电石渣制备氧化钙的C循环分析 外文
电石废渣制备碳酸钙的研究
电石废渣制备碳酸钙的研究
电石渣是电石法生产PVC的工业废弃物,由于主要成分为氢氧化钙,高碱性,保水性强,符合Ⅱ类一般工业固体废物,仅简单处理对环境有害。
本论文以电石渣为原料制备碳酸钙,研究了高温煅烧法和氯化铵溶液浸出法。
探讨了两种方法中工艺参数对碳酸钙含量和形貌的影响。
1)在煅烧精制工艺中提出了加入碳酸钠,同时脱除电石渣中的碳和酸不溶物方法。
研究了碳酸钠加入量、煅烧温度、煅烧时间、消化条件等因素对碳酸钙质量和形貌的影响,得到较优的工艺条件为:煅烧温度900℃,煅烧时间为1小时,碳酸钠加入量为杂质摩尔量的1.5倍,消化灰水1:7,消化水起始温度为93℃,在消化水中加入氢氧化钠的浓度20g/L,保温时间0.5小时,粗石灰乳经500目过筛,经碳化得到碳酸钙纯度为96.8%。
2)在氯化铵溶液浸出法中,浸取最佳工艺条件为:反应物浓度质量比为电石渣:氯化铵:水=1:1.5:8,反应温度85℃,反应时间1小时,电石废渣中钙的浸取率达到83.3%。
浸取液经过滤、碳化、再过滤、干燥后,碳酸钙含量可达99.6%。
3)在浸取液碳化过程研究结果表明,氯离子对碳酸钙生长的形貌没有明显影响,NH3会使碳酸钙颗粒更小。
氯化铵溶液浸出法得到的碳酸钙颗粒均是由纳米级颗粒组成的大球形碳酸钙。
电石渣还原氧化钙工艺流程图
电石渣还原氧化钙工艺流程图英文回答,The process flow of reducing calcium oxide with carbide slag involves several steps. First, the carbide slag is mixed with water to produce acetylene gas. The acetylene gas is then reacted with calcium oxide to produce calcium carbide and water. The calcium carbide is then further reacted with water to produce acetylene gas and calcium hydroxide. Finally, the calcium hydroxide is heated to high temperatures to produce calcium oxide and water, completing the reduction process.This process can be represented in a flow chart as follows:1. Carbide slag + water → Acetylene gas.2. Acetylene gas + calcium oxide → Calcium carbide + water.3. Calcium carbide + water → Acetylene gas + calciumhydroxide.4. Calcium hydroxide (heated) → Calcium oxide + water.This flow chart visually represents the sequentialsteps involved in the reduction of calcium oxide using carbide slag.中文回答,电石渣还原氧化钙的工艺流程涉及几个步骤。
电石渣制备过氧化钙液相循环工艺的研究
电石渣制备过氧化钙液相循环工艺的研究熊磊;蓝师文;邹友琴;蒋柏泉【摘要】为了综合利用工业电石废渣,减少固体污染排放,开发了液相循环工艺.用电石渣与氯化铵和双氧水反应制备过氧化钙.并将副产的氯化铵溶液循环使用.采用单因素和正交实验对钙提取和过氧化钙制备的工艺参数做了优化.实验得到钙离子提取的最佳工艺参数:电石渣过量20%、反应时间为30 min、搅拌速度为300r/min,此时钙提取率为83.3%,氯化铵利用率为98.5%.过氧化钙制备的最佳工艺参数:稳定剂用量为9%(质量分数)、反应时间为20 min、混合液用量为5%、搅拌速度为500 r/min,此时产品收率为94.69%,纯度为69.74%.%In order to comprehensively utilize the calcium carbide waste residue produced in industry and reduce the solid pollution emissions,the liquid phase cycling process was developed.Calcium slag was used to react with ammonium chloride and hydrogen peroxide to prepare calcium peroxide,and the by-product ammonium chloride solution was reused.Single factor and orthogonal experiment methods were used to optimize the process parameters of calcium ion extraction and calcium peroxide preparation,respectively.The results showed that the optimum process conditions of calcium ion extraction were as follows:excess calcium carbide slag 20%,reaction time was 30 min and stirring speed was 300 r/ain,under which the calcium extraction yield was 83.3% and ammonium chloride utilization rate was 98.5%.The optimum process parameters of calcium peroxide preparation were as follows:dosage of stabilizing agent was 9%(mass fraction),reaction time was 20 min,dosage of mixed solution was5%,stirring speed was 500 r/min,under which the yield and purity of the product were 94.69% and 69.74%,respectively.【期刊名称】《无机盐工业》【年(卷),期】2018(050)002【总页数】4页(P58-61)【关键词】电石渣;氯化铵;过氧化钙;双氧水;循环工艺【作者】熊磊;蓝师文;邹友琴;蒋柏泉【作者单位】南昌大学科学技术学院生物化学系,江西南昌330029;南昌大学资源环境与化学工程学院;南昌大学资源环境与化学工程学院;南昌大学科学技术学院生物化学系,江西南昌330029;南昌大学资源环境与化学工程学院【正文语种】中文【中图分类】TQ132.32电石渣是电石法生产聚氯乙烯(PVC)过程中产生的主要固体废弃物,每生产1 t的PVC可副产1.5~1.9 t电石渣。
TB2017.0427-电石渣制备碳酸钙的研究及应用
电石渣制备碳酸钙的研究及应用王洪富,高进华,卞会涛,徐勤政,张宗彩摘要:以电石渣为原料通过液-液相反应制备碳酸钙,研究了制备碳酸钙的基本原理。
研究表明通过液-液相反应制备的碳酸钙符合HG/T21776-1996行业标准中的指标要求,其主含量碳酸钙为50.2%,pH值为9.0,盐酸不溶物含量为0.13%,105℃下挥发物含量为0.65%,白度为84度。
关键词:电石渣;碳化反应;预处理;基本原理;工艺流程;Preparation and application of calcium carbonate from carbide slag WANG Hongfu 2,GAO Jinhua2,BIAN Huitao 2,XU Qinzheng 1,ZHANG ZongcaiAbstract: In this paper, carbide slag as raw material through the liquid - liquid calcium carbonate was prepared to study the basic principles of preparation of calcium carbonate. The results shows that through the liquid - liquid-phase reaction of calcium carbonate prepared in line with industry standards HG/T21776-1996 of the indicator, the main content of 50.2, pH 9.0, hydrochloric acid insoluble content of 0.13%, 105 ℃ volatile matter content of the next 0.65%, white 84 degrees. Keywords: carbide slag; carbonation reaction; pretreatment; the basic principles of; process ;电石渣是生产乙炔后的废渣[1]。
电石渣分析报告
电石渣分析报告1. 引言本报告旨在对电石渣进行全面的分析,包括其成分、性质、应用领域等方面的介绍。
电石渣是一种由石灰石经过高温煅烧产生的副产品,具有广泛的应用价值。
本报告将通过对电石渣的分析,进一步了解其在工业生产中的作用。
2. 电石渣的成分电石渣主要由氧化钙(CaO)、氧化镁(MgO)、氧化铁(Fe2O3)等无机物组成。
其中,氧化钙是电石渣的主要成分,占总质量的大部分。
氧化镁和氧化铁的含量相对较低,但在一些特定应用中具有重要作用。
3. 电石渣的性质3.1 物理性质电石渣呈灰白色或灰黄色,外观呈颗粒状或块状。
其比表面积较大,颗粒间存在较多的孔隙。
电石渣具有一定的吸湿性,能迅速吸湿并与水反应生成氢氧化钙。
3.2 化学性质电石渣具有较强的碱性,能与酸反应产生盐和水。
由于电石渣中的氧化钙含量高,其碱性较强。
此外,电石渣中还含有少量的氧化镁和氧化铁,这些成分使得电石渣在一些特定的应用领域中具有特殊的化学性质。
4. 电石渣的应用电石渣在多个领域具有广泛的应用价值,以下将对其主要应用进行介绍。
4.1 建筑材料由于电石渣具有一定的粘结性和抗压性能,可以作为建筑材料的添加剂。
添加适量的电石渣可以提高混凝土的强度和耐久性,延长建筑物的使用寿命。
4.2 环境修复电石渣作为一种含有钙、镁等元素的无机材料,可以用于土壤酸化修复。
在酸性土壤中添加电石渣可以中和土壤酸性,提高土壤的肥力和适宜性。
4.3 冶金工业电石渣中含有一定量的氧化铁和氧化镁,这些成分在冶金工业中具有重要的应用。
氧化铁可以用于制备铁合金和磁性材料,而氧化镁则可以用于制备耐火材料和保温材料。
4.4 其他应用除了以上应用领域,电石渣还可以用于制备氢氧化钙、硅酸钙和硅酸镁等化学品。
此外,电石渣还可以用作玻璃、陶瓷和搪瓷的原料,具有一定的经济效益。
5. 总结本报告对电石渣进行了全面的分析和介绍。
根据对电石渣成分、性质和应用的研究,可以得出电石渣具有较高的碱性、吸湿性和多样化的应用价值。
利用电石渣制备高活性氧化钙的研究
利用电石渣制备高活性氧化钙的研究摘要:介绍了以氯碱固废电石渣为原料制备高活性氧化钙的两种方法,对两种方法的利弊进行概述,比较了两种方法的实施可行性。
关键词:电石渣;球团;循环利用;先烧后压;先压后烧电石渣是电石法制备乙炔气体过程中产生的工业废渣,目前较为常用的处理方法为生产水泥、建筑材料、化工产品和三废治理的原料。
受建筑行业产能过剩及水泥行业自身建设饱和影响,电石渣固废处理形势依然严峻,利用电石渣替代石灰石制备高活性氧化钙生产电石既可以大量处理电石渣,又可以降低石灰石开采带来的环境、经济成本,可谓一举多得。
一、电石渣的用途(一)水泥原材料缓冲料仓(V04103)的电石经螺旋计量给料机(M04106)均匀地送入干法乙炔发生器(R04101),螺旋计量给料机(M04106)进入发生器的电石从发生器中心向外侧均匀分布,电石以S型路线通过5层塔盘,到达发生器最底层,依次通过干渣下料器、FU输送机、干渣斗提机进入干渣仓。
(1#干渣仓的电石渣通过1#干渣下料器,依次通过1#、3#、5#、6#电石渣皮带输送至环保建材。
#干渣仓的电石渣依次通过#干渣下料器,依次通过#、3#、5#、6#电石渣皮带输送至环保建材。
3#干渣仓电石渣通过3#干渣下料器,依次通过5#、6#电石渣皮带送至环保建材)(二)脱硫剂原材料电石渣通过4#电石渣皮带输送到3#电石渣仓底部,通过电石渣输送管链机、电石渣振动筛、电石渣提升机、筛余电石渣提升机、FU刮板机、电石渣除尘将成品送入成品仓,不合格电石渣进入废料仓,成品仓为电石渣浆配制提供原料。
二、电石渣特点1、制成的水泥品质高;2、节约了大量的石灰石资源;3、全套工艺密闭、洁净、环保、无二次污染;4、系统自动化程度高,全程可实现远程调控、实时监控,运行成本低;三、利用电石渣制备高活性氧化钙的方法(一)电石渣“先烧后压法”制备高活性氧化钙工艺流程:如图1,湿法乙炔产生的电石渣浆(干法乙炔产生的电石渣先浸水形成电石渣浆)通过旋流分离技术去除杂质,使得电石渣中氢氧化钙纯度提升至85%以上,再经板框压滤后制成含水约30%-40%的电石渣,通过利用电石炉气或煤气烘干形成含水约1%的电石渣干粉,电石渣干粉经过回转窑煅烧成为氧化钙粉料,再通过压球设备制成高活性氧化钙。
利用电石渣代替石灰石制备氧化钙的可行性分析
Ab s t r a c t :F e a s i b i l i y t o f c lc a i u m o x i d e p r o d uc t i o n f r o m c a r b i de s l a g i n s t e a d o f l i me s t o n e wa s a n a l y —
需 的 热 量 和 成 本 影 响 较 大 。与 石 灰 石 制 备 氧 化 钙 相 比 , 在 控制 电石渣合 理水含 量的前提 下 , 电 石 渣 制 备 氧 化 钙 所 需 的热量及总成本均较少 , 且无 碳排放 , 更 为经 济 环 保 , 因此 , 利用 电 石 渣 替 代 石 灰 石 制 备 氧 化 钙 是 可行 的 。
d e c ompo s i t i on o f c a r bi d e s l a g i nt o c a l c i u m o x i d e . Co m pa r e d wi t h c a l c i um o x i d e p r o d uc t i o n ro f m l i me — s t o ne, o n t h e p r e mi s e t ha t wa t e r c o n t e n t o f c a r bi de s l a g wa s r e a s o na b l e,t h e p r o c e s s o f c a l c i u m o x i d e p r o — d u c t i o n or f m c a r b i d e s l a g wa s mo r e e c o n o mi c a nd m or e e n v i r o nm e n t - f r i e nd l y:l e s s e n e r g y c on s u mp t i o n r e l a t i v e l y l e s s t o t l a C O S t ,a nd z e r o c a r bo n e mi s s i o n. Th e p r o c e s s wa s f e a s i b l e .
电石渣制备高附加值碳酸钙的研究进展
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第1期·364·化工进展电石渣制备高附加值碳酸钙的研究进展郭琳琳1,2,范小振1,张文育1,张翠华1,李煦1(1沧州师范学院化学与化工学院,河北沧州 061001;2天津大学材料科学与工程学院,天津 300350)摘要:电石渣制备碳酸钙可实现电石渣的高附加值利用,是实现电石行业可持续发展的有效途径。
本文总结了电石渣制备碳酸钙的方法,着重介绍了电石渣中钙的提取和碳化两个主要工艺过程。
综述了电石渣在制备轻质碳酸钙、纳米碳酸钙及其表面改性和晶型控制方面的研究进展。
分析认为,氯化铵浸取CO2碳化工艺易于实现浸取剂的循环利用,同时又能利用废气中的CO2,具有较大的利用潜能和广阔前景。
在电石渣制备碳酸钙的过程中,可以同时实现纳米碳酸钙的表面改性,并通过控制碳化温度、加入添加剂等实现晶型控制,制得不同晶型和形状的碳酸钙产品。
电石渣资源化应用制备碳酸钙,呈现出从低附加值向高附加值发展的趋势。
未来电石渣资源化利用制备碳酸钙应进一步完善循环工艺,并深入进行碳酸钙的超细化、表面改性化和晶型控制研究。
关键词:电石渣;资源化;碳酸钙;循环工艺;晶型控制中图分类号:TQ09 文献标志码:A 文章编号:1000–6613(2017)01–0364–08DOI:10.16085/j.issn.1000-6613.2017.01.047Research progress on preparation of calcium carbonate with carbide slag GUO Linlin1,2,F AN Xiaozhen1,ZHANG Wenyu1,ZHANG Cuihua1,LI Xu1(1College of Chemistry and Chemical Engineering,Cangzhou Normal University,Cangzhou 061001,Hebei,China;2School of Materials Science and Technology,Tianjin University,Tianjin 300350,China)Abstract:Preparation of calcium carbonate can achieve high value-added utilization of carbide slag,which is important to the sustainable development of chemical engineering of carbide. Preparation method,especially the process of leaching and carbonation were introduced. The progress in producing calcium carbonate with carbide slag as well as its surface modification and crystal controlling were reviewed. In leaching-carbonization method,ammonium chloride acting as leaching agent is recyclable,CO2 from waste gas can be used as carbonation agent,which is considered to have great potential and prospects. In preparation of calcium carbonate,surface modification of nano-calcium carbonate can be made as well. Calcium carbonate with different crystals and amorphous can be achieved through crystal control. Utilization of carbide slag in preparation of calcium carbonate shows the trend of elevation of added value. Study in the future should focus on the improving of circulative technic and deepen the study on ultra-fining,surface modification and crystal controlling of calcium carbonate in the utilization of carbide slag.Key words:carbide slag;resource utilization;calcium carbonate;circulative technic;crystal control电石渣是电石法生产乙炔工艺过程中产生的废渣,主要成分为Ca(OH)2,因此电石渣浆呈强碱性(pH>13)。
一种利用电石渣制备活性氧化钙的方法[发明专利]
专利名称:一种利用电石渣制备活性氧化钙的方法专利类型:发明专利
发明人:李会泉,李占兵,李少鹏,孙振华
申请号:CN201810718408.0
申请日:20180703
公开号:CN108726550A
公开日:
20181102
专利内容由知识产权出版社提供
摘要:本发明提供了一种利用电石渣制备活性氧化钙的方法,所述方法包括:将电石渣浆液进行筛分处理,得到粗颗粒和筛分浆液;将得到的筛分浆液进行旋流处理,得到第一溢流浆液和第一底流浆液;将第一底流浆液再次进行旋流处理,得到第二溢流浆液和第二底流浆液,两次溢流浆液混合后固液分离,得到细颗粒,第二底流浆液固液分离得到中粗颗粒;再将得到的细颗粒与添加剂混合,依次进行成型处理和烧结处理,得到活性氧化钙。
本发明所述方法将不同粒径的电石渣颗粒分离得较为彻底,且具有不同的用途,实现了电石渣的资源化利用;所述方法工艺简单、流程短,无二次固废排放,有效解决了电石渣的污染问题,具有良好的经济和社会价值。
申请人:中国科学院过程工程研究所
地址:100190 北京市海淀区中关村北二街1号
国籍:CN
代理机构:北京品源专利代理有限公司
代理人:巩克栋
更多信息请下载全文后查看。
一种利用电石渣制备氧化钙的生产工艺[发明专利]
[19]中华人民共和国国家知识产权局[12]发明专利申请公布说明书[11]公开号CN 101514027A [43]公开日2009年8月26日[21]申请号200910064350.3[22]申请日2009.03.09[21]申请号200910064350.3[71]申请人王红地址450008河南省郑州市丰产路83号郑州市洁丽涂料有限公司[72]发明人王红 李鹏 朱桐新 郭海龙 王新生 [74]专利代理机构郑州联科专利事务所(普通合伙)代理人刘建芳[51]Int.CI.C01F 11/04 (2006.01)B09B 3/00 (2006.01)权利要求书 2 页 说明书 4 页 附图 2 页[54]发明名称一种利用电石渣制备氧化钙的生产工艺[57]摘要本发明属于电石渣的应用技术领域,同时属于氧化钙的生产工艺技术领域,具体公开了一种利用电石渣制备氧化钙的生产工艺:首先对电石渣物料进行筛分除杂、干燥;干燥后的物料经分离收集之后送去煅烧;煅烧之后的物料进行冷却、分离收集,即得氧化钙成品。
较好地,所述干燥分两步依次进行一级干燥和二级干燥;煅烧之后的物料先进行初步冷却、分离收集,收集后的物料再经过二次冷却得氧化钙成品。
进一步地,所述一级干燥的温度为50~150℃,时间为8~30h;二级干燥的温度为200~600℃,时间为1~5s;煅烧的温度为750~1200℃,时间为0.2~15s。
本发明的生产工艺变废为宝,生产成本低、产品品质高、具有良好的市场前景。
200910064350.3权 利 要 求 书第1/2页 1.一种利用电石渣制备氧化钙的生产工艺,其特征在于:首先对电石渣物料进行筛分除杂、干燥;干燥后的物料经分离收集之后送去煅烧;煅烧之后的物料进行冷却、分离收集,即得氧化钙成品。
2.如权利要求1所述的利用电石渣制备氧化钙的生产工艺,其特征在于:所述干燥分两步依次进行一级干燥和二级干燥;煅烧之后的物料先进行初步冷却、分离收集,收集后的物料再经过二次冷却得氧化钙成品。
干法电石制备工艺流程
干法电石制备工艺流程The dry method of making calcium carbide involves several stepsand processes. The raw materials required for the production of calcium carbide include lime and carbon. These materials are heated in an electric arc furnace to produce calcium carbide.干法制备电石涉及几个步骤和过程。
制备碳化钙所需的原材料包括石灰和碳。
这些材料在电弧炉中加热,以生产碳化钙。
The first step in the process involves the heating of the raw materials in the electric arc furnace. The temperature in the furnace reaches around °C, causing the carbon to react with the lim e to produce calcium carbide.在该过程中的第一步是在电弧炉中加热原材料。
炉内温度达到约°C,导致碳与石灰发生反应,生成碳化钙。
Once the calcium carbide is formed, it is then removed from the furnace and cooled. The cooling process is crucial to ensure thestability of the calcium carbide and prevent any unwanted reactions or explosions.一旦碳化钙形成,就会从炉中取出并进行冷却。
电石渣烘干工艺流程
电石渣烘干工艺流程英文回答:The process of drying carbide slag involves several steps to ensure the efficient removal of moisture and the production of high-quality dried material. Here is a detailed description of the process:1. Pre-treatment: Before the drying process begins, the carbide slag is usually crushed into smaller pieces to increase the surface area and facilitate the evaporation of moisture. The slag may also undergo screening to remove any impurities or oversized particles.2. Drying: The dried carbide slag can be achieved through various drying methods, such as rotary dryers, fluidized bed dryers, or flash dryers. These dryers utilize hot air or gases to remove moisture from the slag. The choice of dryer depends on factors such as the desired moisture content, production capacity, and energyefficiency.3. Heat source: The heat required for drying can be generated using different sources, including natural gas, coal, electricity, or waste heat. The selection of the heat source depends on availability, cost, and environmental considerations.4. Temperature control: It is crucial to maintain the appropriate drying temperature to avoid overheating or under-drying of the carbide slag. The temperature is typically controlled using thermocouples and feedback control systems to ensure consistent and uniform drying.5. Moisture measurement: Regular moisture measurements are conducted during the drying process to monitor the progress and adjust the drying parameters if necessary. Moisture sensors or laboratory testing methods can be used to determine the moisture content of the dried material.6. Cooling: After the drying process, the carbide slag is usually cooled to room temperature before furtherprocessing or storage. Cooling can be achieved using ambient air or dedicated cooling systems.7. Quality control: To ensure the quality of the dried carbide slag, samples are often taken and analyzed for moisture content, particle size distribution, and chemical composition. These tests help to identify any variations or deviations from the desired specifications.8. Packaging and storage: The dried carbide slag is typically packaged in bags, bulk containers, or silos for transportation and storage. Proper packaging and storage conditions are essential to prevent moisture re-absorption and maintain the quality of the dried material.中文回答:电石渣烘干的工艺流程包括几个步骤,以确保高效去除水分并生产出高质量的干燥物料。
电石渣制备过氧化钙液相循环工艺的研究
电石渣制备过氧化钙液相循环工艺的研究
本研究旨在探究电石渣制备过氧化钙液的相循环工艺。
首先,将电石渣以水为溶剂,调节溶剂盐度到3mol/L至4 mol/L,加入90℃催化剂,进行悬浮混合分散,用于去除电石渣中的有机物,然后再加入95℃的溴水,将矿物质水解;接着,用超声波的处理方法,均质反应液进行去除矿物质;然后,最后在90��﹣95℃条件下加入氢氧化钠溶液滴定法,分离出过氧化钙悬浮液,形成过氧化钙悬浮液。
经过上述多次处理,得到符合规范的过氧化钙液。
以上就是电石渣制备过氧化钙液相循环工艺的研究。
无机盐--从电石渣中回收氧化钙的工艺研究与生产实践
从电石渣中回收氧化钙的工艺研究与生产实践摘 要:研究了以电石渣为原料回收氧化钙的工艺,主要过程包括:原料预处理、杂质分离、电石渣煅烧 分解等。
重点考察了除杂及煅烧工艺条件,结果表明:采用水力旋流除杂工艺,控制水流速度为 0.10m/s 可分离电石渣中大部分杂质,在 900℃的温度下煅烧 5h ,得到的氧化钙产品含量可达到 85%以上。
应用该 工艺建成了一套 10000t/a 的生产装置,氧化钙出料和装置尾气采用微负压操作,解决了粉尘污染问题,以 水煤浆为燃料并充分利用尾气余热降低了能耗。
采用回转窑煅烧,设备结构简单、生产过程控制方便可靠、 处理能力大、自动化程度高。
关键词 电石渣;回收;氧化钙;生产 Process research and production practice of recovering calcium oxide fromcarbide slagTian Wei-jun ,Lai Nai-bin 2(1 Hunan Chemical Vocational and Technical College HuNan Zhuzhou 412004;2 China Salt Industry Group, Hunan Zhuzhou Chemical Industry Group HuNan Zhuzhou 412004) Abstract :This paper studied the carbide slag as raw material recovery process calcium oxide, the main process includes: pre-processing of raw materials, impurity separation, decomposition of carbide slag calcined. It inspected the impurity and the calcination process conditions, results showed that: the hydrocyclone impurity removal process, control the flow rate of 0.10m / s detachable carbide slag in the mechanical impurities, the temperature at 900 ℃ calcined 5h, calcium oxide obtained product content can reach 85% or more, the application of the process into a set of 10000t / a of the production plant. Device operational status showed: calcium oxide materials and devices out of micro-negative pressure operation to solve the problem of dust pollution in order to take full advantage of coal-water slurry as fuel and exhaust gas waste heat to reduce energy consumption. Using rotary kiln calcining, device structure is simple, convenient and reliable process control of production, processing capacity, high degree of automation.Key words: carbide slag; recovery; calcium oxide; production前言氧化钙是无机碱性腐蚀物品,主要用作化工原料、建筑材料、冶金助溶剂、干燥剂以 及土壤改良剂等 。
冶金专业英语词汇(C)_冶金专业英语词汇
c hook roll changer c形换辊钩c.c.d 逆零注洗涤ca thermocouple 铬镍铝镍热电偶cable 钢丝绳cable iron band 缆嗣带材cable iron strip 缆嗣带材cable sheathing alloy 电缆包皮合金cadmium 镉cadmium alloy 镉合金cadmium bronze 镉青铜cadmium cell 镉电池cadmium chloride 氯化镉cadmium copper 镉铜cadmium electrode 镉电极cadmium electrolyte 镉电解液cadmium oxide 氧化镉cadmium plating 镀镉cadmium selenide 硒化镉cadmium sulfate 硫酸镉cadmium sulfide 硫化镉cake copper 铜锭calamine 异极矿calaverite 碲金矿calcification 钙化calcination 煅烧calcinator 煅烧炉calcine 煅烧calcined ore 焙烧矿calciner 煅烧炉calcining 煅烧calcining furnace 煅烧炉calciosamarskite 钙铌钇铀矿calciothermics 钙热法calciothorite 钙硅钍矿calcite 方解石calcium 钙calcium aluminate 铝酸钙calcium carbide 碳化钙calcium carbonate 碳酸钙calcium chloride 氯化钙calcium cyanamide 氰氨化钙calcium ferrite 铁酸钙calcium fluoride 氟化钙calcium hydride 氢化钙calcium hydroxide 氢氧化钙calcium metatitanate 偏钛酸钙calcium molybdate 钼酸钙calcium oxide 氧化钙calcium phosphate 磷酸钙calcium silicate 硅酸钙calcium sulfate 硫酸钙calcium sulfide 硫化钙calcium titanate 钛酸钙calcium tungstate 钨酸钙caliber 孔型calibration 校正calibration furnace 标准炉californium 锎calomel 甘汞calomel electrode 甘汞电极caloric radiation 热辐射calorific balance 热平衡calorific losses 热损失calorific power 热值calorimeter 量热器calorimetric bomb 量热弹calorimetry 量热calorizing 渗铝cam 凸轮cam press 凸轮酌压力机camber 弯曲;凸度;下垂;镰刀弯;翘曲cambering 辊型设计campaign 连续操妆间campylite 磷砷铅矿camshaft 凸轮轴canal 管道canfieldite 黑硫银锡矿cannel coal 烛媒cantilever 悬臂cantilevered roll 悬臂辊cap copper 雷管铜合金capacitive properties 容量性能capacitor foil 电容用箔capacity 容量;容量capillarity 毛细现象capillary 毛细管capillary attraction 毛细引力capillary condensation 毛细凝缩capillary fissure 毛细裂纹capillary force 毛细管酌力capillary porosity 毛细孔隙capillary pressure 毛细压力capillary tension 毛细张力capless stand 开口式机架capped steel 压盖钢capping 加盖capsule metal 卡普苏尔铅锡合金car bottom furnace 车底式炉car dumper 翻车机carat 克拉carbide 碳化物carbide banding 碳化物带carbide carbon 碳化物碳carbide die 硬质合金拉模;硬质合金模carbide etch 碳化物腐蚀carbide former 碳化物形成元素carbide forming element 碳化物形成元素carbide inclusion 碳化物夹杂carbide mandrel 硬质合金心棒carbide network 网状碳化物carbide precipitation 碳化物析出carbide segregation 碳化物偏析carbide slag 电石渣carbon 碳carbon activity 碳素活度carbon arc 碳电弧carbon arc welding 碳弧焊carbon black 炭黑carbon block 大块碳砖carbon brick 碳砖carbon case hardening 渗碳carbon crucible 石墨坩埚carbon depletion 脱碳carbon dioxide 二氧化碳carbon electrode 碳电极carbon equivalent 碳当量carbon monoxide 一氧化碳carbon potential 碳势carbon refractory 碳质耐火材料carbon replica 碳复型carbon restoration 复碳处理carbon steel 碳素钢carbon tool steel 碳素工具钢carbon transfer coefficient 碳传递系数carbon tube furnace 碳管炉carbonaceous coal 半无烟煤carbonate 碳酸盐carbonate leaching 碳酸盐浸出carbonic acid gas 二氧化碳carbonitride 碳氮化物carbonitrided case 渗碳氮层carbonitriding 气体碳氮化carbonitriding medium 碳氮化介质carbonization 焦化carbonization chamber 炭化室carbonizer 渗碳剂carbonizing time 焦化时间carbonyl 羰基carbonyl iron 羰铁carbonyl powder 羰粉carbonyl process 羰基法carbonyl sulfide 硫化羰carborundum 碳化硅carborundum brick 碳化硅砖carbothermy 碳热法carburetted water gas 增碳的水煤气carburetter 汽化器carburization 渗碳carburized case 渗碳层carburizer 渗碳剂carburizing 渗碳carburizing atmosphere 渗碳气氛carburizing compound 渗碳剂carburizing flame 碳化火焰carburizing furnace 渗碳炉carburizing gas 渗碳气体carburizing medium 渗碳介质carburizing sintering 碳化烧结carburizing steel 渗碳用钢career 炉龄carnallite 光卤石carnot's cycle 卡诺循环carnotite 钾钒铀矿carriage 小车carrier gas 载运气体carrollite 硫铜钴矿cartridge brass 弹壳黄铜cascade control 阶式控制cascade refining 梯两精炼cascade separator 梯林离器cascade welding 阶梯形多层焊case depth 渗碳层深度case hardening 渗碳case hardening box 渗碳箱case hardening furnace 渗碳炉case hardening steel 渗碳用钢casing 外壳casing pipe 井壁管cassiterite 锡石cast 铸件cast brass 铸造黄铜cast coating 铸造包覆cast iron 铸铁cast iron casting 铁铸件cast iron heredity 铸铁的遣传性cast iron mold 铸铁锭模cast iron pipe 铸铁管cast iron roll 铸铁辊cast iron scrap 废铸铁cast metal 铸造金属cast product 铸件cast refractory 熔注耐火材料cast shell process 毛管铸造法cast steel 钢铸件cast steel grate 铸钢炉栅cast steel products 钢铸件cast steel roll 铸钢轧辊cast structure 铸造组织cast tube 铸造管castability 铸造性能castable refractory 耐火浆料castaway slag 废弃渣casting alloy 铸造合金casting bay 浇注跨casting bed 砂床casting bogie 浇铸小车casting box 型箱casting car 浇铸小车casting carriage 浇铸小车casting copper 铸钢casting defect 铸件缺陷casting ladle 浇铸桶casting machine 浇注机casting mold 铸型;结晶器casting pattern 铸造模型casting pit 铸坑casting platform 浇铸平台casting powder 浇注粉剂casting scrap 铸造废钢casting speed 浇注速率casting stand 浇铸台casting stream oxidation 浇铸铁刘化casting stress 铸造应力casting wheel 圆形铸锭机casting yard 砂床catalan furnace 凯他蓝炉catalan hearth 凯他蓝炉catalan process 凯他蓝土法炼铁法catalysis 催化酌catalyst 催化剂catalytic exchange 催化交换catalytic reaction 催化反应catalytic reduction 催化还原catalyzer 催化剂cataphoresis 电泳catapleite 单斜钠锆石cathetometer 精密高差仪cathode 阴极cathode chamber 阴极室cathode compartment 阴极室cathode copper 阴极铜cathode deposit 阴极沉积物cathode drop 阴极降cathode efficiency 阴极电璃率cathode luminescence 阴极发光cathode nickel 阴极镍cathode potential 阴极电位cathode ray oscillograph 阴极射线示波器cathode ray welding 电子线束焊接cathode rays 阴极射线cathode reaction 阴极反应cathode tube 阴极射线管cathode zinc 阴极锌cathodic corrosion 阴极腐蚀cathodic current 阴极电流cathodic current density 阴极电淋度cathodic deposition 阴极沉积cathodic polarization 阴极极化cathodic protection 阴极保护cathodic reduction 阴极还原catholyte 阴极电解液cation 阳离子cation exchange 阳离子交换cation exchange resin 阳离子交换尸cation exchanger 阳离子交换剂cationite 阳离子交换剂cationite membrane 阳离子交换膜cauliflower top 菜花头caulk weld 封口焊缝caulked joint 嵌缝caulking 敛缝caulking tool 填缝工具caustic alkali 苛性碱caustic embrittlement 苛性脆化caustic lime 苛性石灰caustic potash 苛性钾caustic soda 苛性钠causticity 苛性度cavitation 空穴cavitation attack 空腔腐cavitation corrosion 空腔腐cavitation erosion 空穴腐蚀cavity 孔穴cavity brick 空心砖cavity fracture 空隙断口cc dr process 连铸直接热轧法cc ratio 连铸比cc thermocouple 铜康铜热电偶cct curve 连续冷却转变曲线cegamite 水锌矿cell 格子;室;电池;电解槽cell constant 槽常数cell formation 晶胞生成cell voltage 槽电压cellular precipitation 网状析出cellular structure 网状组织cellulose coated electrode 纤维素型焊条cellulose coating 纤维素型药皮cellulose covered electrode 纤维素型焊条cellulose covering 纤维素型药皮celsian 钡长石cement copper 沉淀铜cement gun 水泥喷射机cement sand molding 水泥砂造型cementation 渗碳cementation process 渗碳法cementation tank 置换沉淀槽cemented carbide 烧结硬质合金cemented steel 渗碳钢cementing bath 渗碳浴槽cementite 碳化铁体cementite network 网状渗碳体center of crystallization 晶核center segregation 中心偏析centering 定心centering pin 定心针centerline shrinkage 中心线收缩孔central combustion stove 中心燃烧式热风炉central roll 中辊centrifugal blower 离心鼓风机centrifugal caster 离心浇铸机centrifugal casting 离心铸件centrifugal casting machine 离心浇铸机centrifugal casting mold 离心铸型centrifugal compacting 离心压坏centrifugal compressor 离心压缩机centrifugal continuous casting 离心连铸centrifugal filter 离心过滤机centrifugal force 离心力centrifugal pump 离心泵centrifugal separator 离心分离器centrifugal tube casting machine 离心铸管机centrifugal washer 离心擦洗机centrifugally cast pipe 离心铸造管centrifugally cast roll 离心浇铸辊centrifugation 离心分离centrifuge 离心分离机ceramal 金属陶瓷ceramic burner 陶瓷浇嘴ceramic fiber 陶瓷纤维ceramic filter 陶瓷过滤器ceramic flux 陶瓷熔剂ceramic metal 金属陶瓷ceramic powder 陶瓷粉ceramics 陶瓷ceramimetallurgical 粉末冶金的ceramimetrallurgy 粉末冶金学cerargyrite 角银矿cerium 钸cerium carbide 二碳化钸cermet 金属陶瓷cerussite 白铅矿cervantite 黄锑矿cesium 铯cesium chlorate 氯酸铯cesium chloride 氯化铯cesium sulfate 硫酸铯chafing fatigue 磨损疲劳chain block 链轮chain conveyor 链式输送机chain drawbench 链式拉丝机chain drive 链传动chain feeder 链式加料机chain grate 链条式炉栅chain reaction 连锁反应chain steel 链钢chain stripper 链式抽出机chain transfer 链式移送机chain type cooling bed 链式冷床chain wheel 链轮chalcanthite 胆矾chalcolite 铜铀矿chalcophile element 亲铜元素chalcopyrite 黄铜矿chalcosine 辉铜矿chalcosite 辉铜矿chalcostibite 硫铜锑矿chalcotrichite 毛赤铜矿chalk test 白垩试验chalybite 菱铁矿chamber furnace 室状炉chamfer 斜切的边缘;槽chamfer angle 边缘斜截角chamfering 开坡口chamfering machine 刨边机chamotte 耐火粘土chamotte brick 粘土砖change of state 状态变化change stand 可换机座changing rig 换辊装置channel 槽;槽钢channel beam 槽钢channel furnace 槽形炉channel porosity 沟道形气孔channel rail 槽形轨channel section 槽钢channeled plate 皱纹板channeling effect 沟道效应channeling machine 辊式弯曲机chap 毛细裂纹chaplet 型心撑characteristic curve 特性曲线characteristic value 特性值charcoal 木炭charcoal black 木炭粉charcoal blast furnace 木炭高炉charcoal pig iron 木炭生铁charcoal powder 木炭粉charge 料批charge calculation 炉料计算charge holding bay 装料贮存跨charge weight 装入量charged dislocation 带电位错charger 装料机charger pan 装料罐charging 炉料charging apparatus 装料设备charging basket 装料桶charging bell 料钟charging box 装料箱charging bucket 料罐charging car 装料车charging cone 料钟charging crane 装料起重机charging device 装料设备charging door 装料门charging floor 工捉台charging hole 装料口charging hopper 装料斗charging installation 装料设备charging machine 装料机charging platform 装料台charging roller table 装料辊道charging scoop 装料铲charging skip 料车charles' law 查里定律charpy test 夏甫式冲辉验check 检查check analysis 检验分析check marks v 形表面缺陷checker 砖格子checker brick 格子砖checker brick heater 畜热式热风炉checker chamber 蓄热室checker plate 网纹钢板checking 检查cheek 侧壁chemical action 化学酌chemical affinity 化学亲和力chemical analysis 化学分析chemical balance 化学天平chemical bond 化学键chemical change 化学变化chemical composition 化学组成chemical compound 化合物chemical constant 化学常数chemical corrosion 化学腐蚀chemical dendrite 化学枝晶体chemical deposition 化学沉积chemical energy 化学能chemical equilibrium 化学平衡chemical equivalent 化学当量chemical etching 化学腐蚀chemical heat treatment 化学热处理chemical kinetics 化学动力学chemical passivity 化学的钝态chemical plating 化学镀层chemical polarization 化学极化chemical polishing 化学抛光chemical potential 化学势chemical processing 化学处理chemical property 化学性质chemical reaction 化学反应chemical refining 化学精制chemical resistance 化学阻chemical stripping 化学剥离chemical thermodynamics 化学热力学chemical treatment 化学处理chemical vapor deposition process 化学气相沉积chemism 化学机理chemisorption 化学吸附chemistry 化学chequer brick stove 畜热式热风炉chessylite 兰铜矿chestnut coal 栗煤chief constituent 知组份chile bar 粗铜棒chili bar 粗铜棒chill 白口层;内冷铁chill block 冷铁试样chill cast ingot 冷硬铸块chill casting 冷硬铸件;冷硬铸造chill crack 急冷裂纹chill hardening 激冷硬化chill mold 金属铸型chill test piece 冷铁试样chilled cast iron 冷硬铸铁chilled roll 冷硬铸铁轧辊chilling 激冷chilling layer 冷硬层chimney 烟囱chimney cooler 冷却塔chimney draught 烟囱通风chimney flue 烟道chimney hood 排气罩chimney valve 烟道阀chip 切屑chipping 铲除chipping hammer 修整锤chisel 錾子chisel steel 錾钢chloanthite 砷镍矿chlorapatite 氯磷灰石chlorargyrite 氯银矿chlorate 氯酸盐chloride 氯化物chloride process 氯化物法chloridizing agent 氯化剂chloridizing roasting 氯化焙烧chlorination 氯化chlorination furnace 氯化炉chlorination plant 氯化设备chlorination refining 氯化精炼chlorinator 氯化器chlorine 氯chlorine gas 氯气chlorine water 氯水chlorite 绿泥石chloritoid 硬绿泥石chloroantimonate 氯化锑酸盐chlorohydric acid pickling 盐酸酸洗chlorous acid 亚氯酸chock 轴承座chondrodite 粒硅镁石chromate 铬酸盐chromate coating 铬酸盐层chromatography 色层分离法chrome 铬chrome alloy 铬合金chrome alum 铬钒chrome base alloy 铬基合金chrome brick 铬砖chrome carbide 碳化铬chrome iron ore 铬铁矿chrome magnesite 铬镁矿chrome magnesite brick 铬镁砖chrome magnesite refractory 铬镁耐火材料chrome ocher 铬华chromel 克罗梅尔镍铬电阻合金chromel alumel thermocouple 铬镍铝镍热电偶chromic acid 铬酸chromic anhydride 铬酐chromic oxide 氧化铬chromic salt 铬盐chromite 铬铁矿chromite brick 铬砖chromium 铬chromium bronze 铬青铜chromium manganese steel 铬锰钢chromium molybdenum steel 铬钼钢chromium nickel molybdenum steel 铬镍钼钢chromium nickel stainless steel 铬镍不锈钢chromium nickel steel 铬镍钢chromium nitride precipitation 氮化铬析出chromium ore 铬矿chromium plating 镀铬chromium plating bath 镀铬浴chromium silicon steel 铬硅钢chromium stainless steel 含铬不锈钢chromium steel 铬钢chromium tungsten steel 铬钨钢chromium vanadium steel 铬钒钢chromizing 渗铬chromous compound 亚铬化合物chromous salt 亚铬盐chrysanthemum structure 菊花状组织chrysoberyl 金绿宝石chrysocolla 硅孔雀石chrysolite 橄榄石chrysotile 纤维蛇纹石chute 鳞cinder 炉渣cinder bed 渣垫cinder cooler 出渣口冷却箱cinder dump 废渣堆cinder notch slag 上渣cinder pig iron 含渣生铁cinder spout 渣沟cinder tub 渣车cinder yard 堆渣场cinnabar 辰砂circular electrode 盘状电极circular gate 环形内浇口circular saw 圆锯circular section 圆裁面circular shears 圆盘式剪断机circular weld 环形焊缝circulation degassing 双管循环真空除气法circumferential stress 圆周应力circumferential velocity 圆周速度circumferential weld 环形焊缝citric acid 柠檬酸clad metal 复合金属clad metal sheet 复合金属板clad plate 复合板clad steel 复合钢cladding 包覆clamshell marks 贝壳状纹理clarain 亮煤clarifiant 澄清剂clarification 澄清clarifier 沉淀池;澄清器clarifying agent 澄清剂clarifying tank 澄清槽clarifying thickener 澄清浓缩机clarke number 克拉克数classification 分级classifier 分级机classifying 分级classifying screen 分级筛claudetite 白砷华clausthalite 硒铅矿clay 粘土clay brick 粘土砖clay crucible 粘土坩埚clay gun 泥炮clean annealing 光亮退火clean gas 净煤气cleaner 净化器cleaning 净化;修整cleaning agent 清洗剂cleaning room 清理间clearance adjustment 轧辊间隙蝶clearance between rolls 辊隙clearing 澄清cleavage 劈理cleiphane 纯闪锌矿cleveite 钇铀矿clinker 熔块clinker bed 熔块床clinking 裂纹形成clipping 淆飞翅clippings 剪下的碎边clock brass 钟表黄铜close packed plane 密集面close top roll housing 闭口式机架closed cycle 闭路循环closed die 闭式冲模closed die forging 闭模锻造closed groove 闭口式孔型closed pass 闭口式孔型closed porosity 封闭气孔closed riser 暗冒口closed shears 闭式剪切机closed topped housing 闭口式机架closure domain 闭合磁畴cloth roll 布辊cloudbursting 喷丸clu process 蒸汽氧脱碳法cluster 群cluster mill 多辊轧机;六辊式轧机coagulant 凝结剂coagulating agent 凝结剂coagulation 凝聚coagulator 凝结剂coagulum 凝结物coal 煤coal briquette 煤块coal car 装煤车coal dust 煤尘coal dust furnace 煤粉燃烧炉coal gas 煤气coal injection 喷吹煤粉coal leveling bar 平煤杆coal liquefaction 煤的液化coal tar 煤焦油coal tar pitch 煤沥青coal washer 洗煤机coal washery 洗煤场coalesced copper 烧结铜coalification 煤化coarse adjustment 粗调粗整coarse crushing 粗碎coarse gold 粗粒金coarse grain 粗晶coarse grain annealing 粗颗粒退火coarse grain steel 粗粒钢coarse grain structure 粗粒组织coarse grained fracture 粗晶断口coarse grained metal 粗晶金属coarse granular fracture 粗晶断口coarse grinding 粗粉碎coarse meshed sieve 粗目筛coarse metal 粗冰铜coarse powder 粗粉coated electrode 涂药焊条coated particle 包覆颗粒coated pipe 塑料涂层管coated sheet 涂层薄扳coater 涂镀设备coating 涂镀;涂层coating material 覆盖材料cobalt 钴cobalt alloy 钴合金cobalt base alloy 钴基合金cobalt bloom 钴华cobalt chloride 氯化钴cobalt glance 辉钴矿cobalt ore 钴矿cobalt plating 镀钴cobalt powder 钴粉cobalt steel 钴钢cobalt sulfate 硫酸钴cobalt yellow 钴黄cobaltic compound 高钴化合物cobaltite 辉钴矿cobaltpyrite 硫钴矿cock 旋塞cockles 波纹coefficient 系数coefficient of absorption 吸收系数coefficient of compressibility 压缩系数coefficient of cubic expansion 体膨胀系数coefficient of elasticity 弹性系数coefficient of elasticity in shear 剪切弹性模量coefficient of elongation 伸长系数coefficient of expansion 膨胀系数coefficient of linear expansion 线膨胀系数coefficient of thermal expansion 热膨胀系数coefficient of viscosity 粘滞系数coercive force 矫顽力coexisting phases 共存相cog 初轧坯cogged ingot 初轧坯cogging 初轧cogging pass 开抛型cogging roll 开毗辊cogging stand 开批座cohenite 陨碳铁coherency 内聚力;共格coherency strain 共格应变coherent boundary 共格边界coherent interface 共格边界coherent nucleus 共格核coherent particle 共格粒子coherent phase 相干相coherent precipitates 粘合性沉淀物cohesion 凝聚cohesive energy 内聚能cohesive force 内聚力cohesive layer 内聚层cohesive zone 内聚区coil 带材卷;盘coil breaks 带卷横折coil coat 带卷涂覆coil compacting 带卷卷紧coil condenser 旋管冷凝器coil convolution 带卷的圈coil diameter 线盘直径coil opener 带卷直头装置coil opening machine 松卷机coil rod 盘条coil skin pass mill 带卷平整机coil spring 螺旋形弹簧coil stripping machine. coil stripper 卸卷机coil temper mill 带卷平整机coil tilter 翻卷机coil upender 翻卷机coiled bar 成盘条钢coiled cooling pipe 冷却旋管coiled stock 带卷coiled strip 卷带材coiler 卷取线装置coiling 成卷coiling device 卷取线装置coiling furnace 带卷取机的保温炉coiling machine 卷取机coiling temperature 卷取温度coinage alloy 货币合金coinage bronze 货币青铜coinage gold 金币合金coinage silver 银币合金coining 压印coke 焦炭coke battery 一座炼焦炉coke bed 焦床coke blast furnace 焦炭高炉coke breeze 粉焦coke briquette 焦炭块coke cake 焦饼coke car 熄焦车coke cooling 熄焦coke degradation 焦炭块度的减小coke discharging machine 推焦车coke gas 焦炉煤气coke oven 炼焦炉coke oven tar 焦炉焦油coke pig iron 焦炭生铁coke pusher 推焦车coke pushing machine 推焦车coke quenching 熄焦coke quenching tower 熄焦塔coke rate 焦比coke ratio 焦比coke side 焦侧coking 焦化coking capacity 结焦性结焦能力coking chamber 炭化室coking coal 炼焦煤coking properties 结焦性结焦能力coking quality 结焦性结焦能力coking test 焦化试验coking time 焦化时间cold air inlet 冷风入口cold bend test 冷弯曲试验cold blast 冷风cold blast pig iron 冷风生铁cold blast sliding valve 冷风阀cold bonded pellets 冷固结球团矿cold brittleness 冷脆性cold cathode 冷阴极cold chamber pressure casting 冷室压铸cold charge 冷料cold compacting 冷压cold crack 冷裂纹cold crushing strength 低温压碎强度cold cutting 冷切cold deformation 冷变形cold drawing 冷拔cold drawn pipe 冷拔管cold drawn steel 冷拔钢cold drawn tube 冷拔管cold dressing 冷矫直cold extrusion 冷挤压cold finishing 冷加工精整cold finishing section 冷加工精整工段cold flow 冷态龄cold forging 冷锻cold forming 冷成形cold galvanizing 电解镀锌cold hammering 冷锻cold hardening 冷加工硬化cold heading 冷镦cold junction 冷端cold lap 冷压折;冷重皮cold metal process 冷金属加工法cold piercing 冷穿孔cold pilger rolling 冷轧管cold pilgering 冷轧管cold pilgering mill 冷轧管机cold pressing 冷压cold pressure welding 冷压焊cold quenching 冷淬cold reduced sheet 冷轧薄板cold reducing 冷压缩cold reducing mill 冷轧管机cold reduction 冷压缩cold repair 冷修cold riveting 冷铆cold rolled band 冷轧带钢cold rolled shape 冷轧型钢cold rolled sheet 冷轧薄板cold rolled steel 冷轧钢cold rolled strip 冷轧带钢cold rolled tube 冷轧管cold rolling 冷轧cold rolling mill 冷轧机cold saw 冷锯cold sawing 冷锯切cold sawing machine 冷锯cold scarfing 冷态火焰清理cold shaping 冷成形cold shearing 冷剪切cold shears 冷剪cold shortness 冷脆性cold spruing 冷除浇冒口cold straightening 冷矫直cold stream process 冷气哩cold strip mill 钢带冷轧机cold strip reel 冷轧带钢卷取机cold test 冷试验cold tundish 冷中间罐cold welding 冷焊cold wide strip mill 宽带材冷轧机cold work 冷加工cold working tool steel 冷加工工具钢colemanite 硬硼钙石collapsible drum 涨缩卷筒collapsible tool 组合式工具collapsible winder 涨缩卷筒式卷取机collargol 胶体银collecting tank 集液槽collective concentrate 混合精矿collector 捕集剂colloid 胶体colloid chemistry 胶体化学colloidal bond 胶质粘结剂colloidal graphite 胶态石墨colloidal particle 胶粒colloidal silver 胶体银colloidal solution 胶体溶液colloidal state 胶态colloidal substance 胶质colloidal system 胶态物系color etching 着色腐蚀color metallography 彩色金相学color pyrometer 比色高温计color temperature 颜色温度colorimeter 比色计colorimetric analysis 比色分析colorimetric determination 比色法定量colorimetry 比色法定量colourant 着色剂colouration 着色colouring 着色colouring agent 着色剂columbite 铌铁矿column 柱column chromatography 柱中色层分离法column still 蒸镏塔columnar crystal 柱状晶体columnar structure 柱状组织columnar zone 柱状晶区combination 化合combination water 结合水combined blowing 顶底吹炼combined blown converter 顶底吹转炉combined carbon 化合碳combined fuel 混合燃料combined stress 复合应力combined sulfur 结合硫combining weight 化合量combustibility 可燃性combustible 可燃物combustible gas 可燃气体combustion 燃烧combustion air 燃烧空气combustion analysis 燃烧分析combustion chamber 燃烧室combustion furnace 燃烧炉combustion heat 燃烧热combustion product 燃烧产物combustion reaction 燃烧反应combustion residue 燃烧残留物combustion temperature 燃烧温度combustion tube 燃烧管combustion velocity 燃烧速度combustion zone 燃烧带commercial alloy 工业合金commercial copper 商品铜commercial iron 工业生铁commercial pipes 商品管commercial steel 普通钢comminuted powder 粉碎粉末comminution 粉碎common brass 普通黄铜common salt 食盐communicating pores 贯通孔compact 砰compact metal 致密金属compact slag 致密熔渣compactibility 可压实性compacting crack 夹层compacting force 成形压力compacting pressure 成形压力compartment 室compensation lead 补偿导线compensation method 补偿法compensator 补偿器complete analysis 全分析complete combustion 完全燃烧complete inspection 全面检查complete miscibility 完全混溶性complete penetration 全熔透complete solubility 完全混溶性completely alloyed powder 完全合金化粉complex compound 络合物complex deoxidizer 复合脱氧剂complex ferroalloy 复合铁合金complex formation 络合物形成complex ion 络离子complex ore 复合矿complex radical 复基complex reaction 复杂反应complex salt 络盐complex solution 多元溶液complex stress 复合应力complexing agent 络合剂component 组分composite billet 双金属坯composite compact 层状组合压坯composite joint 组合联结composite material 复合材料composite metal 复合金属composite powder 复合粉composite roll 组合式轧辊composition 组成composition by weight 重量组成composition fluctuations 浓度起伏composition triangle 浓度三角形compound 化合物compound layer 化合物层compound steel 复合钢compressed air 压缩空气compressed air pipe 压缩空气管compressed gas 压缩气体compressed oxygen 压缩氧compressibility 可压缩性compressibility test 可压缩性试验compressible fluid 可压缩铃compression 压缩compression chamber 压缩室compression pressure 压缩压力compression ratio 压缩比compression strength 抗压强度compression stress 压缩应力compression test 压缩试验compressive strain 压缩应变compressive strength 抗压强度compressive stress 压缩应力compressor 压缩机computer control 计算机控制computer controlled robot 计算机控制机扑concave camber 凹度concave fillet weld 凹形角焊缝concentrate 精矿concentrated load 集中荷载concentrated matte 浓缩冰铜concentrated nuclear fuel 浓缩核燃料concentrated ore 精矿concentrated solution 浓缩溶液concentrating mill 选矿厂concentration 浓度concentration cell 浓差电池concentration fluctuations 浓度起伏concentration gradient 浓度梯度concentration overvoltage 浓度超电压concentration ratio 选矿比concentration smelting 富集熔炼concentration triangle 浓度三角形concentrator table 精选台concentric coating 同心被覆concentric covering 同心被覆conchoidal fracture 贝壳状断口condensability 凝结性;可浓缩性condensate 冷凝物condensating tower 冷凝塔condensation 冷凝condensation chamber 冷凝室condensation point 冷凝点condensation water 冷凝水condensed phase 凝聚相condensed system 冷凝系condenser 聚光透镜condenser coil 冷凝蛇管condenser discharge welder 电容贮能焊机condenser lens 聚光透镜condenser tube 冷凝栖condensing chamber 冷凝室condensing coil 冷凝蛇管condensing lens 聚光透镜conditioning tank 第槽conducting layer 传导层conduction 传导conduction band 导带conductivity 传导性conductor 导体conduit 导管cone 料钟cone classifier 圆锥分级机cone crusher 圆锥破碎机cone mixer 锥形混合器cone roll piercing mill 菌式轧辊穿孔机cone shaped roll 锥形轧辊cone thickener 圆锥形浓缩机configurational entropy 配位熵congruent melting 同成分熔化congruent melting point 固液同成分熔点congruent transformation 同成分变化conical die 锥孔模conical rollers 圆锥形辊conical spring 圆锥螺旋形弹簧conical trommel 圆锥形转筒筛conjugate curves 共轭线conjugate lines 共轭线conjugate slip system 共轭滑移系conjugate solution 共轭溶液connecting rod 连杆connection 连接conservation of mass 质量守恒conservative motion 守恒运动constant humidity blast 恒湿鼓风constant pressure line 等压线constant temperature 恒温constant temperature line 等温线constantan 康铜constituent 成分constitution 结构constitution water 化合水constitutional ] diagram 相图constitutional formula 结构式construction 结构constructional alloy 结构合金constructional steel 结构钢consumable electrode 自耗电极consumption of electric energy 电力消耗量consumption rate 单位消耗量contact angle 接触角contact arc 接触弧contact area 接触面积contact corrosion 接触腐蚀contact electrode 接触焊条contact fatigue 接触疲劳contact hardening 接触淬火contact material 触头材料contact plating 接触化镀覆contact point 接触点contact potential 接触电势contact potential difference 接触电位差contact surface 接触面container 挤压筒contamination 沾污content 含量continuity 连续性continuous annealing 连续退火continuous annealing furnace 连续退火炉continuous annealing line 连续退火线continuous anode 连续阳极continuous billet mill 连续式胖轧机continuous butt weld mill 连续式炉焊管机组continuous caster 连续铸造机continuous casting 连铸;连铸坯continuous casting direct rolling process 连铸直接热轧法continuous casting installation 连续铸造机continuous casting machine 连续铸造机continuous casting ratio 连铸比continuous centrifuge 连续离心分离机continuous cold mill train 连续冷轧机组continuous cooling 连续冷却continuous cooling transformation 连续冷却转变continuous cooling transformation curve 连续冷却转变曲线continuous degassing 连续脱气continuous distillation 连续蒸馏continuous drawing 连续拉伸continuous drawing machine 连续拉线机continuous electrode 连续电极continuous fiber 连续纤维continuous finishing mill group 连续精轧机组continuous furnace 连续椎炉continuous heating 连续加热continuous heating furnace 连续式加热炉continuous hot strip mill 连续式带材热轧机continuous leaching 连续浸出continuous line 连续椎线continuous melt down process 连续熔化法continuous mill 连轧机continuous mill train 连续式轧钢机组continuous patenting 连续铅淬火continuous phase 连续相continuous pickling 连续式酸洗continuous pickling line 连续酸洗线continuous powder metallurgy 连续粉末冶金continuous precipitation 连续沉淀continuous rolling 连续轧制continuous roughing mill group 连续粗轧机组continuous self baking electrode 连续自焙电极continuous sintering 连续烧结continuous solid solution 连续固溶体continuous spectrum 连续光谱continuous strip mill 连续钢带轧机continuous strip pickler 连续式带材酸洗装置continuous strip pickling plant 连续式带材酸洗装置continuous weld 连续焊缝continuous welding 连续焊接continuous wire mill 连续式线材轧机continuously cast bloom 连铸坯continuously cast slab 连铸扁锭contraction 收缩contraction allowanace 收缩余量contraction cavity 缩孔contraction crack 收缩裂缝contraction of area 断面收缩contraflow 逆流controlled atmosphere 可第气氛controlled cooling 控制冷却controlled cooling line 控制冷椎线controlled heating 控制加热controlled medium 控制介质controlled rolling 控制轧制controlled solidification 受控凝固convection 对流convection current 对流convection heating 对劣热convection recuperator 对粱热器conventional creep limit 公称蠕变极限conventional quenching 一般淬火conversion 变换conversion pig iron 炼钢生铁converted gas 转换气体converter 转炉converter bay 转炉跨converter gas 转炉炉气converter lining 转炉内衬converter matte 转炉锍converter mouth 转炉炉咀converter nose 转炉炉嘴converter operation 转炉炼钢操作converter process 转炉炼钢法converter slag 转炉渣converter steel 转炉钢converter steelmaking 转炉炼钢converter trunnion 转炉耳轴convertible stand 可换机座converting 吹炼convertor 转炉convex fillet weld 凸面填角焊缝convex weld 凸焊缝conveyer 运输机conveying belt 输送带conveyor 运输机conveyor furnace 输送式炉convolution 带卷的圈coolant 冷却剂cooler 冷却器cooling 冷却cooling agent 冷却剂cooling bank 冷床cooling bed 冷床cooling box 冷却箱cooling capacity 冷却能力cooling coil 冷却蛇管cooling conveyor rack 齿条式冷床cooling crack 冷却裂纹cooling curve 冷却曲线cooling grid 格栅式冷床cooling jacket 冷却套cooling medium 淬火剂cooling pipe 冷却管cooling rate 冷却速度cooling speed 冷却速度cooling stress 冷却应变cooling table 冷床cooling tower 冷却塔cooling water 冷却水cooling water outlet 冷却水排出口cooling zone 冷却区cooperite 硫铂矿coordinate axes 坐标轴coordination 配位coordination bond 配位键coordination compound 配位化合物coordination formula 配位式coordination number 配位数cope 上型箱cope and drag pattern 对合箱模型copel 料普尔铜镍合金copper 铜copper alloy 铜合金copper arsenite 亚砷酸铜copper base alloy 铜基合金copper beryllium alloy 铜铍合金copper bit 钎焊烙铁copper blast furnace 炼铜鼓风炉copper cadmium alloy 铜镉合金copper chloride 氯化铜copper clad steel wire 包铜钢丝copper coating 镀铜copper concentrate 铜精矿copper constantan thermocouple 铜康铜热电偶copper crucible 铜坩埚;铜结晶器copper dioxide 二氧化铜copper electrolyte 铜电解液copper equivalent 铜当量copper foil 铜箔copper glance 辉铜矿copper leaching 铜浸出copper lead alloy 铜铅合金copper manganese alloy 铜锰合金copper matte 铜冰铜copper mine 铜矿山。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperatureYingjie Li •Hongling Liu •Rongyue Sun •Shuimu Wu •Chunmei LuReceived:13July 2011/Accepted:30August 2011/Published online:23September 2011ÓAkade´miai Kiado ´,Budapest,Hungary 2011Abstract In this work,CaO derived from the carbide slag (CaO–carbide slag)as a kind of typical industrial waste was used to capture CO 2during the calcination/carbonation cycles.The carbonation kinetics and cyclic carbonation behavior of CaO–carbide slag were investigated in a ther-mogravimetric analyzer.The chemical reaction activation energy and the product layer diffusion activation energy for carbonation of CaO–carbide slag are 12.46and 36.83kJ mol -1,respectively,which are significantly less than those for carbonation of CaO derived from the lime-stone (CaO–limestone).CaO–carbide slag shows higher carbonation conversion than CaO–limestone after enough reaction time and at the same number of cycles.Moreover,the calcination temperature and CO 2concentration in the carbonation atmosphere have important effect on the car-bonation behavior of CaO–carbide slag.The BET surface area of CaO–carbide slag is 1.6times as large as that of CaO–limestone after 1cycle and the average pore size of CaO–carbide slag is much smaller.In addition,the carbide slag contains much more Al 2O 3than most of the lime-stones.These are reasons why carbide slag as a precursor can retain greater carbonation conversion than limestone in calcination/carbonation cycles.Keywords Carbide slag ÁCalcination ÁCarbonation ÁThermal analysis ÁCO 2captureIntroductionCarbon dioxide capture and storage (CCS)is a CO 2abatement option that can contribute substantially to achieve ambitious CO 2reduction targets.The electricity sector especially,with large point sources of CO 2,offers opportunities to apply CCS at a large scale.Results of techno-economic energy models show that power plants combined with CCS can indeed compete from a mitigation perspective with other non-or low-emitting CO 2technol-ogies such as nuclear energy or renewable energy [1].There are many different CO 2capture processes,how-ever,their techno-economic feasibility for industrial applications must be seriously considered.Calcium looping technology is a promising new technique for high-tem-perature scrubbing of CO 2from flue gas and syngas [2,3]and current economic projections suggest it might be able to capture CO 2at costs of *$20/ton of avoided CO 2[3].The calcium looping technology,viz.,calcium-based sor-bent calcination/carbonation cycle using the reversible reaction between CaO and CO 2was regarded to be encouraging to remove CO 2[4]as shown in Fig.1and its applications including the pre-combustion CO 2capture,e.g.,sorption-enhanced hydrogen production process [5],hydrogen production by reaction-integrated novel gasifi-cation (HyPr-RING)[6]and the zero-emission carbon (ZEC)hydrogasification process [7],and post-combustion CO 2capture [8]were reported in the literature.Recently,lots of researchers paid more attention to investigate the CO 2capture behavior of CaO derived from limestone and dolomite under the different reaction con-ditions [9–12]and study how to improve their the CO 2capture capacity during the long-term calcination/carbon-ation cycles [3,12,13].Moreover,the carbonation char-acteristics of CaO derived from the calcium-based sorbentsY.Li (&)ÁH.Liu ÁR.Sun ÁS.Wu ÁC.LuSchool of Energy and Power Engineering,Shandong University,No.17923Jingshi Road,Jinan 250061,China e-mail:liyj@J Therm Anal Calorim (2012)110:685–694DOI 10.1007/s10973-011-1901-2other than limestone or dolomite such as shell [14,15]and oil shale ashes [16–18]at high temperature were also reported.However,the study on CO 2capture behavior of calcium-based wastes generated from the industrial pro-duction in the calcium looping cycle has been barely reported.Many calcium-based industrial wastes are produced in paper pulp plants and chlor-alkali plants in China every year.It is an interesting and challenging topic to recycle the industrial wastes to reduce environmental pollution and save valuable resources [19].China produces the largest amount of calcium carbide (CaC 2)through reaction of calcined limestone (CaO)with coal char (C).About 70%of the ethyne gas (C 2H 2),which is the raw material of poly(vinyl chloride)(PVC),is produced from calcium carbide in China.About 1.5–1.9tons of dried calcium carbide residue wastes are obtained in the production of 1ton of PVC in a chlor-alkali plant [20].The reaction mechanism is as follows CaCO 3!CaO þCO 2ð1ÞCaO þ3C !CaC 2þCOð2ÞCaC 2þ2H 2O !C 2H 2þCa(OH)2ðcarbide slag Þð3ÞCaC 2reacts with water to produce C 2H 2gas and waste,viz.,carbide slag which is mainly composed of Ca(OH)2[20].And the carbide slag as a kind of calcium-based industrial waste is ordinarily landfilled outside the chlor-alkali plants.In this work,the carbide slag is used as a CO 2sorbent during the calcination/carbonation cycles.It is expected to create a new way that combines calcium looping technology for CO 2capture with calcium-based industrial wastes recycling.ExperimentalThe carbide slag was sampled from a factory for polyvinyl chloride production by calcium carbide acetylene methodin Shandong Province,China.A kind of typical limestone in Shandong province,China was employed to compare the CO 2capture behavior with the carbide slag.The chemical components of the carbide slag and the limestone were analyzed by X-ray fluorescence (XRF)as shown in Table 1.The predominating constituent of the carbide slag is Ca(OH)2by XRD analysis.The particle size of the sorbent is below 0.125mm.The cyclic calcination/carbonation behavior of the sor-bents with reaction time was studied in a thermogravi-metric analyzer (TG).The mass of the sample in the TG is 10±0.1mg.The furnace temperature of TG increased to a calcination temperature 850–1000°C with a heating rate of 30°C min -1and lasted 15min at ultimate calcination temperature under pure N 2.And then the furnace temper-ature decreased to a carbonation temperature 600–700°C from the calcination temperature under pure N 2.Then the reaction atmosphere was switch to carbonation atmosphere and the calcined sample was carbonated for 30min.The first calcination/carbonation cycle of the sample was fin-ished.15%CO 2–85%N 2gas mixture and 100%CO 2atmosphere were chosen as the carbonation atmosphere,respectively.The cyclic carbonation conversion of the sample during the carbonation process was calculated by X N ¼m carb ;N ðt ÞÀm cal ;N m 0Áb ÁW CaOW CO 2ð4Þwhere X N is carbonation conversion of sample with reac-tion time during N th cycle.t is reaction time,s.m 0is initial mass of sample,mg.b is content of CaO in initial sorbent,%.m carb,N (t )is mass of carbonated sample with reaction time t during N th cycle,mg.m cal,N is mass of sample after complete calcination during N th cycle,mg.W CaO and W CO 2are mole mass of CaO and CO 2,respectively,g mol -1.The surface morphology of CaO derived from the car-bide slag and the limestone (CaO–carbide slag and CaO–limestone)after different cycles from TG was analyzed by field emission scan electron microscope (SEM).Microm-eritics ASAP 2020-M nitrogen adsorption analyzer was used to analyze surface area and average pore size of CaO derived from the different precursor after 1cycle.It should be mentioned that the surface area and average pore size were calculated by BET method and BJH model,respectively.Results and discussionCarbonation kinetics of CaO–carbide slagFigure 2a shows the effect of carbonation temperature on the carbonation conversions of CaO–carbide slag and CaO–limestone during 1cycle.The CaO derived from theFlue gas with free CO 2Flue gas or syngas with CO 2Fresh CaO-based sorbentCarbonator 600-750 °C CaO+CO 2→CaCO 3CaCO 3→CaO+CO 2CaO, CaCO 3CaOCalciner >850 °C Spent CaOCO 2Fig.1Process scheme of the calcium looping technology for CO 2capture686Y.Li et al.two sorbents both reaches higher carbonation conversion at 700°C.At the same carbonation temperature,the carbon-ation conversion of CaO–carbide slag is lower than that of CaO–limestone before a certain time,but the situation is converse after that time.The carbonation rate of the sor-bent is calculated byr1¼d X1d tð5Þwhere r1is carbonation rate of the sorbent at t during the first carbonation,s-1.The carbonation rates of CaO derived from the sorbents at the different carbonation temperatures during1cycle are depicted in Fig.2b.The carbonation rate integrates the chemical reaction rate and the gas diffusion rate.The maximum carbonation rate of CaO–carbide slag is smaller than that of CaO–limestone at the same carbonation temperature.It is observed that CaO–carbide slag needs longer time to achieve the maximum carbonation rate.Although carbonation rate of CaO–lime-stone is greater than that of CaO–carbide slag at the initial reaction stage and under the same reaction conditions,the situation is also converse after a time.The variety of the carbonation rates of the two sorbents with the reaction time agrees with that of their carbonation conversions.It is found that the carbonation rate of CaO–limestone at 700°C is lower than that at650°C before300s and the situation is converse after300s.It may be attributed to a difference in particle size distribution between the samples of the limestone at the650and700°C.Although the particle size of all the samples is below0.125mm,they have still the difference in particle size distribution and average particle size.The small difference in average particle size would result in a difference in carbonation reaction.Bhatia and Perlmutter[21]reported the carbon-ation behavior of CaO–limestone at the different carbon-ation temperatures in the TG and found the similar phenomenon.The carbonation kinetics of CaO–carbide slag and CaO–limestone can be calculated according to the effect of the carbonation temperature on the carbonation conversion during1cycle.The shrinking unreacted core model was usually used to describe the gas–solid reaction[22–26].The CaO is thought to be consisting of numerous solid particles which are considered to be small but dense grains.Therefore,in this work the shrinking unreacted core model is employed to simulate carbonation reaction of CaO–carbide slag with the reaction time and analyze its carbonation kinetics during1cycle.And the difference between CaO–carbide slag and CaO–limestone in carbonation kinetics is also compared.The carbonation reaction initiates on the grain surface in the early stage which is called the chemical-reaction-controlled stage.A layer of CaCO3products is formed around each CaO grain that separates the reaction surface of the solid from gas reactant with the reaction going on.The CO2have to diffuse through the product layer to the reaction surface.And then the carbonation reaction shifts to the product-layer-diffusion-controlled stage[27,28].The model in this investigation assumes negligible mass transfer through the gasfilm and isothermal conditions inTable1Chemical components of carbide slag and limestone in wt%Sample CaO MgO SiO2Fe2O3Al2O3Na2O TiO2Others LOICarbide slag61.960.12 3.380.18 3.440.030.49 1.8828.52 Limestone52.08 1.32 3.320.030.530.02–0.4742.23Thermal analysis of cyclic carbonation behavior687the reactor.If the chemical reaction is the rate-limiting step,the relationship between the reaction time and the carbonation conversion is given as[28]t¼AGðX1Þð6ÞA¼q p R pa kC A0ð7ÞIf the diffusion through the product layer is the rate-limiting step,the relationship is shown as follows:t¼BPðX1Þ;ð8ÞB¼q p R2p6a D s C A0ð9Þwhere A and B is parameters in Eqs.6and8,min;G(X1) and P(X1)is function defined by Eqs.6and8, dimensionless;q p is sorbent density,0.059g cm-3;R p is average radius of unreacted core for CaO particle,cm;k is kinetic parameters,cm s-1;C A0is concentration of CO2,6.7910-7mol cm-3;D s is effective diffusivity,cm2s-1;a is stoichiometric coefficient of solid reactant,a=1. G(X1)and P(X1)are two functions related to the sulfation conversion as follows[28]GðX1Þ¼1Àð1ÀX1Þ1=3ð10ÞPðX1Þ¼1À3ð1ÀX1Þ2=3þ2ð1ÀX1Þð11Þk and D s can be calculated according to Arrhenius’law byk¼k0expÀE a RTð12ÞD s¼D0expÀE p RTð13Þwhere k0is pre-exponential factor,cm s-1;D0is effective diffusivity at external grain surface,cm2s-1;E a is chem-ical reaction activation energy,kJ mol-1;E p is activation energy for product layer diffusion,kJ mol-1;R is gas constant,8.314J mol-1K-1;T is carbonation tempera-ture,K.Incorporating Eqs.7and9,we get the new equations by taking the logarithm of both sides in Eqs.12and13as follows:ln 1A¼ln k0þlnC A0q p R pÀE aRTð14Þln 1B¼ln D0þln6C A0q p RpÀE pRTð15ÞThe physical property parameters such as q p,R p are assumed constant at the different carbonation temperatures. The shrinking unreacted core model is determined by k0, E a,D0,and E p in different reaction stages,so these parameters for the carbide slag and the limestone must be calculated according to the experiment data.Plots of G(X1)-t and P(X1)-t for carbonation reac-tion of CaO–carbide slag and CaO–limestone are shown in Figs.3and4,respectively.And the solid lines obtained from linearfitting refer to the slopes of G(X1)-t and P(X1)-t.The correlation coefficients for the linearfits of G(X1)-t are between0.979and0.998,and those of P(X1)-t are between0.997and0.999.It indicates that the shrinking unreacted core model is appropriate to describe the carbonation kinetics of CaO–carbide slag and CaO–limestone.A and B are the slope coefficients of thefitting lines for G(X1)-t and P(X1)-t,so they are easily determined.Figure5exhibits ln1/A-1/T and ln 1/B-1/T for CaO derived from the two sorbents which are related linearly,respectively.k0,E a,D0,and E p can be all calculated according to the data in Fig.5and they are demonstrated in Table2.The E a and E p for carbonation of CaO–limestone are36.71and 99.31kJ mol-1.Sun et al.[27]and Dedman and Owen [29]reported that the E a for carbonation of CaO–limestone was29±4and39.71±8.36kJ mol-1,respectively. These results are similar.The E a and E p for carbonation of688Y.Li et al.CaO–carbide slag are12.46and36.83kJ mol-1.The car-bonation reaction of CaO–carbide slag seems more easily proceeds than that of CaO–limestone.Effect of cycle number on carbonation behaviorof CaO–carbide slagFigures6and7exhibit the carbonation conversion for CaO–carbide slag and CaO–limestone with the reaction time during the different cycles,respectively.The cyclic carbonation conversion of CaO–limestone increases rap-idly with the reaction time,but after198s the conversion keeps a slow increase.However,the cyclic carbonation conversion of CaO–carbide slag still increases more rap-idly than that of CaO–limestone after192s.The carbon-ation conversions of CaO–carbide slag and CaO–limestone both decrease with the number of cycles,but the decay in the conversion of CaO–limestone is more serious than that of CaO–carbide slag.CaO–carbide slag shows higher car-bonation conversion after enough reaction time and after the same number of cycles.For example,the carbonation conversions of CaO–carbide slag and CaO–limestone after 1cycle at1500s are0.81and0.76,respectively.More-over,the carbonation conversion of CaO–carbide slag is 1.8times as high as that of CaO–limestone after10cycles and at1500s.Effect of calcination temperature on carbonation behavior of CaO–carbide slagFigure8shows the effect of calcination temperature on cyclic carbonation conversion of CaO–carbide slag.Higher calcination temperature maybe aggravates readily sintering of calcium-based sorbents.And the sintering is responsible for the decay in the carbonation conversions of the sor-bents,because it induces the blockage of lots of pores in the sorbents[30].After1cycle and at1600s,the car-bonation conversion of CaO–carbide slag exhibits a drop by31%with increasing the calcination temperature from 850to1000°C.In addition,the conversion of CaO–car-bide slag after10cycles and at1600s decreases by48%Thermal analysis of cyclic carbonation behavior689when calcination temperature increasing from850to 1000°C.Grasa and Abanades[31]reported that CaO–limestone after10cycles for calcination at1000°C achieved a carbonation conversion of0.14and they thought that calcination temperature above950°C and long calci-nation time accelerated the decay in CO2capture capacity of CaO–limestone.When the calcination temperature is 1000°C,the carbonation conversion of CaO–carbide slag after10cycles and at1600s is about0.26which is almost twice as high as that of CaO–limestone reported by Grasa and Abanades[31].It reveals that CaO–carbide slag still retains higher cyclic CO2capture capacity at the high calcination temperature above950°C.Effect of carbonation atmosphere on carbonation behavior of CaO–carbide slagThe carbonation conversions of CaO–carbide slag under different carbonation atmospheres containing100%CO2 and15%CO2concentration are depicted in Fig.9a.Before 300s,the carbonation conversion of CaO–carbide slag increases with the CO2concentration increasing from15toTable2Activation energy and pre-exponential factorSample E a/kJ mol-1k0/cm s-1E p/kJ mol-1D0/cm2s-1Carbide slag12.460.1236.83 4.08910-4 Limestone36.71 6.2199.310.14690Y.Li et al.100%.However,after300s,the carbonation conversions at different CO2concentration in the carbonation atmosphere are almost the same.Figure9b shows the effect of CO2 concentration in the carbonation atmosphere on the car-bonation rate of CaO–carbide slag.The carbonation rate of CaO–carbide slag under100%CO2atmosphere increases more rapidly with the reaction time than that under15% CO2–85%N2gas mixture.The maximum carbonation rate of CaO for carbonation under100%CO2atmosphere is approximately twelve times as high as that under15%CO2–85%N2gas mixture.After300s,the carbonation rate of CaO–carbide slag under100%CO2atmosphere is almost identical to that under15%CO2–85%N2gas mixture.The carbonation reaction of CaO–carbide slag in300s is mainly in the chemical-reaction-controlled stage.It reveals that theCO2concentration in the carbonation atmosphere has an important effect on the carbonation behavior of CaO–car-bide slag in the chemical-reaction-controlled stage,but it has no noticeable effect on the carbonation in the product-layer-diffusion-controlled stage.Microstructure analysisFigure10shows the SEM micrographs of CaO–carbide slag and CaO–limestone after1and10cycles.The surface of CaO–carbide slag appears more porous than that of CaO–limestone after1cycle as seen in Figs.10a and b. After10cycles,CaO–carbide slag still seems loose and expansive,as presented in Fig.10c.The surface of CaO–limestone after10cycles appears compact and becomes an agglomeration due to sintering as shown in Fig.10d.It is apparent that the structure of CaO–carbide slag is benefi-cial to carbonation and CO2diffusion in the particle.That is a reason why CaO–carbide slag possesses higher CO2 capture capacity than CaO–limestone during the cycles.The BET surface area and the average pore size of CaO–carbide slag and CaO–limestone after1cycle are shown in Table3.The BET surface area of CaO–carbide slag is1.6 times as large as that of CaO–limestone after1cycle. Larger surface area of the calcines is more reactive for gas–solid reaction[32,33].It is found that the average pore size of CaO–carbide slag is obviously smaller than that of CaO–limestone.Smaller pore size results in larger surface area of the sorbent.Since CaO–carbide slag holds larger surface area and smaller average pore size,it retains higher CO2 capture capacity during the multiple calcination/carbon-ation cycles.Comparison between cyclic carbonation conversionsfor CaO derived from different precursorsThe test on20calcination/carbonation cycles for CaO–car-bide slag was done in the TG(reaction condition:carbon-ation time20min,calcination temperature850°C, carbonation temperature700°C and carbonationThermal analysis of cyclic carbonation behavior691atmosphere 15%CO 2/85%N 2).The cyclic carbonation conversions of CaO–carbide slag were compared with those of CaO–limestone and CaO derived from dolomite (CaO–dolomite)reported in the references,as presented in Fig.11.Those experiments reported by researchers [31,34–36]were performed in the TG or fixed-bed reactor and reaction con-dition was similar to that in our work.It is observed that the cyclic carbonation conversion of CaO–carbide slag is lower than that of CaO–dolomite reported by Lisbona et al.[34]during previous 8cycles,whereas,the conversion of the former is higher than that of the latter after 9cycles.More-over,the carbonation conversion of CaO–carbide slag is 1.4times as high as that of CaO–dolomite after 20cycles.Grasa and Abanades [31],Salvador et al.[35],and Abanades and Alvarez [36]reported the carbonation behaviors of CaO derived from the different limestones as shown in Fig.11.In addition,Grasa and Abanades [31]summarized the car-bonation conversion of the generic limestone with the number of cycles based on lots of tests,which is represented by a solid line in Fig.11.It is seen that CaO–carbide slag exhibits a greater carbonation conversion than that of CaO derived from the different limestones during 20cycles.As is mentioned above,the difference in the microstructure between CaO–carbide slag and CaO–limestone possiblyresults in a difference in the carbonation conversion between them.Moreover,the impurities other than CaO in CaO-based sorbents have also an effect on their carbonation conver-sions.It is observed from Table 1that there is an obvious difference in the amount of Al 2O 3between the carbide slag and the limestone (amount of Al 2O 3in most of limestones reported is less than 1wt%).It was reported that the presence of Al 2O 3in the CaO-based sorbents could improve their anti-sintering performances and CO 2capture capacities during the multiple calcination/carbonation cycles [12,13].Therefore,it may be another reason why CaO–carbide slag has higher carbonation conversion.The results show that the carbide slag seems promising as a CO 2sorbent.Fig.10SEM images of CaO derived carbide slag andlimestone after 1and 10cycles (calcination temperature 850°C,carbonation temperature 700°C,and carbonation atmosphere 15%CO 2/85%N 2).a CaO derived carbide slag after 1cycle,b CaO derived from limestone after 1cycle,c CaO derived carbide slag after 10cycles,and d CaO derived from limestone after 10cyclesTable 3BET surface area and average pore size of CaO derived from the different precursors after 1cycle Precursor BET surface area/m 2g -1Average pore size/nm Carbide slag 17.198.7Limestone10.8143.6692Y.Li et al.ConclusionsIn this work,the shrinking unreacted core model was employed to simulate carbonation reaction of CaO–carbide slag during1cycle.The chemical reaction activation energy and the product layer diffusion activation energy for carbonation of CaO–carbide slag are obviously less than those for carbonation of CaO–limestone,respectively. Lower activation energy is beneficial to carbonation reac-tion and CO2diffusion through the product layer.The carbonation conversions of the CaO–carbide slag and CaO–limestone both decrease with the number of cycles, but the decrease in the conversion of the former is slower than that of the latter.CaO–carbide slag shows higher carbonation conversion after enough reaction time and at the same number of cycles.CaO–carbide slag still retains high cyclic CO2capture capacity at high calcination tem-perature above950°C.The CO2concentration in the carbonation atmosphere has an important effect on the carbonation behavior of CaO–carbide slag in the chemical-reaction-controlled stage,but it has no noticeable effect on the carbonation in the product-layer-diffusion-controlled stage.Since CaO–carbide slag holds larger surface area, smaller average pore size and more Al2O3,it retains higher CO2capture capacity during the multiple cycles.It indi-cates that the carbide slag seems promising as a CO2 sorbent.Acknowledgements Financial support from National Natural Sci-ence Foundation of China(51006064)is gratefully appreciated. References1.van den Broek M,Hoefnagels R,Rubin E,Turkenburg W,FaaijA.Effects of technological learning on future cost and perfor-mance.Prog Energy Combust Sci.2009;35:457–80.2.Dean CC,Blamey J,Florin NH,Al-Jeboori MJ,Fennell PS.Thecalcium looping cycle for CO2capture from power generation, cement manufacture and hydrogen production.Chem Eng Res Des.2011;89:836–55.3.Anthony EJ.Ca looping technology:current status,developmentsand future directions.Greenhouse Gas Sci Technol.2011;1:36–47.4.Anthony EJ.Solid looping cycles:a new technology for coalconversion.Ind Eng Chem Res.2008;47:1747–54.5.Harrison DP.Sorption-enhanced hydrogen production:a review.Ind Eng Chem Res.2008;47:6486–501.6.Lin SY,Suzuki Y,Hatano H,Harada M.Developing an inno-vative method,HyPr-RING,to produce hydrogen from hydro-carbons.Energy Convers Manage.2002;43:1283–90.7.Perdikaris N,Panopoulos KD,Fryda L,Kakaras E.Design andoptimization of carbon-free power generation based on coal hy-drogasification integrated with SOFC.Fuel.2009;88:1365–75.8.Charitos A,Hawthorne C,Bidwe AR,Korovesis L,Schuster A,Scheffknecht G.Hydrodynamic analysis of a10kWth calcium looping dualfluidized bed for post-combustion CO2capture.Powder Technol.2010;200:117–27.9.Chrissafis K.Multicyclic study on the carbonation of CaO usingdifferent limestones.J Therm Anal Calorim.2007;89:525–9. 10.Chrissafis K,Paraskevopoulos KM.The effect of sintering on themaximum capture efficiency of CO2using a carbonation/calci-nation cycle of carbonate rocks.J Therm Anal Calorim.2005;81:463–8.11.Chrissafis K,Dagounaki C,Paraskevopoulos KM.The effects ofprocedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks.Ther-mochim Acta.2005;428:193–8.12.Blamey J,Anthony EJ,Wang J,Fennell PS.The calcium loopingcycle for large-scale CO2capture.Prog Energy Combust Sci.2010;36:260–79.13.Manovic V,Anthony EJ.Lime-based sorbents for high-temper-ature CO2capture—a review of sorbent modification methods.Int J Environ Res Pub Health.2010;7:3129–40.14.Ives M,Mundy RC,Fennell PS,Davidson JF,Dennis JS,Hay-hurst parison of different natural sorbents for removing CO2from combustion gases,as studied in a bench-scalefluidized bed.Energy Fuels.2008;22:3852–7.15.Li YJ,Zhao CS,Chen HC,Duan LB,Chen XP.CO2capturebehavior of shell during calcination/carbonation cycles.Chem Eng Technol.2009;32:1176–82.16.Trikkel A,Keelmann M,Kaljuvee T.CO2and SO2uptake by oilshale ashes:effect of pre-treatment on kinetics.J Therm Anal Calorim.2010;99:763–9.17.Kaljuvee T,Toom M,Trikkel A,Kuusik R.Reactivity of oilshale ashes in the binding of SO2.J Therm Anal Calorim.2007;88:51–8.18.Kaljuvee T,Trikkel A,Kuusik R.Decarbonization of naturallime-containing materials and reactivity of calcined products towards SO2and CO2.J Therm Anal Calorim.2001;64:1229–40.19.Li YJ,Sun RY,Zhao JL,Han KH,Lu CM.Sulfation behavior ofwhite mud from paper manufacture as SO2sorbent atfluidized bed combustion temperatures.J Therm Anal Calorim.2011.doi:10.1007/s10973-011-1537-2.20.Cheng J,Zhou JH,Liu JZ,Cao XY,Cen KF.Physicochemicalcharacterizations and desulfurization properties in coal combus-tion of three calcium and sodium industrial wastes.Energy Fuels.2009;23:2506–16.21.Bhatia SK,Perlmutter DD.Effect of the product layer on thekinetics of the CO2-lime reaction.AIChE J.1983;29:79–86. 22.Stanmore BR,Gilot P.Review—calcination and carbonation oflimestone during thermal cycling for CO2sequestration.Fuel Process Technol.2005;86:1707–43.23.Anthony EJ,Granatstein DL.Sulfation phenomena influidized bedcombustion systems.Prog Energy Combust Sci.2001;27:215–36.24.Li RY,Qi HY,You CF,Xu XC.Kinetic model of CaO/fly ashsorbent forflue gas desulphurization at moderate temperatures.Fuel.2007;86:785–92.25.Mohamed AR.Kinetic model for the reaction between SO2andcoalfly ash/CaO/CaSO4sorbent.J Therm Anal Calorim.2005;79: 691–5.26.Wieczorek-Ciurowa K.Peculiarities of interactions in the CaCO3/CaO–SO2/SO3–air system.J Therm Anal Calorim.1998;53: 649–58.27.Sun P,Grace JR,Lim CJ,Anthony EJ.Determination of intrinsicrate constants of the CaO–CO2reaction.Chem Eng J.2007;63: 47–56.28.Wu ZH,Kou P,Yu ZW.The modulation of desulphurizationproperties of calcium oxide by alkali carbonates.J Therm Anal Calorim.2002;67:745–50.29.Dedman AJ,Owen AJ.Calcium cyanide synthesis.Part4—thereaction CaO?CO2=CaCO3.Trans Faraday Soc.1962;58: 2027–35.Thermal analysis of cyclic carbonation behavior693。