第二次最优化理论习题课参考答案

合集下载

最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。

(2)约束最优点,并求出其最优值。

(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。

*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。

2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。

123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。

最优化方法(试题+答案)

最优化方法(试题+答案)
一、填空题
1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解

转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子

最优化试题及答案

最优化试题及答案

mi 1 m *m j * g j (x*) 0最优化理论、方法及应用试题一、(30 分)1、针对二次函数f(x) 1x T Qx b T x c,其中Q是正定矩阵,试写出最速下降算法的详细步骤,并简要说明其优缺点?答:求解目标函数的梯度为g(x) Qx b,g k g(x k) Qx k b,搜索方向:从X k出发,沿g k作直线搜索以确定x k 1。

Stepl:选定X。

,计算f o,g oStep2:做一维搜索,f k i min f X k tg k , x k 1 X k tg k.Step3 :判别,若满足精度要求,则停止;否则,置 k=k+1,转步2优缺点:最速下降法在初始点收敛快,收敛速度慢。

算法简单,在最优点附近有锯齿现象,2、有约束优化问题min f (x)g i(x) 0,i 1,2,L ,ms.th j (x) 0,j 1,2,L ,l最优解的必要条件是什么?答:假设x*是极小值点。

必要条件是f,g,h函数连续可微,而且极小值点的所有起作用约束的梯度h(x*)(i 1,2丄,1)和g j(x*)( j 1,2,L ,m)线性无关,则* * * *存在1 , 2丄,I, 1, 2丄,m,使得lf(x*) i* h i(x*)i 1j*g j(x*) 0,j 1,2,L* * * * *1 ,2 ,L , l , 1 , 2 ,L ,*0, j 03、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定?答:起作用约束:若g j(x0) 0,这时点x0处于该约束条件形成的可行域边界上,它对x0的摄动起到某种限制作用可行方向:x0是可行点,某方向 p,若存在实数0 0,使得它对任意2、应用共轭梯度方法求解无约束优化问题 min X 28X |,初始点为X 0 1 1 丁 。

答:假设误差范围是0.001。

最优化设计 课后习题答案

最优化设计 课后习题答案

最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。

最优化习题答案及复习资料

最优化习题答案及复习资料

6
,12
T
)
17 17
g
=(
6
,12
T
)
2 17 17
β g d = −
(d ) d 1
T
A
2
(1) T
(1)
A
(1)
=
1 298
− 90
d g β d (2) = −
+
2
1
(1)
=

289 210 289
α 线性搜索得步长:
= 1.7
2
x x α d (3) = (2) +
2 (2) = 11
x(1) = (1,1,1)T
.验证
d x x d (1) =(1,0,-1)是 f(x)在点 (1) 处的一个下降方向,并计算 min f( (1) +t (1) )
t>0
证明:
∇f (x) =
(2
x1,3x
2 2
+
2
x3−1,4
x
3+
2
x
2−1)T
∇f (x1) = (2,4,5)T
2
d
∇f
(
x
=
x2

(x2 − x1) f ′(x2) −
f f
′( x2) ′( x1)
或者
x
=
x1

(x2 − x1) f ′(x2) −
f f
′( x1) ′( x1)
证明:1)设ϕ(x) = a x2 + bx + c ( a ≠ 0 )
则 ϕ ′(x) = 2ax + b
ϕ ′(x1) = 2a x1 + b = f ′(x1)

最优化方法习题答案

最优化方法习题答案

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。

(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。

1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。

(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。

①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。

最优化方法练习题答案

最优化方法练习题答案

b
x1
x2
x3
x4
x5
x6
0
x4
2
1
[1]
-2
1
0
0
0
x5
3
2
1
1
0
1
0
0
x6
4
-1
0
1
0
0
1
cj-zj
1
-1
1
0
0
0
因检验数σ2<0,故确定x2为换入非基变量,以x2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x4作为换出的基变量。
cj→
1
-1
1
0
0
0
CB

b
x1
x4
x3
x4
x5
x6
输出结果:
原题无可行解。
5、用内点法和Matlab软件求解下列线性规划问题:
解:用内点法的过程自己书写,参考答案:最优解 ;最优值5
Matlab调用代码:
f=[2;1;1];
Aeq=[1,2,2;2,1,0];
beq=[6;5];
lb=[0;0;0];
[x,fval]= linprog(f,[],[],Aeq,beq,lb)
确定约束条件资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:
*2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:
(1) ;(2)
解:(1)引入松弛变量x4,x5,x6
cj→
1
-1
1
0

最优化方法习题答案

最优化方法习题答案

x3
-M
0
0
0
5
-1
1
2
x4
x5
1+ 2 M
0
3
ห้องสมุดไป่ตู้
x2
1 3
1
x5
2 3
0
以 x1 为换入基, x5 作为换出基有
-1- M 3
1 3 1
3
-M
0
0
0
5
3
-1
1
1
3
x1
x2
x3
x4
x5
0
x2
0
x1
1
0
1
2
1
1
2
0
1
2
3
3 M
-5.5
2
2
1
1
1.5
2
2
3 3
0.5
22
以 x 4 换入, x 2 换出有
⑤因为 p2 , p4 线性相关, x 2 , x 4 不能构成基变量;
⑥因为 p3, p4 线性无关,可得基解 x(6) (0,0,1,1) , z6 3 ;
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z 3 。
(2) max z x1 x2 2x3 x4 x5
x1 2x2 3x3 4x4 7 s.t.2x1 x2 x3 2x4 3
x1, x2 , x3, x4 0
解:易知
x1 的系数列向量
p1

1

2
,x 2
的系数列向量
p2

2
1

最优化试题及答案

最优化试题及答案

最优化理论、方法及应用试题一、(30分)1、针对二次函数1()2TT f x x Qx b x c =++,其中Q 是正定矩阵,试写出最速下降算法的详细步骤,并简要说明其优缺点?答:求解目标函数的梯度为()g x Qx b =+,()k k k g g x Qx b ==+,搜索方向:从k x 出发,沿k g -作直线搜索以确定1k x +。

Step1: 选定0x ,计算00,f gStep2: 做一维搜索, ()1min k k k tf f x tg +=-,1k k k x x tg +=-.Step3:判别,若满足精度要求,则停止;否则,置k=k+1,转步2。

优缺点:最速下降法在初始点收敛快,算法简单,在最优点附近有锯齿现象,收敛速度慢。

2、有约束优化问题min ()()0,1,2,,..()0,1,2,,i j f x g x i m s th x j l≥=⎧⎪⎨==⎪⎩最优解的必要条件是什么?答:假设*x 是极小值点。

必要条件是f,g ,h 函数连续可微,而且极小值点的所有起作用约束的梯度(*)(1,2,,)i h x i l ∇=和(*)(1,2,,)j g x j m ∇=线性无关,则存在******1212,,,,,,,,l m αααβββ使得()11******1212**(*)*(*)*(*)0*(*)0,1,2,,,,,,,,,00,0lmi i j j i i j j l m i j f x h x g x g x j mαββαααβββαβ==∇-∇-∇===≠>≥∑∑3、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定? 答:起作用约束:若0()0j g x =,这时点0x 处于该约束条件形成的可行域边界上,它对0x 的摄动起到某种限制作用。

可行方向:0x 是可行点,某方向p,若存在实数00λ>,使得它对任意[]00,λλ∈,均有0x p λ+∈可行点集合,则称方向p 是点0x 的可行方向。

最优化基础理论与方法第二版答案

最优化基础理论与方法第二版答案

最优化基础理论与方法第二版答案
1.什么是最优化?
答:最优化是指从其中一种分析角度,通过确定目标,对已知的约束
条件,有效地分配资源,及早达到最优状态。

2.什么是约束条件?
答:约束条件是指有其中一种特定要求,必须满足一定的范围,方可
实现目标。

3.什么是对偶最佳化?
答:对偶最优化是指通过构建一个对偶函数来求解最优化问题的方法。

4.什么是凸优化?
答:凸优化是指求解连续函数的最优解时,对可行解所表示的约束集
合是一个凸集的一种最优化方法。

5.什么是线性规划?
答:线性规划是指求解一个或多个变量与多个约束条件之间关系的一
种规划方法,其中的目标函数及约束条件均可以用线性表达式表示。

6.什么是随机最优化?
答:随机最优化是指利用随机数学方法求解类优化问题的方法,因为
其优化问题的特殊性,通常不是算法专家所专注的领域。

7.什么是梯度优化?
答:梯度优化是一种利用梯度的方法来最优解的过程。

8.什么是动态规划?
答:动态规划是一种求解最优化问题的一种数学方法,它利用组合优选的思想,把复杂的最优化问题化解为若干子问题,优化问题的一个子问题里面包含优化问题的最优解。

9.什么是最优化算法?。

最优化理论与方法习题

最优化理论与方法习题
所以
2 f 4, x2x3
2 f 6 2 x1 2 x3
12 x12 2 x2 2 f ( x) 2 x1 2 x3
2 x1 12 x2 4
2 x3 4 6 2 x1
即为Hesse矩阵
无约束函数极值的充分条件 若点x*满足f ( x
记目标函数和约束函数分别为f(x),g(x),h(x),他们在 点x处的梯度分别是
2( x1 3) 1 6( x1 3) f ( x ) , g ( x ) , h ( x ) 0 1 2 x2 Lagrange函数是
f 6 x3 4 x2 2 x1 x3 x3
4 x13 2 x1 x2 x32 2 2 f ( x) 6 x2 x1 4 x3 6 x3 4 x2 2 x1 x3
又因为
2 f 2 f 2 f 12 x12 2 x2 , 2 x1 , 2 x3 2 x1 x2 x1 x3 x1 2 f 12 x2 , 2 x2
Hesse矩阵为
2
4 f (x ) 0
*
0 4
x*=[2, 1]T是f(x)的严格极小点,f(x*)=10
例:利用极值条件解下列问题
min
2 f ( x) ( x12 1) 2 x12 x2 2 x1
解:先求驻点, 由于 f f 3 4 x1 2 x1 2, 2 x2 x1 x2 令f'(x)=0,即4 x13 2 x1 2 0,x2=0 2 解得驻点x*=(1,0) 12 x12-2 0 10 0 2 2 又Hessian阵 f'(x)= f'(x*)= 0 2 2 0 正定,故x*=(1,0) 是局部极小点。

最优化计算方法课后习题答案----高等教育出版社。施光燕

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6;14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14。

设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。

解:已知 (1)(4,6)T x =-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15。

用DFP 方法求下列问题的极小点(1)22121212min353x x x x x x ++++ 解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T T H δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用(1)(1)()0df x d d αα+=,求得 10.5727α=- 所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ= 220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11xx d ⎛⎫=+= ⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止(3)(1,1)T x =-即为最优解。

重庆大学最优化方法习题答案

重庆大学最优化方法习题答案
②因为 p1 , p 3 线性无关,可得基解 x
( 2)
③因为 p1 , p 4 线性无关,可得基解 x (3) ④因为 p 2 , p 3 线性无关,可得基解 x
( 4)
2 11 43 ( ,0, ,0) , z 2 ; 5 5 5 1 11 ( ,0,0, ) ,是非基可行解; 3 6
x6
0
4 3
-1
1
以 x 3 为换入变量, x 6 为换出变量,得
x1
0
x2 19 4M 4
x3
0
x4 1 12 1 4 1 4
x5 5 4
-
x6 5 4M 4 1 3
3
x1 x3
1
5 6 13 4
0
0
1
-
3 4
3 4
4
所以原问题最优解为 x * (3,0,4) ,最优值为 z* 5 。 (3) min z 2x 1 3x 2 x 3
习题一 1.1 利用图解法求下列线性规划问题: (1) max z x1 x 2
3x1 x 2 2 s.t.x 1 2x 2 5 x 1 , x 2 0
解:根据条件,可行域为下面图形中的阴影部分, , 有图形可知,原问题在 A 点取得最优值, 最优值 z=5
(2) min z x1 6x 2
2x1 x 2 1 s.t. x1 x 2 7 x 1 , x 2 0
解:图中阴影部分表示可行域,由图可知原问题在点 A 处取得最优值,最优值 z=-6.
(3) max z 3x1 2x 2
x1 x 2 1 s.t.x 1 2x 2 4 x 1 , x 2 0

最优化方法练习题答案

最优化方法练习题答案

最优化⽅法练习题答案练习题⼀1、建⽴优化模型应考虑哪些要素? 答:决策变量、⽬标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。

答:针对⼀般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===L L ,讨论解的可⾏域D ,若存在⼀点*X D ∈,对于X D ?∈均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X L L ,满⾜(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停⽌准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε?<等等。

练习题⼆1、某公司看中了例中⼚家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能⽤于⽣产附加值更⾼的产品)。

如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例的对偶问题)。

解:确定决策变量对3种资源报价123,,y y y 作为本问题的决策变量。

确定⽬标函数问题的⽬标很清楚——“收购价最⼩”。

确定约束条件资源的报价⾄少应该⾼于原⽣产产品的利润,这样原⼚家才可能卖。

因此有如下线性规划问题:123min 170100150w y y y =++*2、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。

答:略。

3、⽤单纯形法求解下列线性规划问题:(1)≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;(2)=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132Λi x x x x x x x x x x t s x x z i解:(1)引⼊松弛变量x 4,x 5,x 6因检验数σ2<0,故确定x 2为换⼊⾮基变量,以x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量x 4作为换出的基变量。

最优化方法练习题答案

最优化方法练习题答案

最优化⽅法练习题答案精⼼整理练习题⼀1、建⽴优化模型应考虑哪些要素? 答:决策变量、⽬标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。

min ()f x D ∈,对于则有(f ?1例2.1解:*2、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。

答:略。

3、⽤单纯形法求解下列线性规划问题:(1)≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;(2)=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132Λi x x x x x x x x x x t s x x z i解:(1)引⼊松弛变量x 4,x 5,x 6因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。

(2)根据题意选取x 1,x 4,x 5,为基变量:因检验数σ2<0最⼩,故确定x 2为换⼊⾮基变量,以x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量x 4作为换出的基变量。

4根据题意约束条件1和2可以合并为1,引⼊松弛变量x 3,x 4,构造新问题。

因检验数σj>0,表明已求得最优解:*(3/5,6/5)X 。

Matlab调⽤代码:Matlab调⽤代码:f=[-10;-15;-12];A=[5,3,1;-5,6,15;-2,-1,-1];b=[9;15;-5];lb=[0;0;0];x=linprog(f,A,b,[],[],lb)输出结果:原题⽆可⾏解。

5、⽤内点法和Matlab软件求解下列线性规划问题:解:⽤内点法的过程⾃⼰书写,参考答案:最优解[4/3 7/3 0] X=;最优值5 Matlab调⽤代码:f=[2;1;1];Aeq=[1,2,2;2,1,0];beq=[6;5]; Array 6解:(x=33y=-39最优解[33];最优值39(2)调⽤matlab编译程序bbmethodf=[-7;-9];G=[-13;71];h=[6;35][x,y]=bbmethod(f,G,h,[],[],[0;0],[],[1;0],1)x=50y=-35最优解[50];最优值357、⽤隐枚举法和Matlab软件求解下列问题:0)(1,2.1,1,输出结果x=1fval=2(2)调⽤代码:f=[-3;-2;5;2;3]; %价值向量fA=[1,1,1,2,1;7,0,3,-4,3;-11,6,0,-3,3]; %不等式约束系数矩阵A,[]中的分号“;”%为⾏分隔符b=[4;8;-1]; %不等式约束右端常数向量b[x,fval]=bintprog(f,A,b,[],[]); %调⽤函数bintprog。

最优化课后习题答案

最优化课后习题答案

最优化课后习题答案最优化课后习题答案最优化是一门重要的数学学科,它研究如何在给定的约束条件下,找到一个最优的解决方案。

在学习最优化课程时,我们通常会遇到一些习题,这些习题旨在帮助我们理解和应用最优化的原理和方法。

本文将为大家提供一些最优化课后习题的答案,以帮助大家更好地掌握这门学科。

1. 线性规划问题线性规划是最优化中的一个重要分支,它主要研究线性约束条件下的最优解。

下面是一个线性规划问题的示例:Maximize Z = 3x + 5ySubject to:x + y ≤ 62x + y ≤ 8x, y ≥ 0首先,我们需要将目标函数和约束条件转化为标准形式。

将不等式约束转化为等式约束,引入松弛变量,得到以下标准形式:Maximize Z = 3x + 5ySubject to:x + y + s1 = 62x + y + s2 = 8x, y, s1, s2 ≥ 0接下来,我们可以使用单纯形法求解该线性规划问题。

根据单纯形法的步骤,我们可以得到最优解为 Z = 22,x = 2,y = 4,s1 = 0,s2 = 0。

2. 非线性规划问题除了线性规划,最优化还涉及到非线性规划问题。

非线性规划是指目标函数或约束条件中存在非线性项的最优化问题。

下面是一个非线性规划问题的示例:Minimize f(x) = x^2 + 3x + 5Subject to:x ≥ 0对于这个问题,我们可以使用求导的方法来找到最优解。

首先,求目标函数的导数:f'(x) = 2x + 3将导数等于零,解得 x = -1.5。

由于约束条件x ≥ 0,所以最优解为 x = 0。

3. 整数规划问题整数规划是指在最优化问题中,决策变量必须取整数值的情况。

下面是一个整数规划问题的示例:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 10x, y ≥ 0x, y 为整数对于这个问题,我们可以使用分支定界法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档