高考数学(理)一轮讲义:空间向量与立体几何第14讲 空间向量与立体几何经典精讲 课后练习
高中数学知识点总结大全空间向量与立体几何
⾼中数学知识点总结⼤全空间向量与⽴体⼏何⾼中数学知识点总结空间向量与⽴体⼏何⼀、考点概要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平⾯向量⼀样,那些具有⼤⼩和⽅向的量叫做向量,并且仍⽤有向线段表⽰空间向量,且⽅向相同、长度相等的有向线段表⽰相同向量或相等的向量。
②空间向量基本定理:ⅰ定理:如果三个向量不共⾯,那么对于空间任⼀向量,存在唯⼀的有序实数组x、y、z,使。
且把叫做空间的⼀个基底,都叫基向量。
ⅱ正交基底:如果空间⼀个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当⼀个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常⽤表⽰。
ⅳ空间四点共⾯:设O、A、B、C是不共⾯的四点,则对空间中任意⼀点P,都存在唯⼀的有序实数组x、y、z,使。
③共线向量(平⾏向量):ⅰ定义:如果表⽰空间向量的有向线段所在的直线互相平⾏或重合,则这些向量叫做共线向量或平⾏向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平⾏的充要条件是:存在实数λ,使。
④共⾯向量:ⅰ定义:⼀般地,能平移到同⼀平⾯内的向量叫做共⾯向量;空间的任意两个向量都是共⾯向量。
ⅱ向量与平⾯平⾏:如果直线OA平⾏于平⾯或在α内,则说向量平⾏于平⾯α,记作。
平⾏于同⼀平⾯的向量,也是共⾯向量。
ⅲ共⾯向量定理:如果两个向量、不共线,则向量与向量、共⾯的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共⾯的条件:当、、都是⾮零向量时,共⾯向量定理实际上也是、、所在的三条直线共⾯的充要条件,但⽤于判定时,还需要证明其中⼀条直线上有⼀点在另两条直线所确定的平⾯内。
ⅴ共⾯向量定理的推论:空间⼀点P在平⾯MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意⼀定点O,有。
⑤空间两向量的夹⾓:已知两个⾮零向量、,在空间任取⼀点O,作,(两个向量的起点⼀定要相同),则叫做向量与的夹⾓,记作,且。
2024届高考一轮复习数学教案(新人教B版):空间向量与立体几何
必刷大题14空间向量与立体几何1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC -A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求平面ABD 与平面BCD 夹角的正弦值.解(1)设点A 到平面A 1BC 的距离为h ,因为直三棱柱ABC -A 1B 1C 1的体积为4,所以1A A BC V -=13S △ABC ·AA 11111433ABC A B C V -==,又△A 1BC 的面积为22,1113A A BC A BC V S h -=△=13×22h =43,所以h =2,即点A 到平面A 1BC 的距离为2.(2)取A 1B 的中点E ,连接AE ,则AE ⊥A 1B .因为平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC ,又BC ⊂平面A 1BC ,所以AE ⊥BC .又AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC .因为AA 1∩AE =A ,AA 1,AE ⊂平面ABB 1A 1,所以BC ⊥平面ABB 1A 1,又AB ⊂平面ABB 1A 1,所以BC ⊥AB .以B 为坐标原点,分别以BC →,BA →,BB 1—→的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由(1)知,AE =2,所以AA 1=AB =2,A 1B =22.因为△A 1BC 的面积为22,所以22=12·A 1B ·BC ,所以BC =2,所以A (0,2,0),B (0,0,0),C (2,0,0),A 1(0,2,2),D (1,1,1),E (0,1,1),则BD →=(1,1,1),BA →=(0,2,0).设平面ABD 的法向量为n =(x ,y ,z ),n ·BD →=0,n ·BA →=0,x +y +z =0,2y =0,令x =1,得n =(1,0,-1).又平面BDC 的一个法向量为AE →=(0,-1,1),所以cos 〈AE →,n 〉=AE →·n |AE →|·|n |=-12×2=-12.设平面ABD 与平面BCD 的夹角为θ,则sin θ=1-cos 2〈AE →,n 〉=32,所以平面ABD 与平面BCD 夹角的正弦值为32.2.如图,四棱锥P -ABCD 的底面为正方形,PA ⊥平面ABCD ,M 是PC 的中点,PA =AB .(1)求证:AM ⊥平面PBD ;(2)设直线AM 与平面PBD 交于O ,求证:AO =2OM .证明(1)由题意知,AB ,AD ,AP 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,设PA =AB =2,则P (0,0,2),B (2,0,0),D (0,2,0),C (2,2,0),M (1,1,1),PB →=(2,0,-2),PD →=(0,2,-2),AM →=(1,1,1),设平面PBD 的法向量为n =(x ,y ,z ),n ·PB →=2x -2z =0,n ·PD →=2y -2z =0,取x =1,得n =(1,1,1),∵AM →=n ,∴AM ⊥平面PBD .(2)如图,连接AC 交BD 于点E ,则E 是AC 的中点,连接PE ,∵AM ∩平面PBD =O ,∴O ∈AM 且O ∈平面PBD ,∵AM ⊂平面PAC ,∴O ∈平面PAC ,又平面PBD ∩平面PAC =PE ,∴O ∈PE ,∴AM ,PE 的交点就是O ,连接ME ,∵M 是PC 的中点,∴PA ∥ME ,PA =2ME ,∴△PAO ∽△EMO ,∴PA ME =AO OM =21,∴AO =2OM .3.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,PA =AB =2CD =2,∠ADC =90°,E ,F 分别为PB ,AB 的中点.(1)求证:CE ∥平面PAD ;(2)求点B 到平面PCF 的距离.(1)证明连接EF (图略),∵E ,F 分别为PB ,AB 的中点,∴EF ∥PA ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD ,∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,且AF =CD .∴四边形ADCF 为平行四边形,即CF ∥AD ,∵CF ⊄平面PAD ,AD ⊂平面PAD ,∴CF ∥平面PAD ,∵EF ∩CF =F ,EF ,CF ⊂平面EFC ,∴平面PAD ∥平面EFC ,CE ⊂平面EFC ,则CE ∥平面PAD .(2)解∵∠ADC =90°,AB ∥CD ,∴AB ⊥AD ,CF ⊥AB ,又PA ⊥平面ABCD ,∴PA ⊥CF ,又PA ∩AB =A ,∴CF ⊥平面PAB ,∴CF ⊥PF .设CF =x ,则S △AFC =12×1×x =x 2,S △PFC =12×5×x =52x ,设点A 到平面PCF 的距离为h ,由V P -AFC =V A -PFC ,得13×x 2×2=13×5x 2×h ,则h =255.∵点F 为AB 的中点,∴点B 到平面PCF 的距离等于点A 到平面PCF 的距离,为255.4.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明因为AD =CD ,E 为AC 的中点,所以AC ⊥DE .在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB ,DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE .又BE ∩DE =E ,BE ,DE ⊂平面BED ,所以AC ⊥平面BED ,又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解由(1)可知AB =BC ,又∠ACB =60°,AB =2,所以△ABC 是边长为2的正三角形,则AC =2,BE =3,AE =1.因为AD =CD ,AD ⊥CD ,所以△ADC 为等腰直角三角形,所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE .由(1)可知,AC ⊥平面BED .连接EF ,因为EF ⊂平面BED ,所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小,即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时,EF ⊥BD ,EF =DE ·BE BD =32.方法一由(1)可知,DE ⊥AC ,BE ⊥AC ,所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1).易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1),FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ),得y =34,z =34,即,34,所以CF →,34,设平面ABD 的法向量为n =(x 1,y 1,z 1),·AB →=-x 1+3y 1=0,·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3,n =(3,1,3).记CF 与平面ABD 所成的角为α,则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →||n |=437.所以CF 与平面ABD 所成角的正弦值为437.方法二因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2,所以S △ABD =72,所以d =2217.由(1)知AC ⊥平面BED ,EF ⊂平面BED ,所以AC ⊥EF ,所以FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.方法三如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC ,又AB ⊂平面ABC ,所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM ,所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG ,又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离.因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EM DM =DE ·EM DE 2+EM 2=217,所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.5.(2023·青岛模拟)如图①,在梯形ABCD 中,AB ∥DC ,AD =BC =CD =2,AB =4,E 为AB 的中点,以DE 为折痕把△ADE 折起,连接AB ,AC ,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC ⊥DE ;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE 与平面AEC 夹角的余弦值.①四棱锥A -BCDE 的体积为2;②直线AC 与EB 所成角的余弦值为64.(1)证明在图①中,连接CE (图略),因为DC ∥AB ,CD =12AB ,E 为AB 的中点,所以DC ∥AE ,且DC =AE ,所以四边形ADCE 为平行四边形,所以AD =CE =CD =AE =2,同理可证DE =2,在图②中,取DE 的中点O ,连接OA ,OC (图略),则OA =OC =3,因为AD =AE =CE =CD ,所以DE ⊥OA ,DE ⊥OC ,因为OA ∩OC =O ,OA ,OC ⊂平面AOC ,所以DE ⊥平面AOC ,因为AC ⊂平面AOC ,所以DE ⊥AC .(2)解若选择①:由(1)知DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,所以过点A 作AH ⊥OC 交OC 于点H (图略),则AH ⊥平面BCDE ,因为S 四边形BCDE =23,所以四棱锥A -BCDE 的体积V A -BCDE =2=13×23·AH ,所以AH =OA =3,所以AO 与AH 重合,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.若选择②:因为DC ∥EB ,所以∠ACD 即为异面直线AC 与EB 所成的角,在△ADC 中,cos ∠ACD =AC 2+4-44AC=64,所以AC =6,所以OA 2+OC 2=AC 2,即OA ⊥OC ,因为DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,又OA ⊂平面AOC ,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.6.(2022·连云港模拟)如图,在三棱锥A -BCD 中,△ABC 是正三角形,平面ABC ⊥平面BCD ,BD ⊥CD ,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若∠BCD =60°,点G 是线段BD 上的动点,问:点G 运动到何处时,平面AEG 与平面ACD 的夹角最小.(1)证明因为△ABC 是正三角形,点E 是BC 的中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE ⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD ⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF ∥BD ,又因为BD ⊥CD ,所以CD ⊥EF ,又因为AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .(2)解在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,此时EH ∥CD ,即H 为BD 的中点,设BC =4,则EA =23,DF =FC =1,EF = 3.以E 为原点,以EH ,EF ,EA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E (0,0,0),A (0,0,23),C (-1,3,0),D (1,3,0),设G (1,y ,0)(-3≤y ≤3),则EA →=(0,0,23),AD →=(1,3,-23),CD →=(2,0,0),EG →=(1,y ,0),设平面AEG 的法向量为n 1=(x 1,y 1,z 1),n 1·EA →=23z 1=0,n 1·EG →=x 1+yy 1=0,令y 1=-1,得n 1=(y ,-1,0),设平面ACD 的法向量为n 2=(x 2,y 2,z 2),2·CD →=2x 2=0,2·AD →=x 2+3y 2-23z 2=0,令z 2=1,得n 2=(0,2,1),设平面AEG 与平面ACD 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|-2|5·y 2+1=25·y 2+1,当y =0时,cos θ最大,此时平面AEG 与平面ACD 的夹角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 的夹角最小.。
人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2 空间向量基本定理
2
2
=
1
2
1
1 1
1
)= (c-b-a)=- a- b+ c.
2
2 2
2
=
1
2
=
1
a.
2
1
(
2
+
1
1
)=-a-2b+2c.
+ )
探究三
空间向量基本定理与数量积的综合应用
【例3】 如图,在直三棱柱ABC-A1B1C1中,CA=CB=1,
∠BCA=90°,棱AA1=2,点N为AA1的中点.
4
=
1
-
1
2
3
3
×
2
2
1
2
=- .
3
2
所以异面直线 OE 与 BF 所成角的余弦值为 .
3
【例4】 如图,在空间四边形OABC中,∠AOB=∠BOC=∠AOC,且
OA=OB=OC,M,N分别是OA,BC的中点,G是MN的中点,求证:OG⊥BC.
分析:先用基底{, , }表示向量 与,再证明 ⊥ .
1
(a+b+c)·
(c-b)
4
1
1
2
2
=4(a·c-a·b+b·c-b +c -b·c)=4(|a|2·cos
∴ ⊥ ,即 OG⊥BC.
θ-|a|2·cos θ-|a|2+|a|2)=0.
反思感悟 用向量法证明空间中垂直关系的步骤
(1)把几何问题转化为向量问题.
(2)选择空间的某个基底表示未知向量.
此基底表示向量=2e1-e2+3e3;若不能,请说明理由.
高三数学一轮复习 第九章《立体几何》9-1精品
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件
→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
2010高三数学高考第一轮复习向量复习教案:空间向量及其运算
第十三章空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时 空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
2014高考数学理(真题讲练 规律总结 名师押题)热点专题突破:第十四讲 空间向量与立体几何
第十四讲空间向量与立体几何空间向量及运算空间向量的数乘运算空间向量的加减运算空间向量的数量积运算平行与垂直的条件向量的模与两向量的夹角空间向量的坐标运算立体几何中的向量方法直线的方向向量与平面的法向量求空间角用空间向量证明平行与垂直问题1.(用法向量判断平行或垂直)若平面α、β的法向量分别为n1=(2,-3,5),n2=(3,7,3),则平面α与平面β的位置关系是________.【解析】n1·n2=2×3-3×7+5×3=0,即n1⊥n2.则平面α⊥平面β.【答案】垂直2.(空间向量平行的充要条件)若空间三点A(1,5,-2),B(2,4,1),C(p,3,q+2)共线,则p+q=________.【解析】∵A,B,C三点共线,则AB→=λAC→,即(1,-1,3)=λ(p-1,-2,q+4).∴求得p=3,q=2,即p+q=5.【答案】 53.(异面直线所成的角)如图4-3-1所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是________.图4-3-1【解析】 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2). ∴EF →·BC 1→=2.∴cos<EF →,BC 1→>=22×22=12.∴EF 和BC 1所成的角为60°. 【答案】 60°4.(空间向量的数量积)已知ABCD —A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD —A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确命题的序号是________.【解析】 设正方体的棱长为1,①中(A 1A →+A 1D 1→+A 1B 1→)2=3(A 1B 1→)2=3,故①正确;②中A 1B 1→-A 1A →=AB 1→,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中|AB →·AA 1→·AD →|=0.故④也不正确.【答案】 ①②5.(二面角)过正方形ABCD 的顶点A ,引P A ⊥平面ABCD .若P A =BA ,则平面ABP 和平面CDP 所成的二面角的大小是________.图4-3-2【解析】 建立如图所示的空间直角坐标系,不难求出平面APB 与平面PCD 的法向量n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角(锐角)的余弦值为|n 1·n 2||n 1||n 2|=22,故所求的二面角的大小是45°.【答案】 45°【命题要点】 ①利用空间向量求线线角;②利用空间向量求线面角.(2013·郑州模拟)如图4-3-3,已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.图4-3-3(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小.【思路点拨】 (1)建立空间直角坐标系,延长DP 交B ′D ′于H ,求DH →的坐标. (2)DC →是平面AA ′D ′D 的一个法向量,求DP →与DC →的夹角余弦值.【自主解答】 如图,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立空间直角坐标系D —xyz ,设正方体棱长为1,则DA →=(1,0,0),CC ′→=(0,0,1).连结BD ,B ′D ′,在平面BB ′D ′D 中,延长DP 交B ′D ′于H . 设DH →=(m ,m,1)(m >0), 由已知〈DH →,DA →〉=60°,由DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉, 可得2m =2m 2+1.解得m =22,所以DH →=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,所以〈DH →,CC ′→〉=45°. 即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°.可得DP 与平面AA ′D ′D 所成的角为30°.1.解答本题的关键是求向量DH →的坐标,也可根据点P 在线段BD ′上直接求点P 的坐标.2.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为:(1)异面直线所成角θ(0°<θ≤90°)设a,b分别为异面直线a,b的方向向量,则:cos θ=|cos〈a,b〉|=|a·b||a|·|b|.(2)线面角θ(0°≤θ≤90°)设a是直线l的方向向量,n是平面的法向量,则sin θ=|cos〈a,n〉|=|a·n||a|·|n|.变式训练1(2013·课标全国卷Ⅰ)如图4-3-4,三棱柱ABC—A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;图4-3-4(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.【解】(1)证明如图(1),取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.图(1)由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB ,又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA →的方向为x 轴的正方向,|OA →|为单位长,建立如图(2)所示的空间直角坐标系O —xyz .图(2)由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0),A 1C →=(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎨⎧n ·BC →=0,n ·BB 1→=0,即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1),故cos 〈n ,A 1C →〉=n ·A 1C →|n ||A 1C →|=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.【命题要点】 ①利用空间向量求二面角;②已知二面角的大小求参数的值.(2013·湖北高考)如图4-3-5,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.图4-3-5(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明.(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.【思路点拨】 (1)从EF ∥AC 入手,利用线面平行的判定定理与性质定理进行判断与证明;(2)建立空间直角坐标系,利用向量法求解.【自主解答】 (1)直线l ∥平面P AC .证明如下:连接EF ,因为E ,F 分别是P A ,PC 的中点,所以EF ∥AC . 又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l , 所以EF ∥l .因为l ⊄平面P AC ,EF ⊂平面P AC , 所以直线l ∥平面P AC .(2)如图所示,由DQ →=12CP →,作DQ ∥CP ,且DQ =12CP .连接PQ ,EF ,BE ,BF ,BD .由(1)可知交线l 即为直线BD .以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E ⎝⎛⎭⎫12a ,0,c ,F (0,0,c ).于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c ),BF →=(0,-b ,c ), 所以cos α=|FE →·QP →||FE →||QP →|=aa 2+b 2+c 2,从而sin α=1-cos 2α=b 2+c 2a 2+b 2+c 2.取平面ABC 的一个法向量为m =(0,0,1), 可得sin θ=|m ·QP →||m ||QP →|=ca 2+b 2+c 2 .设平面BEF 的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·FE →=0,n ·BF →=0,可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0,取n =(0,c ,b ).于是|cos β|=|m·n ||m ||n |=bb 2+c2, 从而sin β=1-cos 2β=cb 2+c 2.故sin αsin β=b2+c2a2+b2+c2·cb2+c2=ca2+b2+c2=sin θ,即sin θ=sin αsin β.1.本题中线段CA、CB、CP的长度关系不确定,因此应分别设出后,再求点的坐标.2.求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.其计算公式为:设m,n分别为平面α,β的法向量,则θ与〈m,n〉互补或相等,|cosθ|=|cos〈m,n〉|=|m·n| |m||n|.变式训练2(2013·浙江高考)如图4-3-6,在四面体A—BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C—BM—D的大小为60°,求∠BDC的大小.图4-3-6【解】(1)证明如图所示,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系O—xyz.由题意知A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0), 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为点M 为AD 的中点,故M (0,2,1). 又点P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD . (2)设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM →=(-x 0,2-y 0,1),BM →=(0,22,1),知⎩⎨⎧-x 0x +(2-y 0)y +z =0,22y +z =0.取y =-1,得m =⎝⎛⎭⎪⎫y 0+2x 0,-1,22.又平面BDM 的一个法向量为n =(1,0,0),于是 |cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪y 0+2x 09+⎝ ⎛⎭⎪⎫y 0+2x 02=12,即⎝⎛⎭⎪⎫y 0+2x 02=3.①又BC ⊥CD ,所以CB →·CD →=0,故(-x 0,-2-y 0,0)·(-x 0,2-y 0,0)=0,即x 20+y 20=2.②联立①②,解得⎩⎨⎧x 0=0,y 0=-2(舍去)或⎩⎨⎧x 0=±62,y 0=22.所以tan ∠BDC =⎪⎪⎪⎪⎪⎪x 02-y 0= 3.又∠BDC 是锐角,所以∠BDC =60°.【命题要点】 ①探索线面位置关系是否成立;②探索空间角的大小是否成立.(2013·长沙模拟)如图4-3-7所示,在正方体ABCD —A 1B 1C 1D 1中,E是棱DD 1的中点.图4-3-7(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 【思路点拨】 (1)建立空间直角坐标系后,用向量法求解. (2)假设存在点F ,证明B 1F →与平面A 1BE 的法向量垂直即可.【自主解答】 设正方体的棱长为1,如图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0), 所以BE →=⎝⎛⎭⎫-1,1,12,AD →=(0,1,0).在正方体ABCD —A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量,设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1→=(-1,0,1),BE →=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z ,取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1)(0≤t ≤1). 又B 1(1,0,1),所以B 1F →=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点,这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .1.解答本题(2)时先假设在棱C 1D 1上存在一点F ,则向量B 1F →与平面A 1BE 的法向量垂直,从而列方程求解.2.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.变式训练3 (2013·潍坊模拟)已知正三棱柱ABC —A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 在线段AA 1上.图4-3-8(1)当AE ∶EA 1=1∶2时,求证DE ⊥BC 1;(2)是否存在点E ,使二面角D —BE —A 等于60°,若存在求AE 的长;若不存在,请说明理由.【解】 (1)证明:连结DC 1,因为ABC —A 1B 1C 1为正三棱柱,所以△ABC 为正三角形, 又因为D 为AC 的中点,所以BD ⊥AC ,又平面ABC ⊥平面ACC 1A 1,所以BD ⊥平面ACC 1A 1, 所以BD ⊥DE .因为AE ∶EA 1=1∶2,AB =2,AA 1=3,所以AE =33,AD =1, 所以在Rt △ADE 中,∠ADE =30°,在Rt △DCC 1中,∠C 1DC =60°, 所以∠EDC 1=90°,即ED ⊥DC 1,所以ED ⊥平面BDC 1,BC 1⊂面BDC 1,所以ED ⊥BC 1. (2)假设存在点E 满足条件,设AE =h .取A 1C 1的中点D 1,连结DD 1,则DD 1⊥平面ABC ,所以DD 1⊥AD ,DD 1⊥BD , 分别以DA 、DB 、DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D —xyz ,则A (1,0,0),B (0,3,0),E (1,0,h ),所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ), 设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧n 1·DB →=0,n 1·DE →=0,⎩⎨⎧3y 1=0,x 1+hz 1=0,令z 1=1,得n 1=(-h,0,1),同理,平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧n 2·AB →=0,n 2·AE →=0,⎩⎨⎧-x 2+3y 2=0,hz 2=0.∴n 2=(3,1,0).∴cos〈n1,n2〉=|-3h|h2+1·2=cos 60°=12.解得h=22<3,故存在点E,当AE=22时,二面角D—BE—A等于60°.建立空间直角坐标系后用空间向量求空间角是高考重点考查内容,但已知空间角求相关量的题目,体现了逆向思维,更能考查学生分析问题和解决问题的能力,对此我们应高度重视.利用空间向量求解空间角问题(12分)如图4-3-9所示,正方形ADEF 与梯形ABCD 所在平面互相垂直,AD ⊥CD ,AB ∥CD ,AB =AD =12CD =2,点M 在线段EC 上且不与E 、C 重合.图4-3-9(1)当点M 是EC 中点时,求证:BM ∥平面ADEF ; (2)当平面BDM 与平面ABF 所成锐二面角的余弦值为66时,求三棱锥M —BDE 的体积. 【规范解答】 (1)以DA 、DC 、DE 分别为x ,y ,z 轴建立空间直角坐标系. 则A (2,0,0),B (2,2,0),C (0,4,0),E (0,0,2),M (0,2,1),2分 ∴BM →=(-2,0,1),平面ADEF 的一个法向量DC →=(0,4,0).∵BM →·DC →=0,∴BM →⊥DC →,∴BM ⊥DC , 即BM ∥平面ADEF .4分(2)依题意设M ⎝⎛⎭⎫0,t ,2-t2(0<t <4),设平面BDM 的法向量n 1=(x ,y ,z ),则DB →·n =2x +2y =0,DM →·n =ty +⎝⎛⎭⎫2-t2z =0, 令y =-1,则n 1=⎝⎛⎭⎫1,-1,2t4-t .平面ABF 的法向量n 2=(1,0,0).6分∵|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=12+4t2(4-t )2=66, 解得t =2.8分∴M (0,2,1)为EC 的中点,S △DEM =12S △CDE =2,B 到平面DEM 的距离h =2,∴V M —BDE =V B —DEM =13·S △DEM ·h =43.12分【阅卷心语】易错提示 (1)解答本题(2)时,易因设不出点M 的坐标而无法求解. (2)不能把条件“平面BDM 与平面ABF 所成锐二面角的余弦值为66”转化为方程,从而求出点M 的坐标,导致无法求解.防范措施 (1)欲要设出在线段上某点的坐标,可利用三点共线向量满足的条件,求出该点坐标,如本例中,可设EM →=tEC →从而求出点M 的坐标(用t 表示).(2)已知空间角的大小和求空间角的大小,在解题思路上完全一致,不同点是“已知空间角大小”最后应列出一个方程求参数的值.1.直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,则异面直线AB 1与A 1M 所成的角为________.【解析】 建立坐标系如图所示, 易得M ⎝⎛⎭⎫0,0,62,A 1(0,3,0), A (0,3,6),B 1(1,0,0), 所以AB 1→=(1,-3,-6), A 1M →=⎝⎛⎭⎫0,-3,62.所以AB 1→·A 1M →=1×0+3-62=0,所以AB 1→⊥A 1M →,即AB 1⊥A 1M . 【答案】 90°2.在如图4-3-10所示的几何体中,△ABC 是边长为2的正三角形,AE >1,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD =CD ,且BD ⊥CD .图4-3-10(1)若AE =2,求证:AC ∥平面BDE ; (2)若二面角A —DE —B 为60°,求AE 的长.【解】 (1)分别取BC ,BA ,BE 的中点M ,N ,P ,连接DM ,MN ,NP ,DP ,则MN ∥AC ,NP ∥AE ,且NP =12AE =1.因为BD =CD ,BC =2,M 为BC 的中点, 所以DM ⊥BC ,DM =1. 又因为平面BCD ⊥平面ABC , 所以DM ⊥平面ABC . 又AE ⊥平面ABC , 所以DM ∥AE ,所以DM ∥NP ,且DM =NP ,因此四边形DMNP 为平行四边形, 所以MN ∥DP ,所以AC ∥DP ,又AC ⊄平面BDE ,DP ⊂平面BDE , 所以AC ∥平面BDE .(2)由(1)知DM ⊥平面ABC ,AM ⊥MB , 建立如图所示的空间直角坐标系M —xyz .第 21 页 共 21 页设AE =h ,则M (0,0,0),B (1,0,0),D (0,0,1),A (0,3,0),E (0,3,h ),BD →=(-1,0,1),BE →=(-1,3,h ).设平面BDE 的法向量n 1=(x ,y ,z ).则⎩⎨⎧ BD →·n 1=0,BE →·n 1=0.所以⎩⎨⎧-x +z =0,-x +3y +zh =0. 令x =1,所以n 1=⎝ ⎛⎭⎪⎫1,1-h 3,1, 又平面ADE 的法向量n 2=(1,0,0),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=112+12+(1-h )23=12. 解得h =6+1,即AE =6+1.。
最新高考数学解题技巧专题 用空间向量法解决立体几何问题
专题十四用空间向量法解决立体几何问题考问题14用空间向量法解决立体几何问题1.(2012·山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB =60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F -BD-C的余弦值.(1)证明因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,AD⊥BD,又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解连接AC,由(1)知AD⊥BD,所以AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C 为坐标原点,分别以CA ,CB ,CF所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, 不妨设CB =1, 则C (0,0,0),B (0,1,0), D ⎝⎛⎭⎫32,-12,0,F (0,0,1),因此BD →=⎝⎛⎭⎫32,-32,0,BF →=(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ), 则m ·BD →=0,m ·BF →=0,所以x =3y =3z , 取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量, 则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角FBDC 的余弦值为55.对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题.空间向量的引入为空间立体几何问题的解决提供了新的思路,作为解决空间几何问题的重要工具,首先要从定义入手,抓住实质,准确记忆向量的计算公式,注意向量与线面关系、线面角、面面角的准确转化;其次要从向量的基本运算入手,养成良好的运算习惯,确保运算的准确性.必备知识直线与平面、平面与平面的平行与垂直的向量方法设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α、β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同).(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3.(3)面面平行α∥β⇔μ∥v⇔μ=λv⇔a3=λa4,b3=λb4,c3=λc4.(4)面面垂直α⊥β⇔μ⊥ν⇔μ·v=0⇔a3a4+b3b4+c3c4=0.空间角的计算(1)两条异面直线所成角的求法设直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|e·n| |e||n|.(3)二面角的求法①利用向量求二面角的大小,可以不作出平面角,如图所示,〈m,n〉即为所求二面角的平面角.②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可以利用这两个平面的法向量的夹角来求.如图所示,二面角αlβ,平面α的法向量为n1,平面β的法向量为n2,〈n1,n2〉=θ,则二面有αlβ的大小为θ或πθ.空间距离的计算直线到平面的距离,两平行平面的距离均可转化为点到平面的距离. 点P 到平面α的距离,d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).必备方法1.空间角的范围(1)异面直线所成的角(θ):0<θ≤π2;(2)直线与平面所成的角(θ):0≤θ≤π2;(3)二面角(θ):0≤θ≤π.2.用向量法证明平行、垂直问题的步骤:(1)建立空间图形与空间向量的关系(可以建立空间直角坐标系,也可以不建系),用空间向量表示问题中涉及的点、直线、平面;(2)通过向量运算研究平行、垂直问题; (3)根据运算结果解释相关问题.3.空间向量求角时考生易忽视向量的夹角与所求角之间的关系:(1)求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,而不是线面角的余弦;(2)求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.【例1】►如图所示,已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC =90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.[审题视点][听课记录][审题视点] 建系后,(1)在平面ABC 内寻找一向量与DE →共线;(2)在平面AEF 内寻找两个不共线的向量与B 1F →垂直.证明如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0), B (4,0,0),B 1(4,0,4).(1)取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC , DE ⊄平面ABC .故DE ∥平面ABC . (2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .(1)要证明线面平行,只需证明DE →与平面ABC 的法向量垂直;另一个思路则是根据共面向量定理证明向量DE →与NC →相等.(2)要证明线面垂直,只要证明B 1F →与平面AEF 的法向量平行即可;也可根据线面垂直的判定定理证明B 1F →⊥EF →,B 1F →⊥AF →.【突破训练1】 在正方体ABCDA 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点. (1)求证:D 1F ⊥平面ADE ;(2)设正方形ADD 1A 1的中心为M ,B 1C 1的中点为N ,求证:MN ∥平面ADE . 证明(1)如图,不妨设正方体的棱长为1,以D 为坐标原点建立空间直角坐标系Dxyz , 则D (0,0,0),A (1,0,0),D 1(0,0,1), F 0,12,0,E 1,1,12,AD →=(-1,0,0),D 1F →=0,12,-1,AD →·D 1F →=(-1,0,0)·0,12,-1=0.∴AD ⊥D 1F .又AE →=0,1,12,D 1F →=0,12,-1,∴AE →·D 1F →=0,1,12·0,12,-1=12-12=0.∴AE ⊥D 1F .又AE ∩A D =A ,D 1F ⊄平面ADE , ∴D 1F ⊥平面ADE .(2)∵M 12,0,12,N 12,1,1,∴MN →=0,1,12.由(1)知,D 1F →=0,12,-1是平面ADE 的法向量.又∵MN →·D 1F →=0+12-12=0,∴MN ⊥D 1F .∵MN ⊄平面ADE ,∴MN ∥平面ADE . 用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键.【例2】如图,四棱锥P ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角APBC 为90°,求PD 与平面PBC 所成角的大小. [审题视点] [听课记录][审题视点] (1)由PC FC =ACEC 可得△FCE ∽△PCA ,则∠FEC =90°,易得PC ⊥EF 、PC ⊥BD .(2)作AG ⊥PB 于G ,由二面角APBC 为90°,易得底面ABCD 为正方形,可得AD ∥面PBC ,则点D 到平面PCB 的距离d =AG ,找出线面角求解即可.也可利用法向量求解,思路更简单,但计算量比较大.法一(1)证明 因为底面ABCD 为菱形,所以BD ⊥AC ,又P A ⊥底面ABCD ,所以PC ⊥BD . 设AC ∩BD =F ,连接EF .因为AC =22,P A =2,PE =2EC ,故PC =23,EC =233,FC =2,从而PC FC =6,ACEC= 6.因为PC FC =ACEC,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°,由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)解 在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角APBC 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC .BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则si n α=d PD =12.所以PD 与平面PBC 所成的角为30°.法二 (1)证明 以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系Axyz .C (22,0,0),设D (2,b,0),其中b >0,则P (0,0,2),E 423,0,23,B (2,-b,0).于是PC →=(22,0,-2), BE →=23,b ,23,DE →=23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)解 AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则 m ·AP →=0,m ·AB →=0,即2z =0且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0, 即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =1,-2b, 2. 因为面P AB ⊥面PBC ,故m ·n =0,即b -2b =0,故b =2,于是n =(1,-1,2),DP→=(-2,-2,2).cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°.(1)运用空间向量坐标运算求空间角的一般步骤为:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求直线与平面所成的角θ,主要通过直线的方向向量与平面的法向量的夹角α求得,即sin θ=|cos α|.【突破训练2】如图,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求A E →与D B →夹角的余弦值. (1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D ,∴AD ⊥平面BDC . ∵AD ⊂平面ABD , ∴平面ADB ⊥平面BDC .(2)解 由∠BDC =90°及(1)知DA ,DB ,DC 两两垂直,不妨设|DB |=1,以D 为坐标原点,以D B →,D C →,D A →所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0), A (0,0,3),E ⎝⎛⎭⎫12,32,0,∴A E →=⎝⎛⎭⎫12,32,-3,D B →=(1,0,0), ∴A E →与D B →夹角的余弦值为cos 〈A E →,D B →〉=A E →·D B →|A E →||D B →|=121×224=2222.用向量法求二面角用空间向量法求二面角的大小是高考的热点.考查空间向量的应用以及运算能力,题目难度为中等.【例3】如图,在四棱锥P ABCD中,P A⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,P A =AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角APCD的正弦值.[审题视点][听课记录][审题视点] 建立空间坐标系,应用向量法求解.解如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0), C (0,1,0),B -12,12,0,P (0,0,2).(1)证明:易得PC →=(0,1,-2), AD →=(2,0,0).于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66.从而si n 〈m ,n 〉=306. 所以二面角APCD 的正弦值为306.借助向量求二面角是解决空间角问题的常用方法.求解过程中应注意以下几个方面:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能两法向量夹角的补角为所求;(2)求平面的法向量的方法:①待定系数法:设出法向量坐标,利用垂直关系建立坐标的方程解之;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.当平面的垂线较易确定时,常考虑此方法.【突破训练3】如图,在三棱柱ABCA1B1C1中,CC1⊥底面ABC,底面是边长为2的正三角形,M,N分别是棱CC1、AB的中点.(1)求证:CN∥平面AMB1;(2)若二面角AMB 1C 为45°,求CC 1的长. (1)证明 设AB 1的中点为P ,连接NP 、MP . ∵CM 綉12AA 1,NP 綉12AA 1,∴CM 綉NP ,∴CNPM 是平行四边形,∴CN ∥MP . ∵CN ⊄平面AMB 1,MP ⊂平面AMB 1, ∴CN ∥平面AMB 1.(2)解 如图,以C 为原点,建立空间直角坐标系Cxyz ,使x 轴、y 轴、z 轴分别与NA →、CN →、CC 1→同向.则C (0,0,0),A (1,3,0),B (-1,3,0),设M (0,0,a )(a >0), 则B 1(-1,3,2a ),MA →=(1,3,-a ),MB 1→=(-1,3,a ),CM →=(0,0,a ), 设平面AMB 1的法向量n =(x ,y ,z ), 则n ·MA →=0,n ·MB 1→=0,即⎩⎨⎧x +3y -az =0,-x +3y +az =0,则y =0,令x =a ,则z =1,即n =(a,0,1). 设平面MB 1C 的一个法向量是m =(u ,v ,w ), 则m ·MB 1→=0,m ·CM →=0,即⎩⎨⎧-u +3v +a w =0,a w =0,则w=0,令v=1,则u=3,即m=(3,1,0).所以cos〈m,n〉=3a2a2+1,依题意,〈m,n〉=45°,则3a2a2+1=22,解得a=2,所以CC1的长为2 2.利用向量法解决立体几何中的探索性问题此类问题命题背景宽,涉及到的知识点多,综合性较强,通常是寻找使结论成立的条件或探索使结论成立的点是否存在等问题,全面考查考生对立体几何基础知识的掌握程度,考生的空间想象能力、逻辑思维能力和运算求解能力.【例4】►如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB =1,E为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.[审题视点][听课记录][审题视点] 建立以D为原点的空间直角坐标系,利用向量法求解,第(2)问中设AS→=λAN →,由ES ⊥平面AMN 可得λ值.解 (1)如图,以D 为坐标原点,建立空间直角坐标系Dxyz . 依题意,易得D (0,0,0),A (1,0,0), M (0,0,1),C (0,1,0),B (1,1,0), N (1,1,1),E 12,1,0.∴NE →=-12,0,-1,AM →=(-1,0,1).∵cos 〈NE →,AM →〉=NE →·AM →|NE →|·|AM →|=-1252×2=-1010,∴异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . ∵AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=12,-1,0,∴ES →=EA →+AS →=12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,故λ=12,此时AS →=0,12,12,|AS →|=22.经检验,当AS=22时,ES⊥平面AMN.故线段AN上存在点S,使得ES⊥平面AMN,此时AS=22.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围的解”等,因此使用问题的解决更简单、有效,应善于运用这一方法解题.【突破训练4】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示).(1)当BD 的长为多少时,三棱锥ABCD 的体积最大;(2)当三棱锥ABCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.解 (1)法一 在如题图1所示的△ABC 中,设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x .由折起前AD ⊥BC 知,折起后(如题图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D , 所以AD ⊥平面BCD .又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ),于是V ABCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤1122x +(3-x )+(3-x )33=23,当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥ABCD 的体积最大. 法二 同法一,得V ABCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ).令f (x )=16(x 3-6x 2+9x ), 由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0. 所以当x =1时,f (x )取得最大值.故当BD =1时,三棱锥ABCD 的体积最大.(2)以D 为原点,建立如图所示的空间直角坐标系Dxyz . 由(1)知,当三棱锥ABCD 的体积最大时,BD =1,AD =CD =2. 于是可得D (0,0,0),B (1,0,0), C (0,2,0),A (0,0,2),M (0,1,1), E 12,1,0,且BM →=(-1,1,1). 设N (0,λ,0),则EN →=-12,λ-1,0.因为EN ⊥BM 等价于EN →·BM →=0, 即-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N 0,12,0.所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ⊥BN →,n ⊥BM →,及BN →=-1,12,0,得⎩⎪⎨⎪⎧y =2x ,z =-x .可取n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=-12,-12,0,n =(1,2,-1),可得si nθ=cos (90°-θ)=n ·EN →|n |·|EN →|=-12-16×22=32,即θ=60°.故EN 与平面BMN 所成角的大小为60°.利用向量法求空间角要破“四关”利用向量法求解空间角,可以避免利用定义法作角、证角、求角中的“一作、二证、三计算”的繁琐过程,利用法向量求解空间角的关键在于“四破”.第一破“建系关”,第二破“求坐标关”;第三破“求法向量关”;第四破“应用公式关”,熟记线面成的角与二面角的公式,即可求出空间角.【示例】如图所示,在三棱锥P ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.(1)求证:AB⊥平面PBC;(2)设AB=BC,直线P A与平面ABC所成的角为45°,求异面直线AP与BC所成的角;(3)在(2)的条件下,求二面角CP AB的余弦值.[满分解答](1)∵PC⊥平面ABC,AB⊂平面ABC,∴AB ⊥PC .∵点C 在平面PBA 内的射影D 在直线PB 上, ∴CD ⊥平面P AB .又∵AB ⊂平面PBA ,∴AB ⊥CD .又∵CD ∩PC =C ,∴AB ⊥平面PBC .(4分)(2)∵PC ⊥平面ABC ,∴∠P AC 为直线P A 与平面ABC 所成的角.于是∠P AC =45°,设AB =BC =1,则PC =AC =2,以B 为原点建立如图所示的空间直角坐标系,则B (0,0,0),A (0,1,0),C (1,0,0),P (1,0,2),AP →=(1,-1,2),BC →=(1,0,0), ∵cos 〈AP →,BC →〉=AP →·BC →|AP →|·|BC →|=12,∴异面直线AP 与BC 所成的角为60°.(8分) (3)取AC 的中点E ,连接BE ,则BE →=12,12,0,∵AB =BC ,∴BE ⊥AC .又∵平面PCA ⊥平面ABC ,∴BE ⊥平面P AC .∴BE →是平面P AC 的法向量.设平面P AB 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥BA →,n ⊥AP →,得⎩⎨⎧ y =0,x -y +2z =0,取z =1,得⎩⎨⎧y =0,x =-2,∴n =(-2,0,1).于是cos 〈n ,BE →〉=n ·BE→|n |·|B E →|=-223·22=-33.又∵二面角CP AB 为锐角, ∴所求二面角的余弦值为33.(12分) 老师叮咛:(1)解决此类问题,一定要先分析已知条件中,是否直接说出此三条直线是两两垂直,否则,要先证明以后才能建立坐标系,另外,要在作图时画出每条坐标轴的方向.(2)有的考生易忽视向量的夹角与所求角之间的关系,如求解二面角时,不能根据几何体判断二面角的范围,忽视法向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错.如本例中求得cos BE →=-33,不少考生回答为:二面角的余弦值为-33,这是错误的,原因是忽视了对二面角CP AB 的大小的判断.【试一试】如图所示,在三棱柱ABCA 1B 1C 1中,AA 1⊥平面ABC ,AB =BC =CA =AA 1,D 为AB 的中点.(1)求证:BC 1∥平面DCA 1;(2)求二面角DCA 1C 1的平面角的余弦值. (1)证明如图所示,以BC 的中点O 为原点建立空间直角坐标系Oxyz ,设AB =BC =CA =AA 1=2.设n =(x ,y ,z )是平面DCA 1的一个法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0.又CD →=32,0,32,CA 1→=(1,2,3),所以⎩⎨⎧3x +z =0,x +2y +3z =0.令x =1,z =-3,y =1,所以n =(1,1,-3).因为BC 1→=(-2,2,0), 所以n ·BC 1→=-2+2+0=0.又BC 1⊄平面DCA 1,所以BC 1∥平面DCA 1.(2)解 设m =(x 1,y 1,z 1)是平面CA 1C 1的一个法向量, 则⎩⎪⎨⎪⎧m ·CC 1→=0,m ·CA 1→=0.又CC 1→=(0,2,0),CA 1→=(1,2,3),所以⎩⎨⎧y 1=0,x 1+2y 1+3z 1=0.令z 1=1,x 1=-3,所以m =(-3,0,1).所以cos 〈m ,n 〉=-2325=-155.所以所求二面角的余弦值为-155。
第一章空间向量与立体几何知识点总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
数学(理)一轮复习 第七章 立体几何 第讲 空间向量及其运算
第6讲空间向量及其运算)1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p =x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c.其中{a,b,c}叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作错误!=a,错误!=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤<a,b〉≤π.若<a,b〉=错误!,则称向量a,b 互相垂直,记作a⊥b。
(2)两向量的数量积两个非零向量a,b的数量积a·b=|a||b|cos〈a,b>.(3)向量的数量积的性质①a·e=|a|cos〈a,e〉(其中e为单位向量);②a⊥b⇔a·b=0;③|a|2=a·a=a2;④|a·b|≤|a||b|。
(4)向量的数量积满足如下运算律①(λa)·b=λ(a·b);②a·b=b·a(交换律);③a·(b+c)=a·b+a·c(分配律).3.空间向量的坐标运算(1)设a=(a1,a2,a3),b=(b1,b2,b3).a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,a⊥b⇔a1b1+a2b2+a3b3=0,a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),cos<a,b〉=错误!=错误!.(2)设A(x1,y1,z1),B(x2,y2,z2),则错误!=错误!-错误!=(x2-x1,y2-y1,z2-z1).4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称错误!为直线l的方向向量,与错误!平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为错误!5.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.辨明四个易误点(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a∥b⇔存在唯一的实数λ∈R,使a=λb易忽视b≠0.(3)共面向量定理中,注意有序实数对(x,y)是唯一存在的.(4)向量的数量积满足交换律、分配律,但不满足结合律,即(a·b)c=a(b·c)不一定成立.2.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直.(2)尽可能地让相关点落在坐标轴或坐标平面上.3.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.1.已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论正确的是( )A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对C 因为c =(-4,-6,2)=2a ,所以a ∥c 。
第七章立体几何与空间向量基础知识默写课件-2025届高三数学一轮复习
球的接、切问题3
4.球心到正三棱柱两底面的距离相等,正三棱柱两底面中心连线的中点
为其外接球球心.R2=
.
5. R=
的半径). 6.R2= 的半径).
(R 是圆柱外接球的半径,h 是圆柱的高,r 是圆柱底面圆 (R是圆锥外接球的半径,h是圆锥的高,r是圆锥底面圆
1.基本事实
空间点线面位置关系1
①过
.{a,b,c}叫做空间的一个基底.
2.空间位置关系的向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2 l1⊥l2
n1∥n2⇔ (λ∈R) n1⊥n2⇔ .
直线l的方向向量为n,平面α的法 l∥α
向量为m,l⊄α
l⊥α
n⊥m⇔ n∥m⇔n=
. (λ∈R)
平面α,β的法向量分别为n,m
α∥β α⊥β
把不规则的几何体分割成规则的几何体,或者把不规则的 几何体补成规则的几何体 通过选择合适的底面来求几何体体积的一种方法,特别是 三棱锥的体积
1.正方体与球
球的接、切问题1
①内切球:内切球直径2R=正方体的
.
②棱切球:棱切球直径2R=正方体的
.
③外接球:外接球直径2R=正方体体的
.
2.长方体与球
外接球直径 2R=
简单几何体2
3.柱、锥、台、球的表面积和体积
几何体
名称
表面积
柱体
S表=S侧+2S底
体积 V=___
锥体
S表=S侧+S底
V=_____
台体 球
S表=S侧+S上+S下 S表=_____
V=_____________ V=_____
简单几何体3
4.求空间几何体的体积的常用方法 规则几何体的体积,直接利用公式
高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第1课
(1)求平面ABCD的一个法向量;
(2)求平面SAB的一个法向量;
(3)求平面SCD的一个法向量.
1
2
,试建立适当的坐标系.
解 以点A为原点,AD,AB,AS所在的直线分别为x轴、y轴、z轴,建立如图所
示的空间直角坐标系,
则
1
A(0,0,0),B(0,1,0),C(1,1,0),D( ,0,0),S(0,0,1).
设 Q(0,1,m).
(方法 1)因为 =
=
1
-1,0, 2
1 1 1
- ,- ,
2 2 2
, 1 =(-1,-1,1),所以 ∥ 1 ,于是 OP∥BD1.
1
, =(-1,0,m),当 m=2时,
= ,即 AP∥BQ,有平面 PAO∥平
面 D1BQ,故当 Q 为 CC1 的中点时,平面 D1BQ∥平面 PAO.
是共面向量,即满足p=xa+yb(x,y∈R),则p,a,b共面,从而可证直线与平面平
行.
(2)利用共线向量法:证明直线的方向向量p与该平面内的某一向量共线,再
结合线面平行的判定定理即可证明线面平行.
(3)利用法向量法:求出直线的方向向量与平面的法向量,证明方向向量与
法向量垂直,从而证明直线与平面平行.
内
容
索
引
01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
知识点1 空间中点、直线和平面的向量表示
1.点的位置向量
在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量
高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第2课
所以M→N=21,-12,12,B→D=(1,1,0),B→A1=(0,1,1). 设平面 A1BD 的一个法向量 n=(x,y,z), 则由nn··BB→→DA1==00,,得xy+ +yz==00., 令 y=-1,则 x=1,z=1,所以 n=(1,-1,1). 因为 n=2M→N,所以 n∥M→N.所以 MN⊥平面 A1BD.
证明:方法一,如图,以三棱锥的顶点P为原 点,PA,PB,PC所在直线分别为x轴、y轴、z轴建立 空间直角坐标系.
令PA=PB=PC=3,则A(3,0,0),B(0,3, 0),C(0,0,3),E(0,2,1),F(0,1,0),G(1, 1,0),P(0,0,0),
于是P→A=(3,0,0),F→G=(1,0,0), 故P→A=3F→G,所以 PA∥FG. 而 PA⊥平面 PBC,所以 FG⊥平面 PBC. 又因为 FG⊂平面 EFG,所以平面 EFG⊥平面 PBC.
(2)由平面EFPQ与平面PQMN所成的二面角为直二面角知,两个平 面互相垂直,故它们的法向量互相垂直,由此可根据数量积为0,求λ的 值.
规范解答:以 D 为原点,射线 DA,DC,DD1 分别为 x 轴、y 轴、z 轴的正半轴建立空间直角坐标系.
由已知得 B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0, 0,λ),B→C1=(-2,0,2),F→P=(-1,0,λ),F→E=(1,1,0).
用坐标法证明线面垂直的方法及步骤 (1)建立空间直角坐标系. (2)将一平面内两相交直线的方向向量用坐标表示. (3)由两条相交直线的方向向量,计算两组向量的数量积,得到数量 积为0. (4)同理求出另一个平面的法向量.
第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
高考数学讲义空间向量与立体几何.知识框架
空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。
2021届高考数学一轮复习资料
2021届⾼考数学总复习⼀轮复习资料⽬录专题1 集合与常⽤逻辑⽤语1§1.1 集合的概念与运算1§2 命题及其条件、充分条件与必要条件2§3 简单的逻辑连接词、全称量词与存在量词3专题2 函数概念与基本初等函数Ⅰ5§1 函数及其表⽰5§2 函数的单调性与最值7§3 函数的奇偶性与周期性8§4 ⼆次函数与幂函数9§5 指数与指数函数11§6 对数与对数函数12§7 函数的图像15§8 函数与⽅程17§9 实际问题的函数建模18专题3 导数及其应⽤20§1 导数的概念及运算20§2 导数的应⽤222.1 导数与函数的单调性222.2 导数与函数的极值、最值23§3 定积分与微积分基本定理26专题4 三⾓函数、解三⾓形27§1 任意⾓、弧度制及任意⾓的三⾓函数27§2 同⾓三⾓函数基本关系式及诱导公式29§3 三⾓函数的图像与性质31§4 函数y=Asin(ωx+φ)的图像及应⽤32§6 简单的三⾓恒等变换35§7 正弦定理、余弦定理36§8 解三⾓形的综合运⽤37 专题5 平⾯向量39§1 平⾯向量的概念及线性运算39§2 平⾯向量基本定理及坐标表⽰41§3 平⾯向量的数量积42§4平⾯向量应⽤举例43专题6 数列44§1 数列的概念与简单表⽰法44§2 等差数列及其前n项和46§3 等⽐数列及其前n项和47§4 数列求和49专题7 不等式50§1 不等关系与不等式50§2 ⼀元⼆次不等式及其解法52§3 ⼆元⼀次不等式(组)与简单的线性规划问题53§4 基本不等式及其应⽤55专题8 ⽴体⼏何与空间向量57§1 简单⼏何体的结构、三视图和直观图57§2 空间图形的基本关系与公理59§3 平⾏关系61§4 垂直关系64§5 简单⼏何体的⾯积与体积66§6 空间向量及其运算68§7 ⽴体⼏何中的向量⽅法707.1 证明平⾏与垂直707.2 求空间⾓和距离72专题9 平⾯解析⼏何74§1 直线的⽅程74§3 圆的⽅程78§4 直线与圆、圆与圆的位置关系80§5 椭圆82§6 抛物线84§7 双曲线86§8 曲线与⽅程88§9 圆锥曲线的综合问题90专题10 计数原理99§1 分类加法计数原理与分步乘法计数原理99§2 排列与组合100§3 ⼆项式定理102专题11 统计与统计案例104§1 随机抽样104§2 统计图表、⽤样本估计总体106§3 变量间的相关关系、统计案例108专题12 概率、随机变量及其分布110§1 随机事件的概率110§2 古典概型113§3 ⼏何概型115§4离散型随机变量及其分布列116§5 ⼆项分布及其应⽤118§6离散型随机变量的均值与⽅差、正态分布120专题13 推理与证明、算法、复数122§1 归纳与类⽐122§2综合法与分析法、反证法124§3 数学归纳法126§4 算法与算法框图128§5 复数130专题14 系列4选讲132§1 ⼏何证明选讲1321.1 相似三⾓形的判定及有关性质1321.2 直线与圆的位置关系133§2 坐标系与参数⽅程1342.1 坐标系1342.2 参数⽅程135§3 不等式选讲1363.1 绝对值不等式1363.2 不等式的证明138专题1 集合与常⽤逻辑⽤语§1.1 集合的概念与运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、⽆序性.(2)元素与集合的关系是属于或不属于两种,⽤符号∈或∉表⽰.(3)集合的表⽰法:列举法、描述法.(4)常见数集的记法2.集合间的基本关系3.集合的运算4.集合关系与运算的常⽤用结论(1)若有限集A 中有n 个元素,则A 的⼦集个数为2n 个,⾮空⼦集个数为2n -1个,真⼦集有2n -1个. (2)A ⊆B A ∩B =A A ∪B =B . 典例例 设集合A ={0,-4},B ={x |x 2+2(a +1)x+a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________.易易错分析 集合B 为⽅方程x 2+2(a +1)x +a 2-1=0的实数根所构成的集合,由B ⊆A ,可知集合B 中的元素都在集合A 中,在解题中容易易忽视⽅方程⽆无解,即B =∅的情况,导致漏漏解. 解析 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是⽅方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关集合⾃然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR关系⾃然语⾔符号语⾔Venn 图⼦集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或 B=A )真⼦集集合A 是集合B 的⼦集,且集合B 中⾄少有⼀个元素不在集合A 中A ⊊B集合相等集合A ,B 中元素相同或集合A ,B 互为⼦集A =B集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.遗忘空集致误解得a=1;②当B≠∅且B A时,B={0}或B={-4},并且Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满⾜足题意;③当B=∅时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1.综上所述,所求实数a的取值范围是a≤-1或a=1.答案 (-∞,-1]∪{1}温馨提醒 (1)根据集合间的关系求参数是⾼考的⼀个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B,若已知A⊆B或A∩B=∅,则考⽣很容易忽视A=∅⽽造成漏解.在解题过程中应根据集合A分三种情况进⾏讨论.[⽅方法与技巧]1.集合中的元素的三个特征,特别是⽆无序性和互异性在解题时经常⽤用到.解题后要进⾏行行检验,要重视符号语⾔言与⽂文字语⾔言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进⾏行行合理理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的⼜又⼀一体现.[失误与防范]1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).对可以化简的集合要先化简再研究其关系运算.2.空集是任何集合的⼦子集,是任何⾮非空集合的真⼦子集,时刻关注对空集的讨论,防⽌止漏漏解.3.解题时注意区分两⼤大关系:⼀一是元素与集合的从属关系;⼆二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进⾏行行集合交、并、补运算的常⽤用⽅方法,其中运⽤用数轴图示法时要特别注意端点是实⼼心还是空⼼心.§2 命题及其条件、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.思想与⽅法系1.等价转化思想在充要条件中的应⽤列典例例 (1)已知p:(a-1)2≤1,q:任意x∈R,ax2-ax+1≥0,则p是q成⽴的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知条件p:x2+2x-3>0;条件q:x>a,且┐q的⼀个充分不必要条件是┐p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析 (1)由(a-1)2≤1解得0≤a≤2,∴p:0≤a≤2.当a=0时,ax2-ax+1≥0对任意x∈R恒成⽴立;当a≠0时,由得0<a≤4,∴q:0≤a≤4.∴p是q成⽴立的充分不不必要条件.(2)由x2+2x-3>0,得x<-3或x>1,由┐q的⼀个充分不必要条件是┐p,可知┐p是┐q的充分不必要条件,等价于q是p的充分不必要条件.∴{x|x>a}⊊{x|x<-3或x>1},∴a≥1.答案 (1)A (2)A温馨提醒 (1)本题⽤到的等价转化①将┐p,┐q之间的关系转化成p,q之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对⼀些复杂、⽣疏的问题,利⽤等价转化思想转化成简单、熟悉的问题,在解题中经常⽤到.[⽅方法与技巧]1.写出⼀一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的⼏几种判断⽅方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利利⽤用A B与┐B ┐A;B A与┐A ┐B;A B与┐B ┐A的等价关系,对于条件或结论是否定形式的命题,⼀一般运⽤用等价法.(3)利利⽤用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)}:若A⊆B,则p是q的充分条件或q是p的必要条件;若A⊊B,则p是q的充分不不必要条件,若A=B,则p是q的充要条件.[失误与防范]1.当⼀一个命题有⼤大前提⽽而要写出其他三种命题时,必须保留留⼤大前提.2.判断命题的真假及写四种命题时,⼀一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的⽅方向,正确理理解“p的⼀一个充分⽽而不不必要条件是q”等语⾔言.§3 简单的逻辑连接词、全称量量词与存在量量词1.全称量量词与存在量量词(1)常见的全称量词有“所有”“每⼀个”“任何”“任意⼀条”“⼀切”等.(2)常见的存在量词有“有些”“⾄少有⼀个”“有⼀个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:┐p且┐q;p且q的否定:┐p或┐q.4.简单的逻辑联结词(1)命题中的“且”、“或”、“⾮”叫作逻辑联结词.(2)简单复合命题的真值表:p q┐p┐q p或q p且q真真假假真真真假假真真假假真真假真假假假真真假假1.常⽤逻辑⽤语及其应⽤⼀一、命题的真假判断典例例 已知命题p:存在x∈R,x2+1<2x;命题q:若mx2-mx-1<0恒成⽴,则-4<m<0,那么( )A.“┐p”是假命题B.q是真命题C.“p或q”为假命题D.“p且q”为真命题解析 由于x2-2x+1=(x-1)2≥0,即x2+1≥2x,所以p为假命题;对于命题q,当m=0时,有-1<0,恒成⽴立,所以命题q为假命题.综上可知:┐p为真命题,p且q为假命题,p或q为假命题,故选C.答案 C温馨提醒 判断与⼀元⼆次不等式有关命题的真假,⾸先要分清是要求解⼀元⼆次不等式,还是要求⼀元⼆次不等式恒成⽴(有解、⽆解),然后再利⽤逻辑⽤语进⾏判断.⼆二、求参数的取值范围典例例 已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x∈R,使得x2+4x+a=0”.若命题“p且q”是真命题,则实数a的取值范围是________.解析 若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x∈R,使x2+4x+a=0,知Δ=16-4a≥0,a≤4,因此e≤a≤4.答案 [e,4]温馨提醒 含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要⾸先考虑简单命题为真时参数的范围.三、利利⽤用逻辑推理理解决实际问题典例例 (1)甲、⼄、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市⽐⼄多,但没去过B城市;⼄说:我没去过C城市;丙说:我们三⼈去过同⼀城市.由此可判断⼄去过的城市为________.(2)对于中国⾜球参与的某次⼤型赛事,有三名观众对结果作如下猜测: 甲:中国⾮第⼀名,也⾮第⼆名; ⼄:中国⾮第⼀名,⽽是第三名; 丙:中国⾮第三名,⽽是第⼀名.竞赛结束后发现,⼀⼈全猜对,⼀⼈猜对⼀半,⼀⼈全猜错,则中国⾜球队得了第________名.解析 (1)由题意可推断:甲没去过B 城市,但⽐比⼄乙去的城市多,⽽而丙说“三⼈人去过同⼀一城市”,说明甲去过A ,C 城市,⽽而⼄乙“没去过C 城市”,说明⼄乙去过城市A ,由此可知,⼄乙去过的城市为A .(2)由上可知:甲、⼄乙、丙均为“p 且q ”形式,所以猜对⼀一半者也说了了错误“命题”,即只有⼀一个为真,所以可知丙是真命题,因此中国⾜足球队得了了第⼀一名. 答案 (1)A (2)⼀温馨提醒 在⼀些逻辑问题中,当字⾯上并未出现 “或”“且”“⾮”字样时,应从语句的陈述中搞清含义,并根据题⽬进⾏逻辑分析,找出各个命题之间的内在联系,从⽽解决问题.[⽅方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字⾯面上未出现“或”、“且”时,要结合语句句的含义理理解.2.要写⼀一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律律是“改量量词,否结论”. [失误与防范]1.p 或q 为真命题,只需p 、q 有⼀一个为真即可;p 且q 为真命题,必须p 、q 同时为真.2.两种形式命题的否定p 或q 的否定:⾮非p 且⾮非q ;p 且q 的否定:⾮非p 或⾮非q . 3.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定⽽而得到的命题,它既否定其条件,⼜又否定其结论;“命题的否定”即“⾮非p ”,只是否定命题p 的结论.专题2 函数概念与基本初等函数Ⅰ§1 函数及其表示1.函数与映射2.函数的有关概念函数映射两集合 A 、B设A ,B 是两个⾮空数集设A ,B 是两个⾮空集合对应关系 f :A →B 如果按照某个对应关系f ,对于集合A 中任何⼀个数x ,在集合B 中都存在唯⼀确定的数f (x )与之对应集合A 与B 间存在着对应关系f ,⽽且对于A 中的每⼀个元素x ,B 中总有唯⼀的⼀个元素y 与它对应名称称f :A →B 为从集合A 到集合B 的⼀个函数称对应f :A →B 为从集合A 到集合B 的⼀个映射记法y =f (x )(x ∈A )对应f :A →B 是⼀个映射(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫作⾃变量,集合A 叫作函数的定义域,集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)函数的表⽰法表⽰函数的常⽤⽅法有列表法、图像法和解析法. 3.分段函数若函数在其定义域的不同⼦集上,因对应关系不同⽽分别⽤⼏个不同的式⼦来表⽰,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由⼏个部分组成,但它表⽰的是⼀个函数. 4.常⻅见函数定义域的求法典例例 (1)(2014·课标全国Ⅰ)设函数f (x )=则使得f (x )≤2成⽴的x 的取值范围是________. (2)(2015·⼭山东)设函数f (x )=则满⾜f (f (a ))=2f (a )的a 的取值范围是( ) A. B.[0,1] C. D.[1, +∞) 解析 (1)当x <1时,e x -1≤2,解得x ≤1+ln 2, ∴x <1.当x ≥1时,≤2,解得x ≤8,∴1≤x ≤8. 综上可知x ∈(-∞,8].(2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥,∴≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥,故选C.答案 (1)(-∞,8] (2)C温馨提醒 (1)求分段函数的函数值,⾸先要确定⾃变量的范围,然后选定相应关系式代⼊求解.(2)当给出函数值或函数值的取值范围求⾃变量的值或⾃变量的取值范围时,应根据每⼀段解析式分别求解,但要注意检验所求⾃变量的值或取值范围是否符合相应段的⾃变量的值或取值范围. (3)当⾃变量含参数或范围不确定时,要根据定义域分成的不同⼦集进⾏分类讨论.[⽅方法与技巧]类型x 满⾜的条件,n ∈N +f (x )≥0与[f (x )]0f (x )≠0log a f (x )(a >0,a ≠1)f (x )>0log f (x )g (x )f (x )>0,且f (x )≠1,g (x )>0tan f (x )f (x )≠k π+,k ∈Z2.分类讨论思想在函数中的应⽤1313x2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进⾏行行.3.函数解析式的⼏几种常⽤用求法:待定系数法、换元法、配凑法、消去法.4.分段函数问题要分段求解. [失误与防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不不要和f (x )的定义域相混.2.分段函数⽆无论分成⼏几段,都是⼀一个函数,求分段函数的函数值,如果⾃自变量量的范围不不确定,要分类讨论.§2 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值典例例 (12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数;(2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能⽤用定义.应该构造出f (x 2)-f (x 1)并与0⽐比较⼤大⼩小.(2)将函数不不等式中的抽象函数符号“f ”运⽤用单调性“去掉”是本题的切⼊入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分]f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0 f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不不妨设m =n =1,增函数减函数定义在函数f (x )的定义域内的⼀个区间A 上,如果对于任意两数x 1,x 2∈A当x 1<x 2时,都有f (x 1)<f (x 2),那么,就称函数f (x )在区间A 上是增加的当x 1<x 2时,都有f (x 1)>f (x 2),那么,就称函数f (x )在区间A 上是减少的图像描述⾃左向右看图像是上升的⾃左向右看图像是下降的前提函数y =f (x )的定义域为D条件(1)存在x 0∈D ,使得f (x 0)=M ; (2)对于任意x ∈D ,都有f (x )≤M .(3)存在x 0∈D ,使得f (x 0)=M ; (4)对于任意x ∈D ,都有f (x )≥M .结论M 为最⼤值M 为最⼩值1.确定抽象函数单调性解函数不等式∴f(1+1)=f(1)+f(1)-1 f(2)=2f(1)-1,[8分]f(3)=4 f(2+1)=4 f(2)+f(1)-1=4 3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[10分]∵f(x)在R上为增函数,∴a2+a-5<1 -3<a<2,即a∈(-3,2).[12分]解函数不不等式问题的⼀一般步骤:第⼀一步:(定性)确定函数f(x)在给定区间上的单调性;第⼆二步:(转化)将函数不不等式转化为f(M)<f(N)的形式;第三步:(去f)运⽤用函数的单调性“去掉”函数的抽象符号“f”,转化成⼀一般的不不等式或不不等式组;第四步:(求解)解不不等式或不不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易易错点及解题规范.温馨提醒 本题对函数的单调性的判断是⼀个关键点.不会运⽤条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破⼜.第⼆个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在的单调区间的约束.[⽅方法与技巧]1.利⽤定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常⽤⽅法:定义法、导数法、复合函数法、图像法,也可利⽤单调函数的和差确定单调性.3.求函数最值的常⽤求法:单调性法、图像法、换元法.[失误与防范]1.分段函数单调性不不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不不同的区间上单调性相同,⼀一般要分开写,⽤用“,”或“和”连接,不不要⽤用“∪”.§3 函数的奇偶性与周期性1.奇函数、偶函数的概念图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.2.判断函数的奇偶性判断函数的奇偶性,⼀般都按照定义严格进⾏,⼀般步骤是(1)考察定义域是否关于原点对称.(2)考察表达式f(-x)是否等于f(x)或-f(x):若f(-x)=-f(x),则f(x)为奇函数;若f(-x)=f(x),则f(x)为偶函数;若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,既⾮奇⾮偶函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在⼀个⾮零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最⼩正周期:如果在周期函数f (x )的所有周期中存在⼀个最⼩的正数,那么这个最⼩正数就叫做f (x )的最⼩正周期.典例例 (1)若函数f (x )=在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=则满⾜不等式f (1-x 2)>f (2x )的x 的取值范围是________. 易易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了了1-x 2>0导致解答失误. 解析 (1)∵f (-x )==, ∴f (-x )+f (x ) = =.由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=的图像,由图像可知,若f (1-x 2)>f (2x ), 则 即得x ∈(-1,-1).答案 (1)±1 (2)(-1,-1)温馨提醒 (1)已知函数的奇偶性,利⽤特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应⾼度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的⼤⼩关系.③弄清最终结果取并集还是交集.[⽅方法与技巧]1.判断函数的奇偶性,⾸先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的⼀个必要条件.2.利⽤函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图像,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应⽤. [失误与防范]1.f (0)=0既不不是f (x )是奇函数的充分条件,也不不是必要条件.应⽤用时要注意函数的定义域并进⾏行行检验.2.判断分段函数的奇偶性时,要以整体的观点进⾏行行判断,不不可以利利⽤用函数在定义域某⼀一区间上不不是奇偶函数⽽而否定函数在整个定义域的奇偶性.§4 ⼆二次函数与幂函数1.⼆二次函数(1)⼆次函数解析式的三种形式 22.忽视定义域致误②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)⼆次函数的图像和性质 2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是⾃变量,α是常数. (2)幂函数的图像⽐较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减. 典例例 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最⼩值.思维点拨 参数a 的值确定f (x )图像的形状;a ≠0时,函数f (x )的图像为抛物线,还要考虑开⼝口⽅方向和对称轴与所给范围的关系. 规范解答解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图像的开⼝口⽅方向向上,且对称轴为x =. ①当≤1,即a ≥1时,f (x )=ax 2-2x 图像的对称轴在[0,1]内, ∴f (x )在[0,]上递减,在[,1]上递增. 解析式f (x)=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图像定义域(-∞,+∞)(-∞,+∞)值域单调性在x ∈上单调递减; 在x ∈上单调递增在x ∈上单调递增; 在x ∈上单调递减对称性函数的图像关于x =-对称思想与⽅法系列3.分类讨论思想在⼆次函数最值中的应⽤②当>1,即0<a <1时,f (x )=ax 2-2x 图像的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图像的开⼝口⽅方向向下, 且对称轴x =<0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2. 综上所述,f (x )min =温馨提醒 (1)本题在求⼆次函数最值时,⽤到了分类讨论思想,求解中既对系数a 的符号进⾏讨论,又对对称轴进⾏讨论.在分类讨论时要遵循分类的原则:⼀是分类的标准要⼀致,⼆是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不⽆原则的分类讨论.(2)在有关⼆次函数最值的求解中,若轴定区间动,仍应对区间进⾏分类讨论.[⽅方法与技巧]1.⼆二次函数的三种形式(1)已知三个点的坐标时,宜⽤用⼀一般式.(2)已知⼆二次函数的顶点坐标或与对称轴有关或与最⼤大(⼩小)值有关的量量时,常使⽤用顶点式. (3)已知⼆二次函数与x 轴有两个交点,且横坐标已知时,选⽤用零点式求f (x )更更⽅方便便. 2.研究⼆二次函数的性质要注意: (1)结合图像分析;(2)含参数的⼆二次函数,要进⾏行行分类讨论. 3.利利⽤用幂函数的单调性⽐比较幂值⼤大⼩小的技巧在⽐比较幂值的⼤大⼩小时,必须结合幂值的特点,转化为同指数幂,再选择适当的函数,借助其单调性进⾏行行⽐比较.[失误与防范]1.对于函数y =ax 2+bx +c ,要认为它是⼆二次函数,就必须满⾜足a ≠0,当题⽬目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.2.幂函数的图像⼀一定会出现在第⼀一象限内,⼀一定不不会出现在第四象限,⾄至于是否出现在第⼆二、三象限内,要看函数的奇偶性;幂函数的图像最多能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点⼀一定是原点.§5 指数与指数函数1.分数指数幂(1)规定:正数的正分数指数幂的意义是,且n >1);正数的负分数指数幂的意义是=(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)幂的运算性质:a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,其中a >0,b >0,m ,n ∈R . 2.指数函数的图像与性质 (0),,m mn na a a m n +=>∈N m na −y =a x a >10<a <1图像典例例 (1)函数y =x -x +1在区间[-3,2]上的值域是________.(2)函数的单调减区间为__________________________.思维点拨 (1)求函数值域,可利利⽤用换元法,设t =x ,将原函数的值域转化为关于t 的⼆二次函数的值域.(2)根据复合函数的单调性“同增异减”进⾏行行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =x ,则t ∈, 故y =t 2-t +1=2+.当t =时,y min =;当t =8时,y max =57. 故所求函数值域为. (2)设u =-x 2+2x +1, ∵y =u 在R 上为减函数,∴函数的减区间即为函数u =-x 2+2x +1的增区间. ⼜又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1]. 答案 (1) (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利⽤换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[⽅方法与技巧]1.通过指数函数图像⽐较底数⼤⼩的问题,可以先通过令x =1得到底数的值,再进⾏⽐较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,⼀定要分清a >1与0<a <1. 3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合⽽成. [失误与防范]1.恒成⽴立问题⼀一般与函数最值有关,要与⽅方程有解区别开来. 2.复合函数的问题,⼀一定要注意函数的定义域.3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)形式的⽅方程或不不等式,常借助换元法解决,但应注意换元后“新元”的范围.§6 对数与对数函数1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中 a 叫定义域(1)R 值域(2)(0,+∞)性质(3)过点(0,1),即x =0时,y =1(4)当x >0时,y >1;当x <0时,0<y <1(5)当x >0时,0<y <1;当x <0时,y >1(6)是R 上的增函数(7)是R 上的减函数4.换元法在和指数函数有关的复合函数中的应⽤用2211()()2x x f x −++=2211()()2x x f x −++=作对数的底数, N 叫作真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a =log a M -log a N ; ③log a M n =n log a M (n ∈R ); ④log am M n =log a M (m ,n ∈R ,且m ≠0). (2)对数的性质①= N ;②log a a N = N (a >0且a ≠1). (3)对数的重要公式①换底公式:log b N = (a ,b 均⼤于零且不等于1); ②log a b =,推⼴log a b ·log b c ·log c d =log a d . 3.对数函数的图像与性质4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图像关于直线 y =x 对称. 典例例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的⼤⼩关系是( ) A.c <b <a B.a <b <c C.b <a <c D.a <c <b(2)设a =log 2π,b =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a(3)已知a =,b =,c =,则( )A.a >b >cB.b >a >cC.a >c >bD.c >a >b思维点拨 (1)可根据幂函数y =x 0.5的单调性或⽐比商法确定a ,b 的⼤大⼩小关系,然后利利⽤用中间值⽐比较a ,c ⼤大⼩小.(2)a ,b 均为对数式,可化为同底,再利利⽤用中间变量量和c ⽐比较.(3)化为同底的指数式. 解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;log m n a M log a Na a >10<a <1图像性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0当0<x <1时,y <0(5)当x >1时,y <0当0<x <1时,y >0(6)是(0,+∞)上的增函数(7)是(0,+∞)上的减函数2.⽐比较指数式、对数式的⼤大⼩小12log π2log3.454log 3.653log 0.31()5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14讲空间向量与立体几何经典精讲主讲教师:陈孟伟北京八中数学特级教师题一:一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形.则该几何体的表面积为().A .88B .98C .108D .158().A .1B .12C .34D .32题三:一个简单组合体的三视图及尺寸如图所示(单位:mm),则该组合体的体积为().A .32mm 3B .48mm 3C 33题四:一个物体的底座是两个相同的几何体,它的三视图及其尺寸(单位:dm)如图所示,则这个物体的体积为().A.(120+16π)dm3B.(120+8π)dm3C.(120+4π)dm3D.(60+8π)dm3题五:如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.题六:一个多面体的三视图和直观图如图所示,其中M,N分别是AB,SA的中点.(1)求证:NB⊥M C;(2)在棱SD上是否存在点P,使AP∥平面SMC?若存在,请找出点P的位置;若不存在,请说明理由.(1)求证:直线AE⊥直线DA1;(2)求三棱锥D-AEF的体积;(3)在线段AA1上求一点G,使得直线AE⊥平面DFG.题七:如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E 、M 分别为AB 、DE 的中点,将△ADE 沿直线DE 翻转成△A ′DE ,F 为A ′C 的中点,A ′C =4.(1)求证:平面A ′DE ⊥平面BCD ;(2)求证:FB ∥平面A ′DE .题八:如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为().A . 2B . 3C .2D .22题九:已知四棱柱ABCD -A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AD =AB =AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点.则直线EF 与平面A 1CD 所成角的正弦值为().A .13B .33C .23D .63第14讲空间向量与立体几何经典精讲题一:答案:(1)证明见详解;(2)32. 详解:(1)在图(1)中,∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°.∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°,∴CD =23.∵CE =4,∠DCE =30°,∴DE =2.则CD 2+DE 2=EC 2,∴∠CDE =90°,DE ⊥DC .在图(2)中,∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD , ∴DE ⊥平面BCD .(2)在图(2)中,∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG , ∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2,作BH ⊥CD 交CD 于H ,∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32.S △DEG =13S △ACD =13×12AC ·CD ·sin30°=3. ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 题二:答案:(1)证明见详解;(2)当θ=π4时,三棱锥C -AOE 的体积最大,最大值为23. 详解:(1)在直角梯形ABCD 中,CD =2AB ,E 为CD 的中点,则AB =DE ,又AB ∥DE ,AD ⊥AB ,知BE ⊥CD .在四棱锥C -ABED 中,BE ⊥DE ,BE ⊥CE ,CE ∩DE =E ,CE ,DE ⊂平面CDE ,则BE ⊥平面CDE .因为CO ⊂平面CDE ,所以BE ⊥CO .又CO ⊥DE ,且BE ,DE 是平面ABED 内两条相交直线,故CO ⊥平面ABED .(2)由(1)知CO ⊥平面ABED ,则三棱锥C -AOE 的体积V =13S △AOE ·OC =13×12×OE ×AD ×OC . 由直角梯形ABCD 中,CD =2AB =4,AD =2,CE =2,得三棱锥C -AOE 中,OE =CE cos θ=2cos θ,OC =CE sin θ=2sin θ,V =23sin2θ≤23. 当且仅当sin2θ=1,θ∈(0,π2),即θ=π4时取等号,(此时OE =2<DE ,O 落在线段DE 内).故当θ=π4时,三棱锥C -AOE 的体积最大,最大值为23. 题三:见详解.证明:(1)如图所示,取BB 1的中点M ,连接HM 、MC 1,易证四边形HMC 1D 1是平行四边形,∴HD 1∥MC 1.又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO 、D 1O ,则OE 平行且等于12DC . 又D 1G 平行且等于12DC ,∴OE 平行且等于D 1G , ∴四边形OEGD 1是平行四边形.∴GE ∥D 1O .又D 1O 平面BB 1D 1D ,EG平面BB 1D 1D , ∴EG ∥平面BB 1D 1D . (3)由(1)知D 1H ∥BF ,D 1H 平面BDF ,BF 平面BDF ,∴D 1H ∥平面BDF . 同理,由B 1D 1∥BD 可得,B 1D 1∥平面BDF .又B 1D 1、HD 1平面HB 1D 1,且B 1D 1∩HD 1=D 1,∴平面BDF ∥平面B 1D 1H .题四:见详解.详解:(1)取AD 的中点O ,连接NO ,BO ,∵N 是SA 的中点,O 是AD 的中点,∴NO ∥SD .又∵SD ⊥底面ABCD ,∴NO ⊥底面ABCD ,MC ⊂平面ABCD ,∴NO ⊥MC . 又∵ABCD 是正方形,M ,O 分别是AB ,AD 的中点,由平面几何知识可得BO ⊥MC ,NO ∩BO =O ,∴MC ⊥平面NOB ,NB ⊂平面NOB .∴NB ⊥MC .(2)取线段SD 的中点P 即可.设SC 的中点为Q ,连接PQ ,MQ ,∴PQ =12CD 且PQ ∥CD ; 又AM ∥CD 且AM =12CD ;∴PQ ∥AM 且PQ =AM .∴APQM 是平行四边形.∴AP ∥MQ ,AP平面SMC ,MQ 平面SMC .∴AP ∥平面SMC .题五:(2)43. 详解:(1)连接AD 1,BC 1,由正方体的性质可知,DA 1⊥AD 1,DA 1⊥AB ,又AB ∩AD 1=A ,∴DA1⊥平面ABC1D1,又AE平面ABC1D1,∴DA1⊥AE.(2)V D-AEF=V E-ADF=13·DD1·S△ADF=13×2×2=43.(3)所示G点即为A1点,证明如下:由(1)可知AE⊥DA1,取C D的中点H,连接AH,EH,由DF⊥AH,DF⊥EH,AH∩EH=H,可证DF⊥平面A HE,∴DF⊥AE.又DF∩A1D=D,∴AE⊥平面DF A1,即AE⊥平面DFG.题六:见详解.详解:(1)由题意得△A′DE是△ADE沿DE翻折而成,所以△A′DE≌△ADE.∵∠ABC=120°,四边形ABCD是平行四边形,∴∠A=60°.又∵AD=AE=2,∴△A′DE和△ADE都是等边三角形.∵M是DE的中点,∴A′M⊥DE,A′M=3.在△DMC中,MC2=42+12-2×4×1·cos60°,∴MC=13.在△A′MC中,A′M2+MC2=(3)2+(13)2=42=A′C2,∴△A′MC是直角三角形.∴A′M⊥MC.又∵A′M⊥DE,MC∩DE=M,∴A′M⊥平面BCD.又∵A′M 平面A′DE,∴平面A′DE⊥平面BCD.(2)取DC的中点N,连接FN,NB.∵A′C=DC,F,N点分别是A′C,DC的中点,∴FN∥A′D.又∵N,E点分别是平行四边形ABCD的DC,AB的中点,∴BN∥DE.又∵A′D∩DE=D,FN∩NB=N,∴平面A′DE∥平面FNB.∵FB平面FNB,∴FB∥平面A′DE.题七:A.详解:如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,2,2),C1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎨⎧2y +2z =0x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n (0,1,0),则由cos60°=m·n |m ||n |,得1a 2+2=12,即a =2,故AD =2. 题八:C .详解:∵AB ,AD ,AA 1两两垂直,故以AB 所在直线为x 轴,AD 所在直线为y 轴,AA 1所在直线为z 轴,建立空间直角坐标系,如图所示,设BC =1, 则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),E (0,2,1),F (0,1,1),FE =(0,1,0), 设平面A 1CD 的一个法向量为n =(1,y ,z ),则⎩⎪⎨⎪⎧ n ·1A D =2y -2z =0n ·CD =-2+y =0,故n =(1,2,2),则sin θ=|cos<n ,FE >|=|n ·FE |n |·|FE ||=|1×0+2×1+2×04+4+1×0+1+0|=23, 故直线EF 与平面A 1CD 所成的角θ的正弦值为23.。