CAN总线原理与应用基础
CAN总线原理与技术应用

CAN总线原理与技术应用CAN(Controller Area Network,控制器局域网络)总线是一种常用于车辆电子系统的通讯协议。
由于CAN总线具有速度快、可靠性高、数据传输安全等优点,因此在汽车、工业自动化等领域得以广泛应用。
物理层:CAN总线使用双绞线作为传输介质,支持两种传输速率,即高速CAN和低速CAN。
高速CAN的传输速率可达1 Mbps,主要用于大部分车辆内部的通信;低速CAN的传输速率为100 kbps,主要用于外部设备和主机之间的通信。
数据链路层:数据链路层负责确保数据的正确传输。
CAN总线采用了一种基于确认应答的传输机制,发送端发送数据后,接收端需要返回一个确认应答,以确保数据的正确接收。
如果发送端没有收到应答,将重新发送数据,直到收到正确的应答位置。
网络层:网络层对发送的数据进行优先级处理,以确保重要数据的传输和处理。
CAN总线使用了CID(CAN Identifier,CAN标识符)来标识不同数据的优先级。
CID的长度为11位或29位,优先级高的CID具有更短的标识符,从而能够获得更高的发送优先级。
应用层:应用层是CAN总线与上层系统(如ECU,Electronic Control Unit)之间的接口。
ECU是车辆电子系统的核心部分,用于控制发动机、转向系统、车身电子系统等。
CAN总线通过与ECU的连接,实现了系统之间的数据共享和通信。
在汽车领域,CAN总线被用于连接车内各种控制单元,实现整车系统的数据共享和协调控制。
通过CAN总线,不同的控制单元可以相互通信,从而提高整车系统的可靠性和性能。
例如,发动机控制单元可以通过CAN总线与车速传感器和氧传感器等外部设备进行通信,实时控制发动机工作状态。
在工业自动化领域,CAN总线被用于连接各种工业设备,实现设备之间的数据传输和控制。
通过CAN总线,不同的设备可以实现数据共享和协同工作。
例如,生产线上的传感器和执行器可以通过CAN总线与PLC (Programmable Logic Controller,可编程逻辑控制器)进行连接,实现自动化控制。
快速了解CAN通讯原理及应用

快速了解CAN通讯原理及应用一张图看懂CAN总线的原理图1根据图1中简单来说CAN总线就如两根黄线,通信的原理就好比开一个电话会议,大家都同时拨进来,然后有各种不同的状态,比如:一个人说话,其他人听;或者多个人同时想发言,但也会让其中一个人先说,其他人听;还有一个人要求另一个人来说;还有些掉线了,卡顿了等等。
为了确保每次电话会议针对上述情况正确有效地进行,我们需要一些每个人都应该遵守的规则或协议。
CAN总线通信与这种电话会议形式既有相似之处,也有不同之处。
那究竟什么是CAN总线通信?CAN总线架构简介CAN总线是一种用于不同控制单元之间数据传输的导线。
CAN总线协议是ISO国际标准化的串行通信协议,由两个系列组成:ISO-11898和ISO-11519。
其定义有:ISO-11898定义了通信速率为125kbps~1Mbps的高速CAN通信标准,属于闭环总线,传输速率可达1Mbps,总线长度≤40米,如图2。
ISO11519定义了通信速率为10~125kbps的低速CAN通信标准,属于开环总线,传输速率为40kbps时,总线长度可达1000米,如图2。
图2CAN总线的应用CAN总线会有终端电阻,一般来说都是120欧姆,实际上在设计的时候,也是两个60欧姆的电阻串起来的,而总线上一般有两个120欧姆的节点。
终端电阻的作用有三个:1、提高干扰防护能力,快速消除高频低能量信号2、确保总线快速进入隐藏状态,这样寄生电容器的能量可以更快地耗散。
3、通过将它们放置在总线两端以减少反射能量来提高信号质量。
图3在学习CAN总线时,经常会看到CAN总线的电平分为显性电平与隐性电平,那么什么是显性的和隐性的呢?显式和隐式逻辑0与逻辑1之间的对应关系是什么?CAN通信逻辑0和1,显式和隐式。
电信号的传输是通过区分高电压和低电压来进行的,就像CAN通信一样。
CAN总线的两条信号线是CAN高(CAN_H)和CAN低(CAN_L)。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种串行通信协议,广泛应用于汽车、工业控制和其他领域。
CAN的工作原理是通过差分信号传输数据,实现高速、可靠的通信。
本文将从CAN的基本原理、数据传输、错误处理、帧格式和应用领域等方面进行详细介绍。
一、CAN的基本原理1.1 CAN总线结构:CAN总线由两根信号线组成,分别是CAN_H和CAN_L,通过这两根信号线进行数据传输。
1.2 差分信号传输:CAN使用差分信号传输数据,即在CAN_H和CAN_L之间传输相反的信号,以减少干扰和提高抗干扰能力。
1.3 环状拓扑结构:CAN总线采用环状拓扑结构,所有节点通过总线连接在一起,实现节点之间的通信。
二、数据传输2.1 帧格式:CAN数据传输采用帧格式,包括起始位、帧类型、数据段、CRC 校验和结束位等字段。
2.2 传输速率:CAN总线的传输速率通常为1Mbps,根据实际需求可调整传输速率。
2.3 数据传输方式:CAN支持两种数据传输方式,分别是标准帧和扩展帧,用于传输不同长度的数据。
三、错误处理3.1 错误检测:CAN总线具有强大的错误检测和纠正能力,能够检测出传输过程中的错误,并进行相应处理。
3.2 错误标识:CAN在传输过程中会生成错误标识,用于标识出错的节点和错误类型,以便及时处理。
3.3 错误处理机制:CAN采用重发机制和错误帧处理机制,确保数据传输的可靠性和稳定性。
四、帧格式4.1 标准帧:标准帧包括11位标识符,用于传输短数据,适合于实时性要求不高的应用场景。
4.2 扩展帧:扩展帧包括29位标识符,用于传输长数据,适合于实时性要求高的应用场景。
4.3 过滤机制:CAN支持过滤机制,可以根据标识符过滤接收的数据,提高数据传输的效率和准确性。
五、应用领域5.1 汽车行业:CAN在汽车行业广泛应用,用于车载电子系统之间的通信,如发动机控制、仪表盘显示、车载娱乐系统等。
5.2 工业控制:CAN在工业控制领域被广泛应用,用于PLC、传感器、执行器等设备之间的通信,实现自动化生产。
can总线 原理

can总线原理
CAN总线是一种广泛应用于车载网络和工业控制系统中的串
行通信协议。
它基于CSMA/CD(载波监听多路访问/冲突检测)和差分信号传输技术,能够实现高效可靠的数据传输。
CAN总线的原理如下:
1. 物理层:CAN总线采用差分信号传输技术,使用两根同轴
电缆来传输数据和信号。
其中一根电缆传输高电平信号,另一根电缆传输低电平信号,两根电缆之间的电压差代表着传输的数据。
2. 数据帧:在CAN总线中,数据被封装成帧进行传输。
每个
数据帧由两部分组成:标识符(Identifier)和数据域(Data Field)。
标识符用于区分不同的消息和设备,数据域用于存
储实际传输的数据。
3. 仲裁机制:当多个设备同时发送数据帧时,CAN总线通过
仲裁机制来确定哪一个设备具有发送优先权。
仲裁机制使用位级别的比较来确定标识符的优先级,标识符的低位优先级高。
4. 帧有效性检测:CAN总线中每个设备都会对发送的数据帧
进行错误检测,以确保传输的可靠性。
这包括检查接收的数据帧是否有误码、位错误、位略符错误和CRC(循环冗余校验)错误。
5. 错误处理:当CAN总线上发生错误时,每个设备能够通过
错误报告机制获得有关错误类型和位置的信息,并采取相应的
措施进行纠正或处理。
总的来说,CAN总线通过差分信号传输、仲裁机制、帧有效性检测和错误处理等机制,可以实现高效可靠的数据传输,广泛应用于车载网络和工业控制系统中。
CAN总线的原理及使用教程

CAN总线的原理及使用教程一、CAN总线的原理1.数据链路层:CAN总线采用的是二进制多播通信方式,即发送方和接收方之间没有直接的连接关系,所有节点共享同一个总线。
在一个CAN总线系统中,每个节点都可以发送和接收信息。
当一个节点发送消息时,所有其他节点都能接收到该消息。
2.帧格式:CAN总线使用的是基于帧的通信方式,每个消息都被封装在一个CAN帧中。
帧由起始标志、ID、数据长度码、数据和校验字段组成。
其中,ID是唯一标识符,用来区分不同消息的发送者和接收者。
数据长度码指示了消息中数据的长度。
校验字段用于检测数据的完整性。
3. 传输速率:CAN总线的传输速率可根据需求进行配置,通常可选的速率有1Mbps、500Kbps、250Kbps等。
高速传输速率适用于对实时性要求较高的应用,而低速传输速率适用于对实时性要求不高的应用。
4.错误检测:CAN总线具有强大的错误检测能力,能够自动检测和纠正错误。
它采用了循环冗余校验(CRC)算法,通过对数据进行校验,确保数据的完整性。
如果数据传输过程中发生错误,接收方能够检测到错误,并通过重新请求发送来纠正错误。
二、CAN总线的使用教程1. 硬件连接:在使用CAN总线之前,需要先进行硬件连接。
将所有节点的CANH和CANL引脚连接到同一个总线上,并通过双终端电阻将CANH和CANL引脚与Vcc和地连接。
确保所有节点的通信速率和电气特性相匹配。
2.软件设置:使用相应的软件工具对CAN总线进行配置。
根据具体需求,设置通信速率、总线负载、数据帧格式等参数。
还需要为每个节点分配唯一的ID,用于区分发送者和接收者。
3.数据传输:使用软件工具编写代码,实现消息的发送和接收。
发送消息时,需要指定ID、数据长度和数据内容。
接收消息时,需要监听总线上的消息,并根据ID判断是否为自己需要的消息。
通过合理的逻辑处理,实现节点之间的数据交换和通信。
4.错误处理:CAN总线在数据传输过程中可能会发生错误,如位错误、帧错误等。
can总线的工作原理

can总线的工作原理CAN(Controller Area Network,控制器局域网)总线是一种多节点、分布式的串行通信协议,用于在不同的设备(如汽车电子控制单元)之间进行通信。
其工作原理如下:1. 总线结构:CAN总线包括两个主要组成部分:控制器和节点。
控制器负责管理总线上的通信,而节点则是实际的设备。
2. 通信速率:CAN总线使用串行通信方式,在一个时间周期内传输一位的数据。
通信速率可以根据需求进行调整,常见的有125kbps、250kbps和500kbps等。
3. 帧格式:CAN通信使用帧格式进行数据传输。
一个帧包括标识符、控制位、数据段和校验位等。
标识符用于确定帧的优先级和发送者的身份,控制位用于控制数据的传输方式,数据段用于传输实际的数据,校验位用于检查数据的完整性。
4. 预定位位:CAN总线使用预定位位来确保总线上的节点在发送数据之前处于同一状态。
当节点准备好发送数据时,首先发送一个断开位(Dominant),然后等待总线上所有节点一起发送一个随机位(Arbitration)。
节点在发送随机位时会检测总线上的信号,如果发现有其他节点同时发送了同样的位,则会停止发送,并等待下一个时间周期再次发送。
5. 碰撞检测:如果两个或多个节点同时发送数据,会发生碰撞(Collision)。
CAN总线通过监听总线上的信号来检测碰撞,并使用位优先级来解决冲突。
发送高优先级的节点会优先发送数据,低优先级的节点则会停止发送。
6. 增强型CAN(CAN FD):为了提高数据传输速率,增强型CAN通过增加数据段长度和引入一些新的特性来实现更高的传输速率。
总的来说,CAN总线的工作原理是通过预定位位和碰撞检测来保证多个节点间的通信正常进行,从而实现数据的可靠传输。
can总线的原理

can总线的原理CAN总线的原理CAN总线,全称Controller Area Network,是一种高度可靠的、高速的、串行通信总线,常被应用于汽车电子、工业控制和航空航天等领域。
CAN总线的原理主要包括物理层、数据链路层和应用层。
一、物理层CAN总线的物理层是基于差分传输的。
它使用两条线CAN_H和CAN_L,当CAN_H线电压高于CAN_L线电压时,表示逻辑为1,当CAN_L线电压高于CAN_H线电压时,表示逻辑为0。
CAN总线的差分传输方式具有很强的抗干扰能力,能够有效地抵抗电磁干扰和噪声等干扰。
二、数据链路层CAN总线的数据链路层主要包括帧格式、帧发送和接收机制。
CAN 总线的帧格式包括起始位、帧类型、数据长度、数据区、帧校验和和结束位。
其中,起始位和结束位用于标识一个CAN总线帧的开始和结束,帧类型用于标识数据帧或远程帧,数据长度用于标识数据区的长度,数据区用于存储数据或请求数据,帧校验和用于确认数据的正确性。
CAN总线的帧发送机制采用分时复用和优先级控制的方法,即不同节点通过CAN总线共享相同的带宽,同时通过优先级控制来实现节点之间的数据传输。
当多个节点同时发送数据时,CAN总线会按照节点的优先级进行数据传输,优先级越高的节点先发送数据。
CAN总线的帧接收机制采用广播方式,即所有节点都能够接收到总线上的数据帧,并采用校验和来判断数据的正确性。
如果数据校验和正确,则可以接收数据,否则舍弃数据。
三、应用层CAN总线的应用层是通过标准的数据格式和协议来实现节点之间的数据交换。
CAN总线的应用层支持多种数据类型,包括数字、模拟和状态等,并支持多种通信协议,如CANopen、J1939和DeviceNet等。
CAN总线的原理是基于差分传输的物理层、帧格式、帧发送和接收机制以及应用层协议。
它具有高度可靠的性能、高速的传输速率和良好的抗干扰能力,广泛应用于汽车电子、工业控制和航空航天等领域。
CAN总线原理与技术应用

双绞线
导线颜色
驱动系-CAN
CAN-高线 = 橙/黑 CAN-低线 = 橙/棕
组合仪表-CAN
CAN-高线 = 橙/蓝 CAN-低线 = 橙/棕
CAN-总线中数据发送过程 传感器采集的数据经节点向总线发送,每次只允许一个 控制单元发送数据,其他节点根据需要选择是否接受总 线上的数据。
CAN-总线中数据发送过程 在肯定没 有其它发 送数据传 递的情况 下,才允 许控制单 元发送数 据。
3、 CAN-数据传输线及 总线上的信号电平
CAN-数据传输线
数据帧
数据帧由 7 个不同的区域组成:帧起始(Start of Frame)、 仲裁区域(Arbitration Field)、控制区域(Control Field)、 数据区域(Data Field)、CRC 区域(CRC Field)、应答区 域(ACK Field)、帧结尾(End of Frame)。
数据帧
(5)CRC 区域 CRC 区域包括 CRC 序列(CRC SEQUENCE),其后是 CRC 界定符(CRC DELIMITER)。CRC 序列:由循环冗余码求 得的帧检查序列最适用于位数低于 127 位〈BCH 码〉的帧。 为进行 CRC 计算,被除的多项式系数由无填充位流给定, 组成这些位流的成分是:帧起始、仲裁场、控制场、数 据场(假如有),而 15 个最低位的系数是 0。
CAN总线的基本工作原理
跟其他总线一样,CAN总线的通信也是通过一种类似于 “会议”的机制实现的,只不过会议的过程并不是由一 方(节点)主导,而是,每一个会议参加人员都可以自 由的提出会议议题(多主通信模式),二者对应关系如 下: 会议 参会人员 参会人员身份 会议议题 发言顺序 局域网 节点 ID 报文 仲裁
CAN的工作原理

CAN的工作原理CAN总线是一种常用于汽车和工业控制系统中的通信协议,它的全称是控制器局域网络(Controller Area Network)。
CAN总线的工作原理是通过在一个总线上连接多个节点,实现节点之间的高速数据传输和通信。
CAN总线的工作原理主要包括以下几个方面:1. 物理层:CAN总线使用双绞线作为传输介质,采用差分信号传输方式。
每一个节点都通过一个收发器与总线相连,收发器负责将节点发送的电信号转换为差分信号,以及将总线上的差分信号转换为节点可以处理的电信号。
2. 帧格式:CAN总线的数据传输是以帧为单位进行的。
每一个CAN帧由一个起始位、一个标识符、一个控制位、数据域和校验位组成。
标识符用于区分不同的帧,控制位用于指示帧的类型和数据域的长度,数据域用于存储实际的数据,校验位用于检测数据传输过程中的错误。
3. 帧传输:CAN总线采用非冲突的CSMA/CR(Carrier Sense Multiple Access with Collision Resolution)访问机制。
节点在发送数据前会先监听总线上是否有其他节点正在发送数据,如果没有冲突,则节点可以发送数据。
如果多个节点同时发送数据,会发生冲突,此时节点会根据优先级进行竞争,优先级高的节点会继续发送数据,而优先级低的节点会住手发送。
4. 错误检测和恢复:CAN总线具有强大的错误检测和恢复能力。
每一个节点在发送数据时都会对发送的数据进行CRC校验,并在接收数据时对接收到的数据进行CRC校验。
如果校验失败,节点会认为数据浮现错误,并进行错误处理。
此外,CAN总线还具有错误重传机制,当节点发送的数据未能成功接收时,会进行重传操作,以确保数据的可靠传输。
5. 网络拓扑:CAN总线可以支持多个节点的连接,形成一个网络拓扑。
常见的网络拓扑结构包括总线型、星型和树型。
总线型拓扑是最常见的结构,所有节点都连接到同一根总线上。
星型拓扑是将所有节点连接到一个中心节点上。
CAN总线的使用

CAN总线的使用CAN(Controller Area Network)总线是一种多主机、多线程、分散控制系统中常用的实时通信协议,被广泛应用于车载电子、工业自动化、航空航天等领域。
本文将从CAN总线的基本原理、应用场景、使用方法等方面进行介绍。
一、CAN总线的基本原理CAN总线是由以位为基本单元的串行通信协议,其通信原理可以简单概括为:数据发送方通过CAN控制器将数据转换成一系列的数据帧,并通过CAN总线发送给接收方;接收方的CAN控制器接收到数据帧后,将其还原成原始数据。
CAN总线采用了CSMA/CR(Carrier Sense Multiple Access with Collision Resolution)的数据传输方式,即对总线中数据帧的冲突进行检测和解决。
二、CAN总线的应用场景1.车载电子系统中,CAN总线常用于汽车中的各种电子控制单元(ECU)之间的通信。
例如,引擎控制单元(ECU)、刹车控制单元(ECU)、空调控制单元(ECU)等通过CAN总线进行实时的数据交换和协调。
2.工业自动化领域中,CAN总线广泛应用于工业机器人的控制、传感器的数据采集与通信等方面。
CAN总线在工业环境中的抗干扰能力较强,可以满足高噪声环境下的可靠通信要求。
3.航空航天领域中,CAN总线可用于飞机电子设备之间的数据通信,如航空仪表、飞行控制系统、通信导航系统等。
三、CAN总线的使用方法1.硬件部分:(1)CAN总线连接:CAN总线通常使用双绞线进行连接,其中一根线为CAN High(CAN_H),另一根线为CAN Low(CAN_L)。
CAN_H和CAN_L通过终端电阻连接至VCC和GND,即电压分配电阻(VCC上的120欧姆电阻和GND上的120欧姆电阻)。
(2)CAN控制器选择:需要选择适合应用需求的CAN总线控制器。
(3)CAN总线的连接节点:将需要通信的CAN节点连接至CAN总线上,通常通过CAN收发器进行连接。
can总线的工作原理

can总线的工作原理
CAN总线是一种常见的数据通信协议,广泛应用于汽车和工
业控制系统等领域。
它的工作原理如下:
1. 消息帧与帧格式:CAN总线通信基于消息帧的发送和接收。
每个消息帧由识别码(ID)和数据组成。
ID用于标识消息的
优先级和内容,数据则存储实际的信息。
CAN总线采用一种
基于事件触发的机制,只有当总线上没有其他节点在发送消息时,当前节点才能发送消息。
2. 仲裁机制:CAN总线使用一种分布式仲裁机制,以确保各
个节点之间的通信顺序。
当两个以上的节点准备发送消息时,会根据消息帧的ID来进行仲裁。
ID的低位优先级高,因此具
备低ID的节点在仲裁中具有更高的优先级。
3. 错误检测:CAN总线具有强大的错误检测和纠正机制。
每
个节点在发送消息时,会实时监测总线上的电压变化情况。
如果检测到总线上有其他节点发送了错误的帧,节点将一直等待,并重新尝试发送消息。
这种自适应机制使得CAN总线具有较
高的消息可靠性。
4. 实时性能:CAN总线以固定的时间间隔来发送消息,以确
保实时性的要求。
节点在一个时间窗口内发送消息,并在下一个时间窗口前接收消息。
通过控制时间窗口的大小和频率,可以满足不同应用场景中对实时性的要求。
总而言之,CAN总线通过消息帧的发送和接收来进行数据通
信。
它采用分布式仲裁机制、强大的错误检测和纠正机制,以及固定的时间间隔来保证通信的可靠性和实时性。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车和工业领域的通信协议,它的工作原理是基于串行通信的方式进行数据传输。
CAN总线是一种多主机、多节点的通信网络,它可以连接多个设备,实现设备之间的数据交换和通信。
CAN总线的工作原理如下:1. 物理层:CAN总线采用双绞线作为传输介质,通过差分信号传输数据。
CAN总线的传输速率可根据实际需求进行调整,常见的速率有1Mbps、500kbps、250kbps等。
CAN总线的物理层标准有两种:高速CAN和低速CAN,分别适合于不同的应用场景。
2. 数据链路层:CAN总线采用CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的方式进行数据传输。
在发送数据前,每一个节点会监听总线上是否有其他节点正在发送数据,如果没有,则该节点可以发送数据。
如果多个节点同时发送数据,会发生碰撞,此时节点会住手发送并等待一段随机时间后重新发送。
3. 帧格式:CAN总线的数据传输采用帧的方式进行,每一个帧由一个起始位、标识符、控制位、数据位、CRC校验位和结束位组成。
标识符用于区分不同的消息,控制位用于指示帧的类型,数据位用于存储实际传输的数据,CRC校验位用于检测数据传输的错误。
4. 网络拓扑:CAN总线可以采用总线型、星型、树型等不同的网络拓扑结构。
在总线型拓扑结构中,所有节点都连接在同一根总线上;在星型拓扑结构中,每一个节点都连接到一个中央集线器;在树型拓扑结构中,节点通过分支连接到主干上。
5. 错误处理:CAN总线具有良好的错误处理机制。
当节点在发送数据时发生错误,会触发错误帧,其他节点会收到错误帧并进行错误处理。
CAN总线还支持错误检测和错误报告,可以及时发现和纠正通信中的错误。
6. 优点:CAN总线具有高可靠性、抗干扰能力强、传输速率快、传输距离远等优点。
can总线知识点

can总线知识点(原创版)目录1.CAN 总线的概述2.CAN 总线的基本原理3.CAN 总线的主要特点4.CAN 总线的应用领域5.CAN 总线的发展前景正文一、CAN 总线的概述CAN 总线,全称为控制器局域网(Controller Area Network),是一种用于实时控制的串行通信总线。
它最初由德国的 Robert Bosch GmbH 公司于 1980 年代研发,用于汽车电子设备的通信。
后来,CAN 总线逐渐被广泛应用于各种工业自动化领域。
二、CAN 总线的基本原理CAN 总线采用多主控制器结构,所有连接在总线上的节点(设备)都可以发送和接收信息。
总线上的节点通过消息帧进行通信,消息帧包含标识符、数据长度码、数据字段、CRC 字段和应答位等。
CAN 总线采用非同步传输方式,节点间的通信不依赖于固定的时间基准,而是通过消息帧中的定时器来同步。
三、CAN 总线的主要特点1.高速通信:CAN 总线的通信速率最高可达 1Mbps,适用于实时控制系统。
2.多主控制器:总线上的每个节点都可以主动发送信息,不存在固定的主从关系。
3.错误检测与纠正:CAN 总线具有 CRC 校验和应答位机制,可以检测到错误并进行纠正。
4.强抗干扰能力:CAN 总线采用差分信号传输,具有较强的抗干扰能力。
5.扩展性强:CAN 总线可以连接大量节点,最多可达 256 个。
四、CAN 总线的应用领域CAN 总线广泛应用于汽车电子、工业自动化、机器人控制、智能家居等领域。
例如,在汽车电子中,CAN 总线用于连接发动机控制单元、底盘控制单元、仪表盘等设备;在工业自动化中,CAN 总线可以用于传感器数据采集、机床控制等场景。
五、CAN 总线的发展前景随着物联网、工业 4.0 等技术的发展,CAN 总线在未来将发挥更大的作用。
同时,CAN 总线也在不断升级,如 CAN FD(CAN with Flexible Data rate)等新标准已经推出,以满足更高的通信速率和性能要求。
CAN总线的工作原理

CAN总线的工作原理CAN(Controller Area Network)是一种常用的现场总线网络协议,广泛应用于汽车、工业控制、医疗设备等领域。
CAN总线的工作原理主要包括物理层、数据链路层和应用层。
1.物理层:CAN总线采用差分信号传输,使用两根传输线CANH和CANL,通过在CANH和CANL上传输差分信号来表示数字信号。
CAN总线的物理层特点包括差分信号传输、抗干扰能力强和网络线缆可靠性高等。
CAN总线使用120欧姆总线终端电阻来消除信号的反射。
2.数据链路层:CAN总线的数据链路层采用CSMA/CD(载波监听多点接入/碰撞检测)协议。
在发送消息之前,节点首先进行总线空闲检测。
如果总线空闲,节点开始发送消息;如果检测到总线上有其他节点正在发送消息,节点将等待,直到总线空闲。
当多个节点同时发送消息时,可能会发生冲突,这时节点会检测到碰撞,并且会根据设定的优先级和标识符决定是继续发送还是放弃发送。
3.应用层:应用层是CAN总线的顶层协议,定义了消息格式和标识符的使用。
CAN消息由帧组成,分为标准帧和扩展帧两种。
标准帧包含11位标识符,扩展帧包含29位标识符。
CAN消息还包括控制位、数据位、CRC等。
发送节点使用标识符来定义消息的优先级,接收节点根据标识符来识别并处理消息。
1.初始化:CAN节点在上电后进行初始化,包括配置节点ID(用于标识节点身份)、设置波特率(用于定义数据传输速率)、设置过滤器(用于选择需要接收的消息)等。
2.发送消息:发送节点准备要发送的消息,包括填充消息数据和设置标识符。
发送节点首先进行总线空闲检测,如果总线空闲,则发送消息。
如果检测到总线上有其他节点正在发送消息,发送节点等待,直到总线空闲。
发送节点发送完整的CAN消息帧,包括标识符、控制位、数据位和CRC等。
3.碰撞检测和冲突解决:当多个节点同时发送消息时,可能会发生冲突。
接收节点会检测到碰撞,并且会根据设定的优先级和标识符决定是继续发送还是放弃发送。
CAN总线的原理及使用教程

CAN总线的原理及使用教程CAN总线的基本原理是基于广播通信和多主机通信机制。
多个节点可以同时发送和接收消息,消息被广播到所有其他节点,每个节点根据消息中包含的标识符来判断该消息是否与自己相关。
如果消息与节点相关,节点将处理该消息;如果消息与节点不相关,节点将忽略该消息。
这种机制使得多个节点可以在同一个总线上同时进行通信,大大提高了总线的利用率。
CAN总线的传输速率通常为1Mbps或以上,并且支持长距离传输。
它采用差分信号线进行传输,其中CAN_H和CAN_L线分别携带正向和负向信号,通过比较CAN_H和CAN_L之间的电压差来判断数值。
差分信号线的使用可以有效地抑制电磁干扰和噪声,提高传输的可靠性。
在CAN总线中,每个节点都有一个唯一的标识符用于区分不同的节点。
当节点需要发送消息时,它会将消息封装成一个帧,包括标识符、数据和一些控制字段。
帧被发送到总线上,其他节点可以接收到该帧并进行相应的处理。
节点还可以发送错误帧来检测和纠正总线上的错误。
为了保证多个节点之间的通信顺序和优先级,CAN总线采用了基于优先级的仲裁机制。
当多个节点同时发送消息时,节点根据自己的标识符计算一个仲裁值,仲裁值越小的节点具有较高的优先级,可以发送消息。
其他节点将立即停止发送,并等待仲裁完成后再发送。
这种仲裁机制保证了消息的有序发送,避免了冲突。
除了基本的消息传输外,CAN总线还支持远程帧和错误帧等功能。
远程帧用于请求其他节点发送指定标识符的消息,而错误帧用于报告总线上的错误情况。
这些功能使得CAN总线更加灵活和可靠。
在使用CAN总线时,首先需要选取合适的硬件设备和控制器。
接下来,需要进行总线的布线和连接,保证差分信号线的正确连接和屏蔽的使用。
然后,需要编写相应的软件程序来控制节点的行为,包括发送和接收消息、处理错误等。
最后,进行系统的调试和测试,确保CAN总线的正常工作。
总之,CAN总线是一种高性能的串行通信协议,具有多节点同时通信、高速传输、抗干扰能力强等优势。
can总线的原理及应用实例

CAN总线的原理及应用实例1. 什么是CAN总线?CAN(Controller Area Network)总线是一种常用于在电子设备之间进行通讯的串行总线系统。
它最早由德国博世公司开发,并于1986年开始应用于汽车电子领域。
CAN总线具有高可靠性、高传输速率和广泛的应用领域等特点,在汽车、工业自动化、机器人技术等领域得到了广泛的应用。
2. CAN总线的原理CAN总线采用了一种分布式通讯的方式,即所有设备共享同一条总线进行通讯。
CAN总线系统由多个节点组成,每个节点都有一个唯一的标识符。
节点之间通过总线进行数据的传输。
在CAN总线中,使用了一种冲突检测与回避的机制来解决多个节点同时发送数据时可能出现的冲突问题。
当多个节点同时发送数据时,会发生冲突。
CAN总线会检测到冲突并自动进行回避,以保证数据传输的可靠性。
CAN总线采用了差分传输的方式,通过两根线(CAN_H和CAN_L)来传输数据。
CAN_H和CAN_L线分别代表高电平和低电平,通过比较CAN_H和CAN_L之间的电平差异来判断传输的数据是0还是1。
3. CAN总线的应用实例3.1 汽车电子系统CAN总线在汽车电子系统中得到了广泛的应用。
汽车中的各种电子控制单元(ECU)通过CAN总线进行通讯,实现各个系统之间的数据传输和互联。
例如,发动机控制单元、制动系统控制单元、空调系统控制单元等都通过CAN总线进行通讯,实现整车各个系统的协调工作。
3.2 工业自动化在工业自动化领域,CAN总线也被广泛应用。
工业设备中的各个控制单元通过CAN总线进行通讯,实现对整个生产过程的控制和监测。
例如,机械臂控制单元、传感器控制单元、PLC等设备都可以通过CAN总线进行互联,实现自动化生产。
3.3 机器人技术CAN总线在机器人技术中的应用也非常广泛。
机器人系统中的各个模块通过CAN总线进行通讯,实现机器人的控制和操作。
例如,机器人的运动控制模块、传感器模块、视觉系统等都可以通过CAN总线进行互联,实现机器人的智能化操作。
can通信的原理及应用

CAN通信的原理及应用1. 什么是CAN通信控制器局域网络(Controller Area Network,简称CAN),是一种广泛应用于实时控制系统中的串行通信协议。
最初由德国Bosch公司开发,用于汽车电子控制单元(ECU)之间的通信。
CAN通信协议具有高可靠性、实时性强、传输速率高的特点,因此被广泛应用于汽车、工业控制和航空航天等领域。
2. CAN通信的原理CAN通信协议基于一种主从式的总线结构,由一个主控制器(Master)和多个从控制器(Slave)组成。
主控制器负责发送数据帧,并协调从控制器之间的通信。
CAN通信协议采用了非归零码(Non-Return-to-Zero,简称NRZ)的差分信号传输方式。
CAN总线上的数据帧由四个组成部分组成:起始位(Start of Frame,SOF)、标识符(Identifier)、数据(Data)和校验位(Cyclic Redundancy Check,CRC)。
起始位用于同步从不同节点发出的数据帧,标识符用于识别数据的类型和发送方,数据部分是需要传输的具体数据,校验位用于进行数据的完整性检查。
CAN总线采用双绞线作为物理传输媒介,通过差分信号传输方式,能够有效地抵抗电磁干扰。
CAN通信协议还具有冲突检测和错误恢复的能力,在多个设备同时发送数据时,能够有效地避免数据冲突。
3. CAN通信的应用3.1 汽车电子控制系统CAN通信协议最早应用于汽车电子控制系统中,用于不同的电子控制单元之间的通信。
汽车上的各种传感器和执行器都可以通过CAN总线与车载电脑进行通信,从而实现车辆的各种功能。
例如,发动机控制单元(Engine Control Unit,ECU)可以通过CAN总线接收来自氧传感器、节气门传感器等传感器的数据,并根据这些数据控制喷油器和点火系统,从而实现发动机的调控。
制动控制单元(Brake Control Unit,BCU)可以通过CAN总线与轮速传感器和制动器之间进行通信,实现制动系统的控制。
CAN总线原理及应用

CAN总线原理及应用CAN(Controller Area Network)总线是一种高速、可靠性强的实时通信总线,广泛应用于汽车、工业自动化、航空航天等领域。
本文将从CAN总线的基本原理、传输帧格式、错误检测和纠正机制、应用领域等方面进行详细介绍。
一、CAN总线的基本原理CAN总线采用串行通信方式,由两条差分信号线CANH和CANL构成。
其中,CANH和CANL两条线分别相互倒置,从而在传输数据时形成差分信号。
CAN总线采用仲裁机制,即多个节点同时发送数据时,按照优先级依次发送,避免多个节点同时发送导致的数据冲突。
二、CAN总线的传输帧格式CAN总线的传输帧由固定长度的报文组成,分为标准帧和扩展帧两种格式。
标准帧的数据长度为11位,扩展帧的数据长度为29位。
传输帧的基本结构包括起始位(SOF)、帧类型(FF)、数据标识符(Identifier)、数据长度码(DLC)、数据域(Data field)、校验位(CRC)和结束位(EOF)。
可以通过帧类型来区分标准帧和扩展帧,数据标识符用于标识发送数据的节点,数据长度码表示数据域的长度,校验位用于检测数据在传输过程中的错误。
三、CAN总线的错误检测和纠正机制为了保证CAN总线的高可靠性,CAN总线采用了重要的错误检测和纠正机制。
其中,CRC(Cyclic Redundancy Check)循环冗余校验码用于检测数据传输过程中的错误,通过比对接收到的CRC码和发送方预先计算的CRC码是否一致来判断数据的正确性。
此外,CAN总线还采用了错误报告机制,如错误标志、错误定位和错误状态等,方便节点检测和处理异常情况。
四、CAN总线的应用领域由于CAN总线具有高速、实时性好、抗干扰性强等特点,因此在很多领域都得到了广泛应用。
其中,汽车领域是CAN总线应用最为广泛的一个领域。
CAN总线在汽车中主要用于车载网络通信,如发动机控制、底盘控制、仪表盘和车门控制等。
此外,CAN总线还被广泛应用于工业自动化领域,如数控机床、机器人、智能仓储系统等。
CAN总线原理与技术应用

CAN总线原理与技术应用CAN总线是一种串行通信协议,用于在电子设备之间传输数据。
它的全称是Controller Area Network,即控制器局域网络。
CAN总线最初是由德国的Bosch公司在1986年提出的,用于解决汽车电子系统之间大量数据通信的需要。
随后,CAN总线技术逐渐在其他领域得到推广应用,如工业控制、航空航天、医疗设备等。
CAN总线的特点是高速、实时和可靠。
它采用了串行通信方式,能够以较高的速度传输数据,通常可以达到1Mbps以上的数据传输速率。
此外,CAN总线可以实现实时通信,对于时间敏感的应用非常适用。
同时,CAN总线的通信是双向的,能够实现多个节点之间的通信,并且具有冗余性和错误检测机制,保证了系统的可靠性。
CAN总线的工作原理是基于主从结构和多点通信的方式。
在一个CAN网络中,通常会有一个主控器(主机)和多个从控器(从机),它们之间可以进行双向通信。
数据传输时,主控器负责发送数据帧,从控器负责接收并响应。
CAN总线使用标准的消息帧格式来传输数据,包括数据、控制和错误检测字段。
CAN总线的技术应用非常广泛。
在汽车电子系统中,CAN总线被广泛应用于发动机管理系统、制动系统、空调系统等各种控制单元之间的通信。
通过CAN总线,这些控制单元可以实时地交换信息,从而实现汽车系统的协同工作。
在工业控制领域,CAN总线可以用于各种工厂自动化设备之间的通信,实现生产过程的监控和控制。
此外,CAN总线还可以应用于智能家居、医疗设备、航空航天等领域,为各种电子设备提供可靠的通信方式。
除了标准的CAN总线协议外,还有一些衍生的CAN总线技术,如CAN FD(Flexible Data-Rate)、CANopen等。
CAN FD是在标准CAN总线的基础上增加了数据传输速率和数据帧长度的扩展,可以更好地适用于一些高速、大容量的应用场景。
CANopen是一种针对工业控制领域的高层协议,它建立在CAN总线的基础上,提供了更加完善的通信功能和网络管理能力。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车和工业领域的通信协议,它的工作原理是通过在一个总线上连接多个节点,实现节点之间的数据交换和通信。
本文将详细介绍CAN的工作原理。
一、总线结构CAN总线由两根线组成:CAN_H(CAN High)和CAN_L(CAN Low)。
这两根线通过电阻终止器连接在一起,形成一个环路。
CAN总线上的每一个节点都通过一个收发器与CAN总线相连。
二、数据帧格式CAN数据帧由四个部份组成:起始位、标识符、控制位和数据域。
起始位用于同步数据传输,标识符用于区分不同的数据源,控制位包含数据帧的类型和长度信息,数据域则是实际的数据内容。
三、工作模式CAN总线有两种工作模式:数据帧模式和远程帧模式。
数据帧模式用于节点之间的实际数据传输,远程帧模式用于请求其他节点发送数据。
四、帧ID每一个节点在CAN总线上都有一个惟一的帧ID。
帧ID由11位或者29位组成,取决于CAN的版本。
较短的帧ID用于标识标准帧,较长的帧ID用于标识扩展帧。
五、数据传输CAN总线上的数据传输是基于事件触发的。
当一个节点有数据要发送时,它会检查总线是否空暇,如果空暇,则开始发送数据。
如果多个节点同时发送数据,会发生冲突,这时会根据CAN的冲突检测机制进行处理。
六、错误检测CAN总线具有强大的错误检测和纠正能力。
每一个节点在发送数据时会监测总线上的数据是否与发送的数据一致,如果不一致,则会触发错误处理机制。
七、速率控制CAN总线的速率通常由波特率来表示,常见的波特率有125Kbps、250Kbps和500Kbps等。
波特率的选择取决于传输的数据量和总线的长度。
八、网络拓扑CAN总线可以采用多种网络拓扑结构,包括总线型、星型和混合型。
总线型是最常见的拓扑结构,所有节点都连接在同一根总线上。
星型拓扑结构中,每一个节点都与一个中央控制器相连。
混合型拓扑结构则是总线型和星型的结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 错误类型-位错误
单元在发送位的同时也对总线进行监视。如 果所发送的位值与所监视的位值不相符合, 则在此位时间里检测到一个位错误。
2.3.1 错误类型-填充错误
在应当使用位填充法进行编码的报文域中, 出现了第6个连续相同的位电平时,将检测 到一个填充错误。
2.3.1 错误类型- CRC错误
0/1
•数据域可以为0~8个字节,首先发送MSB(最高位) 1 •一般情况下都是8个字节
•每个字节可以存储任意的数
•有一些CAN控制器将ID过滤扩展到该域
2.1 CAN报文-帧结构-CRC域
Interframe
space
Interframe
space
1
11 1 2 4
0 - 64
15
I d e n t ifie r F ie ld
1.1 CAN的发展概况
这些系统由多个电控单元相互连接而成,可分为 控制器、传感器、执行器等。同时各个系统之间 也互相连接,进行着越来越多的数据交换。这样 就需要使用大量的线束和插接器来实现互连,进 行它们之间的数据交换。随着汽车电子技术的不 断发展,这种需求的增长是惊人的(如图)。
1.1 CAN的发展概况
2.1 CAN报文-帧结构-控制域
Inter-
frame space
Inter-
frame space
1
11 1 2 4
0 - 64
15
1 11 7 3
I d e n t ifie r F ie ld
D LC
Control
Data Field
CRC Field
ACK field
Field
0
控制域(Control Field)(标准格式和扩展格式)
1.2 CAN的性能特点
短帧结构,传输时间短,受干扰概率低,适于汽 车及工业环境
每帧信息都采用CRC校验及其他检错措施,数据 出错率极低。
通信介质选择灵活(双绞线、同轴电缆或光纤) 错误严重情况下自动关闭输出,保证不影响总线
上其他节点通信。 性价比高,器件容易购置,节点价格低。 开发技术容易掌握,能充分利用现有的单片机开
过载标志由6位显性位构成 过载界定符由8位隐性位构成
2.2 CAN仲裁机制
2.2 CAN仲裁机制
显性位具有“优先”意味,只要有一个单元 输出显性电平,总线上即为显性电平。
隐性位具有“包容”意味,只有所有单元都 输出隐性电平,总线上才为隐性电平。
显性电平比隐性电平更有“权”。 标识符越小,优先级越高。 数据帧比远程帧更具优先级。 标准帧比扩展帧更具优先级。
Interframe
space
Interframe
space
1
11 1 2 4
0 - 64
15
1 11 7 3
I d e n t ifie r F ie ld
D LC
Control
Data Field
CRC Field
ACK field
Field
•帧起始(SoF):标志数据帧和远程帧的起始,仅由1位显
0/1
•主要功能:数据长度代码(DLC),指示数据帧的字节数目
1
•DLC可以设置0到8的数字表示数据字节数(超过8的数字则认为
是8,这种情况并不视为出错)。
•两位保留位r1和r0,用于扩展格式帧。保留位必须全部以显性
电平发送,但接收方可以接收显性、隐性及其任意组合的电平。
2.1 CAN报文-帧结构-数据域
CRC Field
ACK field
Field
0
仲裁域(Arbitration Field )
0/1
•11位标识符或者29位标识符,上图表示11位标识符
1
——实现仲裁功能
——设置冲突发生时的优先级
•远程发送请求位RTR(Remote Tranmission Request Bit),RTR在数据帧
必须为显性,而在远程帧必须为隐形。 •CAN控制器的过滤功能可以在这里实现。
1.2 CAN的性能特点
有专门的国际标准ISO11898 。 多主方式工作,任一节点可在任一时刻主动发送。 报文以标识符分为不同的优先级,可满足不同的
实时性要求。优先级最高的报文保证134us内得到 传输。 非破坏性总线仲裁技术,大大节省了总线冲突的 仲裁时间。 通过对报文滤波可实现点对点、一点对多点和全 局广播等多种传送方式。 速率最高可达1Mbps,最远可达10km 节点数可达110个,标识符几乎不受限制
性位组成。
•帧结尾(EoF):标准数据帧和远程帧的结束,由7位隐
性位组成,不填充。
2.1 CAN报文-帧结构-仲裁域
Interframe
space
Interframe
space
1
11 1 2 4
0 - 64
15
1 11 7 3
I d e n t ifie r F ie ld
D LC
Control
Data Field
0 0/1 1
2.1 CAN报文-帧结构-应答域
Interframe
space
Interframe
space
1
11 1 2 4
0 - 64
15
I d e n t ifie r F ie ld
D LC
Control
Data Field
CRC Field
Field
应答域(ACK Field)(标准格式和扩展格式),不填充 •接收确认机制,保证至少一个接收器正确接收到数据 •发送方发送1位隐性位
附加的延时。
注:数据帧和远程帧可以使用标准帧及扩展帧2种格式。
2.1 CAN报文-编码
CAN采用“不归零”码
不归零码
0111001001
曼彻斯特码
(Manchester Coding) CAN is NRZ which has
EMC advantages compared with MC
2.1 CAN报文-编码-位填充
1 11 7
ACK field
符(Identifier)组成
•控制域(Control Field)
•数据域(Data Field)
•CRC 域(CRC Field)
•应答域(ACK Field)
•帧起始(Start of Frame),帧结尾(End of Frame)
3
0 0/1 1
2.1 CAN报文-帧结构-帧起始&帧结尾
1.3 CAN总线分层结构
物理层定义了信号实际的发送方式、位时 序、位的编码方式及同步的步骤。但具体 地说,信号电平、通信速度、采样点、驱 动器和总线的电气特性、连接器的形态等 均未定义。这些必须由用户根据系统需求 自行确定。
1.4 位数值表示和通信距离
“显性”位0和“隐性”位1 若总线上有两个以上驱动器同时分别发送“0”和
发工具。
CAN总线拓扑图
发动机
刹车系统
动力总成
网关
灯光
车窗及门锁
空调
仪表板
CAN节点模型
1.3 CAN总线分层结构
CAN覆盖了ISO规定的OSI基本参照模型中的 传输层、数据链路层及物理层。
1.3 CAN总线分层结构
ISO/OSI基本参照模型
各层定义的主要项目
软 7层:应用层 件 控 6层:表示层 制
D LC
Control
Data Field
CRC Field
Field
循环冗余码(CRC)域(标准格式和扩展格式) •对帧起始、仲裁域、控制域、数据域上的位进行校验 •CRC循环冗余码最适合于短帧报文 •CRC界定符为1位隐性位,不填充 •CRC检验仅仅是CAN通讯的一种错误检测
1 11 7 3
ACK field
由实际应用程序提供可利用的服务 进行数据表现形式的转换
5层:会话层
为建立会话式的通讯、控制数据正确地接收和发 送
4层:传输层
控制数据传输的顺序、传送错误的恢复等,保证 通信的品质
3层:网络层
进行数据传送的路由选择或中继
硬 2层:数据链路层 件 控 1层:物理层 制
将物理层收到的信号组成有意义的数据,提供传 输错误控制等数据传输控制流程
Interframe
space
Interframe
space
1
11 1 2 4
0 - 64
15
1 11 7 3
I d e n t ifie r F ie ld
D LC
Control
Data Field
CRC Field
ACK field
Field
0
数据域(Data Field)(标准格式和扩展格式)
“1”,其结果是总线数值为显性“0” 。
隐性位
VCAN-H VCAN-L
显性位
隐性位
速率与传输距离
CAN总线上任意两个节点之间的最大传输距离与其 位速率相关。
速率kbps 1000 500 250 125 100 距离 m 40 130 270 530 620
速率kbps 50
20
10
5
距离 m 1300 3300 6700 10000
CAN原理与 应用基础
1 概述
1.1 CAN的发展概况 现代社会对汽车的要求不断提高,这些要求包括:
极高的主动安全性和被动安全性;乘坐的舒适性; 驾驶与使用的便捷和人性化;尤其是低排放和低 油耗的要求等。 在汽车设计中运用微处理器及其电控技术是满足 这些要求的最好方法,而且已经得到了广泛的运 用。目前这些系统有:ABS、EBD、TCS、ESP、 多功能数字化仪表、主动悬架、导航系统、电子 防盗系统、自动空调和自动CD 机等。