A .命题“若=1,则=1”的否命题为“若=1,则≠1”B .“=-1”是“-5-6=0”的必要不充分条件C .命题“∈R ,使得2++1<0”的否定是:“∈R ,均有++1>0”D .命题“在△ABC 中,若A >B ,则inA >inB ”的逆否命题为真命题【答案】D8.巳知全集,是虚数单位,集合M =Z (整数集)和221(1i){i,i ,,}i i N +=的关系韦恩图如图1所示,则阴影部分所示的集合的元素共有A .3个B .2个C .1个D .无穷个【答案】B9.已知集合}{10A x ax =+=,且,则实数的值为 A .B .C .D .【答案】A 10.命题:“若0,a >则20a >”的否命题是A .若20a >,则B .若0,a <则20a <C .若,则20a ≤D .若0,a <则20a ≤【答案】C11.已知集合2+1≤0;q :对任意∈R ,2+m +1>0,若的取值范围为A .m ≤-2B .m ≥2C .m ≥2或m ≤-2D .-2≤m ≤2【答案】B第Ⅱ卷非选择题 共90分二、填空题本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上13.由命题“存在x ∈R ,使220x x m ++≤”是假命题,则实数的取值范围为 .【答案】(1,)+∞14.对于平面上的点集,如果连接中任意两点的线段必定包含于,则称为平面上的凸集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学二轮复习:课时检测1 集合与逻辑
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列命题为复合命题的是( )
A .12是6的倍数
B .12比5大
C .四边形ABC
D 不是矩形 D . 【答案】C
2.“1a =”是“对任意的正数x ,
2a x x +≥”的( ) A .必要非充分条件
B .充分非必要条件
C .充分且必要条件
D .非充分非必要条件
【答案】B 3.命题“x ∃∈R ,3210x x -+>”的否定是( )
A .x ∀∈R ,3210x x -+≤
B .x ∀∈R ,3210x x -+>
C .x ∃∈R ,3210x x -+≤
D .x ∃∈R ,3210x x -+<[来 【答案】A
4.已知两个向量集合M={a ︱a =(cos α,2
2cos 7α-),α∈R},N ={b ︱b =(cos β,λ+sin β)β∈R},若M∩N≠Φ,则λ的取值范围是( ) A .(-3,5
B .114 ,5
C .2,5
D .5,+∞) 【答案】B
5.若
,则集合B 有( )个非空真子集 A .3
B . 6
C . 7D. 8
【答案】B 6.已知,a b 是实数,则“00a b >>且”是“00a b ab +>>且”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】C
7.下列命题中的说法正确的是( ) A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x≠1”
B .“x =-1”是“2x -5x -6=0”的必要不充分条件
C .命题“x ∃∈R ,使得x 2+x +1<0”的否定是:“x ∀∈R ,均有2x +x +1>0”
D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题
【答案】D
8.巳知全集11,E G ,i 是虚数单位,集合M =Z (整数集)和2
2
1(1i){i,i ,,}i i N +=的关系韦恩图如图1所示,则阴影部分所示的集合的元素共有( )
A .3个
B .2个
C .1个
D .无穷个
【答案】B 9.已知集合}{10
A x ax =+=,且1A ∈,则实数a 的值为( ) A .1-
B . 0
C .1
D .2 【答案】A 10.命题:“若0,a >则20a >”的否命题是( )
A .若20a >,则0a >
B .若0,a <则20a <
C .若0a ≤,则20a ≤
D .若0,a <则20a ≤
【答案】C
11.已知集合P={x ∈N|1≤x≤10},集合Q={x ∈R|x2+x-6=0},则P∩Q 等于( )
A .{2}
B .{1,2}
C .{2,3}
D .{1,2,3}
【答案】A
12.已知p :存在x ∈R ,mx 2+1≤0;q :对任意x ∈R ,x 2+mx +1>0,若p 或q 为假,则实数m 的取值范围为( )
A .m≤-2
B .m≥2
C .m≥2或m≤-2
D .-2≤m≤2
【答案】B
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.由命题“存在x ∈R ,使2
20x x m ++≤”是假命题,则实数m 的取值范围
为 .
【答案】(1,)+∞
14.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上
的凸集。
给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是 (写出所有凸集相应图形的序号)。
【答案】②③
15.命题“x R ∃∈,230x x -≤”的否定是 .
【答案】x R ∀∈,230x x ->
16.下列说法正确的为 .
①集合A= {}
2|3100x x x --≤,B={|121x a x a +≤≤-},若B ⊆A ,则-3≤a ≤3; ②函数()y f x =与直线x=l 的交点个数为0或l ;
③函数y=f (2-x )与函数y=f (x-2)的图象关于直线x=2对称;
④a 41(∈,+∞)时,函数)lg(2
a x x y ++=的值域为R ;
⑤与函数2)(-=x f y 关于点(1,-1)对称的函数为f y -=(2 -x ).
【答案】②③⑤
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.已知命题46p x :|-|≤,22:210(0)q x x a a -+-≥,>,若p ⌝是q 的充分不必要条件,求a 的取值范围。
【答案】46102p x x x ⌝:|-|>,><-,解得或
记A={x|x>10或x<-2},q:22
210x x a -+-≥,解得1x a ≥+或x ≤1-a,
记B={x|x ≥1+a 或1x a ≤-}.
而⌝p q q ⇒,/⇒ p ⌝, ∴A ⊂≠B,即 121100a a a -≥-,⎧⎪+≤,⎨⎪>.⎩
∴03a <≤.
18.已知命题:p 对]1,1[-∈∀m ,不等式83522+≥--m a a 恒成立;命题:q x ∃R ∈,使不等式022<++ax x 成立;若p 是真命题,q 是假命题,求a 的取值范围.
【答案】若p 是真命题,则16-≤≥a a 或;若Q 是真命题则2222-<>a a 或 所以若p 是真命题,Q 是假命题,]1,22[--∈a
19.设命题甲:直线x =y 与圆(x -a)2+y 2=1有公共点,命题乙:函数f(x)=2-|x +1|-a 的图
象与x 轴有交点,试判断命题甲与命题乙的条件关系,并说明理由.
【答案】命题甲:若直线x =y 与圆(x -a)2+y 2=1有公共点.
则
|a -0|
12+12
≤1,-2≤a≤2. 命题乙:函数f(x)=2-|x +1|-a 的图象与x 轴有交点,等价于a =2-|x +1|有解.
∵|x +1|≥0,-|x +1|≤0,
∴0<2-|x +1|≤1,因此0<a≤1. ∴命题乙⇒命题甲,但命题甲命题乙.
故命题乙是命题甲的充分不必要条件.
20.已知命题p :关于x 的方程210x mx ++=有两个不相等的负根... 命题q :关于x 的方程244(2)10x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 的取值范围.
【答案】由2
10x mx ++=有两个不相等的负根,则2400m m ⎧->⎨-<⎩
,, 解之得 2.m > 即命题: 2.p m > 由244(2)10x m +-+=无实根, 则2
16(2)160m --<, 解之得13m <<.
即命题q: 13m <<.
p q ∧∵为假,p q ∨为真,则p 与q 一真一假. 若p 真q 假, 则2,3,1,≥≤m m m >⎧⎨⎩
或所以 3.≥m 若p 假q 真, 则2,13,≤m m ⎧⎨<<⎩
所以1 2.≤m < 所以m 取值范围为{}
123m m m <,或|≤≥
21.已知p :方程012=++mx x 有两个不等的负实根, q :方程01)2(442=+-+x m x 无实根. 若p 或q 为真,p 且q 为假.
求实数m 的取值范围。
【答案】由题意,p , q 中有且仅有一为真,一为假。
p 真⇔⎪⎩⎪⎨⎧>=<-=+>∆01002
121x x m x x ⇔m>2, q 真⇔∆<0⇔1<m<3
若p 假q 真,则⎩⎨⎧<<≤31,2m m ⇔1<m≤2; 若p 真q 假,则⎩⎨⎧≥≤>3
12m m m 或⇔m≥3 综上所述:m ∈(1,2]∪[3,+∞).
22.记关于x 的不等式01
x a x -<+的解集为P ,不等式11x -≤的解集为Q . (1)若3a =,求P ; (2)若Q P ⊆,求正数a 的取值范围
【答案】(1)由301
x x -<+,得{}13P x x =-<<. (2){}{}1102Q x x x x =-=≤≤≤. 由0a >,得{}
1P x x a =-<<, 又Q P ⊆,所以2a >,
即a 的取值范围是(2)+∞,.。