人教版九年级数学下册第28章锐角三角函数知识点及试题(含答案)
人教版九年级数学下册 第28章《锐角三角函数》单元核心考点归纳
★第28章《锐角三角函数》单元核心考点归纳核心考点1三个概念 (一)正弦1·在Rt △ABC 中, ∠C =90°,AC =12,BC =5,则sin A 为( ) A .512B .125C .1213D .513【答案】D2.在Rt △ABC 中,∠C =90°,AC =9,sin B =35,则AB 的长等于( )A .15B .12C .9D .6【答案】A(二)余弦3.在△ABC 中,若三边BC ,CA ,AB 满足BC :CA :AB =5:12:13,则cos B =( ) A .512B .1252C .513D .1213【答案】D4.如图,在平面直角坐标系中,点A 的坐标为(4,3),那∠cos α的值是( ) A .34B .43C .35D .45【答案】D第4题图第6题图第7题图C D(三)正切5.在Rt △ABC 中,∠C =90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( ) A .13B .3CD .【答案】D6.如图,在网格中,小正方形的边长均为l ,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2BC .D .12【答案】D7.如图,△ABC 是等腰直角三角形,AC =BC ,D 是AC 的中点,设∠ABD 为α,那∠tan α的值为( ) A .2 B .2 C .12 D .13 【答案】D8.如图,在△ABC 中,∠C =90°,a ,b ,c 分别为∠A ,B ,∠C 的对边,a :c =2:3,求sin A ,tan B 的值.ABC解∵a :c =2:3.设a =2k 走,c =3k (k ≠0),∴.b = 225c a k -=,∴sin A =23a c = ,tan B =55k =核心考点2一个运算——特殊角的三角函数值与实数运算9.计算:( 1) tan30°sin60°+cos 230°-sin 245°tan45° 解:34(2)tan 245°+21sin 30⎛⎫ ⎪⎝⎭-3cos 230°-(2-l )0.解:14+4-94-1=1核心考点3 四个应用应用l 解直角三角形10.如图,在△ABC 中,已知BC =13B =60°,∠C =45°,求AB ,AC 的长.A B C D CB A【答案】 解:过A 作AD ⊥BC 于D ,∴AD =CD ,AD,∴BD +CD =BC , ∴BD=1BD =1,∴AB =2BD =2,ADAC应用2利用仰角、俯角解直角三角形11.如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B .C 在同一条直线上,小明在地面,)处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E 处,又测得旗杆顶端I 的仰角为60°,已知建筑物的高度AC =12米,求旗杆AB 的高度(结果精确到0.1米).1.73≈1.41.EC解:∠DBE =30°.BE =DE =20m ,在Rt △BEC 中,BC =BE .sin 60°=20=AB =BC -AC =12≈5.3 答:AB 大约是5.3米,应用3 利用方位角解直角三角形12. 如图,随着我市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库.现测得油库C 在A 地的北偏东60°方向上,在B 地的西北方向上,AB 的距离为250+1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C 是否会受到影响?请说明理由.C BAA BCD解:过C 作CD ⊥AB 于D ,∴BD =CD ,AD.∴BD +AD =AB ,∴CDCD =250l ),CD =250>200;∴油库C 是不套爱到影响的.应用4利用坡角解直角三角形13.如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,离坡底10米处有一建筑物HQ ,为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(最后计算结果保留一位小数). (1. 4141.732)H FED B A解:AH =10,BC =10,∠CAB =45°,在Rt △DBC 中,∠CDB =30°.∴DB=tan CD BCB=∠DH =AH -AD =AH -(DB -AB )=10-10=20-3米,∴该建筑物要拆除. 核心考点4 四种数学思想 思想1 数形结合的思想 14.在Rt △ABC 中,∠C =90°,若AC =2BC ,则sin A 的值是________ .21CA【答案】根据题意,作出如下图形,已知AC =2BC ,可得到三角形的三边之比为1:2,再由正弦定义sin A =BC AB思想2 分类讨论的思想15.如果方程x 2-4 x +3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为________ .【答案】解:∵x 2-4 x +3=0,∴x 1=1,x 2=3,即Rt △ABC 的两条边长分别为1和3,①当1和3分别为两直角边时,∴tan A =13;②当1和3分别为直角边和斜边时,∴tan A ;思想3 转化的思想16.如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离CD =50米,某人在河岸MN 的A 处测得∠DAN =35°,然后沿河岸走了120米到达B 处,测得∠CBN = 70°,求河流的宽度CE (结果取整数). (参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)PN【答案】过点C 作CH ∥DA ,则∠CHB =∠DAB =35°,∴∠BCH =∠CBE -∠CHB =35°,∴BC =BH ,∵CD ∥AD ,∴AH =CD =50,∴BC =BH =AB -AH =70,∴sin ∠CBE =70×sin70°=70×0.94=65.8≈66,所以河流的宽度CE 约为66米.PN思想4 方程的思想17.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,求tan ∠CBE 的值.DA【答案】解:设EC =x ,则BE =AE =8-x ,在Rt △BCE 中,62+x 2=(8-x )2, 解得x =74,tan ∠CBE =CE :BC =74÷6=724. 18.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm, BC =10cm,求tan ∠EAF 的值.ED BC【答案】由折叠知AF =AD ,在Rt △ABF 中利用勾股定理求出BF =6,∴FC =4,设EE =x ,在Rt △EFC 中,由勾股定理有42+(8-x )2=x 2,∴x =5,tan ∠EAF =EF AF =EF AD =510=12.。
人教版九年级数学下册第28章《锐角三角函数知识点总结、典型例题、练习(精选)
三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式取值范围关 系正弦 斜边的对边A A ∠=sin c aA =sin 1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A (∠A 为锐角) 正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A (∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan33 1 3-5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)BA cos sin =BA sin cos =)90cos(sin A A -︒=)90sin(cos A A -︒=A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边斜边 ACBba c8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
人教版九年级下册数学第二十八章 锐角三角函数含答案解析
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
人教新版九年级数学下册 单元复习 第28章 锐角三角函数 含答案
第28章锐角三角函数一.选择题(共11小题)1.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8 B.12 C.13 D.182.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.23.已知α为锐角,下列结论:(1)sinα+cosα=1;(2)若α>45°,则sinα>cosα;(3)如果cosα>,则α<60°;(4)=1﹣sinα.其中正确结论的序号是()A.(1)(3)(4)B.(2)(4)C.(2)(3)(4)D.(3)(4)4.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0 B.小于0 C.等于0 D.不能确定5.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.06.在△ABC中,∠A,∠B均为锐角,且有|tan B﹣|+(2cos A﹣1)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形7.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个8.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=2∠B.则sin B•sadA=()A.B.1 C.D.29.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A.B.C.D.10.如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB =2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米11.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.二.填空题(共8小题)12.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.13.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.14.△ABC中,∠C=90°,tan A=,则sin A+cos A=.15.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sin B=,则DE的长为.17.如图,若△ABC和△DEF的面积分别为S1、S2,则S1:S2=.18.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2米,斜坡AB的坡度,现把图中的货物沿斜坡继续往前平移,当货物顶点D 与C重合时,恰好可把货物放平装进货厢,则BD=.19.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是m(结果保留根号);三.解答题(共5小题)20.已知α为一锐角,sinα=,求cosα,tanα.21.计算:2cos30°+sin45°﹣tan260°﹣tan45°.22.(1)已知∠A是锐角,求证:sin2A+cos2A=1.(2)已知∠A为锐角,且sin A•cos A=,求∠A的度数.23.如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tan B=(1)求AC和AB的长;(2)求sin∠BAD的值.24.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD 相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.参考答案与试题解析一.选择题(共11小题)1.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8 B.12 C.13 D.18【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.2.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.2【分析】根据∠A的正弦值得到BC的长,进而利用勾股定理得到AC长即可.【解答】解:∵∠C=90°,sin A=,AB=2,∴BC=AB×sin A=2×=,由勾股定理得:AC==.故选:A.3.已知α为锐角,下列结论:(2)若α>45°,则sinα>cosα;(3)如果cosα>,则α<60°;(4)=1﹣sinα.其中正确结论的序号是()A.(1)(3)(4)B.(2)(4)C.(2)(3)(4)D.(3)(4)【分析】根据锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义求解.【解答】解:(1)如果α=30°,那么sinα=,cosα=,sinα+cosα=≠1,错误;(2)∵90°>α>45°,∴0°<90°﹣α<45°<α,∴sinα>sin(90°﹣α),∴sinα>cosα,正确;(3)∵cos60°=,余弦函数随角增大而减小,∴如果cosα>,则α<60°,正确;(4)∵sinα≤1,∴sinα﹣1≤0,∴=|sinα﹣1|=1﹣sinα,正确.故正确结论的序号是(2)(3)(4).故选:C.4.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0 B.小于0 C.等于0 D.不能确定【分析】cos A=sin(90°﹣A),再根据余弦函数随角增大而减小进行分析.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.5.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0【分析】将两式分别两边平方,利用sin2α+cos2α=1,求出sinαcosα的值,解答即可.【解答】解:∵sinα+cosα=,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.6.在△ABC中,∠A,∠B均为锐角,且有|tan B﹣|+(2cos A﹣1)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形【分析】直接利用特殊角的三角函数值得出∠B,∠A的度数,进而得出答案.【解答】解:∵|tan B﹣|+(2cos A﹣1)2=0,∴tan B=,2cos A=1,则∠B=60°,∠A=60°,∴△ABC是等边三角形.故选:B.7.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】直接利用已知公式法分别代入计算得出答案.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.8.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=2∠B.则sin B•sadA=()A.B.1 C.D.2【分析】证明△ABC是等腰直角三角形即可解决问题.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=2∠B,∴∠B=∠C=45°,∠A=90°,∴BC=AC,∴sin∠B•sadA=•=1,故选:B.9.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A.B.C.D.【分析】如图,作OH⊥AB于H.利用已知条件以及勾股定理构建方程组求出OA,OH即可解决问题.【解答】解:如图,作OH⊥AB于H.由题意:AB=8,OA﹣OH=3,∵OH⊥AB,∴AH=BH=4,∵AH2+OH2=OA2,∴42=(OA+OH)(OA﹣OH),∴OA+OH=,∴OA=,OH=,∴cos∠OAB===,故选:B.10.如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB =2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】分别在Rt△ABC,Rt△DEC中求出AC,BC,CD即可.【解答】解:在Rt△ABC中,∵∠ABC=90°,AB=2米,∴sinα=,∴0.8=,∴AC=2.5米,BC==1.5米,在Rt△ECD中,∵∠EDC=90°,ED=2.4米,EC=AC=2.5米,∴CD==0.7,∴BD=CD+BC=0.7+1.5=2.2米,故选:C.11.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.【分析】延长DE交BC于H.解直角三角形求出BC=AC=30,再证明BH=CH=DH=30,EH=10,即可解决问题;【解答】解:延长DE交BC于H.由题意BH:EH=3:1,在Rt△ABC中,AB=60,∠BAC=45°,∵BC=AC=60,∵AD=DB,DH∥AC,∴BH=CH=30,∴DH=AC=30,∴EH=10,DE=30﹣10=20,故选:A.二.填空题(共8小题)12.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10 .【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.13.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.【解答】解:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.14.△ABC中,∠C=90°,tan A=,则sin A+cos A=.【分析】根据tan A=和三角函数的定义画出图形,进而求出sin A和cos A的值,再求出sin A+cos A的值.【解答】解:如图,∵tan A==,∴设AB=5x,则BC=4x,AC=3x,则有:sin A+cos A=+=+=,故答案为:.15.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.【分析】根据正切的定义,可得直角边,根据勾股定理,可得斜边,根据余弦函数,可得答案.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sin B=,则DE的长为.【分析】先由AF平分∠CAB,CD⊥AB,过点E作EG垂直于AC,利用角平分线的性质定理得EG等于DE,易得Rt△AED全等于Rt△AEG以及∠DCA等于∠B,从而求得AD,AG,CG,然后在Rt△CEG中,由勾股定理求出EG,即为DE的长度.【解答】解:过点E作EG⊥AC于点G,又∵AF平分∠CAB,CD⊥AB,∴EG=ED,在Rt△AED和Rt△AEG中,∴Rt△AED≌Rt△AEG(HL),AG=AD.∵∠ACB=90°,CD⊥AB,∴∠B+∠BAC=∠DCA+∠BAC=90°,∴∠DCA=∠B,∵AC=6,sin B=,∴sin∠DCA=sin B=,∴=,∴AD=,∴DC===,∴AG=AD=,CG=AC﹣AG=,∴在Rt△CEG中,CE2=EG2+CG2,∴(DC﹣ED)2=(DC﹣EG)2=EG2+CG2∴,∴EG=,∴DE=.故答案为:.17.如图,若△ABC和△DEF的面积分别为S1、S2,则S1:S2=1:1 .【分析】过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出解答.【解答】解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△DHE中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故答案为:1:118.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2米,斜坡AB的坡度,现把图中的货物沿斜坡继续往前平移,当货物顶点D与C重合时,恰好可把货物放平装进货厢,则BD=米.【分析】利用斜坡AB的坡度得到=,进而证得△CBD∽△BAE,得到==,然后设CD=x米,则BD=3x米,在Rt△CBD中,利用勾股定理求得答案即可.【解答】解:如图,∵斜坡AB的坡度,∴=,∵∠CBD+∠ABE=90°,∠ABE+∠A=90°,∴∠CBD=∠A,∵∠CDB=∠AEB=90°,∴△CBD∽△BAE,∴==∴设CD=x米,则BD=3x米,货物顶点D与C重合,∴∠CDB=90°,在Rt△CBD中,BD2+CD2=BC2,即:x2+(3x)2=22,x=(负值舍去),∴BD=米.故答案为米.19.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是45m(结果保留根号);【分析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系得出答案.【解答】解:由题意可得:∠BDA=45°,则AB=AD,又∵∠CAD=30°,∴在Rt△ADC中,CD=45m.tan∠CDA=tan30°==,即=,解得:AD=45(m),∴AB=45m.故答案为:45.三.解答题(共5小题)20.已知α为一锐角,sinα=,求cosα,tanα.【分析】根据sinα=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出cosα的值,同理可得tanα的值.【解答】解:由sinα==,设a=4x,c=5x,则b==3x,故cosα==,tanα==.21.计算:2cos30°+sin45°﹣tan260°﹣tan45°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=2×+×﹣3﹣1=﹣3.22.(1)已知∠A是锐角,求证:sin2A+cos2A=1.(2)已知∠A为锐角,且sin A•cos A=,求∠A的度数.【分析】(1)利用三角函数的定义即可得出结论;(2)利用三角函数的定义得出c2=ab,再用勾股定理得出a2+b2=c2,进而得出a=b,即可得出结论.【解答】解:如图,在Rt△ABC中,sin A=,cos A=,根据勾股定理得,a2+b2=c2,(1)证明:sin2A+cos2A=()2+()2==1,(2)∵sin A•cos A=,∴=,∴c2=2ab,∴a2+b2=2ab,即:(a﹣b)2=0,∴a=b,在Rt△ABC中,tan A==1,∠A=45°.23.如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tan B=(1)求AC和AB的长;(2)求sin∠BAD的值.【分析】(1)由tan B==设AC=3x、BC=4x,据此得DC=4x﹣2,根据∠ADC=45°得AC=DC,即3x=4x﹣2,解之得出x的值,继而可得答案;(2)作DE⊥AB,设DE=3a、BE=4a,根据DE2+BE2=BD2可求得a的值,继而根据正弦函数的定义可得答案.【解答】解:(1)如图,在Rt△ABC中,∵tan B==,∴设AC=3x、BC=4x,∵BD=2,∴DC=BC﹣BD=4x﹣2,∵∠ADC=45°,∴AC=DC,即4x﹣2=3x,解得:x=2,则AC=6、BC=8,∴AB==10;(2)作DE⊥AB于点E,由tan B==可设DE=3a,则BE=4a,∵DE2+BE2=BD2,且BD=2,∴(3a)2+(4a)2=22,解得:a=(负值舍去),∴DE=3a=,∵AD==6,∴sin∠BAD==.24.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD 相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【分析】(1)根据已知条件得到CP=4,求得BP=2,根据三角形重心的性质即可得到结论;(2)如图1,过点B作BF∥CA交CD的延长线于点F,根据平行线分线段成比例定理得到,求得=,设CP=k,则PA=3k,得到PA=PB=3k根据三角函数的定义即可得到结论;(3)根据直角三角形的性质得到CD=BD=AB,推出△PBD∽△ABP,根据相似三角形的性质得到∠BPD=∠A,推出△DPE∽△DCP,根据相似三角形的性质即可得到结论.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则PA=3k,∵PD⊥AB,D是边AB的中点,∴PA=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.。
☆人教版九年级数学下册第28章 锐角三角函数知识点及典型例题
人教版九年级数学下册第28章 锐角三角函数知识点及典型例题知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 例1.如图所示,在Rt △ABC 中,∠C =90°.第1题图①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______. 例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .典型例题:类型一:直角三角形求值1.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC求:AB 及OC 的长.3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC .4. 已知A ∠是锐角,178sin =A ,求A cos ,A tan 的值对应训练:(西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为A .55 B .255 C .12D .2 (房山)5.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ).A .35B . 45C . 34D . 43类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .32C .35D .453.(孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .D C B A Oyx第8题图4.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2.5.(齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .436. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43C.35D.45A D EC B F7. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .228. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求 ∠B 的度数及边BC 、AB 的长.DABC图6类型三. 化斜三角形为直角三角形例1 (安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练1.(重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 2类型四:利用网格构造直角三角形例1 (内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12B .55C .1010D .255对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.CBA2.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则't a nB 的值为 A.41 B. 31 C.21D. 13.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A . 5 5 B. 2 5 5 C.12 D. 2特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:︒-︒+︒60tan 45sin 230cos 2.(朝阳)2)计算:︒-︒+︒30cos 245sin 60tan 2.锐角α 30° 45° 60° sin αcos αtan αA BO(黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45°(石景山)4.计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+.(通县)5.计算:tan 45sin 301cos 60︒+︒-︒;例2.求适合下列条件的锐角α .(1)21cos =α(2)33tan =α(3)222sin =α (4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在AB C ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.DCBA5.如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;ACB(3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ;(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.例4.已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10cm.求AB及BC的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB 两点的距离是()A.200米B.200米C.220米D.100()米例2.已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离mDE,求点B到地=32面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小山顶上,小山的高BD=30m.从水平面上一点C测得风力发电装置的顶端A的仰角∠DCA=60°,测得山顶B的仰角∠DCB=30°,求风力发电装置的高AB的长.例4 .如图,小聪用一块有一个锐角为30︒的直角三角板C测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB为1.7米,求这棵树的高度.例5.已知:如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求山的高度及缆绳AC的长(答案可带根号).例5.(泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB 的高度为()A.10米B.10米C.20米D.米例6.益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度? (计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)类型四. 坡度与坡角例.(广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m类型五. 方位角 1.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少?(精确到0.1海里,732.13 )2.(恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形ABCD中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan∠BDC=6 3.(1) 求BD 的长; (2) 求AD 的长.18.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:∠BAE =∠DAF ; (2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .32C .35D .45(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O交于点D,(1) 求证:∠AOD=2∠C(2) 若AD=8,tanC=34,求⊙O 的半径。
人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)
第二十八章 锐角三角函数一、单选题1.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( )A .B .C .D . 2.(2016甘肃省兰州市)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( ) A .4 B .6 C .8 D .103.在Rt △ABC 中,∠C=90°,sinB=513,则tanA 的值为( ) A .513 B .1213 C .512 D .1254.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3= B .2cosA 3= C .2tanA 3= D .2cotA 3= 5.如图,过点C (﹣2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB=( )A .25B .23C .52D .326.如图,某超市自动扶梯的倾斜角 为 ,扶梯长 为 米,则扶梯高 的长为( )A.米B.米C.米D.米7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米8.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100 αm B.100sinαm C.100cosαm D.100 αm9.某水坝的坡度i=1,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.2010.如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为()A.14 m B.17 m C.20 m D.22 m二、填空题11.2sin45°+2sin60°﹣=_____. 12.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A = .13.某同学沿坡比为1: 的斜坡前进了90米,那么他上升的高度是______米14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题15.计算:|﹣2|﹣2cos60°+(16)﹣1﹣(π0. 16.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)17.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.18.如图,为了测量出楼房AC的高度,从距离楼底C处D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据: 53°≈0.8, 53°≈0.6, 53°≈43,计算结果用根号表示,不取近似值).答案1.D2.D3.D4.C5.B6.A7.A8.A9.A10.A1112.3513.4514.215.|﹣2|﹣2cos60°+(16)﹣1﹣(π﹣ )0 =2﹣2×12+6﹣1 =6.16.解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan AM EM x AEM ==∠, 由题意得,FM EM EF -=,即40x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB为(61+米.17.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°。
人教版九年级数学下册第28章锐角三角函数全章训练题含答案
人教版九年级数学下册第28章锐角三角函数全章训练题含答案1. 在Rt △ABC 中,∠C =90°,假定将各边长度都扩展为原来的2倍,那么∠A 的正弦值( D )A .扩展2倍B .增加2倍C .扩展4倍D .不变2. 如图,在△ABC 中,∠C =90°,cosB =45,那么AC ∶BC ∶AB =( A )A .3∶4∶5B .4∶3∶5C .3∶5∶4D .5∶3∶43. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,假定AC =5,BC =2,那么sin ∠ACD 的值为( A ) A.53 B.255 C.52 D.234.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,那么tan A =( D )A.35B.45C.34D.435.计算sin30°·tan45°的结果是( A )A.12B.32C.36D.246.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( D )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 7.如图,AC 是电杆的一根拉线,测得BC =6米,∠ACB =52°,那么拉线AC 的长为( D )A.6sin52°米B.6tan52°米 C .6·cos52°米 D.6cos52°米 8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,那么斜坡AB 的长为( B )A .43米B .65米C .125米D .24米9.在△ABC 中,∠C =90°,tan A =34,那么cos B 的值是( C ) A.45 B.34 C.35 D.4310.如图,渔船在A 处看到灯塔C 在北偏东60°方向上,渔船向正西方向飞行了12海里抵达B 处,在B 处看到灯塔C 在正南方向上,这时渔船与灯塔C 的距离是( D )A .123海里B .63海里C .6海里D .43海里11.如图,为测量B 点到河岸AD 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =100米,那么B 点到河岸AD 的距离为( B )A .100米B .503米 C.20033米 D .50米 12.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( B )A .(600-2503)米B .(6003-250)米C .(350+3503)米D .5003米13.在Rt △ABC 中,∠C =90°,假设AC =3,AB =5,那么cos B 的值是 __45__. 14.在△ABC 中,∠C =90°,BC =2,sin A =23,那么AC 的长是__5__. 15.如图,在空中上的点A 处测得树顶B 的仰角为α度,AC =7米,那么树高BC 为__7tan α__米.(用含α的代数式表示),第13题图) ,第14题图) ,第16题图) ,第17题图)16.如图,△ABC 中,∠C =90°,BC =4 cm ,tan B =32,那么△ABC 的面积是__12__cm 2.17.在△ABC 中,假定∠A ,∠B 满足|cos A -12|+(sin B -22)2=0,那么∠C =__75°__.18.长为4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如下图),那么梯子的顶端沿墙面降低了__(23-22)__m.19.如图,在修建平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,平台CD 的高度为5 m ,那么大树的高度为3)__m .(结果保管根号)20.规则:sin (-x)=-sin x ,cos (-x)=cos x ,sin (x +y)=sin x ·cos y +cos x ·sin y.据此判别以上等式成立的是__②③④__.(写出一切正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ; ④sin(x -y )=sin x ·cos y -cos x ·sin y . 21.计算:(1)sin 230°+cos 245°+3sin60°·tan45°;解:94(2)cos 230°+cos 260°tan60°·tan30°+sin 245°. 解:3222.在Rt △ABC 中,∠C =90°,a =10,c =20,解这个直角三角形. 解:∠A =30°,∠B =60°,b =10 323.假设是我国某海域内的一个小岛,其平面图如图甲所示,小明据此结构出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米.求∠ACD 的余弦值.解:衔接AC ,在Rt △ABC 中,AC =AB 2+BC 2=152千米,在Rt △ACD 中,cos ∠ACD =CD AC =32152=15,∴∠ACD 的余弦值为1524.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.解:∵在Rt △ABC 中,BC =8,tanB =12,∴AC =4.设AD =x ,那么BD =x ,CD =8-x ,由勾股定理,得(8-x)2+42=x 2.解得x =5.∴cos ∠ADC =DC AD=3525.如图,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示衔接缆车站的钢缆.A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1区分为160米,400米,1000米,钢缆AB ,BC 区分与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果准确到1米)解:依据题意知BD =400-160=240米,CB 2=1000-400=600米,在Rt△ADB 中,sin30°=BD AB ,∴AB =BD sin30°=480米,在Rt △BB 2C 中,sin45°=CB 2BC ,∴BC =CB 2sin45°=6002米,AB +BC =(480+6002)米≈1329米 26.如图,某高速公路树立中需求确定隧道AB 的长度.在离空中1500 m 的高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角区分为60°和45°.求隧道AB 的长.(3≈1.73) 解:∵OA =1500×tan30°=5003,OB =OC =1500,∴AB =1500-5003≈1500-865=635(m)。
(汇总)人教版九年级下册数学第二十八章 锐角三角函数含答案
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、在Rt△ABC中,∠C=90°,若AC=2,BC=1,则tanA的值是()A. B.2 C. D.2、在Rt△ABC中,∠C=90°,BC=5,CA=12,则cosB=()A. B. C. D.3、sin30°的值为()A. B. C. D.4、河堤横断面如图所示,斜坡AB的坡度=1: ,AB= 6m,则BC的长是()A. mB.3mC. mD.6m5、在湖边高出水面50m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式:= )()A.25 +75B.50 +50C.75 +75D.50 +1006、如图,Rt△AOB中,∠AOB=90°,且点A在反比例函数的图象上,点B在反比例函数的图象上,则tanB的值是()A. B. C. D.7、如图所示,热气球探测器在A点处,点B为楼顶,点C为楼底,AD为水平线,EF 为经过点A的铅垂线,则下列说法正确的有( )①∠1为仰角; ②∠2为仰角; ③∠3为俯角; ④∠4为俯角.A.1个B.2个C.3个D.4个8、在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为( )A. B. C. D.29、如图,在△ABC中,∠C=90°,AC=2,BC=1,则cosA的值是()A. B. C. D.10、如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.A.2B.3C.4D.511、已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A. B.2sinα C. D.2cosα12、如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为,若测角仪的高度是,则旗杆的高度约为(精确到,参考数据:,,)()A.8.5米B.9米C.9.5米D.10米13、如图,AB是⊙O的弦,CD是⊙O的直径,CD=15,CD⊥AB于M,如果sin∠ACB=,则AB=()A.24B.12C.9D.614、如图,在中,,,,则下列结论正确的是()A. B. C. D.15、将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AB=15,AC=9,则cos∠ADC=________.17、如图,,点在射线上,且,则点到射线的距离是________.18、如图,AB是半圆的直径,AC是一条弦,D是的中点,DE⊥AB于点E 且DE交AC于点F,DB交AC于点G,若=,则=________.19、在△ABC中,∠A=60°,∠C=75°,AB=8,D、E、F分别在AB、BC、CA 上,则△DEF的周长最小值是________.20、如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是________ .21、如图,有一个小山坡,坡比.已知小山坡的水平距离,则小山坡的高度是________.22、我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈= =3,那么当n=12时,π≈ =________.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)23、如图,中,,,于点,是线段上的一个动点,则的最小值是________.24、将平行四边形ABCD(如图)绕点C旋转后,点D落在边BC上的点D′,点A落到A′,且点A′、B、A在一直线上.如果AB=3,AD=13,那么cosA=________.25、小明为测量校园里一颗大树的高度,在树底部B所在的水平面内,将测角仪竖直放在与B相距的位置,在D处测得树顶A的仰角为.若测角仪的高度是,则大树的高度约为________.(结果精确到.参考数据:)三、解答题(共5题,共计25分)26、计算:.27、如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D处测得A的仰角为45°,求铁塔AB的高.28、如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)29、如图,水渠两边AB//CD,一条矩形竹排EFGH斜放在水渠中,∠AEF=45°,∠EGD=105°,竹排宽EF=2米,求水渠宽.30、如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、B5、D6、C7、B8、B9、D11、A12、C13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数知识点:
(1)三边的关系:a ²+b ²=c ²
(2)两锐角之间的关系:∠A+∠B=90度
(3)边角之间的关系:正弦sinA = ∠A 的对边斜边
=a:c 余弦cosA = ∠A 的邻边斜边
=b:c 正切tanA = ∠A 的对边∠A 的邻边
=a:b
特殊值的三角函数:
(4)sin ²A+cos ²A=1 tanA=sinA:cosA
(5)计算:3tan30-tan45+2sin60
(6)计算:
50
cos 40sin 0cos 45tan 30cos 330sin 145tan 41222-+-+
9.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。
10、已知tan α=12
5,α是锐角,则sin α= 。
11、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=
53,则BC 的长是( )
12、已知a为锐角,sina=cos500则a等于()
A.200
B.300
C.400
D.500
13、若tan(a+10°)=3,则锐角a的度数是( )
A、20°
B、30°
C、35°
D、50°
14.已知Rt△ABC的斜边AB的长为10cm , sinA、sinB是方程m(x2-2x)+5(x2+x)+12=0的两根。
(1)求m的值;(2)求Rt△ABC的内切圆的面积。
15.(6分)如图,△ABC是等腰三角形,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为E,连结CE,求sin∠ACE的值.
16. 如图,已知MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M
的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区。
取MN 上另一点B,测得BA的方向为南偏东75°.已知MB=400m,通过计算回答,如果不改变方向,输水线路是否会穿过居民区?
答案:
(6)2
1~8 DCCB 10√3 1/5 30度 29 9. 54 10、13
5 11 A 12 C 13 D 14、(1)m=20(m=-2舍)(2)4π 15、
10103。