3.3 解一元一次方程(2)同步精讲讲练(含答案)

合集下载

2023版高中数学新同步精讲精炼(必修第一册) 2

2023版高中数学新同步精讲精炼(必修第一册) 2

2.2 基本不等式(精练)【题组三 基本不等式求最值】1.(2021·浙江高一期末)已知正数a ,b 满足8ab =,则2+a b 的最小值为( ) A .8B .10C .9D .62.(2021·上海浦东新区·华师大二附中高一月考)若0x >,则___________.3.(2021·广东珠海市·高一期末)已知x 、y R +∈,且24x y +=,则xy 的最大值是_________.4.(2021·广东惠州市·高一期末)若正实数x ,y 满足21x y +=,则2xy 的最大值为______. 5.(2021·广东湛江市·高一期末)已知正数x 、y 满足341x y +=,则xy 的最大值为_________. 6.(2021·吉林长春市)已知,x y 为正实数,且4xy =,则4x y +的最小值是_____.7.(2021·全国高一课时练习)若0,0,10x y xy >>=,则25x y+的最小值为_____.8.(2021·浙江湖州市·湖州中学高一月考)已知,x y 为正实数,则162y x x x y++的最小值为__________. 9.(2021·上海高一期末)若a 、b 都是正数,且1a b +=,则(1)(1)a b ++的最大值是_________. 10.(2021·云南丽江市·高一期末)若1x >-,则31x x ++的最小值是___________. 11.(2021·江苏盐城市·盐城中学高一期末)若0,0,x y x y xy >>+=,则2x y +的最小值为___________.12.(2021·浙江高一期末)设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为_____. 13.(2021·上海交大附中高一开学考试)函数9424y x x=--,12x >的最小值为__________.14.(2021·吴县中学高一月考)已知110,0,121a b a b b >>+=++,则+a b 的最小值为________.15.(2021·安徽滁州市·高一期末)已知0,0,4a b a b >>+=,则411a b ++的最小值为__________. 16.(2021·合肥一六八中学高一期末)若0mn >,143m n+=,则m n +的最小值为 17.(2021·江苏南通市·高一期末)已知正数a ,b 满足21a b +=,则12a b+的最小值为 18.(2021·重庆市清华中学校高一期末)已知0x >,0y >,26x y +=,则21x y+的最小值为__________.19.(2021·全国高一课时练习)若1x >-,则22441x x x +++的最小值为20.(2021·浙江高一期末)已知正数,a b 满足2a b +=,则411a b a b +++的最大值是 21.(2020·泰州市第二中学高一月考)已知1a >,则23111-+-a a a 的最小值为___________.22.(2021·全国高一课时练习)函数()()2411x x f x x x -+=>-的最小值为______.【题组二 利用基本不等式求参数】1.(2021·浙江高一期末)已知x 、y 为两个正实数,且11m x y x y≤++恒成立,则实数m 的取值范围是________.2.(2021·四川雅安市·雅安中学高一期中)已知0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是_______. 3.(2021·天津)若不等式11014m x x +-≥-对10,4x ⎛⎫∈ ⎪⎝⎭恒成立,则实数m 的最大值为________. 4.(2021·上海市)已知正数x ,y 满足49x y xy +=且224x y m m +<-有解,则实数m 的取值范围是______. 5.(2020·天津一中高一期中)若两个正实数x ,y 满足4x y xy +=,且不等式234yx m m +-恒成立,则实数m 的取值范围是__.6.(2020·全国高一单元测试)若对任意0x >,231xa x x ≤++恒成立,则a 的取值范围是_____. 7.(2020·湖南高一月考)已知对任意(),0,x y ∈+∞,且23x y +=,11221t x y ≤+++恒成立,则t 的取值范围8.(2021·安徽宿州市)若对任意满足8a b +=的正数a ,b 都有14111x a b x++≥+-成立,则实数x 的取值范围是【题组三 利用基本不等式比较大小】1.(2021·全国高二单元测试)若a >0,b >0与 2a b +的大小关系是_____.2.(2021·全国高一课时练习)已知a ,b 是不相等的正数,x =,y =x ,y 的大小关系是__________.3(2020·上海高一专题练习)若01x <<,01y <<,且x y ≠,则在22,2,x y xy x y ++个是_______.4.(2020·福建省泰宁第一中学高一月考)若0a b <<,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例. (1)11a b b a +<+; (2)2211a a a a+≥+; (3)22a b a b b a+>+.5.(2021·全国高一课时练习)已知,a b ∈R ,求证:(1)2()4a b ab +;(2)()2222()a b a b ++.【题组四 基本不等式的综合运用】1.(2021·滨海县八滩中学高一期末)(多选)设正实数m 、n 满足2m n +=,则下列说法正确的是( ) A .2n m n+的最小值为3 B .mn 的最大值为1C的最小值为2 D .22m n +的最小值为22.(2021·重庆市杨家坪中学高一月考)(多选)下列说法正确的是( ) A .若2x >,则函数11y x x =+-的最小值为3 B .若310,05x y x y>>+=,,则34x y +的最小值为5 C .若0x >,则21x x +的最大值为12D .若0,0,3x y x y xy >>++=,则xy 的最小值为13.(2021·东莞市光明中学高一开学考试)(多选)下列结论正确的是( ) A .当0x >2≥ B .当2x >时,1x x+的最小值是2 C .当54x <时,14245x x -+-的最小值是5D .设0x >,0y >,且2x y +=,则14x y +的最小值是924.(2021·福建龙岩市·高一期末)(多选)已知0a >,0b >,且111a b+=,则( ) A .114a b ≥+ B .14411a b +≥-- C .298b a b +<+ D .114b a ab ⎛⎫- ⎪⎝⎭>5.(2021·江苏宿迁市·高二期末)(多选)已知0a b >>,且1a b +=,则以下结论正确的有( ) A .14ab <B .114a b+> C .2212a b +≥D1<6.(2021·全国高三专题练习)(多选)设0,0a b >>,则下面不等式中恒成立的是( ) A .221a b a b ++>+BC.211a b≤+D .114a b a b+≤+ 7.(2021·江苏南通市·高一开学考试)(多选)若0a >,0b >,且4a b +=,则下列不等式成立的是( )A 2≤B .228a b +≥C .111a b+≥ D .1104ab <≤ 8.(2021·江苏高一)(多选)下列不等式正确的是( )A .若0x <,则12xx+≤-B .若x ∈R 22≥C .若x ∈R ,则2111x <+ D .若0x >,则()1114⎛⎫++≥ ⎪⎝⎭x x 9.(2021·福建省福州格致中学高一期末)(多选)已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤B .111a b+≥ C .2216a b +≥ D .228a b +≥10.(2020·江苏南京市·南京一中高一月考)(多选)已知0,0a b >>,则下列不等式一定成立的是( )A .114a b+≥ B .11()()4a b a b++≥C 22a b≥+ D .2≥+aba b11.(2021·广州市)(多选)若0,0,2a b a b >>+=,则下列不等式中恒成立的是( )A .1ab ≤B ≤C .222a b +≥D .112a b +≥ 12.(2021·江苏泰州市·泰州中学高一月考)(多选)下列不等式中恒成立的是( ) A .222(1)a ba b +--B .111a b ab + C 4(5)x >-D .2ab ab a b+13.(2021·浙江高一期末)(多选)已知0a >,0b >.若41a b +=,则( ) A .114a b+的最小值为9 B .11a b+的最小值为9 C .()()411a b ++的最大值为94D .()()11a b ++的最大值为94【题组五 实际生活中的基本不等式】1.(2021·全国单元测试)若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2.2.(2021·浙江高一期末)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和y 最小,则x 的值是_________,y 的最小值是________.3.(2021·全国高一课时练习)工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元.则工厂和仓库之间的距离为___________千米时,运费与仓储费之和最小.4(2021·浙江高一期末)某单位要租地建仓库,已知每月土地费用与仓库到码头的距离成反比,而每月货物的运输费用与仓库到码头的距离成正比.经测算,若在距离码头10km 处建仓库,则每月的土地费用和运输费用分别为2万元和8万元.那么两项费用之和的最小值是___________万元.5.(2021·全国高一单元测试)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站___________km 处6.(2021·江苏南通市·高一开学考试)某小区为了扩大绿化面积,规划沿着围墙(足够长)边画出一块面积为100平方米的矩形区域ABCD 修建花圃,规定ABCD 的每条边长不超过20米.如图所示,要求矩形区域EFGH 用来种花,且点A ,B ,E ,F 四点共线,阴影部分为1米宽的种草区域.设AB x =米,种花区域 EFGH 的面积为 S 平方米.(1)将S 表示为x 的函数; (2)求 S 的最大值.7.(2020·江苏省江浦高级中学高一月考)某化工厂生产某种产品,当年产量在150吨至250吨时,每年的生产成本y 万元与年产量x 吨之间的关系可近似地表示为2130400010y x x =-+.求年产量为多少吨时,每吨的平均成本最低,并求每吨的最低成本.。

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5 B.3x﹣2x﹣6=5 C.3x﹣2x+3=5 D.3x﹣2x+6=52.把方程去分母,下列变形正确的是()A.2x﹣x+1=1 B.2x﹣(x+1)=1 C.2x﹣x+1=6 D.2x﹣(x+1)=63.下列方程变形中,正确的是()A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为()A.x=1 B.x=﹣1 C.x=﹣12 D.x=125.解方程时,把分母化为整数,得()A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为()A.x=﹣2 B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣4二、填空题11.当x=时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为.13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a 的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

中考数学专题《一元一次方程的应用》专题讲练原卷

中考数学专题《一元一次方程的应用》专题讲练原卷

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

2023版高中数学新同步精讲精炼(必修第一册) 第2章 一元二次函数、方程和不等式 章末测试(提升)

2023版高中数学新同步精讲精炼(必修第一册) 第2章 一元二次函数、方程和不等式 章末测试(提升)

第2章 一元二次函数、方程和不等式章末测试(提升)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2020·安徽省皖西中学高一期中)“a c >且b d >”是“a b c d +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当a c >且b d >时,根据不等式的性质,可得a b c d +>+;当a b c d +>+时,不能推出a c >且b d >,比如取2,2a b ==,1,3c d =-=. 所以“a c >且b d >”是“a b c d +>+”的充分不必要条件.故选:A. 2.(2021·山东)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是 A .(30)-, B .(]30-,C .()(),30,-∞-⋃+∞D .()[),30,-∞-+∞【答案】B【解析】当0k =时,308-<对一切实数x 都成立,故0k =符合题意; 当0k ≠时,要使不等式23208kx kx +-<对一切实数x 都成立,则203034208k k k k <⎧⎪⇒-<<⎨⎛⎫∆=-⨯⨯-< ⎪⎪⎝⎭⎩, 综上:30k -<≤ 故选:B.3.(2021·六安市裕安区新安中学高一期末)若正实数x ,y 满足281x y+=,则xy 的最小值是( ) A .48 B .56C .64D .72【答案】C【解析】由281x y =+≥=8≥,即64xy ≥当且仅当28281x y x y⎧=⎪⎪⎨⎪+=⎪⎩ ,即416x y =⎧⎨=⎩时,取得等号.故选:C4.(2021·衡阳市船山英文学校高一期末)若不等式210x tx -+<对一切()1,2x ∈恒成立,则实数t 的取值范围为( ) A .2t < B .52t >C .1t ≥D .52t ≥【答案】D【解析】因为不等式210x tx -+<对一切()1,2x ∈恒成立,所以211x t x x x+>=+在区间(1,2)上恒成立, 由对勾函数的性质可知函数1y x x=+ 在区间(1,2)上单调递增, 且当2x =时,15222y =+=,所以152x x +<故实数t 的取值范围是52t . 故选:D .5.(2021·江苏南通市·高一开学考试)正数,a b 满足912a b+=,若22a b x x +≥+对任意正数,a b 恒成立,则实数x 的取值范围是( ) A .[]4,2-B .[]2,4-C .(][), ,42-∞-⋃+∞D .(][),24,-∞-⋃+∞【答案】A【解析】因为正数a b ,满足912a b+=, 所以()19119110108222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当6a =,2b =时,等号成立. 故+a b 的最小值为8.又因为22a b x x +≥+对任意正数a b ,恒成立,即282x x +,解得42x -,所以实数x 的取值范围是[]42-,.故选:A 6.(2021·江苏苏州市·吴江中学高一期中)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x 里见到树,则11972215x ⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里=300步)( )A. B.里 C. D.【答案】D【解析】因为1里=300步,则由图知1200EB =步=4里,750GA =步=2.5里. 由题意,得EF GFGA EB⋅=, 则4 2.510EF GF EB GA ⋅=⋅=⨯=,所以该小城的周长为4()EF GF +≥=,当且仅当EF GF ==时等号成立. 故选:D .7.(2021·四川成都市·树德中学高一月考)下列结论表述正确的是( )A .若,a b ∈R ,则222a b ab +>恒成立B .若,a b ∈R ,则2a b ba+≥恒成立C .若0a >,0b >,则2a b +≤D .函数()131y x x x =+≥-的最小值为3 【答案】C【解析】对于A ,若,a b ∈R ,则222a b ab +≥恒成立,错; 对于B ,若0ab >,则2a b ba+≥恒成立,若0ab <,则2a bb a+≤-,错; 对于D ,函数111111y x x x x =+=-++--,3x ≥, 令1t x =-,则2t ≥且11y t t=++,因为11y t t =++在[)2,+∞上为增函数,故min 72y =,对于C ,因为()222222202244a b a b a b a ab b -++-+⎛⎫-=-=-≤ ⎪⎝⎭,而0a >,0b >,故2a b +≤成立. 故选:C .8.(2021·福建)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的取值范围为( )A .()()5,34,5-⋃B .[)(]5,34,5-⋃C .(][)5,34,5-⋃D .[][]5,34,5-⋃【答案】B【解析】解不等式2280x x -->,得4x >或2x <- 解方程22(27)70x k x k +++=,得172x ,2x k =- (1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,若不等式组的解集中仅有一个整数,则54k -≤-<-,即45k <≤; (2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,若不等式组的解集中仅有一个整数,则35k -<-≤,即53k -≤<; 综上,可知k 的取值范围为[)(]5,34,5-⋃ 故选:B二.多选题(每题至少两个选项为正确答案,少选且正确得2分,每题5分,4题共20分)9.(2021·辽宁营口市·高一期末)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.下列命题正确的是( ) A .若a >b ,则1a <1bB .若a <b <0,则a 2>b 2C .若ac 2>bc 2,则a >bD .若ab =4,则a +b >4【答案】BC【解析】对于A ,若11a b =>=-,此时11a b>,故A 错误; 对于B ,若0a b <<,则()()220a b a b a b -=+->,所以22a b >,故B 正确; 对于C ,若22ac bc >,则20c >,所以a b >,故C 正确; 对于D ,2a b ==-,满足4ab =,但44a b +=-<,故D 错误. 故选:BC.10.(2021·浙江高一期末)已知函数2()441,(1,1),()0f x ax x x f x ∀=+-∈-<恒成立,则实数a 的取值可能是( ) A .0 B .-1 C .-2 D .-3【答案】CD【解析】2()4410f x ax x =+-<,即2441ax x <-+ 当0x =时,不等式恒成立,a R ∈;当0x ≠时,20x >,则2min 414a x x ⎛⎫<-+ ⎪⎝⎭ 令()()1,11,t x=∈-∞-⋃+∞,则()[)224244,y t t t =-+=--∈-+∞ 即44a <-,解得1a <-故选:CD11.(2020·重庆市第二十九中学校高一期中)下列不等式一定成立的是( )A.3x x+≥B .4212x x+≥ C .()2222+≤+x y x yD .若0x <,0y <,则2y xx y+≤- 【答案】BC【解析】对于A 中,当0x <时,30x x+<,所以A 不正确; 对于B中,由4222112x x x x +=+≥=,当且仅当221x x =时,即1x =±时,等号成立,即4212x x+≥,所以B 正确; 对于C 中,由()22222211(2)()0222x y x y x y xy x y ++=+---=≥, 可得()2222x y x y +≤+,所以C 正确;对于D 中,0x <,0y <,可得0,0y x x y >>,可得2y x x y +≥=, 当且仅当y x x y =时,即x y =时,等号成立,即2y xx y+≥,所以D 不正确. 12.(2021·安徽省泗县第一中学高一开学考试)已知1a b >>,给出下列不等式:①11b ba a +>+;①11ab a b+>+;①3322a b a b +>;①11a b b a+>+;其中正确的有( ) A .① B .①C .①D .①【答案】ABD【解析】对于①:1(1)(1)1(1)(1)(1)b b a b b a ab a ab b a ba a a a a a a a++-++----===++++, 因为1a b >>,所以0a b ->,10a +>,所以101(1)b b a ba a a a+--=>++,即11b b a a +>+,故①正确; 对于①:1111b a a b a b a b a b a b ab -⎛⎫+-+=-+-=-+ ⎪⎝⎭1(1)()1()ab a b a b ab ab -⎛⎫=--=-⋅ ⎪⎝⎭, 因为1a b >>,所以0a b ->,1ab >, 所以110a b a b ⎛⎫+-+> ⎪⎝⎭,即11a b a b+>+,故①正确; 对于①:当3a =,2b =时,33333235a b +=+=,22223236a b =⨯⨯=, 所以3322a b a b +<,故①错误; 对于①:11111()1a b a b a b a b a b b a b a ab ab -⎛⎫⎛⎫+-+=-+-=-+=-+ ⎪ ⎪⎝⎭⎝⎭, 因为1a b >>,所以0a b ->,1ab >, 所以110a b b a ⎛⎫+-+> ⎪⎝⎭,即11a b b a+>+,故①正确.所以正确的有①①①. 故选:ABD.三.填空题(每题5分,4题共20分)13.(2020·浙江高一期末)已知14,24x y x y -<+<<-<,则32x y +的取值范围是_____. 【答案】3(,12)2-【解析】设,x y m x y n +=-=,因此得:,22m n m nx y +-==,14,24m n -<<<<, 532322222m n m n m nx y +-+=⋅+⋅=+, 因为14,24m n -<<<<,所以5510,12222m n -<<<<,因此3512222m n-<+<, 所以332122x y -<+<.故答案为: 3(,12)2-14.(2021·全国课时练习)若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是【答案】52-【解析】因为不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以1a x x ⎛⎫≥-+⎪⎝⎭对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立, 所以max 110,2a x x x ⎡⎤⎛⎫⎛⎫⎛⎤≥-+∈ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎦⎣⎦⎝⎭, 又因为()1f x x x =+在10,2⎛⎤ ⎥⎝⎦上单调递减,所以()min 1522f x f ⎛⎫== ⎪⎝⎭, 所以52a ≥-,所以a 的最小值为52-, 15.(2021·山西长治市)已知a ,b 均为正数,且22a b +=,则8a bab+的最小值为___________. 【答案】9【解析】因为a ,b 均为正数,且22a b +=, 所以12ab +=, 所以81818814122a b b ab b a b a a b a a b +⎛⎫⎛⎫=+⨯=+⨯ ⎪ ⎪⎝⎭⎝⎛⎫+=+++ ⎪⎝⎭⎭85529a b b a =+≥+=+, 当且仅当82a b b a =,即443a b ==时等号成立, 所以8a b ab+的最小值为9故答案为:916.(2021·辽宁锦州市·高一期末)已知0x >,0y >,满足2126x y x y+++=,存在实数m ,对于任意x ,y ,使得2m x y ≤+恒成立,则m 的最大值为____________.【答案】2【解析】因为0x >,0y >,所以()()22221122248x y x y xy x y ++=⋅≤⨯=,所以()()()22122862222228y x y x x y x y x y x y x y xy y x x y ++=+++=++≥++=++++. 即()8622x y y x≥+++,()()226280x y x y +-++≤,解得224x y ≤+≤.因为2m x y ≤+恒成立,所以()min 2m x y ≤+,即2m ≤. 所以m 的最大值为2. 故答案为:2四.解答题(第17题10分,其余每题12分,7题共70分)17.(2021·北京高一期末)已知关于x 的不等式221x x a -->(a R ∈) (1)若1a =,求不等式221x x a -->的解集;(2)若不等式221x x a -->的解集为R ,求实数a 的范围. 【答案】(1)((),113,-∞++∞;(2)(),2-∞-.【解析】(1)当1a =时,不等式221x x a -->即为2211x x -->, 可得()2130x -->,即(110x x --+>,解得1x <1x >即不等式的解集为((),113,-∞++∞.(2)因为不等式221x x a -->的解集为R , 所以2210x x a --->恒成立则函数221y x x a =---的图象恒在x 轴上方,与x 轴无交点;从而一元二次方程2210x x a ---=无实数根,∴()22410a ∆=-⨯--<,解得:2a <-.即实数a 的取值范围为(),2-∞-.18.(2021·全国高一课时练习)(1)已知01x <<,则(43)x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? (3)函数22(1)1x y x x +=>- 的最小值为?【答案】(1)23;(2)1;(3)2 【解析】(1)2113434(43)(3)(43)[]3323x x x x x x +--=⨯⨯-≤⨯=, 当且仅当343x x =-,即23x =时,取等号. 故所求x 的值为23. (2)因为54x <,所以540x ->,则11()42(54)332314554f x x x x x =-+=--++≤-=-+=--. 当且仅当15454x x -=-,即1x =时,取等号. 故1()4245f x x x =-+-的最大值为1.(3)2222122311x x x x y x x +-++-+==-- 2(1)2(1)31x x x -+-+=- 3(1)221x x =-++≥-.当且仅当311x x -=-,即1x =时,取等号.故函数的最小值为2.19.(2021·广东番禺)已知关于x 的不等式()210ax a x b -++<.(1)若不等式的解集是{}15x x <<,求+a b 的值;(2)若0a >,1b =,求此不等式的解集.【答案】(1)65a b +=;(2)分类讨论,答案见解析. 【解析】(1)由题意知0a >,且1和5是方程()210ax a x b -++=的两根,∴()115a a -++=-,且15b a ⨯=, 解得15a =,1b =,∴65a b +=. (2)若0a >,1b =,原不等式为()2110ax a x -++<,∴()()110ax x --<,∴()110a x x a ⎛⎫--< ⎪⎝⎭. ∴1a >时,11a <,原不等式解集为11x x a ⎧⎫<<⎨⎬⎩⎭, 1a =时,11a=,原不等式解集为∅, 01a <<时,11a >,原不等式解集为11x x a ⎧⎫<<⎨⎬⎩⎭, 综上所述:当1a >时,原不等式解集为11xx a ⎧⎫<<⎨⎬⎩⎭, 当1a =时,原不等式解集为∅.当01a <<时,原不等式解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 20.(2021·安徽省)设函数()21f x mx mx =-- (1)若对一切实数x ,()0f x <恒成立,求m 的取值范围;(2)若对于[]1,3x ∈,()5f x m <-+恒成立,求m 的取值范围:【答案】(1)(]4,0-.(2)6,7⎛⎫-∞ ⎪⎝⎭【解析】(1)210mx mx --<对x ∈R 恒成立,若0m =,显然成立,若0m ≠,则00m <⎧⎨∆<⎩,解得40m -<<. 所以,(]4,0m ∈-.(2)对于[]1,3x ∈,()5f x m <-+恒成立,即 2(1)6m x x -+<对[]1,3x ∈恒成立210x x -+>对[]1,3x ∈恒成立 ∴261m x x <-+对[]1,3x ∈恒成立, 即求26()1g x x x =-+在[]1,3的最小值, 21y x x =-+的对称轴为12x =, ∴min 13()24y y ==,max (3)7y y ==,∴22]1146[,][,8173176x x x x ∈⇒∈-+-+, 可得min 6(),7g x =即6,7m ⎛⎫∈-∞ ⎪⎝⎭.21.(2021·上海高一)m 为何值时,关于x 的方程 28(1)(7)0x m x m --+-=的两根:(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间.【答案】(1)79m <≤或25m ≥;(2)1m <;(3)25m ≥;(4)27m >;(5)79m <≤或2527m ≤<【解析】设函数由题意可得2()8(1)(7)=--+-f x x m x m ,方程有两根设为12,x x ,对称轴 116-=m x ,2(1)32(7)0=---≥m m 解得9m ≤或25m ≥(1)由题意可得121201+08708m x x m x x ⎧⎪≥⎪-⎪=>⇒⎨⎪-⎪=>⎪⎩79<≤m 或25m ≥ (2)由题意可得121201+08708m x x m x x ⎧⎪>⎪-⎪=<⇒⎨⎪-⎪=<⎪⎩1m < (3)由题意可得12101+=281m x x x ⎧⎪≥⎪⎪->⇒⎨⎪⎪⎪=>⎩25m ≥ (4)由题意可得027(2)0m f >⎧⇒>⎨<⎩(5)由题意可得0(0)0(2)010216f f m ≥⎧⎪>⎪⎪⇒>⎨⎪-⎪<<⎪⎩79<≤m 或2527≤≤m22.(2021·浙江高一期末)某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米.求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?【答案】(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【解析】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.。

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

第2课时 利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢? 2.求下列几组数的最小公倍数: (1)2,3; (2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16.解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3, 去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76, 把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可. 解:1-2x 6+x +13=1-2x -142(1-2x)+4(x +1)=12-3(2x -1) 2-4x +4x +4=12-6x +3 6x =9, x =32. 把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1?(2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x 人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x 人,由题意得方程:x 40-x +4050=1,解得x =360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短2.下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个 B.2个 C.3个 D.4个3.如图,直线l是一条河,P,Q是两个村庄。

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。

桐梓县实验中学七年级数学上册第3章一元一次方程3.3一元一次方程的解法3.3.2一元一次方程的解法2

桐梓县实验中学七年级数学上册第3章一元一次方程3.3一元一次方程的解法3.3.2一元一次方程的解法2

一元一次方程的解法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列解方程去分母正确的是( )A.由-1=,得2x-1=3-3xB.由-=-1,得2(x-2)-3x-2=-4C.由=--y,得3y+3=2y-3y+1-6yD.由-1=,得12y-1=5y+20B.的分子作为一个整体去分母后没有加上括号,错误;C.正确;D.不含分母的项漏乘各分母的最小公倍数15,错误.2.解方程=7,下列变形较简便的是( )A.方程两边都乘20,得4(5x-120)=140B.方程两边都除以,得x-30=C.去括号,得x-24=7D.方程整理,得·=7【解析】选C.解方程时,并不一定按照解一元一次方程的步骤去解,根据方程特点选择合适的步骤去解,此题中因为与互为倒数,相乘为1,所以可以直接去括号更为简单.【变式训练】解方程-2=x怎样变形较简单?【解析】去中括号,得x+1+3-=x.3.我们来定义一种新运算:=ad-bc.例如,=2×5-3×4=-2;再如=3x-2,按照这种定义,对于=,x的值是( )A.-B.-C.D.【解析】选A.根据运算的规则:=可化简为:2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.二、填空题(每小题4分,共12分)4.如果a2与-a2是同类项,则m= .【解析】由同类项的定义可知,(2m+1)=(m+3),解这个方程得:m=2.答案:25.当a= 时,1-与互为相反数.【解析】根据题意得1-+=0,去分母,得6-3(a-1)+2(2a-3)=0,解得a=-3.答案:-3【变式训练】当m= 时,代数式和m-3的值相等.【解析】根据题意得=m-3,去分母,得3(2m-3)=5×2m-3×15,解得m=9.答案:96.有一系列方程:第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;……根据规律,第10个方程是,其解为.【解析】观察给出的方程,第10个方程是+=21,其解为x=10×11=110.答案:+=21 x=110三、解答题(共26分)7.(8分)解方程:(1)(2013·梧州中考)x+2·=8+x.(2)-=1.【解析】(1)原方程变形为x+x+2=8+x,去分母,得x+5x+4=16+2x,移项,合并同类项,得4x=12,方程两边都除以4,得x=3.【一题多解】原方程变形为x+x+2=8+x,移项,合并同类项,得2x=6,方程两边都除以2,得x=3.(2)原方程变形为-=1,去分母,得5(30x-100)-2(40x-80)=10,去括号,得150x-500-80x+160=10,移项,合并同类项,得70x=350,方程两边都除以70,得x=5.【易错提醒】1.在利用分数的基本性质把分母中的小数化为整数时,方程的右边不变.2.去分母时等号右边的1不能漏乘.3.去分母时分子作为一个整体,必须加括号.8.(8分)在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,我们可以将(x+1),(x-1)各看成一个整体进行移项、合并,得到(x+1)=(x-1),再约分、去分母得3(x+1)=2(x-1),进而求解得x=-5,这种方法叫整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).【解析】移项、合并同类项得(2x+3)=(x-2),约分、去分母,得2(2x+3)=x-2,去括号,得4x+6=x-2,移项、合并同类项,得3x=-8,两边都除以3,得x=-.【培优训练】9.(10分)规定新运算符号的运算过程为,a b=a- b.解方程2(2x)=1x.【解析】因为2x=-x,所以2(2x)=-,又1x=-x,因此原方程可化为:-=-x,去括号,得:-+x=-x,移项,得x+x=-+,合并同类项,得x=-,方程两边都除以,得x=-.第2课时物质配比和配套问题【知识与技能】1.会用列表、画线段图等手段帮助分析理解实际问题.会用二元一次方程组解决实际问题.2.通过将实际问题中的数量关系转化为二元一次方程组,体会数学化的过程,提高分析和解决问题的能力.培养学生的探索精神和合作意识.【过程与方法】经历二元一次方程组解决实际问题的过程,知道列二元一次方程组解决实际问题的具体方法.【情感态度】针对问题的探究,鼓励学生大胆尝试,通过交流、合作、讨论,享受学习的乐趣和成功感,培养学生大胆发言的习惯,敢于面对挑战.【教学重点】重点是会用列方程组解决物质配比和配套问题.【教学难点】难点是在实际问题中找等量关系、列方程组.一、情境导入,初步认识【情境】实物投影,并呈现问题:某村18位农民筹集5万元资金,承包了一些低产田地.根据市场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦.种这两种作物每公顷所需的人数和需投入的资金如下表:在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的人都有工作,且资金正好够用?【教学说明】通过列二元一次方程组解决实际问题,总结出列方程组解应用题的方法.情境中可根据题意列表如下:设蔬菜的种植面积为x hm2,荞麦的种植面积为y hm2.根据题意,得54181.5 5.x yx y+=⎧⎨+=⎩,解方程组,得22.xy=⎧⎨=⎩,承包田地的面积为x+y=4(hm2)人员安排为5x=5×2=10(人),4y=4×2=8(人).答:这18位农民应承包4hm2的田地,种植蔬菜和荞麦各2hm2,并安排10人种蔬菜,8人种荞麦,这样能使所有的人都有工作,且资金正好够用.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.三、运用新知,深化理解1.将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的5 7、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨?2.某车间有28名工人,生产特种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套?3.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润利润可达4 500元;经精加工后销售,每吨利润涨致7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或销售完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜全部在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对列二元一次方程组解应用题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.解:(1)设分配给甲、乙两船的任务数分别是x吨、y吨,根据题意可得:答:分配给甲、乙两船的任务数分别是210吨、280吨.2.解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得2×12x=18(28-x)解得x=12,生产螺母的人数为28-x=16答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母正好配套.3.解:按方案一加工获利为:4 500×140=630 000(元).按方案二加工获利为:7 500×(6×15)+1 000×(140-6×15)=675 000+50000=725 000(元).按方案三加工获利为:设将x吨蔬菜进行精加工,y吨蔬菜进行粗加工.7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案三获利最多.答:选择方案三获利最多.四、师生互动,课堂小结通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第110、111页“练习”和教材第112页“习题3.4”中选取.2.完成同步练习册中本课时的练习.这节课充分利用学生身边的实际问题,尽可能增加教学过程的趣味性、实践性,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究.在列方程组的建模过程中,强化了方程的模型思想,培养了学生列方程组解决实际问题的意识和能力,在实际问题的解决中,进一步提高学生解方程组的能力.同时,利用列表、画线段图等手段能帮助学生提高分析问题和解决问题的能力.有理数的加减法一、单选题1.若 |a |= 3, |b|=1 ,且a > b ,那么a -b 的值是()A.4 B.2 C.-4 D.4或2【答案】D【解析】根据绝对值的性质可得a=±3,b=±1,再根据a>b,可得①a=3,b=1②a=3,b=﹣1,然后计算出a-b即可.【详解】∵|a|=3,|b|=1,∴a=±3,b=±1.∵a>b,∴有两种情况:①a=3,b=1,则:a-b=2;②a=3,b=﹣1,则a-b=4.故选D.【点睛】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.2.某地一天的最高气温是12℃,最低气温是-2℃,则该地这天的温差是( )A.B.C.D.【答案】C【解析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到答案.【详解】12-(-2)=14(℃).故选:C.【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.3.在2、﹣4、0、﹣3四个数中,最大的数比最小的数大A.﹣6 B.﹣2 C. D.【答案】D【解析】用最大的数2减去最小的数-4,再根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:2-(-4),=2+4,=6.故选:D.【点睛】本题考查了有理数的减法,有理数的大小比较,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.4.下列各式中正确的是()A.+5﹣(﹣6)=11 B.﹣7﹣|﹣7|=0C.﹣5+(+3)=2 D.(﹣2)+(﹣5)=7【答案】A【解析】根据有理数的加减法运算法则,绝对值的性质对各选项分析判断利用排除法求解.【详解】A. +5﹣(﹣6)=5+6=11,所以本选项在正确;B. ﹣7﹣|﹣7|=-7-7=-14,所以本选项错误;C. ﹣5+(+3)=-5+3=-2,所以本选项错误;D. (﹣2)+(﹣5)=-2-5=-7,所以本选项错误.故选A.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解题的关键.5.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】B【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.6.(2017·山东初三中考真题)计算-(-1)+|-1|,其结果为( )A.-2 B.2 C.0 D.-1【答案】B【解析】试题分析:由题可得:原式=1+1=2,故选:B.7.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为( )A .﹣1B .0C .1D .3【答案】C【解析】 【详解】分析:先计算出中间数列上三个数的和,再根据每行、每列、每条对角线上的三个数之和相等,得a+5+0=3,3+1+b=3,c ﹣3+4=3,求得a 、b 、c 的值,即可得a ﹣b+c 的值.详解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=3,3+1+b=3,c ﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a ﹣b+c=﹣2+1+2=1,故选C .点睛:本题考查了有理数的加减运算,根据题意正确列出算式是解题的关键.8.将 6-(+3)+(-2) 改写成省略括号的和的形式是( )A .6-3-2B .-6-3-2C .6-3+2D .6+3-2 【答案】A【解析】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2.故选A .【点睛】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.9.已知:|a |=2,|b |=5,那么|a +b |的值等于( )A .7B .3C .7或3D .±7或±3【答案】C 【解析】由绝对值的定义与2a =,5b =,得出2a =±,5b =±,从而求得a b +的值.【详解】已知|a |=2,|b |=5,则a =±2,b =±5;当a=2,b=5时,|a+b|=7;当a=2时,b=﹣5时,|a+b|=3;当a=﹣2时,b=5时,|a+b|=3.当a=﹣2时,b=﹣5时,|a+b|=7.综上可知|a+b|的值等于7或3.故选:C.10.下列说法中,正确的有()①两个有理数的和一定大于加数;②被减数一定大于减数;③0是最小的有理数;④一个数的倒数一定小于它本身A.0个B.1个C.2个D.3个【答案】A【解析】根据有理数的加法、减法法则,倒数的定义,以及有理数大小的比较法则即可解答.【详解】解:①两个有理数的和一定大于加数;错误,例如0+3=3;②被减数一定大于减数;错误,例如2-3=-1;③0是最小的有理数;错误,例如-2是有理数,-2;④一个数的倒数一定小于它本身;错误,例如:1的倒数是1等于它本身;故选:A.【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是解题的关键。

一元一次方程的应用题分类讲练一(和差倍分及行程题目)

一元一次方程的应用题分类讲练一(和差倍分及行程题目)

一元一次方程的应用题分类讲练(一)一、和、差、倍、分【解题指导】这类问题主要应搞清各量之间的关系,注意关键词语。

(1)倍数关系:通过关键词语"是几倍,增加几倍,增加到几倍,增加百分之几,增长率……"来体现。

(2)多少关系:通过关键词语"多、少、和、差、不足、剩余……"来体现。

1.学校组织活动,共有100名学生参加。

现把学生分成两组,已知第一组的人数比第二组人数的2倍少8人,那么两个组各有多少人?分析:本题相等关系为:第一组人数+第二组人数=100。

解:设第二组有x人,则第一组有(2x-8)人,据题意得2x-8+x=100解之得x=36则第一组人数为2x-8=2×36-8=64(人)答:第一组有64人,第二组有36人。

2.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是(A)A.2(x-1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x-1)=133.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶。

如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?分析:本题等量关系为:甲种所用钱数+乙种所用钱数=780元解:设购买甲种消毒液瓶,则购买乙种消毒液()瓶,由题意得6x+9(100-x)=780解之得x=40则购买乙种消毒液为100-x=100-40=60(瓶)答:购买甲种消毒液40瓶,乙种消毒液60瓶。

4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个。

在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件。

已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.分析:等量关系为:加工甲种零件的总利润+加工乙种零件的总利润=1440,把相关数值代入求解即可.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440,解得x=6.答:这一天有6名工人加工甲种零件.5. 学生们到校外进行军事野营训练,他们以5km/h 的速度行进,18min 后,学校发现他们忘了拿一些物品,一位老师骑自行车将这些物品给学生们送去。

人教版七年级数学上册3.解一元一次方程去括号课件

人教版七年级数学上册3.解一元一次方程去括号课件

1.移项要变号;
2.合并同类项时系数相加,
字母部分不变;
3.系数化为1时方程两边同
时除以未知数的系数或乘以
未知数系数的倒数。
新课导入
前面我们已经学习了运用移项、合并同类项的方法
解一元一次方程.对于像2(x–3)+3(x–1)=5这样的方程,
又该怎么办呢?今天我们来学习含有括号的一元一次
方程的解法.
分析:等量关系:这艘船往返的路程相等,即
×
×
顺流速度___顺流时间___逆流速度___逆流时间

解:设船在静水中的平均速度为x km/h,则顺流的速度
为(x +3) km/h,逆流速度为(x -3) km/h.

×
根据顺流速度___顺流时间___逆流速度
×
___逆流时间
列出方程,得 2(x+3)=2.5(x-3)
( A)
A. 1
B.
3
5
C.
1
5
D.-1
【解析】把x=a-1代入原方程,得3(a-1)+2a=2,解得a=1。
3.若关于x的方程 3x + ( 2a+1 ) = x-( 3a+2 ) 的解为x = 0,
则a的值等于 (
A.


B.
D )


C.



D.



4.定义新运算:对于任意有理数 a,b 都有 a*b=2a-b,如(-3)*4
A.4x-1-x-3=1
B. 4x -1- x+3 =1
C.4x-2-x-3=1
D.4x-2-x+3=1
【解析】去括号时,当括号前面是“-”号,括

七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】

七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】

3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+122.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣33.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=705.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.56.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+67.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.1189.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.612.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 人.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 .15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 .16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 公里.17.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 .18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 元.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= ,b= ,c= ;(2)求对G、K两个医药集团的疫苗都能接受的人数.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+12解:3(4+x)﹣3×4=3x.答案:C.2.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣3解:设这队同学共有x人,可列得方程:=.答案:B.3.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.答案:B.4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=70解:设每个肉粽x元,则每个素粽(x﹣1)元,依题意得:10x+5(x﹣1)=70.答案:A.5.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.5解:设该队获胜x场,则负了(6﹣x)场,依题意得:3x+(6﹣x)=14,解得:x=4.答案:C.6.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+6解:设该校准备的桌子数为x,依题意得:10(x﹣1)=8x+6.7.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有超过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元).答案:C.8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.118解:设7个日期的中间数为x,则另外6个数分别为(x﹣8),(x﹣6),(x﹣1),(x+1),(x+6),(x+8),∴7个数之和为7x.当7x=64时,x=,不合题意;当7x=72时,x=,不合题意;当7x=98时,x=14,符合题意;当7x=118时,x=,不合题意.9.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天解:设快马追上慢马的时间为x天,则此时慢马走了(x+6)天,依题意得:240x=150(x+6),解得:x=10.答案:A.10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=解:设物价是y钱,根据题意可得:=.答案:D.11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.6解:由题意,可得8+x=2+7,解得x=1.答案:A.12.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.解:设A、B两地间距离为x千米,由题意得:.答案:B.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 48 人.解:设这些学生共有x人,根据题意得:﹣2=,解得x=48,答案:48.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 6x+14=8x .解:设有牧童x人,依题意得:6x+14=8x.答案:6x+14=8x.15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 ﹣2 .解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.答案:﹣2.16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 23 公里.解:∵甲的速度是每小时6公里,乙速度是甲速度的,∴乙速度是6×=4.5公里/小时,设A、B两地的距离为x公里,依题意,得:x﹣(1+)×6﹣4.5×1=11或(1+)×6+4.5×1﹣x=11,解得:x=23或x=1(不合题意),答案:2317.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 = .解:设共有x本课外读物,根据题意得:=,答案:=.18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 32 元.解:设总票数为a张,8月份零售票按每张x元定价,由题意得:20××a×+24×(a﹣a)=25×(1﹣)×a+(a﹣a)x,∴8a+4a=a+ax,∴x=.∴x=32.即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.答案:32.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= 300 ,b= 200 ,c= 170 ;(2)求对G、K两个医药集团的疫苗都能接受的人数.解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).答案:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 225(1﹣a%) 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.解:(1)B商品标价是225元,出售价格按标价降低a%,那么降价后的标价是225(1﹣a%)元,答案:225(1﹣a%);(2)设A商品进价为m元,则m(1+50%)=150.解得m=100.设B商品的进价为n元,则n(1+50%)=225.解得n=150.由题意得:[150(1﹣10%)﹣100]×20+[225(1﹣a%)﹣150]×10=1000.解得:a=20,∴a的值是20.。

第4章《一元一次方程》知识讲练(学生版)

第4章《一元一次方程》知识讲练(学生版)

2023-2024学年苏科版数学七年级上册章节知识讲练知识点01:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做一元一次方程.知识要点:判断是否为一元一次方程,应看是否满足:①只含有一个未知数的次数为;②未知数所在的式子是,即分母中不含未知数.3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点02:等式的性质与去括号法则1.等式的性质:等式的性质1:,结果仍相等.等式的性质2:,结果仍相等.2.合并法则:合并时,把系数 保持不变. 3.去括号法则:(1)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相反.知识点03:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的(2)去括号:依据 ,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边, 移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为 (a ≠0)的形式.(5)系数化为1: 得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若 相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点04:用一元一次方程解决实际问题的常见类型1.行程问题:路程= ×时间2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金× ×6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•惠山区校级期末)关于x 的方程kx =2x +6与2x ﹣1=5的解相同,则k 的值为( ) A .4B .3C .5D .62.(2分)(2022秋•高新区期末)已知等式3a =2b +5,则下列等式中不一定成立的是( ) A .3a ﹣5=2bB .3a +1=2b +6C .D .3ac =2bc +53.(2分)(2022秋•玄武区校级期末)小明到某文具店购买铅笔和中性笔.设购买铅笔的金额为x元,根据表格,下列方程错误的是()商品单价(元/支)购买数量/支购买金额/元铅笔x中性笔总计/ 13 34 A.+=13 B.x+3.5(13﹣)=34C.1.2(13﹣)=x D.3.5(13﹣)=34﹣x4.(2分)(2022秋•江都区期末)某学校组织师生去中小学素质教育实践基地研学.已知此次共有n名师生乘坐m辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①40m+15=45(m﹣1);②40m﹣15=45(m﹣1);③=﹣1;④+1.其中正确的是()A.①④B.①③C.②③D.②④5.(2分)(2022秋•连云港期末)明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x 两银子,则可列方程为()A.7x﹣4=5x+8 B.C.7x+4=5x﹣8 D.6.(2分)(2022秋•惠山区校级期末)元旦期间,甲、乙两家水果店对刚到货的橙子搞促销,甲水果店连续两次降价,第一次降价10%,第二次降价20%,乙水果店一次性降价30%,小丽想要购买这种橙子,她应选择()A.甲水果店B.乙水果店C.甲、乙水果店的价格相同D.不确定7.(2分)(2022秋•南通期末)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤8.(2分)(2022秋•泗洪县期末)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑得快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)9.(2分)(2022秋•工业园区校级月考)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=2OA,点M以每秒1个单位长度的速度从点A向右运动,点N以每秒3个单位长度的速度从点B向左运动(点M、点N同时出发),经过几秒,点M、点N分别到原点O的距离相等()A.5秒B.5秒或者4秒C.5秒或者秒D.秒10.(2分)(2022秋•江都区月考)观察月历,用形如的框架框住月历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是()A.45 B.55 C.60 D.75二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•亭湖区期末)若(2﹣a)x|a﹣1|﹣5=0是关于x的一元一次方程,则a=.12.(2分)(2022秋•泗阳县期末)如图,在数轴上,A、B两点同时从原点O出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t,若线段AB上(含线段端点)恰好有4个整数点,则时间t 的最小值是.13.(2分)(2022秋•海门市期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?根据题意,可求得合伙买羊的是人.14.(2分)(2022秋•鼓楼区校级期末)防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为.15.(2分)(2022秋•江都区期末)一项工程甲单独做要20小时,乙单独做要12小时,现先由甲单独做5小时,然后乙加入进来合作.完成整个工程一共需要小时.16.(2分)(2022秋•江阴市期末)某种商品降价10%后的价格恰好比原价的一半多40元,该商品的原价是元.17.(2分)(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.18.(2分)(2022秋•大丰区期末)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多3分钟,求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.19.(2分)(2022秋•句容市校级期末)如图,正方形的边长为6,已知正方形覆盖了三角形面积的,而三角形覆盖了正方形面积的一半,那么三角形的面积是.20.(2分)(2021秋•射阳县校级期末)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•仪征市期末)解方程:(1)5(x﹣1)+3=3x﹣3;(2)+=1.、22.(6分)(2022秋•仪征市期末)某小组计划做一批“中国结”如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①5x﹣9=4x+15②=(1)①中的x表示;②中的y表示.(2)请选择其中一种方法,写出完整的解答过程.23.(8分)(2022秋•丹徒区期末)某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)35 65标价(元/件)50 100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?24.(8分)(2022秋•惠山区校级期末)运动场环形跑道周长为300米,爷爷一直都在跑道上按逆时针方向匀速跑步,速度为3米/秒,与此同时小红在爷爷后面100米的地方也沿该环形跑道按逆时针方向运动,速度为a米/秒.(1)若a=1,求两人第一次相遇所用的时间;(2)若两人第一次相遇所用的时间为80秒,试求a的值.25.(8分)(2022秋•丹徒区期末)已知关于m的方程的解也是关于x的方程2(x﹣8)﹣n=6的解.(1)求m、n的值;(2)如图,数轴上,O为原点,点M对应的数为m,点N对应的数为n.①若点P为线段ON的中点,点Q为线段OM的中点,求线段PQ的长度;②若点P从点N出发以1个单位/秒的速度沿数轴正方向运动,点Q从点M出发以2个单位/秒的速度沿数轴负方向运动,经过秒,P、Q两点相距3个单位.26.(8分)(2022秋•玄武区校级期末)某市采用分段收费的方式按月计算每户家庭的水费,收费标准如表:户月用水量(m3)收费标准(元/m3)不超过18m3超过18m3,但不超过25m3的部分 5超过25m3的部分7(1)小明家3月份用水量为20m3,应缴纳水费元;(2)设某户某月的用水量为xm3,应缴纳水费多少元?(用含x的代数式表示)(3)小红家6月份和7月份的用水量共50m3,且7月份用水量比6月份多,这两个月共缴纳水费217元,则小红家6月份和7月份的用水量分别为m3,m3.27.(8分)(2022秋•太仓市期末)如图1,将一副三角板摆放在直线MN上,在三角板OAB和三角板OCD中,∠OAB=∠OCD=90°,∠AOB=45°,∠COD=30°.(1)保持三角板OCD不动,当三角板OAB旋转至图2位置时,∠BOD与∠AON有怎样的数量关系?请说明理由.(2)如图3,若三角板OAB开始绕点O以每秒6度的速度逆时针旋转的同时、三角板OCD也绕点O以每秒3度的速度逆时针旋转,当OB旋转至射线OM上时,两块三角板同时停止转动.设旋转时间为t秒,则在此过程中,是否存在t,使得∠BOD+∠AON=60°?若存在,求出t的值;若不存在,请说明理由.28.(8分)(2022秋•广陵区校级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N 两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N 表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.。

2021-2022学年七年级数学上册第三章实际问题与一元一次方程练习题含解析

2021-2022学年七年级数学上册第三章实际问题与一元一次方程练习题含解析
1300 (3)设该单位用水x吨,①当x≤300时,3x=1300,解得:x= (舍去),
3 ②当x>300时,300×3+4(x−300)=1300,解得:x=400.答:该单位这个月用水400 吨. 九. 日历问题 【例题9】如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所 示),请你运用所学的数学知识探究,这7个数的不可能是( )
7 五. 行程问题 1.行程问题中有三个基本量:路程、时间、速度。
关系式为:①路程=速度×时间;②速度= ;③时间= 。
2.顺逆风(水)速度之间的关系: ①顺水(风)速度=静水(无风)速度+水流速度(风速); ②逆水(风)速度=静水(无风)速度-水流速度(风速)。 3. 追击问题的一个最基本的公式:追击时间 × 速度差 = 追击的路程. 相遇问题的基本公式为:速度和 × 相遇时间 = 路程. 【例题5-1】(列方程解应用题)双“11”期间,某快递公司的甲、乙两辆货车分别从相距
第4页
【例题5-2】(2020·甘肃白银市·七年级期末)某船从 A 地顺流而下到达 B 地,然后逆流 返回到达 A 地,一共用了8小时.已知此船在静水中的速度为8千米/小时,水流的速度为2 千米/小时.求 A 、 B 两地之间的路程. 【解析】解:设A、B两地之间的路程为x千米,依题意得, x + x = 8 ,
四. 积分问题 【例题4】(2021·湖北七年级期末)某学校组织四名学生参加知识竞赛,知识竞赛共设20 道选择题,各题分值相同,每题必答,下表记录了其中2名学生参赛后的得分情况.
参赛者 答对题数 答错题数 得分
A
18
2
86
B
17
3
79
(1)参赛学生 C 得72分,他答对了几道题?答错了几道题?为什么?

2024年湘教版七年级数学上册 3.3 一元一次方程的解法(课件)

2024年湘教版七年级数学上册 3.3 一元一次方程的解法(课件)

知1-讲
感悟新知
3. 解一元一次方程的具体做法、变形依据、注意事项 知1-讲 列表如下:
变形名称 去分母
具体做法
在方程两边同 乘各分母的最 小公倍数 . 当分 母是小数时, 要利用分数的 基本性质把小 数化为整数
变形依据
等式的 基本性质 2
注意事项
(1)不要漏乘不 含分母的项;(2) 分子是一个多 项式时,去分 母后加上括号
移项,得 30x-10x+2x=20-5+4,
合并同类项,得 22x=19,
两边都除以 22,得 x=1292.
感悟新知
知1-练
例2 [月考·衡阳雁峰区]当 m 用什么数代入时,代数式
2m-
5m3-1的值与代数式
7-m 2
的值的和等于
5

解题秘方:先根据题意列出一元一次方程,然后
根据解一元一次方程的一般步骤解方
第三章 一次方程(组)
3.3 一元一次方程的解法
学习目标
1 课时讲解 解一元一次方程
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 解一元一次方程
1. 解方程: 求方程的解的过程叫作解方程 . 2. 解一元一次方程的一般步骤:
(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)系数化为 1.
知1-讲
感悟新知
特别解读 1. 对于只含有未知数x的一元一次方程,通过去
分母、去括号、移项、合并同类项,系数化 为1,从而将其化 为 x=a的 形 式,这实质上 是求一元一次方程的解的过程. 2. 解一元一次方程的一般步骤不一定每步都用 到,也不一定按照从上到下的顺序进行,要 根据方程的特点选取适当的步骤进行求解.

初中数学_解一元一次方程(去括号与去分母)教学设计学情分析教材分析课后反思

初中数学_解一元一次方程(去括号与去分母)教学设计学情分析教材分析课后反思
如果去括号,就能简化方程的形式。
6x+6(x-2000)=150000
↓去括号
6x+6x-12000=150000
↓移项
6x+6x=150000+12000
↓合并同类项
12x=162000
↓系数化为1
x=13500
答:这个工厂去年上半年每月平均用电13500度。
总结:去括号法则:⑴括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号。⑵括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
例2一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的平均速度.
(具体过程见幻灯片)
四.小结:
⑴解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1
(2)括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号
二.讲授新课:
问题某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
分析:若设上半年每月平均用电x度,则下半年每月平均用电(x-2000)度
上半年共用电6x度,下半年共用电6(x-2000)度
因为全年共用了15万度电,
所以,可列方程6x+ 6(x-2000)=150000
思考:本题还有其他列方程的方法吗?用其他方法列出的方程应怎么解?
(具体看幻灯片)
例1解方程3x-7(x-1)=3-2(x+3)
解:去括号,得3x-7x+7=3-2x-6
移项,得3x-7x+2x=3-6-7

最新人教版《 解一元一次方程(二)——去括号与去分母(第2课时)》七年级数学教学设计教案

最新人教版《 解一元一次方程(二)——去括号与去分母(第2课时)》七年级数学教学设计教案

第三章一元一次方程3.3 解一元一次方程(二)——去括号与去分母第2课时一、教学目标【知识与技能】1.掌握含有分母的一元一次方程的解法;2. 进一步掌握利用一元一次方程解决实际问题【过程与方法】经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力.【情感态度与价值观】1.归纳解一元一次方程的步骤,体会转化的思想方法。

2. 让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】掌握含有以常数为分母的一元一次方程的解法.【教学难点】加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.五、课前准备教师:课件、三角尺、等式的性质等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课下面是一道著名的求未知数的问题. (出示课件2-4)一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.教师问1:思考题中涉及到哪些数量关系和相等关系?学生回答:它的三分之二+它的一半+它的七分之一+它的全部=33教师问2:引进什么样的未知数,能根据这样的相等关系列出方程呢?学生回答:设这个数为x. 根据题意,得23x+12x+17x+x=33.教师问3:这个方程与前面学过的一元一次方程有什么不同?学生回答:这个方程含有分母.教师:怎样解这个方程呢?这节课我们就来学习怎样解答这类方程。

(二)探索新知1.师生互动,探究含有分母的一元一次方程的解法解方程:3x+12−2=3x−210−2x+35(出示课件6)教师问4:若使方程的系数变成整系数方程,方程两边应该同乘什么数?学生讨论后回答:两边同乘以分母的最小公倍数.教师问5:去分母时要注意什么问题?学生回答:分子是多项式的要加括号,等式里的整数不要漏乘.教师问6:哪位同学试着解答一下?学生小组讨论后,师生共同解答如下:(出示课件7)教师问7:下列方程的解法对不对?如果不对,你能找出错在哪里吗?(出示课件8)解方程:2x−13−x+22=1解:去分母,得 4x -1-3x + 6 = 1 ①移项,合并同类项,得 x=4 ②学生回答:总结点拨:解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

解一元二次方程(压轴题专项讲练)(原卷版)—2024-2025学年九年级数学上册(苏科版)

解一元二次方程(压轴题专项讲练)(原卷版)—2024-2025学年九年级数学上册(苏科版)

解一元二次方程换元法:是数学中的重要方法之一,它往往和消元的思想联系在一起。

换元的实质就是“转化”的数学思想,关键是构造元和设元,理论依据是等量代换。

换元的基本方法有:整体换元、局部换元、均值换元、三角换元等。

换元法的一般步骤为:设元(或构造元)、换元、求解、回代和检验等。

一、直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.二、配方法解一元二次方程将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.三、公式法解一元二次方程个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.四、因式分解法概念当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【典例1】阅读材料,并解答问题:数学运算中有一种非常重要的思想—“换元法”.它的本质是将一个冗长的、前后具有相同形式的式子用一个字母来代替,将其化为我们所熟悉的形式.例如:为解方程(x2―1)2―5 (x2―1)+4=0,我们将x2―1看成一个整体,然后设x2―1=y,则原方程化为y2―5y+4=0,∴(y―1) (y―4)=0,解得y1=1,y2=4.当y=1时,x2―1=1,∴x=±y=4时,x2―1=4,∴x=±x1=x2=―x3=x4=―请利用以上方法解下面方程:(1)x4―2x2―8=0;(2)(x2+3)2―9(x2+3)+20=0;(3)3x―12x―8x3x―1=3.(1)设x2=y,则y2―2y―8=0,解得y1=4,y2=―2,根据y=x2>0,得出x2=4,求解即可;(2)设x2+3=y,则y2―9y+20=0,解得:y1=4,y2=5,分别求解当y=4时,和当y=5时,方程x2+3=y的解即可;(3)设3x―12x=y,则y―4y=3,求解y1=4,y2=―1,分别求解当y=4时和当y=1时方程3x―12x=y的解即可.(1)解:x4―2x2―8=0,设x2=y,y2―2y―8=0,(y―4)(y+2)=0,y―4=0或y+2=0,解得:y1=4,y2=―2,∵y=x2>0,∴y=4,∴x2=4,解得:x1=2,x2=―2.(2)解:(x 2+3)2―9(x 2+3)+20=0,设x 2+3=y ,y 2―9y +20=0,(y ―4)(y ―5)=0,y ―4=0或y ―5=0,解得:y 1=4,y 2=5,当y =4时,x 2+3=4,解得:x =±1,当y =5时,x 2+3=5,解得:x =±综上:x 1=1,x 2=―1,x 3=4=―(3)解:3x―12x ―8x 3x―1=3,设3x―12x=y ,y ―4y =3,y 2―3y ―4=0,(y ―4)(y +1)=0,y ―4=0或y +1=0,y 1=4,y 2=―1,经检验,y 1=4,y 2=―1,是方程y ―4y =3的解,当y =4时,3x―12x=4,解得:x =―15,经检验,x =―15是方程3x―12x =4的解;当y =1时,3x―12x =1,解得:x =1,经检验,x =1是方程3x―12x =1的解;综上:x 1=―15,x 2=1.1.(2023上·山东菏泽·九年级校考阶段练习)解方程:(1)2t 2―6t +3=0(用配方法)(2)3(x ―5)2=2(5―x )(用因式分解法)(3)2x 2―4x ―1=0(公式法)2.(2023上·四川成都·九年级华西中学校联考期中)用适当的方法解方程:(1)2(x ―1)2―18=0(2)9x 2―12x ―1=0(3)x 2+5x =6(4)3x (2x ―5)=4x ―103.(2023上·辽宁鞍山·(1)2(x ―3)2=x 2―9(因式分解法)(2)2x 2――3=0(公式法)4.(2023上·湖南衡阳·九年级阶段练习)解方程(1)(x ―1)(x +2)=4;(3)2(x ―3)(x +4)=x 2―10.5.(2023上·黑龙江绥化·九年级校考期中)解方程(1)x2―3x―1=0(2)x(2x+3)=4x+6(3)(x―2)2―7(x―2)=18(4)(2x+3)2=x2―6x+96.(2023上·甘肃天水·九年级校考阶段练习)运用适当的方法解方程(1)(x―3)2=25;(2)x2―x―1=0;(3)x2―6x+8=0;(4)(x2―x)2―5(x2―x)+6=07.(2023上·湖北武汉·九年级校考阶段练习)用适当方法解下列方程(1)x2+4x―12=0(2)x2―3x+2=0(3)x(x―1)=x(4)x2―3x+1=0(5)(4x+1)2=(5x+2)2(6)(2x+1)2+3(2x+1)+2=0.8.(2023下·八年级课时练习)解方程(x―2)(x+1)(x+4)(x+7)=19.9.(2023下·湖南长沙·=y =z =x.10.(2023上·全国·九年级专题练习)解下列方程:(1)2(x 2﹣7x)2﹣21(x 2﹣7x)+10=0;(2)(2x 2+3x )2﹣4(2x 2+3x )﹣5=0.11.(2024·全国·=103.12.(2023上·湖北宜昌·八年级校考期末)解方程x 2+3x ―3x 2+3x―7=9.13.(2023下·江苏扬州·八年级校考阶段练习)解方程:(1)x―2x+2―16x 2―4=x+2x―2.(2)(x +4)2―5(x +4)=0.14.(2023上·上海青浦·八年级校考期末)解方程:(1=2;(2)2xx2―2x―3―1x―3=1;(3)2x2―=015.(2023下·安徽六安·八年级校考阶段练习)根据要求解答下列问题(1)①方程x2-2x+1=0的解为;②方程x2-3x+2=0的解为;③方程x2-4x+3=0的解为;(2)根据以上方程特征及解的特征猜想:方程x2-9x+8=0的解为,并用配方法解方程进行验证;(3)根据以上探究得出一般结论:关于x的方程x2-(1+m)x+m=0的解为.16.(2023上·山西运城·九年级统考期中)读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解.各类方程的解法不尽相同,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如x3+x2―2x=0,可以通过因式分解把它转化为x(x2+x―2)=0,解方程x=0和x2+x―2=0,可得方程x3+x2―2x=0的解.(1)问题:方程x3+x2―2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”=x的解.17.(2023上·江苏扬州·九年级校考期末)阅读下列材料:为解方程x4―x2―6=0可将方程变形为(x2)2―x2―6=0然后设x2=y,则(x2)2=y2,原方程化为y2―y―6=0①,解①得y1=―2,y2=3.当y1=―2时,x2=―2无意义,舍去;当y2=3时,x2=3,解得x=±∴原方程的解为x1=x2=―上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)(x2―2x)2―5x2+10x+6=0;(2)3x2+15x+=2.18.(2023上·江苏·九年级统考期中)阅读理解以下内容,解决问题:解方程:x2+|x|―2=0.解:∵x2=|x|2,∴方程即为:|x|2+|x|―2=0,设|x|=t,原方程转化为:t2+t―2=0解得,t1=1,t2=―2,当t1=1时,即|x|=1,∴x1=12=―1;当t2=―2时,即|x|=―2,不成立.∴综上所述,原方程的解是x1=1,x2=―1.以上解方程的过程中,将其中|x|作为一个整体设成一个新未知数t,从而将原方程化为关于t的一元二次方程,像这样解决问题的方法叫做“换元法”(“元”即未知数).(1)已知方程:x2+1x2―2x―2x―1=0,若设x+1x=m,则利用“换元法”可将原方程化为关于m的方程是______;(2)仿照上述方法,解方程:1x――5=0.19.(2024·全国·八年级竞赛)阅读下列材料:在解一元二次方程时,可通过因式分解,将一元二次方程转换为两个一元一次方程,分别解两个一元一次方程得到原方程的两个解.例如:x2―3x+2=0,将方程左边因式分解得:(x―1)(x―2)=0,则x―1=0或x―2=0,解得x1=1,x2=2.根据以上材料,解答下列问题:(1)解方程:x2―4x+3=0;(2+4⋅x2―6x―5=0.20.(2023上·甘肃天水·九年级校联考阶段练习)阅读下列材料:方程:x4―6x2+5=0是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2―6y+5=0,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±所以原方程有四个根:x1=1,x2=―1,x3=x4=―在这个过程中,我们利用换元法达到降次的目的,体现了转化的数学思想.(1)利用换元法解方程(x2―x)2―4(x2―x)―12=0得到方程的解为______.(2)若x2+y2+1x2+y2+3=8,求x2+y2的值.(3)利用换元法解方程:x2―42x +2xx2―4=2.。

七年数学、一元一次方程与实际问题典型例题讲练(有答案可编辑)

七年数学、一元一次方程与实际问题典型例题讲练(有答案可编辑)

4 D 6 0 0 6 1 1 0 0(1)、表格中C队的主场进球数x的值为,本次足球小组赛胜一场积分,平一场积分,负一场积分;(2)该足球联赛奖金分配方案为:参加第一阶段小组赛6场比赛的每支球队都可以获得参赛奖金1200万元.另外,小组赛中每获胜一场可以获得150万元,平一场可以获得50万元.请根据表格提供的信息,求在第一阶段小组赛结束后,A队一共能获得多少万元的奖金?技巧点拨理解比赛积分问题中常用的两个等量关系“胜的场数+平的场数+负的场数=比赛总场数”“胜的积分+平的积分+负的积分=比赛总积分”是解决问题的关键,(答:在第一阶段小组赛结束后,A队一共能获得1850万元的奖金.)变式训练2.(2019·中牟期末)某次足球比赛的积分规则为:胜一场得3分,平一场得1分,负一场得0分.某支足球队共打了14场比赛;负5场,共得19分,那么在这次比赛中这支足球队胜了()A.6场B.5场C.4场D.3场题型7、图表信息问题典例16·根据图3.4-1中给出的信息,解答下列问题:(1)放入1个小球水面升高cm,放入1个大球水面升高cm;(2)如果在左侧的瓶中放入10个球,要使水面上升到50 cm,应放入大球、小球各多少个?(答:应放入4个大球,6个小球.)考点3、图表分析问题興例23、(聊城中考)在如图3.4-2所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是(D )A.27B.51C.69D.72练习题A 、基础练→知识巩固1、某品牌自行车1月份的销售为100辆、每辆车的售价相同、2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元、 2月份与1月份总额相同,则1月份每辆车的售价为( A )A.880元B.800元C.720元D.1 080元2、(题型2)一项工程甲单独完成需要20小时,乙单独完成需要12小时.若甲先做8小时,然后甲、乙合作,当完成了这项工程的45时,甲共做了 11 小时。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(人教版上)同步练习第三章第三节解一元一次方程(二)一. 本周教学内容:一元一次方程(二)列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

列方程解应用题的主要步骤:1. 认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2. 用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3. 利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4. 求出所列方程的解;5. 检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。

【学习提示】一. 数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b +c。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2N+2或2N—2表示;奇数用2N+1或2N—1表示。

例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为X+7,个位上的数是3X,等量关系为三个数位上的数字和为17。

解:设这个三位数十位上的数为X,则百位上的数为X+7,个位上的数是3XX+X+7+3X=17 解得X=2X+7=9,3X=6 答:这个三位数是926例2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X,则个位上的数是2X,10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。

二. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。

例3. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?[分析]甲独作10天完成,说明的他的工作效率是1/10,乙的工作效率是1/8等量关系是:甲乙合作的效率×合作的时间=1解:设合作X天完成(1/10+1/8)X=1 解得X=40/9答:两人合作40/9天完成例4. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(+)×3+=1,解这个方程,++=112+15+5x=60 5x=33∴x==6答:乙还需6天才能完成全部工程。

例5. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。

解:设打开丙管后x小时可注满水池,由题意得,(+)(x+2)-=1解这个方程,(x+2)-=121x+42-8x=7213x=30∴x==2答:打开丙管后2小时可注满水池。

三. 行程问题:[解题指导](1)行程问题中的三个基本量及其关系:路程=速度×时间。

(2)基本类型有1)相遇问题;2)追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例6. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:相遇问题,画图表示为:甲乙等量关系是:慢车走的路程+快车走的路程=480公里。

解:设快车开出x小时后两车相遇,由题意得,140x+90(x +1)=480解这个方程,230x=390∴x=1答:快车开出1小时两车相遇分析:相背而行,画图表示为:600甲乙等量关系是:两车所走的路程和+480公里=600公里。

解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴x=答:小时后两车相距600公里。

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴x=2.4答:2.4小时后两车相距600公里。

分析:追及问题,画图表示为:甲乙等量关系为:快车的路程=慢车走的路程+480公里。

解:设x小时后快车追上慢车。

由题意得,140x=90x+480解这个方程,50x=480 ∴x=9.6答:9.6小时后快车追上慢车。

分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x小时后追上慢车。

由题意得,140x=90(x+1)+480 50x =570 ∴x=11.4答:快车开出11.4小时后追上慢车。

例7. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?[分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。

狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间解:设甲用X小时追上乙,根据题意列方程5X=3X+5 解得X=2.5,狗的总路程:15×2.5=37.5答:狗的总路程是37.5千米。

例8. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

[分析]这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。

相等关系为:顺流航行的时间+逆流航行的时间=7小时。

解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米,由题意得,X/(8+2)+(X-10)/(8-2)=7解这个方程,X/10 +(X-10)/6=7,∴x=32.5答:A、B两地之间的路程为32.5千米。

四. 利润赢亏问题1)销售问题中常出现的量有:进价、售价、标价、利润等2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例9. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[分析]通过列表分析已知条件,找到等量关系式等量关系:商品利润率=商品利润/商品进价解:设标价是x 元,100406060%80=-x 解之:x =105优惠价为80%x =8410510080=⨯(元)例10. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X 元,80%X (1+40%)—X =15,X =125答:进价是125元。

五. 储蓄问题1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例11. 某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)[分析]等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为X,250(1+X)=252.7X=0.0108所以年利率为0.0108×2=0.0216答:银行的年利率是2.16%例12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:1)直接存入一个6年期;2)先存入一个三年期,3年后将本息和自动转存一个三年期;3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。

解:1)设存入一个6年的本金是X元X(1+6×2.88%)=20000,X=170532)设存入两个三年期开始的本金为Y元,Y(1+2.7%×3)(1+2.7%×3)=20000,X=171153)设存入一年期本金为Z元,Z(1+2.25%)6=20000,Z=17894所以存入一个6年期的本金最少。

六. 日历中的方程例13. 1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出的四个数的和为58,这四天分别是几号?2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?[分析]观察、分析四个数的关系,设法用一个未知数圈出的四个数解:1)设竖列的四个数中最小的一个是X,其余三数分别为X+7,X+14,X+21 X+X+7+X+14+X+21=58,X=4。

相关文档
最新文档