【精品】2018年天津市河东区中考数学模拟试卷带答案
天津市河东区普通中学2018届初三数学中考复习 平面直角坐标系与函数 专项训练题 含答案
天津市河东区普通中学2018届初三数学中考复习平面直角坐标系与函数 专项训练题1.如图,点A(-2,1)到y 轴的距离为( C )A .-2B .1C .2 D. 52.函数y =1x -2+x -2的自变量x 的取值范围是( B ) A .x ≥2 B .x >2 C .x ≠2 D .x ≤23.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( C )4.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( C )A .A →O →B B .B →A →C C .B →O →CD .C →B →O5.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的有( C )A .1个B .2个C .3个D .4个6.如果点M(3,x)在第一象限,则x 的取值范围是__x >0__.7.在函数y =x +3+1x 2中,自变量x 的取值范围是__x≥-3且x ≠0__. 8.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动,图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶__35__千米.9.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过__8__分钟,容器中的水恰好放完.10.如图,在平面直角坐标系中,点A(0,3),B(-1,0),过点A 作AB 的垂线交x 轴于点A 1,过点A 1作AA 1的垂线交y 轴于点A 2,过点A 2作A 1A 2的垂线交x轴于点A 3…按此规律继续作下去,直至得到点A 2015为止,则点A 2015坐标为__(-31008,0)__.11.某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t 之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进时,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10 km ,8 km.现有A ,B ,C ,D 四个植树点与学校的路程分别是13 km ,15 km ,17 km ,19 km ,试通过计算说明哪几个植树点符合要求.解:(1)设师生返校时的函数解析式为s =kt +b ,把(12,8),(13,3)代入得⎩⎪⎨⎪⎧8=12k +b ,3=13k +b ,解得⎩⎪⎨⎪⎧k =-5,b =68,∴s =-5t +68,当s =0时,t =13.6,∴师生在13.6时回到学校(2)如图,由图象得,当三轮车追上师生时,离学校4 km(3)设符合学校要求的植树点与学校的路程为x(km),由题意得x 10+2+x 8+8<14,解得x <1779,答:A ,B ,C 植树点符合学校的要求12.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解:(1)由图象得:出租车的起步价是8元,设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象得⎩⎪⎨⎪⎧8=3k +b ,12=5k +b ,解得⎩⎪⎨⎪⎧k =2,b =2,故y 与x 的函数关系式为y =2x +2 (2)当y =32时,32=2x +2,x =15,答:这位乘客乘车的里程是15 km13.如图,平面直角坐标系中,A(-3,-2),B(-1,-4)(1)直接写出:S △OAB =__5__;(2)延长AB 交y 轴于P 点,求P 点坐标;(3)Q 点在y 轴上,以A ,B ,O ,Q 为顶点的四边形面积为6,求Q 点坐标.解:(2)(0,-5) (3)当Q 在y 轴的正半轴上时,∵S 四边形ABOQ =S △AOB +S △AOQ ,∴S△AOQ =6-5=1,∴12×3×OQ=1,解得OQ =23.则此时Q 点的坐标为(0,23);当Q 在y 轴的负半轴上时,∵S 四边形ABOQ =S △AOB +S △BOQ ,∴S △BOQ =1,∴12×1×OQ=1,解得OQ =2,则此时Q 点的坐标为(0,-2),即Q 点坐标为(0,23)或(0,-2)14.如图①,将等腰直角△ABC 放在直角坐标系中,其中∠B=90°,A(0,10),B(8,4),动点P 在直角边上,沿着A —B —C 匀速运动,同时点Q 在x 轴正半轴上以同样的速度运动,当点P 到达C 时,两点同时停止运动.设运动时间为t 秒,当点P 在AB 上运动时,点Q 的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示.(1)则Q 开始运动时的坐标是__(1,0)__;P 点运动的速度是__每秒钟1个单位长度__.(2)求AB 的长及点C 的坐标;(3)问当t 为何值时,OP =PQ?解:(2)过点B 作BF⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,OF =BE =4.∴AF =10-4=6.在Rt △AFB 中,过点C 作CG⊥x 轴于点G ,与FB 的延长线交于点H.∵∠ABC=90°=∠AFB=∠BHC∴∠ABF+∠CBH=90°,∠ABF =∠BCH,∠FAB =∠CBH,∴△ABF ≌△BCH.∴BH =AF =6,CH =BF =8.∴AB=62+82=10,∴OG =FH =8+6=14,CG =8+4=12.∴所求C 点的坐标为(14,12)(3)当点P 在AB 上时,作PN⊥x 轴于N 点,PM ⊥y 轴于M 点,若OP =PQ ,则ON=NQ ,∵△APM ∽△ABF ,AP =t ,AB =10,BF =8,∴ON =PM =45t ,又∵ON=12OQ =12(t +1),∴45t =12(t +1),解得:t =53,当点P 在BC 上时,t 的值不存在。
天津市河东区普通中学2018届初三数学中考复习 函数及其图像 专题检测 含答案
天津市河东区普通中学2018届初三数学中考复习 函数及其图像 专题检测一、选择题1.函数y =x +2x的自变量x 的取值范围是( B )A .x ≥-2B .x ≥-2且x ≠0C .x ≠0D .x >0且x ≠-2 2.下列说法中不正确的是( D )A .函数y =2x 的图象经过原点B .函数y =1x的图象位于第一、三象限C .函数y =3x -1的图象不经过第二象限D .函数y =-3x的值随x 的值的增大而增大3.若抛物线y =(x -m )2+(m +1)的顶点在第一象限,则m 的取值范围为( B )A .m >1B .m >0C .m >-1D .-1<m <04.在平面直角坐标系中,若直线y =kx +b 经过第一、三、四象限,则直线y =bx +k 不经过的象限是( C )A .第一象限B .第二象限C .第三象限D .第四象限 5.将抛物线y =x 2-4x -4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( D )A .y =(x +1)2-13B .y =(x -5)2-3C .y =(x -5)2-13D .y =(x +1)2-36.当k >0时,反比例函数y =kx和一次函数y =kx +2的图象大致是( C )7.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位:天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( C )A .第24天的销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第30天的日销售利润是700元8.如图,正△ABC 的边长为4,点P 为BC 边上的任意一点(不与点B ,C 重合),且∠APD =60°,PD 交AB 于点D.设BP =x ,BD =y ,则y 关于x 的函数图象大到是( C )9.已知直线y =-3x +3与坐标轴分别交于点A ,B ,点P 在抛物线y =-13(x -3)2+4上,能使△ABP 为等腰三角形的点P 的个数有( A )A .3个B .4个C .5个D .6个二、填空题10.二次函数y =x 2+4x -3的最小值是__-7__.11.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__-4__.12.已知函数y =-1x,当自变量的取值为-1<x <0或x≥2,函数值y 的取值__y >1或-12≤y<0__.13.如图,一次函数y =kx +b(k ,b 为常数,且k≠0)和反比例函数y =4x(x >0)的图象交于A ,B 两点,利用函数图象直接写出不等式4x<kx +b 的解集是__1<x <4__.14.若反比例函数y =kx(k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过__第一、二、四__象限.15.已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是__y 3>y 1>y 2__.16.如图,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB⊥x 轴于点B ,则△ABO 的周长为.17.如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b +c >0;②3a+b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确的是__①③④__.(填序号)三、解答题18.如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3,请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3) (2)y =2x -3 (3)点P 3在直线l 上.理由:由题意知点P 3的坐标为(6,9),∵2×6-3=9,∴点P 3在直线l 上19.如图,直线y =12x +2与双曲线相交于点A(m ,3),与x 轴交于点C.(1)求双曲线解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.解:(1)y =6x(2)对于直线y =12x +2,令y =0,得到x =-4,即C(-4,0),设P(x ,0),可得PC =|x +4|,∵△ACP 面积为3,∴12|x +4|×3=3,∴|x +4|=2,解得x =-2或x =-6,则点P 的坐标为(-2,0)或(-6,0)20.如图,直线y =3x +3与两坐标轴分别交于A ,B 两点. (1)求∠ABO 的度数;(2)过A 的直线l 交x 轴正半轴于点C ,AB =AC ,求直线l 的函数解析式.解:(1)易求点A 的坐标为(0,3),点B 的坐标为(-1,0),则AO =3,BO =1,在Rt △ABO 中,∵tan ∠ABO =AOBO=3,∴∠ABO =60°(2)∵AB=AC ,AO ⊥BC ,∴BO =CO ,则C 点的坐标为(1,0),从而可求直线l 的解析式为y =-3x + 321.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q 关于t 的函数表达式. 解:(1)暂停排水需要的时间为2-1.5=0.5(小时),排水孔的排水速度为900÷(3.5-0.5)=300(m 3/h) (2)Q =-300t +105022.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1 h 后,y 甲,y 乙与x 之间的函数图象如图所示.(1)甲的速度是__60__km /h ;(2)当1≤x≤5时,求y 乙关于x 的函数解析式;(3)当乙与A 地相距240 km 时,甲与A 地相距__220__km . 解:(2)y 乙=90x -9023.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y =kx的一部分,请根据图中信息解答下列问题:(1)求y 与x 的函数关系式;(2)当x =16时,大棚内的温度约为多少摄氏度?解:(1)y =⎩⎪⎨⎪⎧5x +8(0≤x≤2)18(2<x<12)216x (x≥12)(2)当x =16时,y =21616=13.5,即温度约为13.5 ℃24.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)(1)已知y 与x 与x 之间的关系式;(不写出自变量x 的取值范围)(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大? 解:(1)y =-2x +100(2)根据题意得(-2x +100)(x -30)=150,整理得x 2-80x +1575=0,解得x 1=35,x 2=45,∴每件商品的销售价定为35元或45元时日利润为150元(3)根据题意得w =(-2x +100)(x -30)=-2x 2+160x -3000,即w =-2(x -40)2+200,∵a =-2<0,∴当x =40时,w 的值最大,∴当销售单价为40元时获得利润最大25.如图1,抛物线y =-x 2+bx +c 经过A(-1,0),B(4,0)两点,与y 轴相交于点C ,连接BC ,点P 为抛物线上一动点,过点P 作x 轴的垂线l ,交直线BC 于点G ,交x 轴于点E.(1)求抛物线的表达式;(2)当点P 在位于y 轴右边的抛物线上运动时,过点C 作CF⊥直线l ,F 为垂足,当点P 运动到何处时,以P ,C ,F 为顶点的三角形与△OBC 相似?并求出此时点P 的坐标;(3)如图2,当点P 在位于直线BC 上方的抛物线上运动时,连接PC ,PB ,请问△PBC 的面积S 能否取得最大值?若能,请求出最大面积S ,并求出此时点P 的坐标;若不能,请说明理由.解:(1)y =-x 2+3x +4(2)令x =0得y =4,∴OC =4,∴OC =OB.∵∠CFP =∠COB=90°,∴FC =PF 时,以P ,C ,F 为顶点的三角形与△OBC 相似.设点P 的坐标为(a ,-a 2+3a +4), 则CF =a ,PF =PE -OC =-a 2+3a ,∴-a 2+3a =a ,解得a 1=2,a 2=0(舍去), ∴点P 的坐标为(2,6)(3)连接EC.设点P 的坐标为(a ,-a 2+3a +4),则OE =a ,PE =-a 2+3a +4,EB =4-a.∵S 四边形PCEB =12OB·PE=12×4(-a 2+3a +4),S △CEB =12EB·OC=12×4×(4-a),∴S △PBC =S 四边形PCEB -S △CEB =2(-a 2+3a +4)-2(4-a)=-2a 2+8a =-2(a -2)2+8.∵a=-2<0,∴当a=2时,△PBC的面积S有最大值8,此时P(2,6)。
天津市河东区2018年中考数学一模试卷及答案解析
2018年天津市河东区中考数学一模试卷一、选择题(本大题共12小題,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算﹣3+10=()A.﹣30 B.﹣13 C.﹣7 D.72.(3分)2cos30°的值等于()A.1 B.C.D.23.(3分)下面图形中,是中心对称图形的是()A.B.C.D.4.(3分)中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万,请将780000用科学记数法表示为()A.78×104 B.7.8×105C.7.8×106D.0.78×1065.(3分)如图,是由五个相同的小正方体组成的立体图形,其俯视图是()A.B.C.D.6.(3分)估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算﹣的结果是()A.1 B.﹣1 C.2 D.﹣28.(3分)方程x2﹣2x=3可以化简为()A.(x﹣3)(x+1)=0 B.(x+3)(x﹣1)=0 C.(x﹣1)2=2 D.(x﹣1)2+4=0 9.(3分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()A.30°B.40°C.50°D.60°10.(3分)点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y311.(3分)如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.312.(3分)二次函数y=x2﹣bx+b﹣2图象与x轴交于点A(x1,0),B(x2,0),且0<x1<1,2<x2<3,则满足条件的b的取值范围是()A.b>﹣1 B.1<b<2 C.D.二、填空题(本大题共6小磁,每小题3分,共18分)13.(3分)(﹣p)2•(﹣p)3=.14.(3分)计算:=.15.(3分)一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为.16.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.17.(3分)如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG=.18.(3分)在如图所示的网格中,每个小正方形的边长都为1,点A、B、C均为格点.(Ⅰ)△ABC的面积等于.(Ⅱ)请借助无刻度的直尺,在如图所示的网格中画出△ABC的角平分线BD的垂直平分线,并简要说明你是怎么画出来的:.三、解谷题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1);(Ⅱ)解不等式(2);(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额不超过10元(包括10元)的学生人数.21.(10分)如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO 并延长与⊙O交于C点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.22.(10分)小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )23.(10分)“五四”青年节期间,校团委对团员参加活动情况进行表彰,计划分为优秀奖和贡献奖,为此联系印刷公司设计了两种奖状,A,B两家公司都为学校提出了相同规格和单价的两种奖状,其中优秀奖的奖状6元/张,贡献奖的奖状5元/张,经过协商,A公司的优惠条件是:两种奖状都打八折,但要收制版费50元;B公司的优惠条件是:两种奖状都打九折;根据学校要求,优秀奖的个数是贡献奖的2倍还多10个,如果设贡献奖的个数是x个.(1)分别写出校团委购买A,B两家印刷厂所需要的总费用y1(元)和y2(元)与贡献奖个数x之间的函数关系式;(2)校团委选择哪家印刷公司比较合算?请说明理由.24.(10分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.25.(10分)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A,B(A 在B的左侧),抛物线的对称轴为直线x=1,AB=4.(1)求抛物线的表达式;(2)抛物线上有两点M(x1,y1)和N(x2,y2),若x1<1,x2>1,x1+x2>2,试判断y1与y2的大小,并说明理由;(3)平移该抛物线,使平移后的抛物线经过点O,且与x轴交于点D,记平移后的抛物线顶点为点P①若△ODP是等腰直角三角形,求点P的坐标;②在①的条件下,直线x=m(0<m<3)分别交线段BP、BC于点E、F,且△BEF 的面积:△BPC的面积=2:3,直接写出m的值.2018年天津市河东区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小題,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:﹣3+10=+(10﹣3)=7,故选:D.2.【解答】解:2cos30°=2×=.故选:C.3.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.【解答】解:780000=7.8×105,故选:B.5.【解答】解:从上面看易得:有3列小正方形第1列有1个正方形,第2列有2个正方形,第3列有1个正方形,且只有中间的小正方形在下面,进而得出答案即可,故选:A.6.【解答】解:∵25<27<36,∴5<<6,∴2<﹣3<3,即2和3之间.故选:A.7.【解答】解:原式==﹣=﹣1.故选:B.8.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,故选:A.9.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°﹣100°)=40°.故选:B.10.【解答】解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.11.【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.12.【解答】解:由题意可得,,解得,2<b<,故选:C.二、填空题(本大题共6小磁,每小题3分,共18分)13.【解答】解:(﹣p)2•(﹣p)3=(﹣p)2+3=(﹣p)5=﹣p5;故答案是:﹣p5.14.【解答】解:原式=25﹣2×5×3+(3)2=25﹣30+18=43﹣30.15.【解答】解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:=.故答案为:.16.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.17.【解答】解:如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,AF=2,∴DE=4,DF=3,∴EF==5,=•EF•BG=S正方形ABCD﹣S△ABE﹣S△BCF﹣S△DEF,∵S△BEF∴•5•BG=25﹣•5•1﹣•5•2﹣•3•4,∴BG=,故答案为18.【解答】解:(Ⅰ)△ABC的面积=,故答案为:6;(Ⅱ)如图所示:先画出△ABC的角平分线BD,再画出BD的垂直平分线即可;故答案为:先画出△ABC的角平分线BD,再画出BD的垂直平分线.三、解谷题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.【解答】解:,(Ⅰ)解不等式①得:x<2,(Ⅱ)解不等式②得:x≥﹣4,(Ⅲ)把不等式①和②的解集在数轴上表示出来如图:(Ⅳ)原不等式组的解集为:﹣4≤x<2,故答案为:(Ⅰ)x<2;(Ⅱ)x≥﹣4;(Ⅳ)﹣4≤x<2.20.【解答】解:(I)调查的学生数是:4÷8%=50(人),m=×100=32.故答案是:50,32;(Ⅱ)平均数是:=16(元),由于捐款10元人数最多,所以众数是10元,中位数为第25、26个数据的平均数,所以中位数是=15元;(Ⅲ)估计该校本次活动捐款金额不超过10元(包括10元)的学生人数2900×=1160(人).21.【解答】解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=OA=,OP=2OA=2,∴OP=2OC,=×1×,而S△OPA=S△PAO=,∴S△AOC=,∴S△ACP=.∴四边形ACBP的面积=2S△ACP22.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•s in15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.23.【解答】解:(1)由题意y1=4.8(2x+10)+4x+50=13.6x+98,y2=5.4(2x+10)+4.5x=15.3x+54.(2)当y1>y2时,13.6x+98>15.3x+54,解得x<25,∵x为整数,∴当贡献奖个数小于等于25个时,选B公司比较合算;当贡献奖个数大于25个时,选A公司比较合算.24.【解答】解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).25.【解答】解:(1)∵抛物线的对称轴为直线x=1,AB=4,∴A(﹣1,0),B(3,0),∴抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)y1<y2;理由如下:∵x1<1,x2>1,∴M、N在对称轴的两侧,∵x1+x2>2,∴x2﹣1>1﹣x1,∴点N到直线x=1的距离比M点到直线x=1的距离远,∴y1<y2;(3)①作PH⊥x轴于H,∵△OPD为等腰直角三角形,∴PH=OH=OD,当点D在x轴的正半轴上,如图1,设P(m,﹣m),则D(2m,0),设抛物线的解析式为y=x(x﹣2m),把P(m,﹣m)代入得m(m﹣2m)=﹣m,解得m1=0(舍去),m2=1,即P(1,﹣1);当点D在x轴的负半轴上,如图2,设P(m,m),则D(2m,0),设抛物线的解析式为y=x(x﹣2m),把P(m,m)代入得m(m﹣2m)=m,解得m1=0(舍去),m2=﹣1,即P(﹣1,﹣1);综上所述,P点坐标为(1,﹣1)或(﹣1,﹣1);②当点D在x轴的正半轴上,如图1,延长HP交BC于Q,设直线BP的解析式为y=px+q,把B(3,0),P(1,﹣1)代入得,解得,∴直线BP的解析式为y=x﹣,易得直线BC的解析式为y=x﹣3;则Q(1,﹣2),E(m,m﹣),F(m,m﹣3),S△PBC=×1×3=,∵△BEF的面积:△BPC的面积=2:3,=1,∴S△BEF∴(﹣m+)(3﹣m)=1,解得m1=5(舍去),m2=1;当点D在x轴的负半轴上,如图2,延长HP交BC于Q,同理可得直线BP的解析式为y=x﹣,则Q(﹣1,﹣4),E(m,m﹣),F(m,m﹣3),S△PBC=×3×3=,∵△BEF的面积:△BPC的面积=2:3,=3,∴S△BEF∴(﹣m+)(3﹣m)=3,解得m1=3+2(舍去),m2=3﹣2,综上所述,m的值为1或3﹣2.。
〖中考数学〗2018年天津市中考数学模拟试卷(含详细解析)(word版)
机密★启用前2018 年天津市初中毕业生学业考试模拟试卷数学本试卷分为第Ⅰ 卷(选择题)、第Ⅱ 卷(非选择题)两部分。
第Ⅰ 卷第 1 页至第3 页,第Ⅱ 卷第4 页至第8 页。
试卷满分120 分。
考试时间100 分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12 题,共36 分。
一、选择题(本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1) 算式(2)53-⨯---计算后的结果为:(A) 13(B) 7(C)﹣13(D)﹣7(2) sin60°的值为:(A)(B)2(C)2(D)12(3) 剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是:(A) (B) (C) (D)(4) 2018 上半年,天津货物贸易进出口总值为2098.7 亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,天津同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7 亿元用科学记数法表示是:(A) 2.098 7×103(B) 2.098 7×1010(C) 2.098 7×1011(D) 2.098 7×1012(5) 如图的几何体由五个相同的小正方体搭成,它的主视图是:(6)估计132+202⨯的运算结果应在: (A) 6 到 7 之间 (B) 7 到 8 之间 (C) 8 到 9 之间 (D) 9 到 10 之间(7)化简2211444a aa a a --÷-+-,其结果是: (A ) 2+2a a - (B ) +22a a - (C ) +22a a - (D) 2+2a a -(8)若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩则a b -=(A) 1 (B) 3 (C) 14- (D) 74(9) 如图,在同一平面内,将△ABC 绕点 A 旋转到△AED 的位置,若 AE ⊥BC ,∠ADC=65°,则∠ABC 的度数为:(A) 30° (B) 40° (C) 50°(D) 60°第(9)题图(10) 若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数 y = 3x的图像上,则下列结论中正确的是:(A) y 1>y 2>y 3(B) y 2>y 1>y 3 (C) y 3>y 1>y 2(D) y 3>y 2>y 1(11) 如图,在平面直角坐标系中,Rt △OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3,3),点 C 的坐标为(12,0),点 P 为斜边 OB 上的一动点,则 PA +PC 在下列选 项中的最小值为: (A132(B) 312(C) 3192+ (D)27(12) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t 为实数);⑤点(92-,y1),(52-,y2),(12-,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有:(A) 4 个(B) 3 个(C) 2 个(D) 1 个第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2018-2019学年天津市河东区九年级(上)期中数学模拟试卷(解析版)
天津市河东区2018-2019届九年级(上)中数学模拟试卷一.选择题1.方程9x2=16的解是()A. B. C. D.【答案】C【解析】分析:用直接开方法解方程即可.详解:故选C.点睛:考查解一元二次方程,常用的解法有直接开方法,公式法,配方法,因式分解法.2.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念求解.【详解】A、是中心对称图形故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;所以答案选A.【点睛】本题主要考查了中心对称图形的知识,解本题的要点在于要寻找对称中心,旋转180度后与原图重合.3.一元二次方程x2﹣2x﹣m=0,用配方法解该方程,配方后的方程为()A. (x﹣1)2=m2+1B. (x﹣1)2=m﹣1C. (x﹣1)2=1﹣mD. (x﹣1)2=m+1【答案】D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】∵x2−2x−m=0,∴x2−2x=m,∴x2−2x+1=m+1,∴(x−1)2=m+1.故选D.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用.4.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A. 168(1+x)2=108B. 168(1﹣x)2=108C. 168(1﹣2x)=108D. 168(1﹣x2)=108【答案】B【解析】试题分析:设每次降价的百分率为x, 根据两次降价,每瓶零售价由168元降为108元,列方程得:168(1-x)2=108.故选:B.考点:一元二次方程的应用.5.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A. 10×6﹣4×6x=32B. (10﹣2x)(6﹣2x)=32C. (10﹣x)(6﹣x)=32D. 10×6﹣4x2=32【答案】B【解析】分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选:B.点睛:本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A. (﹣1,0)B. ( 4,0)C. (5,0)D. (-6,0)【答案】B【解析】分析:由二次函数的解析式得出图象的对称轴,由图象的对称性即可得出答案.详解:∵二次函数y=x²−5x+m的图象的对称轴为x=−,与x轴的一个交点的坐标是(1,0),∴由二次函数图象的对称性得:二次函数的图象与x轴的另一个交点的坐标是(4,0);故选B.点睛:本题考查了抛物线与x轴交点的知识,解答本题的关键是求出抛物线图象的对称轴,利用抛物线图象的对称性进行解答即可.7.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A. y=2x2+3B. y=2x2﹣3C. y=2(x+3)2D. y=2(x﹣3)2【答案】C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.8.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2﹣2x+k2的大致图象是()A. B.C. D.【答案】A【解析】【分析】根据题意可知:k<0,而根据二次函数的图象与性质选出答案.【详解】y=kx的图象经过二、四象限,所以k<0,又因为y=kx2﹣2x+k2中,a=k<0,b=-2<0,c=k2>0,所以抛物线的开口向下,与y轴的交点在y轴的正半轴上,对称轴x=<0,在y轴的左边,故答案选A.【点睛】本题主要考查了二次函数的图象和性质,解本题的要点在于通过题意得知k<0,从而判断,选出答案.9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y2【答案】A【解析】把A(﹣2,y1),B(1,y2),C(2,y3)代入抛物线有,y1=0,y2=-3,y3=-8,y1>y2>y3。
天津市河东区2018_2019学年九年级数学上学期期末模拟检测试题
2018-2019学年天津市河东区九年级数学上学期期末模拟检测试题一.选择题(共12小题,满分36分)1.方程(x﹣5)(x﹣6)=x﹣5 的解是()A.x=5 B.x=5 或x=6C.x=7 D.x=5 或 x=72.下列抛物线中,与抛物线y=﹣3x2+1的形状、开口方向完全相同,且顶点坐标为(﹣1,2)的是()A.y=﹣3(x+1)2+2 B.y=﹣3(x﹣1)2+2C.y=﹣(3x﹣1)2+2 D.y=﹣(3x﹣1)2+23.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10 B.8 C.5 D.36.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定7.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.98.在下图中,反比例函数的图象大致是()A.B.C.D.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°10.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°11.把一副三角板放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1,此时AB与CD1交于点O,则线段AD1的长度为()A.B.C.D.412.点P反比例函数y=﹣的图象上,过点P分别作坐标轴的垂线段PM、PN,则四边形OMPN的面积=()A.B.2 C.2D.1二.填空题(共6小题,满分18分,每小题3分)13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是.15.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.16.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为.17.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM= .18.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有.三.解答题(共7小题,满分66分)19.(8分)用适当的方法解下列方程:(1)x2﹣3x=0(2)x2﹣4x+2=0(3)x2﹣x﹣6=0(4)(x+1)(x﹣2)=4﹣2x20.(8分)已知A=(ab≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.21.(10分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).22.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC 的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.23.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.(10分)如图,△ABC中,AB=AC,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D(1)求证:BE=CF;(2)当四边形ACDE为平行四边形时,求证:△ABE为等腰直角三角形.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B 时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案一.选择题1.解:方程移项得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,解得:x=5或x=7,故选:D.2.解:∵抛物线顶点坐标为(﹣1,2),∴可设抛物线解析式为y=a(x+1)2+2,∵与抛物线y=﹣3x2+1的形状、开口方向完全相同,∴a=﹣3,∴所求抛物线解析式为y=﹣3(x+1)2+2,故选:A.3.解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选:C.4.解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.5.解:∵在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,∴=,解得n=8.故选:B.6.解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.7.解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.8.解:∵k=2,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.9.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.10.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.11.解:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°﹣∠ACO﹣∠CAO=90°.在等腰Rt△ABC中,AB=4,则AC=BC=2.同理可求得:AO=OC=2.在Rt△AOD1中,OA=2,OD1=CD1﹣OC=3,由勾股定理得:AD1=.故选:A.12.解:∵点P反比例函数y=﹣的图象上,∴过点P分别作坐标轴的垂线段PM、PN,所得四边形OMPN的面积为|﹣2|=2.故选:C.二.填空题(共6小题,满分18分,每小题3分)13.解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.14.解:∵函数y=的图象在每一象限内y的值随x值的增大而减小,∴m﹣2>0,解得m>2.故答案为:m>2.15.解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.故答案为:.16.解:∵PA、PB是⊙O切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P+∠PAO+∠AOB+∠PBO=360°,∴∠P=180°﹣∠AOB,∵∠ACB=65°,∴∠AOB=2∠ACB=130°,∴∠P=180°﹣130°=50°,故答案为50°.17.解:连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM﹣∠AOB=48°,故答案为:48°.18.解:①∵该抛物线开口方向向下,∴a<0.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>0;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0;故①正确;②∵a<0,c>0,∴a﹣c<0,∵b>0,∴b>a﹣c,故②错误;③根据抛物线的对称性知,当x=2时,y>0,即4a+2b+c>0;故③正确;④∵对称轴方程x=﹣=1,∴b=﹣2a,∴a=﹣b,∵当x=﹣1时,y=a﹣b+c<0,∴﹣b+c<0,∴2c<3b,故④正确;⑤∵x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又x=1时函数取得最大值,当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),故⑤错误.⑥∵b=﹣2a,∴2a+b=0,∵c>0,∴2a+b+c>0,故⑥正确.综上所述,其中正确的结论的有:①③④⑥.故答案为:①③④⑥.三.解答题(共7小题,满分66分)19.解:(1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)移项,得x2﹣4x=﹣2,配方,得x2﹣4x+4=2,即(x﹣2)2=2,开方,得x﹣2=,x1=2+,x2=2﹣;(3)x2﹣x﹣6=0(x﹣3)(x+2)=0,x﹣3=0,x+2=0,x1=3,x2=﹣2;(4)(x+1)(x﹣2)=4﹣2x(x+1)(x﹣2)﹣2(x﹣2)=0(x﹣2)(x+1﹣2)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.20.解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.21.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.22.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.23.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000 ∵k=﹣200<0,∴P随x的增大而减小.∴当x=32时,P的值最小,P最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.24.解:(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)在□ABCD中,∠EAC+∠ACF=180°∴∠EAF=∠BAC=45°∴∠FAB+∠ACF=90°又AF=AC∴∠F=∠ACF∴∠FAB+∠F=90°∴∠ACF=45°∴△AFC为等腰直角三角形∴△ABE为等腰直角三角形25.解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得: x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PB C为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。
08-2018年天津市(区)中考数学卷第18题(河东区模拟一)
图1: 定理1:两个全等矩形的位置关系一定是平行或垂直。 如图2-1两者平行:
图2-1
如图2-2两者垂直:
图2-2 第5页
定理2:全等矩形对角线相等;全等矩形对角线与对应邻边的夹角相等。 定理3: 若两个全等矩形平行,则一定有两组对角线互相平行。 如图3 :
天津市(区)中考数学卷第18题 第1页、原题
第、在网格中无刻度尺作图的知识准备
河东区2018届初中毕业生学业考试模拟试卷(一)
第1页
第2页
图1
取格点E、F、H 连接EF、AH交于点G 连接BG交AC于点D 即BD是△ABC的角平分线 取格点M、N 连接MN,交格线于点O
∵BP=MO、BP∥MO
∴四边形BMOP是平行四边形 又∵BM⊥BD OP⊥BD 所以PO是△ABC的角平分线 BD的垂直平分线。 图2 ∵BA=BH、BQ=BQ、AQ=HQ ∴△BAQ≌△BHQ ∴∠ABQ=∠HBQ
延长交AC于点D
则BD是△ABC的角平分线 以下同图1 第4页
天津市(区)中考数学卷第18题 在网格中无刻度尺作图的知识准备
或 图3 定理4 :若两个全等矩形垂直,则一定有两组对角线互相垂直。如图4:
或 图4
第6页
定义:把如图5称为等长对角线
或 图5 定义:把图6称为平移对角线。
图6 对等长对角线和平移对角线定理2、定理3、定理4仍成立。
第7页
图2 取格点Q、H 连接BQ,EQ 延长BQ交AC于点D 则BD是△ABC的角平分线
以下同图1
连接BD,交格线于点P
连接PO 则PO即为所求
第3页
图1
∵BA=BH、AG=HG、AG=AG ∴△ABG≌△HBG ∴∠ABG=∠HBG 即BD是△ABC的角平分线 ∵PB:PD=BW:CW=1:1 ∴PB=PD
天津市河东区2018年中考数学三模试卷
天津市河东区2018年中考数学三模试卷一、选择题(每小题3分,共12题,共计36分)1.﹣2的绝对值是()A.2B.﹣2C.D.2.下列各数中是有理数的是()A.B.4πC.sin45°D.3.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.2=1 C.2=19.6.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A.4 B.3 C.2 D.17.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣28.函数y=﹣x+1与函数在同一坐标系中的大致图象是()A.B.C.D.9.如图,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H.若AB=8cm,l要与⊙O相切,则l应沿OC所在直线向下平移()A.1cm B.2cm C.3cm D.4cm10.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分11.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共6题,共计18分)13.计算(+)(﹣)的结果为.14.因式分解:4m2﹣16=.15.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.16.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.17.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.18.如图,已知平行四边形ABCD四个顶点在格点上,每个方格单位为1.(1)平行四边形ABCD的面积为;(2)在网格上请画出一个正方形,使正方形的面积等于平行四边形ABCD的面积.(尺规作图,保留作图痕迹)并把主要画图步骤写出来.三、综合题(共7题,共计66分)19.解不等式组,并把不等式组的解集在数轴上表示出来.20.商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?21.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出5件.(1)请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?(2)若要使每周的销售利润不低于7680元,请确定销售单价x的取值范围.22.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.23.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的坡度为1:,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).24.(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.25.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.解答一、选择题(每小题3分,共12题,共计36分)1.﹣2的绝对值是()A.2B.﹣2C.D.考点:实数的相关概念答案:A试题解析:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.下列各数中是有理数的是()A.B.4πC.sin45°D.考点:实数及其分类答案:D试题解析:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.1.下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()A.4 B.3 C.2 D.1【分析】根据特殊角三角函数值,可判断第一个;根据算术平方根,可判断第二个;根据非零的零次幂,可判断第三个;根据负整数指数幂,可判断第四个.【解答】解:sin30°=,=2,π0=1,2﹣2=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键,注意负整数指数幂与正整数指数幂互为倒数.2.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45° B.60° C.75° D.90°【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C 等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.3.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.4.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.2=1 C.2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】(1)根据表示赞同的人数是50,所占的百分比是25%即可求得总人数;(2)利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解;(4)求得表示很赞同的人数,然后利用概率公式求解.【解答】解:(1)接受这次调查的家长人数为:50÷25%=200(人),故命题正确;(2)“不赞同”的家长部分所对应的扇形圆心角大小是:360×=162°,故命题正确;(3)表示“无所谓”的家长人数为200×20%=40(人),故命题正确;(4)表示很赞同的人数是:200﹣50﹣40﹣90=20(人),则随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是=,故命题正确.故选A.【点评】本题考查的是条形统计图和扇形统计图的综合运用,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:概率=所求情况数与总情况数之比.总体数目=部分数目÷相应百分比.7.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣2【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选B.【点评】本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r=(a+b﹣c);(a、b为直角边,c为斜边)直角三角形的外接圆半径:R=c.8.函数y=﹣x+1与函数在同一坐标系中的大致图象是()A.B.C.D.【分析】根据一次函数的图象性质得到y=﹣x+1经过第一、二、四象限;根据反比例函数的图象性质得到y=﹣分布在第二、四象限,然后对各选项进行判断.【解答】解:函数y=﹣x+1经过第一、二、四象限,函数y=﹣分布在第二、四象限.故选A.【点评】本题考查了反比例函数的图象:反比例函数y=(k≠0)的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数的图象.9.如图,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H.若AB=8cm,l要与⊙O相切,则l应沿OC所在直线向下平移()A.1cm B.2cm C.3cm D.4cm【分析】连接OB,根据已知条件可以推出HB=4cm,所以OH=3cm,HC=2cm,所以l应沿OC所在直线向下平移2cm.【解答】解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选B.【点评】本题主要考查了垂径定理、勾股定理、切线性质,解题的关键在于求HC和OH的长度.10.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC=AB=A′B′=OC′,从而得出滑动杆的中点C所经过的路径是一段圆弧.【解答】解:连接OC、OC′,如图,∵∠AOB=90°,C为AB中点,∴OC=AB=A′B′=OC′,∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,∴滑动杆的中点C所经过的路径是一段圆弧.故选B.【点评】本题考查了轨迹,圆的定义与性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.11.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【分析】如图,作辅助线;首先证明△BOM∽△OAN,得到;设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.【点评】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(每小题3分,共6题,共计18分)13.计算(+)(﹣)的结果为﹣1.【分析】根据平方差公式:(a+b)(a﹣b)=a2﹣b2,求出算式(+)(﹣)的结果为多少即可.【解答】解:(+)(﹣)==2﹣3=﹣1∴(+)(﹣)的结果为﹣1.故答案为:﹣1.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看“多项式”.(2)此题还考查了平方差公式的应用:(a+b)(a﹣b)=a2﹣b2,要熟练掌握.14.因式分解:4m2﹣16=4(m+2)(m﹣2).【分析】此题应先提公因式4,再利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432;然后直接利用概率公式求解即可求得答案.【解答】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432;∴排出的数是偶数的概率为:=.故答案为:.【点评】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为(10,3).【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC可得点E的坐标.【解答】解:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).【点评】本题考查折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等;对应点的连线段被折痕垂直平分.也考查了矩形的性质以及勾股定理.17.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.【分析】利用四边形OABC为平行四边形,可得∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.利用四边形ABCD是圆的内接四边形,可得∠D+∠B=180°.利用同弧所对的圆周角和圆心角可得∠D=∠AOC,求出∠D=60°,进而即可得出.【解答】解:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=60°.∴∠OAB=∠OCB=180°﹣∠B=60°.∴∠OAD+∠OCD=360°﹣(∠D+∠B+∠OAB+∠OCB)=360°﹣(60°+120°+60°+60°)=60°.故答案为:60.【点评】本题考查了平行四边形的性质、圆的内接四边形的性质、同弧所对的圆周角和圆心角的关系,属于基础题.18.如图,已知平行四边形ABCD四个顶点在格点上,每个方格单位为1.(1)平行四边形ABCD的面积为6;(2)在网格上请画出一个正方形,使正方形的面积等于平行四边形ABCD的面积.(尺规作图,保留作图痕迹)并把主要画图步骤写出来.【分析】(1)平行四边形ABCD的面积=矩形的面积﹣2个直角三角形的面积,即可得出结果;(2)由正方形的面积和相交弦定理得出正方形的边长,画出图形即可.【解答】解(1)平行四边形ABCD的面积=4×2﹣2××1×2=6;故答案为:6(2)①作AE⊥BC于E,DF⊥BC于F;②延长AD至G,使DG=DF;③以AG为直径作半圆;④延长FD交半圆于H,则DH即为所求的正方形边长;⑤以DH为边长作正方形DHMN;如图所示【点评】本题考查了平行四边形的性质、正方形的性质、作图﹣复杂作图、相交弦定理;作出正方形的边长是解决问题的关键.三、综合题(共7题,共计66分)19.解不等式组,并把不等式组的解集在数轴上表示出来.【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:,由②得:x≤1,∴不等式组的解集为:,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.20.商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?【分析】画树状图展示所有9种等可能的结果数,再找出顾客购买商品的价格不超过30元的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中顾客购买商品的价格不超过30元的结果数为3,所以顾客购买商品的价格不超过30元的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出5件.(1)请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?(2)若要使每周的销售利润不低于7680元,请确定销售单价x的取值范围.【分析】(1)用每件的利润乘以销售量即可得到每周销售利润,即y=(x﹣40)[300﹣5(x ﹣60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.(2)由函数值求出自变量的两个值,再根据二次不等式的解集即可求得x的取值范围.【解答】解:(1)根据题意得y=(x﹣40)[300﹣5(x﹣60)]=﹣5(x2﹣160x+4800)=﹣5(x﹣80)2+8000,∵a<0,∴当x=80时,y的值最大=8000,即销售单价定为80元时,每周的销售利润最大;(2)当y=7680时,﹣5(x﹣80)2+8000=7680,整理得:(x﹣80)2=64,∴x﹣80=±8,∴x1=88,x2=72,∴72≤x≤88.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.22.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【点评】本题考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质,直角三角形的性质,熟练掌握定理是解题的关键.23.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的坡度为1:,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【分析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE═==x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE即可求出x的长.【解答】解:∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE﹣EF=x﹣2,∴AF===(x﹣2),∵AF=BE=BC+CE.∴(x﹣2)=2+x,解得x=6.答:树DE的高度为6米.【点评】本题考查了解直角三角形的应用﹣﹣仰角、坡度问题、矩形的判定与性质、三角函数;借助仰角构造直角三角形并解直角三角形是解决问题的关键.24.(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF 即可;(2)可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值;(3)方法同(2).【解答】解:(1)同意,连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴;(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=nDF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n﹣1)x]2=[(n+1)x]2∴y=2x,∴或.【点评】此题考查了矩形的性质、图形的折叠变换、全等三角形的判定和性质、勾股定理的应用等重要知识,难度适中.25.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.【分析】(1)已知A、D、E三点的坐标,利用待定系数法可确定抛物线的解析式,进而能得到顶点B的坐标.(2)过B作BM⊥y轴于M,由A、B、E三点坐标,可判断出△BME、△AOE都为等腰直角三角形,易证得∠BEA=90°,即△ABE是直角三角形,而AB是△ABE外接圆的直径,因此只需证明AB与CB垂直即可.BE、AE长易得,能求出tan∠BAE的值,结合tan∠CBE 的值,可得到∠CBE=∠BAE,由此证得∠CBA=∠CBE+∠ABE=∠BAE+∠ABE=90°,此题得证.(3)△ABE中,∠AEB=90°,tan∠BAE=,即AE=3BE,若以D、E、P为顶点的三角形与△ABE相似,那么该三角形必须满足两个条件:①有一个角是直角、②两直角边满足1:3的比例关系;然后分情况进行求解即可.(4)过E作EF∥x轴交AB于F,当E点运动在EF之间时,△AOE与△ABE重叠部分是个四边形;当E点运动到F点右侧时,△AOE与△ABE重叠部分是个三角形.按上述两种情况按图形之间的和差关系进行求解.【解答】(1)解:由题意,设抛物线解析式为y=a(x﹣3)(x+1).。
天津市河东区普通中学2018届初三数学中考复习 一元二次方程 专项复习练习题 含答案与解析
天津市河东区普通中学2018届初三数学中考复习 一元二次方程专项复习练习题1. 用配方法解方程x 2+2x -1=0时,配方结果正确的是( ) A .(x +2)2=2 B. (x +1)2=2 C .(x +2)2=3 D. (x +1)2=32. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x ,则( ) A .10.8(1+x )=16.8 B .16.8(1-x )=10.8 C .10.8(1+x )2=16.8D .10.8[(1+x )+(1+x )2]=16.83. 若关于x 的方程x 2+(m +1)x +12=0的一个实数根的倒数恰是它本身,则m的值是( )A .-52 B.12 C .-52或12D .14. 一元二次方程(x +1)2-2(x -1)2=7的根的情况是( )A .无实数根B .有一正根一负根C .有两个正根D .有两个负根 5. 关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为( )A .1B .-1C .2D .-2 6. 一元二次方程2x 2-5x -2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根7. 关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60°8. 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A. 12x (x -1)=45 B. 12x (x +1)=45 C .x (x -1)=45 D .x (x +1)=459. 已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =_______. 10. 解方程:2x 2-4x -1=0.11. 解方程:x 2+3x -2=0.12. 关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,求k 的值.13. 关于x 的方程2x 2+mx +n =0的两个根是-2和1,求n m 的值.14. 已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则求k 的值.15. 由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2³3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+_______)(x+______);(2)应用:请用上述方法解方程:x2-3x-4=0.16. 已知关于x的一元二次方程(x-3)²(x-2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.17. 某商场2017年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.18. 某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?19. 在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票原定的票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.答案与解析: 1. B 2. C3. C 【解析】已知一个实数根的倒数恰是它本身,则该实数根为1或-1,若是1时,解得m =-52;若是-1时,则m =12.故选C.4. C 【解析】直接去括号,求出方程的根即可. 解方程得x 1=4,x 2=2,故方程有两个正根.故选C.5. A 【解析】 Δ=4-4k =0⇒k =1,故答案选A.6. B 【解析】Δ=(-5)2-4³2³(-2)=25+16=41>0,即可得方程2x 2-5x -2=0有两个不相等的实数根,故选B.7. B 【解析】由方程有两个相等的实数根,结合根的判别式Δ=0可得出sinα=12,再由α为锐角,即可得出结论.∵关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,∴Δ=(-2)2-4sin α=2-4sin α=0,解得sin α=12,∵α为锐角,∴α=30°.故选B.8. A 【解析】有x 支球队参加篮球比赛,每两队之间都比赛一场,共比赛场数为12x (x -1),∴12x (x -1)=45,故选A.9. 6 【解析】∵m 是关于x 的方程x 2-2x -3=0的一个根,∴m 2-2m -3=0,∴m 2-2m =3,∴2m 2-4m =6.10. 解:a =2,b =-4,c =-1,∵Δ=16+8=24,∴x =4±264=2±62,∴x 1=2+62,x 2=2-62【解析】本题可用配方法或公式法求解,把一个一元二次方程化成一般形式后,就可以直接代入公式求解.11. 解:Δ=32-4³1³(-2)=17,∴x =-3±172,∴x 1=-3+172,x 2=-3-17212. 解:把x =0代入(k -1)x 2+6x +k 2-k =0,得k 2-k =0,解得k =1(舍去)或k =0,∴k =013. 解:∵关于x 的方程2x 2+mx +n =0的两个根是-2和1,∴-m 2=-1,n2=-2,∴m =2,n =-4,∴n m =(-4)2=1614. 解:∵x 2-6x +k =0的两个根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,1x 1+1x 2=x 1+x 2x 1x 2=6k=3,解得k =215. (1) 2 4 (2)x 2-3x -4=0 (x +1)(x -4)=0 x +1=0,x -4=0 x 1=-1,x 2=4【解析】(1)把8分解成2³4,且2+4=6,类比例题即可求解;(2)把-4分解成1³(-4),且1+(-4)=-3,类比例题分解因式,利用因式分解法解方程即可.16. 解:(1)Δ=1+4|m|>0,所以总有两个不相等的实数根 (2)m =2或m =-2;另一个根为x =417. 解:设3月份到5月份营业额的月平均增长率为x ,根据题意得400³(1+10%)(1+x)2=633.6,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20% 18. 解:(1)(14-10)÷2+1=3(档次). 答:此批次蛋糕属第3档次产品 (2)设烘焙店生产的是第x 档次的产品, 根据题意得(2x +8)³(76+4-4x)=1080, 整理得x 2-16x +55=0, 解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品【解析】根据单件利润³销售数量=总利润,即可得出关于x 的一元二次方程 19. 解:(1)设每张门票原定的票价为x 元,由题意得6000x =4800x -80,解得x =400.经检验,x =400是原方程的解,则每张门票原定的票价为400元 (2)设平均每次降价的百分率为y.由题意得400(1-y)2=324,解得y 1=0.1,y 2=1.9(不合题意,舍去),则平均每次降价10%。
2018年天津市河东区中考数学模拟试卷--有答案
5
2018 年天津市河东区中考数学模拟试卷
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1.(3 分)2cos60°的值等于( ) A.1 B. C. D.2
【解答】解:2cos60° =2× =1. 故选:A. 2.(3 分)下列标志中,可 以看作是中心对称图形的是( )
上,连接 AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
10.(3 分)若点 A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数 y= 的图象上,则 y1,y2,y3 的大小关系是( ) A.y1<y3<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3 11.(3 分)已知二次函数 y=(x﹣h)2+1(h 为常数),在自变量 x 的值满足 1≤x≤3 的情况下, 与其对应的函数值 y 的最小值为 5,则 h 的值为( ) A.1 或﹣5 B.﹣1 或 5 C.1 或﹣3 D.1 或 3 12.(3 分)如图,已知▱ABCD 中,AE⊥BC 于点 E,以点 B 为中心,取旋转角等于∠ABC,把△ BAE 顺时针旋转,得到△BA′E′,连接 DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
三、解答题(本大题共 7 小题,共 66 分) 19.(8 分)解方程:3x(x﹣2)=2(2﹣x).
3
20.(8 分)如图,转盘 A 的三个扇形面积相等,分别标有数字 1,2,3,转盘 B 的四个扇形面 积相等,分别有数字 1,2,3,4.转动 A、B 转盘各一次,当转盘停止转动时,将指针所落扇 形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘). (1)用树状图或列表法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率.
2018年天津市中考数学模拟试卷含答案
2018年天津市中考模拟试卷一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是( )A.-2 B.-8或 -2 C.-8或 8 D.8或-22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,则tanA的值为()A.0.6 B.0.8 C.0.75 D.3.下列图形中,既是轴对称图形又是中心对称图形的是()4.地球七大洲的总面积约是149 480 000km2,对这个数据保留3个有效数字可表示为( )A.149km2B.1.5×108km2C.1.49×108km2D.1.50×108km25.下列几何体中,正视图、左视图、俯视图完全相同的是()A.圆柱B.圆锥C.棱锥D.球6.的立方根是()A.2 B.±2 C.4 D.±47.计算:的结果为()8.用配方法解方程2x2+3=7x,方程可变形为()A.B.C.D.9.在数轴上表示a、b两数的点如图所示,则下列判断正确的是( )A.a+b>0 B.a+b<0 C.ab>0 D.|a|>|b|10.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AFD.BE=AD﹣DF11.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()12.二次函数y=a(x﹣3)2+4(a≠0)的图象在1<x<2这一段位于x轴的上方,在5<x<6这一段位于x轴的下方,则a的值为()A.1 B.-1 C.2 D.﹣2二、填空题:13.计算:﹣3x2•2x=______14.若x 2﹣mxy+9y 2是完全平方式,则m 的值为 .15.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .16.直线y=3x+6与两坐标轴围成的三角形的面积是______.17.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 .18.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444F E D C B A 的面积是 .三、解答题: 19.解不等式组:,并在数轴上表示不等式组的解集.20.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)根据以上信息,解答下列问题:(1)该班共有名学生;(2)在扇形统计图中,185型校服所对应的扇形圆心角的大小为;(3)该班学生所穿校服型号的众数为,中位数为;(4)如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?21.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足BD:AB=AB:BC,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=0.6,AM=6,求⊙O的半径.22.A.B两市相距150千米,分别从A.B处测得国家级风景区中心C处的方位角如图,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.23.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A.B、C三个景点游玩.三个景点的门票价格如表所示:所购买的50张票中,B种票张数是A种票张数的3倍还多1张,设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A.B、C三种票的张数.24.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,请直接写出线段AB,BE,AM之间的数量关系:;(2)当点E在边CB的延长线上,点M在边AD上时,如图②;请探索线段AB,BE,AM之间的数量关系,并证明;(3)若BE=,∠AFM=15°,则AM= .25.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A.B、P 的点,使得∠QAP=90°,求Q点坐标.答案解析一、选择题1.D2.B3.D4.A.5.A6.D7.B.8.B9.D10.B.11.B.12.D.13.答案为:﹣6x314.答案为:±6.15.答案为:0.25;16.答案为:6.17.答案为:y=0.5x+90.18.19.答案为:-17/9<x≤1.20.解:(1)该班共有的学生数=15÷30%=50(人);(2)175型的人数=50×20%=10(人),则185型的人数=50﹣3﹣15﹣10﹣5﹣5=12,所以在扇形统计图中,185型校服所对应的扇形圆心角=360°×=14.4°;(3)该班学生所穿校服型号的众数为165和170,中位数为170;故答案为50,14.4°,165和170,170;(4)600×=180(人),所以估计新生穿170型校服的学生大约有180名.21.22.解:AB不穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB,∴CD= =(千米).∵CD=50>45,∴高速公路AB不穿过风景区.23.略24.25.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴AB:PD=PB:CD,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴AB:PD=PB:CD,∴AB•CD=PB•PD;。
2018年天津市各区一模卷-2018河东九年级数学答案(一模)
2018年03月21日九年级模拟卷1---答案一、选择题1.B.2.C.3.D.4.B.5.C.6.B.7.B 8.A.9.B.10.C.11.B.12.C.二、填空题13.5p-.14.43-15.12.16.1y x=-+.17.23 518.(Ⅰ)6;(Ⅱ)取格点,,,E F T R,连接,E F,交AC于点D,连接,T R,交网格线于点N,连接,B D,交网格线于点M,作直线MN,则直线MN即为所求.F三、解答题19.解:解不等式①,得2x<,解不等式②,得4x-≥,所以,不等式组的解集是42x-<≤不等式组的解集在数轴上表示如下:.20.解:(Ⅰ)调查的学生数是:48%50÷=(人),161003250m=⨯=.故答案是:50,32;(Ⅱ)平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元),众数是:10元,中位数是:15元;(Ⅲ)该校本次活动捐款金额为10元的学生人数是:290032%928⨯=(人).21.解:(Ⅰ)连接AO,BO,∵PA、PB是⊙O的切线,∴90OAP OBP∠=∠=︒,PA PB=,1302APO BPO APB∠=∠=∠=︒,∴60AOP∠=︒,∵OA OC=,∴OAC OCA∠=∠,∴AOP CAO ACO ∠=∠+∠,∴30ACO∠=︒,∴ACO APO∠=∠,∴AC AP=,同理BC PB=,∴AC BC BP AP===,∴四边形ACBP是菱形;(Ⅱ)连接AB交PC于D,∴AD PC⊥,∴1OA=,60AOP∠=︒,∴AD==,∴32 PD=,∴3PC=,AB∴菱形ACBP 的面积12AB PC =⋅=.22.解:(Ⅰ)在Rt BCD △中,∵15CBD ∠=︒,20BD =,∴sin15CD BD =⋅︒,∴ 5.2m CD ≈;答:小明与地面的垂直距离CD 的值是5.2m ;(Ⅱ)在Rt AFE △中,∵45AEF ∠=︒, ∴AF EF BC ==,由(Ⅰ)知,cos1519.3BC BD =⋅︒≈(m ), ∴19.3 1.6 5.226.1AB AF DE CD =++=++=(m ). 答:楼房AB 的高度是26.1m .23.解:(Ⅰ)由题意1 4.8(210)45013.698y x x x =+++=+, 2 5.4(210) 4.515.354y x x x =++=+.(Ⅱ)当12y y >时,13.69815.354x x ++>, 解得152517x <, ∵x 为整数,∴当贡献奖个数小于等于25个时,选B 公司比较合算;当贡献奖个数大于25个时,选A 公司比较合算.24.解:(Ⅰ)∵6OA =,10OB =,四边形OACB 为长方形,∴(610)C ,. 设此时直线DP 解析式为y kx b =+,把(02),,(610)C ,分别代入,得 2610b k b =⎧⎨+=⎩,, 解得432k b ⎧=⎪⎨⎪=⎩,,则此时直线DP 解析式为423y x =+;(Ⅱ)①当点P 在线段AC 上时,2OD =,高为6,6S =; 当点P 在线段BC 上时,2OD =,高为61016t t +-=-,12(16)162S t t =⨯⨯-=-+; ②设(10)P m ,,则PB PB m ='=,如图2, ∵10OB OB '==,6OA =,∴8AB '=,∴1082B C '=-=,∵6PC m =-,∴2222(6)m m =+-,解得103m = 则此时点P 的坐标是10(10)3,; (Ⅲ)存在,理由为:若BDP △为等腰三角形,分三种情况考虑:如图3, ①当11028BD BP OB OD ==-=-=,在1Rt BCP △中,18BP =,6BC =,根据勾股定理得:1CP ==∴110AP =-1(610P -,; ②当22BP DP =时,此时2(66)P ,;③当38DB DP ==时,在3Rt DEP △中,6DE =,根据勾股定理得:3P E =∴332AP AE EP =+=,即3(62)P ,综上,满足题意的P 坐标为(66),或(62)或(610-,.25.解:(Ⅰ)∵抛物线的对称轴为直线1x =,4AB =,∴(10)A -,,(30)B ,, ∴抛物线解析式为(1)(3)y x x =+-, 即223y x x =--;(Ⅱ)12y y <;理由如下:∵11x <,21x >, ∴M 、N 在对称轴的两侧, ∵122x x +>,∴2111x x -->,∴点N 到直线1x =的距离比M 点到直线1x =的距离远, ∴12y y <;(Ⅲ)①作PH x ⊥轴于H , ∵OPD △为等腰直角三角形, ∴PH OH OD ==,当点D 在x 轴的正半轴上,如图1,设()P m m -,,则(20)D m ,, 设抛物线的解析式为(2)y x x m =-,把()P m m -,代入得(2)m m m m -=-,解得10m =(舍去),21m =,即(11)P -,; 当点D 在x 轴的负半轴上,如图2,设()P m m ,,则(20)D m ,, 设抛物线的解析式为(2)y x x m =-,把()P m m ,代入得(2)m m m m -=,解得10m =(舍去),21m =-,即(11)P --,; 综上所述,P 点坐标为(11)-,或(11)--,; ②当点D 在x 轴的正半轴上,如图1,延长HP 交BC 于Q , 设直线BP 的解析式为y px q =+,把(30)B ,,(11)P -,代入得301p q p q +=⎧⎨+=-⎩,,解得1232p q ⎧=⎪⎪⎨⎪=-⎪⎩,, ∴直线BP 的解析式为1322y x =-, 易得直线BC 的解析式为3y x =-;则(12)Q -,,13()22E m m -,,(3)F m m -,, 131322PBC S =⨯⨯=△, ∵BEF △的面积:BPC △的面积2:3=,∴1BEF S =△, ∴13()(3)122m m -+-=,解得15m =(舍去),21m =; 当点D 在x 轴的负半轴上,如图2,延长HP 交BC 于Q , 同理可得直线BP 的解析式为1344y x =-, 则(14)Q --,,13()44E m m -,,(3)F m m -,, 193322PBC S =⨯⨯=△, ∵BEF △的面积:BPC △的面积2:3=, ∴3BEF S =△,∴113()(3)3244m m -+-=,解得13m =+,23m =-综上所述,m 的值为1或3-。
2018年天津市中考数学模拟试题及参考答案
2018年天津市中考模拟试题数学试卷一、选择题〔本大题共12小题,每题3分,共36分。
在每题给出的四个选项中,只有一项是符合题目要求的〕1.在实数﹣3,2,0,﹣4中,最大的数是〔〕A.﹣3 B.2 C.0 D.﹣42.△ABC中,∠A,∠B均为锐角,且〔tanB﹣〕〔2sinA﹣〕=0,则△ABC一定是〔〕A.等腰三角形 B.等边三角形C.直角三角形 D.有一个角是60°的三角形3.以下四个图形中,是轴对称图形,但不是中心对称图形的是〔〕A.B.C.D.4.如图,假设将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为〔〕A.〔﹣4,2〕 B.〔﹣2,4〕 C.〔4,﹣2〕 D.〔2,﹣4〕5.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为〔〕A.0.555×104B.5.55×104C.5.55×103D.55.5×1036.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1〔〕A.1 B.2 C.3 D.47.〔3分〕观察以下等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为〔〕A.B.C.D.8.〔3分〕化简﹣的结果是〔〕A.﹣x2+2x B.﹣x2+6x C.﹣D.9.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,假设点B1在线段BC的延长线上,则∠BB1C1的大小为〔〕A.70°B.80°C.84°D.86°10.如图,两个边长分别为a,b〔a>b〕的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.假设OB2﹣BE2=10,则k的值是〔〕A.3 B.4 C.5 D.411.如图,在△ABC中,AB=AC,AD是△ABC的中线,E是AB上一点,P是AD上的一个动点,则以下线段的长等于BP+EP最小值的是〔〕A.BC B.AD C.AC D.CE12.已知抛物线y=x2﹣2mx﹣4〔m>0〕的顶点M关于坐标原点O的对称点为M′,假设点M′在这条抛物线上,则点M的坐标为〔〕A.〔1,﹣5〕 B.〔3,﹣13〕C.〔2,﹣8〕 D.〔4,﹣20〕二、填空题〔本大题共6小题,每题3分,共18分〕13.计算:a5÷a2=.14.方程=1的解是.15.某人把四根绳子紧握在手中,仅在两端露出它们的头和尾,然后随机地把一端的四个头中的某两个相接,另两个相接,把另一端的四个尾中的某两个相接,另两个相接,则放开手后四根绳子恰好连成一个圈的概率是.16.如果反比例函数y=〔k是常数,k≠0〕的图象经过点〔2,3〕,那么在这个函数图象所在的每个象限内,y的值随x的值增大而.〔填“增大”或“减小”〕17.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.假设DE=2cm,则AB的长为.18.我们规定:一个正n边形〔n为整数,n≥4〕的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=三、解答题〔本大题共7小题,共66分。
2018年天津中考数学模拟试卷
A.B.C.D.2018年天津中考模拟试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第2页.第Ⅱ卷为第3页至第8页.试卷满分120分.考试时间100分钟.答卷前.请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上.并在规定位置粘贴考试用条形码.答题时.务必将答案涂写在“答题卡”上.答案答在试卷上无效.考试结束后.将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后.用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动.用橡皮擦干净后.再选涂其它答案标号的信息点.2.本卷共12题.共36分.一、选择题(本大题共12小题.每小题3分.共36分.在每小题给出的四个选项中.只有一项是符合题目要求的) 一、选择题:1. 计算(–2)–5的结果等于( )A .–7B .–3C .3D .72.cos30°的值等于( )A .12B .32 C .33 D .223.下列图标中.既是轴对称图形.又是中心对称图形的是( )A.B.C.D.BADC P(11题图)4.截至2016年底.国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A .16×1010B .1.6×1010C . 1.6×1011D .0.16×10125. 如图是一个由4个相同的正方体组成的立体图形.它的主视图是( )6. 估计38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7. 方程x 2–x –6=0的根为( )A .x 1=3,x 2= –2B . x 1= –3,x 2= 2C . x 1=3,x 2= 2D . x 1= –3,x 2= –28. 计算1x –x+1x的结果为( )A .–1B .xC .1xD .x –2x9. 己知反比例函数y =6x.当1<x <3时.y 的取值范围是( )A . 0<y <1B . 1<y <2C . 2<y <6D . y >610. 一种药品原价每盒25元.经过两次降价后每盒16元.设两次降价的百分率都为x .则x 满足( )A .16(1+2x )=25B .25(1–2x )=16C .16(1+x )2=25D .25(1–x )2=1611. 如图.在矩形ABCD 中.AB =5.AD =3.动点P 满足S △PAB =13S 矩形ABCD .则点P 到A .B 两点距离之和PA +PB 的最小值为( )A .29B .34C .5 2D .4112. 已知关于x 的二次函数y =ax 2+(a 2–1)x –a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3.则a 的取值范围是( )CQC A . 13<a <12B .2<a <3C . 13<a <12或–3<a <–2 D . 13<a <23或2<a <32018年天津中考模拟试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题.共84分.二、填空题(本大题共6小题.每小题3分.共18分) 13.计算25x x 的结果等于 .14.计算(5+3)(5–3)的结果等于 .15.若一次函数y =2x +b (b 为常数)的图象经过点(1.5).则b 的值为 . 16.不透明袋子中装有9个球.其中有2个红球、3个绿球和4个蓝球.这些球除颜色外无其他差别.从袋子中随机取出1个球.则它是红球的概率是 . 17. 如图.在矩形ABCD 中.AB = 2.E 是BC 的中点.AE ⊥BD 于点F .则CF 的长是 .18.在每个小正方形的边长为1的网格中.点A ,B ,C 均在格点上.点P .Q 分别为线段AB ,AC 上的动点.(Ⅰ)如图(1).当点P .Q 分别为AB .AC 中点时.PC +PQ 的值为 ; (Ⅱ)当PC +PQ 取得最小值时.在如图(2)所示的网格中.用无刻度的直(17题图)BCDAEF尺.画出线段PC ,PQ .简要说明点P 和点Q 的位置是如何找到的 .三、解答题(本大题共7小题.共66分.解答应写出文字说明、演算步骤或推理过程)19. 解不等式组1254 3.x x x +⎧⎨+⎩≥,①≤②请结合题意填空.完成本题的解答. (Ⅰ)解不等式①.得__________________; (Ⅱ)解不等式②.得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________________.20. 某商场服装部为了解服装的销售情况.统计了每位营业员在某月的销售额(单位:万元).并根据统计的这组数据.绘制出如下的统计图①和图②.请根据相关信息.解答下列问题.34521(Ⅰ)该商场服装部营业员的人数为.图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.如图.AB是⊙O的一条弦.E是AB的中点.过点E作EC⊥OA于点C.过点B作⊙O 的切线交CE的延长线于点D.(Ⅱ)若AB=12.BD=5.求⊙O的半径.22. 热气球的探测器显示.从热气球看一栋高楼顶部的仰角为30°.看这栋高楼底部的俯角为60°.热气球与高楼的水平距离为66 m .这栋高楼有多高?(结果精确到0.1 m .参考数据:3≈1.73)23. 公司有330台机器需要一次性运送到某地.计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元.每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x 辆(x 为非负整数).试填写表格. 表一:CAB24.如图.在矩形AOBC中.O为坐标原点.OA、OB分别在x轴、y轴上.点B的坐标为(0,23).点A的坐标为(–2,0).(Ⅰ) 如图1.将△ABC沿AB所在直线翻折后.点C落在点D处.求点D的坐标; (Ⅱ)在(Ⅰ)的条件下.将△ABD绕点B逆时针旋转120°.得到△A′BD′.在x轴上有一动点P.当PB+PD′最小时.求点P坐标;(Ⅲ)在矩形AOBC内部有一动点Q.且∠ACQ=∠QAO.求OQ长度的最小值(直接写出结果即可).25. 已知抛物线y =ax 2+bx +c 关于y 轴对称.且经过点(0,1)和(1, 54).点F 的坐标为(0,2).点M 的坐标为(3,3). (Ⅰ)求该抛物线解析式;(Ⅱ) P是抛物线上的一个动点.点P横坐标为m.且满足0<m< 3.当△PFM面积最大时.求点P坐标;(Ⅲ)若抛物线上的动点P到定点F(0,2)的距离与到x轴的距离始终相等.求△PMF周长的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年天津市河东区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2cos60°的值等于()A.1 B.C.D.22.(3分)下列标志中,可以看作是中心对称图形的是()A.B.C.D.3.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1054.(3分)如图,某个反比例函数的图象经过点P,则它的解析式为()A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)5.(3分)如图,从左面观察这个立体图形,能得到的平面图形是()A. B.C.D.6.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°7.(3分)比较2,,的大小,正确的是()A.B.C.D.8.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y311.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或312.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+1)(﹣1)的结果等于.14.(3分)如果反比例函数y=(a为常数)的图象,在每一个象限内,y随x的增大而减小,写出一个符合条件的a的值为.15.(3分)一个盒子中装有2个白球,5个红球,从这个盒子中随机摸出一个球,是红球的概率为.16.(3分)如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP 与△BCP相似时,DP=.17.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数有个.18.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S=S△FGH;④AG+DF=FG.△ABG其中正确的是.(把所有正确结论的序号都选上)三、解答题(本大题共7小题,共66分)19.(8分)解方程:3x(x﹣2)=2(2﹣x).20.(8分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.21.(10分)已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(1)如图1,连接CD,则∠BDC的度数为;(2)如图2,若AC与⊙O相切,且AC=BC,求BD的长;(3)如图3,若∠A=45°,且AB=7,求BD的长.22.(10分)小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.23.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?(3)当每斤的售价定为多少元时,每天获利最大?最大值为多少?24.(10分)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.25.(10分)在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.2018年天津市河东区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2cos60°的值等于()A.1 B.C.D.2【解答】解:2cos60°=2×=1.故选:A.2.(3分)下列标志中,可以看作是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选:D.3.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×105【解答】解:12630000=1.263×107.故选:B.4.(3分)如图,某个反比例函数的图象经过点P,则它的解析式为()A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)【解答】解:设反比例函数的解析式为(k≠0)由图象可知,函数经过点P(﹣1,1)得k=﹣1∴反比例函数解析式为y=(x<0).故选:D.5.(3分)如图,从左面观察这个立体图形,能得到的平面图形是()A. B.C.D.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.6.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.(3分)比较2,,的大小,正确的是()A.B.C.D.【解答】解:∵23=8,()3=5≈11.2,()3=7∴<2<.故选:C.8.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.【解答】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C.10.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.11.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍);③若1<h<3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.12.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+1)(﹣1)的结果等于2.【解答】解:原式=3﹣1=2.故答案为2.14.(3分)如果反比例函数y=(a为常数)的图象,在每一个象限内,y随x的增大而减小,写出一个符合条件的a的值为﹣2.【解答】解:根据反比例函数的性质,在每一个象限内y随x的增大而减小的反比例函数只要符合a+3>0,即a>﹣3即可,故答案可以是:﹣2.15.(3分)一个盒子中装有2个白球,5个红球,从这个盒子中随机摸出一个球,是红球的概率为.【解答】解:根据题意可得:一个盒子中装有2个白球,5个红球,共7个,从这个盒子中随机摸出一个球,是红球的概率为.故答案为.16.(3分)如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP 与△BCP相似时,DP=1或4或2.5.【解答】解:①当△APD∽△PBC时,=,即=,解得:PD=1,或PD=4;②当△PAD∽△PBC时,=,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.17.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数有3个.【解答】解:①因为二次函数图象与x轴有两个交点,所以b2﹣4ac>0,4ac﹣b2<0正确,②因为二次函数对称轴为x=﹣1,由图可得左交点的横坐标一定小于﹣2,所以4a﹣2b+c>0,故此项不正确,③因为二次函数对称轴为x=﹣1,即﹣=﹣1,2a﹣b=0,代入b2﹣4ac得出a+c <0,由x=1时,a+b+c<0,得出2a+2b+2c<0,即2b+2c<0,又b<0,3b+2c<0所以正确.④∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,④正确;正确的结论个数为3.故答案为:3.18.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S=S△FGH;④AG+DF=FG.△ABG其中正确的是①③④.(把所有正确结论的序号都选上)【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;=•6•3=9,S△FGH=•GH•HF=×3×4=6,∵S△ABG=S△FGH,所以③正确;∴S△ABG∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、解答题(本大题共7小题,共66分)19.(8分)解方程:3x(x﹣2)=2(2﹣x).【解答】解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.20.(8分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.21.(10分)已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(1)如图1,连接CD,则∠BDC的度数为90°;(2)如图2,若AC与⊙O相切,且AC=BC,求BD的长;(3)如图3,若∠A=45°,且AB=7,求BD的长.【解答】解:(1)如图1,∵BC是⊙O的直径,∴∠BDC=90°故答案为90°;(2)连接CD,如图2,∵AC与⊙O相切,BC是⊙O的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC,∴∠A=∠B=45°,∴∠DCB=∠B=45°,∴DC=DB.∵BC=5,∴BD2+DC2=2BD2=52,∴BD=;(3)连接CD,如图3,∵BC是⊙O的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A,∴DA=DC.设BD=x,则CD=AD=7﹣x.在Rt△BDC中,x2+(7﹣x)2=52,解得x1=3,x2=4,∴BD的长为3或4.22.(10分)小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.【解答】解:作AD⊥BC交CB的延长线于D,设AD为xm,由题意得,∠ABD=45°,∠ACD=36°,在Rt△ADB中,∠ABD=45°,∴DB=xm,在Rt△ADC中,∠ACD=36°,∴tan∠ACD=,∴=0.73,解得x≈270.4.答:热气球离地面的高度约为270.4m.23.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?(3)当每斤的售价定为多少元时,每天获利最大?最大值为多少?【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);故答案为:100+200x;(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元;(3)设每斤的售价降低x元,每天获利为y元,根据题意得:y=(4﹣2﹣x)(100+200x)=﹣200x2+300x+200=﹣200(x﹣)2+,答:当每斤的售价定为元时,每天获利最大,最大值为元.24.(10分)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【解答】解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2,∵M是AB的中点,∴G是AO的中点,∴OG=OA=1,MG是△AOB的中位线,∴MG=OB=×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=t,∵∠BAC=90°,∴∠BAO+∠CAF=90°,∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF,∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=t,AF=MG=2,∴EC=4﹣t,BE=OF=t+2,=EC•BE=(4﹣t)(t+2)=﹣t2+t+4;∴S△BCES△ABC=•AB•AC=••=t2+4,∴S=S△BEC +S△ABC=t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即t=4,t=8,∴S与t之间的函数关系式为:S=t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴===2,∴AF=2,CF=t,由勾股定理得:AC===,BC===,∴BC+AC=(+1),∴当t=0时,BC+AC有最小值.25.(10分)在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.【解答】解:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)≤2,解得:m≥﹣.∴m的取值范围为:﹣≤m<0.。