SAS作业(1)详解
全等三角形的判定定理SAS
三角形全等的判定定理2SAS1.掌握“边角边”定理的内容.2.能初步应用“边角边”判定两个三角形全等.让学生探索三角形全等的条件,体验操作、归纳得出数学结论的过程.通过探究三角形全等的条件的活动,培养学生观察分析图形的能力及运算能力,培养学生乐于探索的良好品质,以及发现问题的能力.【重点】“边角边”定理的理解和应用.【难点】指导学生分析问题,寻找判定三角形全等的条件.【教师准备】多媒体课件,直尺、圆规和剪刀.【学生准备】直尺、圆规和剪刀.导入一:【提出问题】(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定方法“SSS”的内容是什么?(2)如果两个三角形有两条边和一个角分别对应相等,那么这两个三角形一定全等吗?此时应该有两种情况,一种是角夹在两条边的中间,形成两边一夹角,一种是角不夹在两边的中间,形成两边一对角,如图所示.[设计意图]复旧导新,激发学生的学习兴趣,为下面学习做好铺垫,让学生感知“两边一角”的两种情况,建立分类讨论的思想.导入二:如图所示,在湖泊的岸边有A,B两点,难以直接量出A,B两点间的距离.你能设计一种量出A,B两点之间距离的方案吗?说明你的设计理由.[设计意图]这样设计既交代了本节课要研究和学习的主要问题,将数学问题与实际生活相结合,又能较好地激发学生求知与探索的欲望.同时让学生知道数学知识无处不在,应用数学无时不有.符合“数学教学应从生活经验出发”的新课程标准要求.导入三:某同学不小心把一块三角形形状的玻璃打碎成两块(如图所示),现要到玻璃店去配一块完全一样的玻璃.如果只准带一块碎片,那么应该带哪一块去?能试着说明理由吗?利用今天要学的“边角边”知识可知带黑色的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了.[设计意图]通过现实生活中的实际问题,让学生感受数学知识在生活中的应用,从而产生探索知识的欲望,增强学生学习数学的兴趣,树立爱数学、学数学的良好情感.一、“边角边”定理的探究思路一1.先任意画一个ΔABC,再画一个ΔA'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.(即两边和它们的夹角相等)点拨:要画三角形,首先要确定三角形的三个顶点.解:如图所示,(1)画∠DA'E=∠A;(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;(3)连接B'C'.肯定学生中好的画法,并让学生与教材中的画法进行比较,确定正确的画法.(进一步学习三角形的画法,从实践中体会两个三角形全等的条件)2.引导学生剪下三角形,看是不是与原三角形全等.【得出结论】两边和它们的夹角分别相等的两个三角形全等.简写成“边角边”或“SAS”.也就是说,三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.用符号语言表示为:在ΔABC与ΔA'B'C'中,∵∠∠∴ΔABC≌ΔA'B'C'(SAS).[易错提示]“SAS”中的“A”必须是两个“S”所夹的角.3.问题:如果把“两边及其夹角分别相等”改为“两边及其邻角分别相等”,即“两边及其中一边的对角相等”,那么这两个三角形还全等吗?根据学生的讨论,教师应该及时点拨,必要时可以画反例图形.通过反例说明“已知两边及其中一边的对角分别相等的两个三角形全等”不一定成立.(让学生了解推翻一个结论可以通过举反例说明)思路二1.引导学生画一个三角形,使它的两条边分别是1.5 cm,2.5 cm,并且使长为1.5 cm的这条边所对的角是30°.(小组交流后比较画出的图形是否全等,小组内选代表发言)如图所示,把一长一短的两根木棍的一端固定在一起,摆出ΔABC,固定住长木棍,转动短木棍,得到ΔABD.这个试验说明了什么?教师让学生观察运动过程,并加以分析.指出:两个三角形的两条边和其中一条边的对角相等时,这两个三角形不一定全等.2.画一个ΔABC,使AB=3 cm,BC=4 cm,∠B=60°.比较小组内成员所画的三角形是否全等.(让学生动手操作,提高学生的动手能力和小组合作学习的能力,从而使学生发现“边角边”定理)【提出问题】通过刚才的操作,你能得出什么结论?学生交流后得出基本事实,即“如果两个三角形的两边和它们的夹角分别相等,那么这两个三角形全等”.简记为“边角边”或“SAS”.二、例题讲解(教材例2)如图所示,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长至D,使CD =CA,连接BC并延长到点E,使CE =CB.连接ED,那么量出DE的长就是A,B的距离.为什么?教师引导学生把实际问题转化为数学问题,观察图形中有没有全等的三角形.〔解析〕如果能证明ΔABC≌ΔDEC就可以得出AB=DE.由题意可知ΔABC和ΔDEC具备“边角边”的条件.证明:在ΔABC和ΔDEC中,∵∠∠∴ΔABC≌ΔDEC(SAS).∴AB=DE(全等三角形的对应边相等).【小结】从上例可以看出:因为全等三角形的对应边相等、对应角相等,所以证明线段相等或角相等时,可以通过证明它们是全等三角形的对应边或对应角来解决.两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.注意:三角形全等的条件中的相等的角必须是夹角,否则这两个三角形不一定全等,即有两边和其中一边的对角分别相等的两个三角形不一定全等.1.如图所示,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有 ()A.1对B.2对C.3对D.4对解析:∵AB∥CD,∴∠A=∠D,又∵AB=CD,AE=FD,∴ΔABE≌ΔDCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,又∵EF=FE,∴ΔBEF≌ΔCFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴ΔABF≌ΔDCE(SSS),∴全等三角形共有三对.故选C.2.如图所示,在ΔABC和ΔDEF中,AB=DE,∠B=∠DEF,补充下列哪一个条件后,能应用“SAS”判定ΔABC≌ΔDEF()A.BE=CFB.∠ACB=∠DFEC.AC=DFD.∠A=∠D解析:两边和它们的夹角分别相等的两个三角形全等(SAS).∠B的两边是AB,BC,∠DEF的两边是DE,EF,而BC=BE+CE,EF=CE+CF,要使BC=EF,则BE=CF.故选A.3.如图所示,已知AB=AC,AD=AE,欲证ΔABD≌ΔACE,需补充的条件是()A.∠B=∠CB.∠D=∠EC.∠1=∠2D.∠CAD=∠DAC解析:已知AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,∴A不可以;∠D=∠E不是已知两边的夹角,∴B不可以;由∠1=∠2得∠BAD=∠CAE,符合“SAS”,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以.故选C.4.看图填空.如图所示,已知BC∥EF,AD=BE,BC=EF.试说明ΔABC≌ΔDEF.解:∵AD=BE,∴=BE+DB,即=.∵BC∥EF,∴∠=∠(两直线平行,同位角相等).在ΔABC和ΔDEF中,,∴ΔABC≌ΔDEF(SAS).解析:由AD=BE,利用等式性质可得AB=DE,再由BC∥EF,利用平行线性质可得∠ABC=∠DEF,再加上BC=EF,利用“SAS”说明ΔABC≌ΔDEF.答案:AD+DB AB DE ABC DEF AB=DE,∠ABC=∠DEF,BC=EF第2课时一、“边角边”定理的探究二、例题讲解例题一、教材作业【必做题】教材第39页练习第1,2题.【选做题】教材第43页习题12.2第2,3题.二、课后作业【基础巩固】1.如图所示,根据“SAS”,如果AB=AC,,即可判定ΔABD≌ΔACE.2.如图所示,已知∠1=∠2,要使ΔABC≌ΔADE,还需条件()A.AB=AD,BC=DEB.BC=DE,AC=AEC.∠B=∠D,∠C=∠ED.AC=AE,AB=AD3.如图所示,BD,AC交于点O,若OA=OD,用“SAS”说明ΔAOB≌ΔDOC,还需()A.AB=DCB.OB=OCC.∠BAD=∠ADCD.∠AOB=∠DOC4.完成下面的证明过程.如图所示,已知:AD∥BC,AD=CB,AE=CF.求证:∠D=∠B.证明:∵AD∥BC,∴∠A=∠(两直线平行,相等).∵AE=CF,∴AF=.在ΔAFD和ΔCEB中,∠∠∴ΔAFD≌ΔCEB(SAS),∴=.【能力提升】5.如图所示,在ΔABC和ΔABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证AC=BD.【拓展探究】6.(1)如图所示,方格纸中的ΔABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图(1)中画出与ΔABC全等且有一个公共顶点的格点三角形A'B'C';在图(2)中画出与ΔABC全等且有一条公共边的格点三角形A″B″C″.(2)先阅读,然后回答问题.如图所示,D是ΔABC中BC边上一点,E是AD上一点,AB=AC,EB=EC,∠BAE=∠CAE,试说明ΔAEB≌ΔAEC.解:在ΔABE和ΔACE中,因为AB=AC,∠BAE=∠CAE,EB=EC, (1)所以根据“SAS”可知ΔABE≌ΔACE (2)请问上面解题过程正确吗?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的过程.【答案与解析】1.AD=AE(解析:AB=AC,∠A为两三角形公共角,又AD=AE,∴ΔABD≌ΔACE(SAS).答案不唯一.)2.D(解析:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,∴∠BAC=∠DAE,A,B不是夹∠BAC和∠DAE的两对对应边,故错误;C.三个角对应相等,不能判定两三角形全等,故本选项错误;D是夹∠BAC和∠DAE的两对对应边,故本选项正确.故选D.)3.B(解析:还需OB=OC.∵OA=OD,∠AOB=∠DOC,OB=OC,∴ΔAOB≌ΔDOC(SAS).故选B.)4.C 内错角CE ∠D ∠B5.证明:在ΔADB和ΔBCA中,∵∠∠∴ΔADB≌ΔBCA(SAS),∴AC=BD.6.解:(1)答案不唯一,如下图所示. (2)上面解题过程错误,错在第1步.在ΔAEB和ΔAEC中,∵AB=AC,∠BAE=∠CAE,EA=EA,∴ΔAEB≌ΔAEC(SAS).这节课是三角形全等判定的第二节课,目的是让学生掌握运用“边角边”判定两个三角形全等的方法,经历探索“已知两边一角时”三角形全等条件的过程,体会如何探索研究问题,培养学生合作精神,通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯.比较成功的地方有以下几处: (1)目标明确,重点突出;(2)方法得当,充分调动了学生学习的积极性;(3)关注每一位学生,知识落实好.1.学生作图的过程不够规范,有的学生作图不够认真,导致在观察比较的时候发生偏差.2.学生在探讨两边一对角的两个三角形不一定全等的时候,理解得不够好,教师指导点拨不到位.在探究“边边角”时,明确要求学生要用圆规和直尺来画,用圆规来确定第三个顶点时,很容易就能使学生发现有两种不同的情况,从而可以判定满足“边边角”的两个三角形不一定全等.在此可以适当少用些时间,这样可以给学生多留出一些练习的时间,让学生加深对定理的印象.练习(教材第39页)1.解:相等.因为在ΔDAB和ΔCAB中,公共边∠∠所以ΔDAB≌ΔCAB(SAS),所以DB=CB,所以C,D到B的距离相等.2.证明:因为BE=CF,所以BE+EF=EF+CF,即BF=CE.在ΔABF和ΔDCE中,∠∠所以ΔABF≌ΔDCE(SAS),所以∠A=∠D(全等三角形的对应角相等).(2014·吉林中考)如图所示,ΔABC和ΔDAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证ΔABD≌ΔAEC.〔解析〕根据∠BAC=∠DAE可得∠BAD=∠CAE,再根据全等三角形的条件可得出结论.证明:∵∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,即∠BAD=∠CAE.在ΔABD和ΔAEC中,∠∠∴ΔABD≌ΔAEC(SAS).(2014·漳州中考)如图所示,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使ΔABC≌ΔDEF,并加以证明.(不再添加辅助线和字母)〔解析〕先得出BC=EF,添加条件答案不唯一.AC=DF,根据“SAS”推出两三角形全等即可.答案不唯一.解:添加AC=DF.证明如下:∵BF=EC,∴BF-CF=EC-CF,∴BC=EF.在ΔABC和ΔDEF中,∠∠∴ΔABC≌ΔDEF.。
SAS编程技术课后习题重点讲义资料
第一章1.缺省情况下,快捷键F1, F3, F4, F5, F6, F7, F8, F9和Ctrl+E的作用是什么?F1帮助,F3 end,F4 recall调回提交的代码,F5 激活编辑器窗口,F6激活日志窗口,F7键激活输出窗口,F8 提交,F9键查看所有功能键功能,Ctrl+E键清除窗口内容。
2.缺省情况下SAS系统的五个功能窗口及各自的作用是什么?怎样定义激活这些窗口的快捷键?1)资源管理器窗口。
作用:访问数据的中心位置。
2)结果窗口。
作用:对程序的输出结果进行浏览和管理。
3)增强型编辑器窗口。
作用:比普通编辑窗口增加了一些功能,如定义缩写,显示行号,对程序段实现展开和收缩等。
4)日志窗口。
作用:查看程序运行信息。
5)输出窗口。
查看SAS程序的输出结果。
3.怎样增加和删除SAS工具?使用菜单栏中的工具=>定制=>“定制”标签实现工具的增加和删除。
4.SAS日志窗口的信息构成。
提交的程序语句;系统消息和错误;程序运行速度和时间。
5.在显示管理系统下,切换窗口和完成各种特定的功能等,有四种发布命令的方式:即,在命令框直接键入命令;使用下拉菜单;使用工具栏;按功能键。
试举例说明这些用法。
如提交运行的命令。
程序写完后,按F3键或F8键提交程序,或单击工具条中的提交按纽,或在命令框中输入submit命令,或使用菜单栏中的运行下的提交,这样所提交的程序就会被运行。
6.用菜单方式新建一个SAS逻辑库。
在菜单栏选择工具—》新建逻辑库出现如图所示界面。
在名称中输入新的逻辑库名称。
在引擎中根据数据来源选择不同的引擎,如果只是想建立本机地址上的一个普通的SAS数据集数据库,可以选择默认。
然后选中“启动时启用”复选框,在逻辑库信息中,单击路径后的“浏览”按钮,选择窗口可以不填,单击确定产生一个新的逻辑库。
7.说明下面SAS命令的用途并举例:keys,dlglib,libname,dir,var,options,submit,recall.Keys激活功能键的设定窗口。
6 探索全等三角形的条件(1)-边角边(SAS)(拓展提高)(解析版)
专题1.6 探索全等三角形的条件(1)-边角边(SAS )(拓展提高)一、单选题1.如图所示,在△ABC 中,∠ACB =90°,CD 平分∠ACB ,在BC 边上取点E ,使EC =AC ,连接DE ,若∠A =50°,则∠BDE 的度数是( )A .10°B .20°C .30°D .40°【答案】A 【分析】先由直角三角形的性质得∠B =90°﹣∠A =40°,再证△CDE ≌△CDA (S A S ),得∠CED =∠A =50°,然后由三角形的外角性质即可得出答案.【详解】∵∠ACB =90°,∠A =50°,∴∠B =90°﹣∠A =40°,∵CD 平分∠ACB ,∴∠ECD =∠ACD ,在△CDE 和△CDA 中,EC AC ECD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△CDA (S A S ),∴∠CED =∠A =50°,又∵∠CED =∠B +∠BDE ,∴∠BDE =∠CED ﹣∠B =50°﹣40°=10°,故选:A .【点睛】本题考查了全等三角形的判定与性质.2.如图所示,AD 是ABC ∆的边BC 上的中线,5AB =cm ,4=AD cm ,则边AC 的长度可能是( )A .3cmB .5cmC .14cmD .13cm【答案】B 【分析】延长AD 至M 使DM =AD ,连接CM ,根据SAS 得出≅ADB MDC ,得出AB =CM =4cm ,再根据三角形的三边关系得出AC 的范围,从而得出结论;【详解】解:延长AD 至M 使DM =AD ,连接CM ,∵AD 是ABC ∆的边BC 上的中线,∴BD =CD ,∵∠ADB =∠CDM ,∴≅ADB MDC ,∴MC =AB =5cm ,AD =DM =4cm ,在AMC 中,3<AC <13,故选:B【点睛】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC 长度的取值范围是解题的关键.3.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【分析】由已知可得△ABC ≌△ADE ,故有∠BAC =∠DAE ,由∠EAB =120°及∠CAD =10°可求得∠AFB 的度数,进而得∠GFD 的度数,在△FGD 中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF 的度数.【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△ADE (SAS )∴∠BAC =∠DAE∵∠EAB =∠BAC +∠DAE +∠CAD =120°∴∠BAC =∠DAE ()112010552=⨯︒-︒=︒ ∴∠BAF =∠BAC +∠CAD =65°∴在△AFB 中,∠AFB =180°-∠B -∠BAF =90°∴∠GFD =90°在△FGD 中,∠EGF =∠D +∠GFD =115°故选:C【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC 的度数.4.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等; ②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A.①②B.①③C.①③④D.①④⑤【答案】C【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.【详解】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3【答案】D 【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n +【答案】C 【分析】根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n 个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB=AC ,∠BAD=∠CAD ,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.二、填空题7.如图所示,点O为AC的中点,也是BD的中点,那么AB与CD的关系是________.【答案】平行且相等【分析】只需要证明△AOB≌△COD,根据全等三角形的性质和平行线的判定定理即可得出结论.【详解】解:∵点O为AC的中点,也是BD的中点,∴AO=OC,BO=OD,又∵∠AOB=∠DOC,∴△AOB≌△COD(SAS)∴AB=CD,∠A=∠C,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【点睛】本题考查全等三角形的性质和判定,平行线的判定定理.掌握全等三角形的判定定理是解题关键.8.在ABC ∆中,AD 是BC 边上的中线,若7,5AB AC ==,则AD 长的取值范围是_________.【答案】16AD <<【分析】利用中线的性质,作辅助线AD=DE ,构造全等三角形()ADB EDC SAS ≅,再有全等三角形对应边相等的性质,解得7CE AB ==,最后由三角形三边关系解题即可.【详解】如图,AD 为BC 边上的中线,延长AD 至点E ,使得AD=DE在△ADB 和△EDC 中BD DC ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩()ADB EDC SAS ∴≅7CE AB ∴==CE AC AE AC CE -<<+75275AD ∴-<<+16AD ∴<<故答案为:16AD <<.【点睛】本题考查三角形三边的关系,其中涉及全等三角形的判定与性质等知识,是重要考点,掌握相关知识、正确作出辅助线是解题的关键.9.如图,在ABC 中,,90AC BC ACB =∠=︒,点D 是BC 上的一点,过点B 作//BE AC ,使BE CD =,连接CE 与AD 相交于点G ,则AD 与CE 的关系是_______________.【答案】AD ⊥CE ,AD =CE【分析】证明△ACD ≌△CBE ,得到∠CAD =∠BCE ,AD =CE ,结合∠ACB =90°,可得∠CGD =90°,从而可得结果.【详解】解:由题意可知:∵∠ACB =90°,BE ∥AC ,∴∠ACB =∠EBC =90°,在Rt △ACD 和Rt △CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (SAS ),∴∠CAD =∠BCE ,AD =CE ,∵∠CAD +∠CDA =90°,∴∠CDA +∠BCE =90°,∴∠CGD =180°-(∠CDA +∠BCE )=90°,∴AD ⊥CE ,综上:AD ⊥CE ,AD =CE ,故答案为:AD ⊥CE ,AD =CE .【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明△ACD ≌△CBE ,得到角和线段之间的相等关系.10.如图,在ABC 中,90B ∠>︒,CD 为ACB ∠的角平分线,在AC 边上取点E ,使DE DB =,且90AED ∠>︒,若A x ∠=︒,ACB y ∠=︒,则AED =∠_______.(用x 、y 的代数式表示)【答案】180°-x°-y° 【分析】在AC 上截取CF =BC ,根据全等三角形的性质可得BD =DF =DE ,可得∠AED =∠ABC ,根据三角形的内角和可求解.【详解】解:如图,在AC 上截取CF =BC ,∵CD 为∠ACB 的角平分线,∴∠ACD =∠BCD ,∵CF =BC ,∠ACD =∠BCD ,CD =CD ,∴△BDC ≌△FDC (SAS ),∴∠ABC =∠CFD ,DF =BD ,∵BD =DE ,∴DE =DF ,∴∠DEF =∠DFE ,∴∠AED =∠CFD ,∵∠A =x°,∠ACB =y°,∴∠ABC =180°-∠A -∠ACB =180°-x°-y°,∴∠AED =∠DBC =180°-x°-y°,故答案为:180°-x°-y°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,添加恰当辅助线构造全等三角形是解本题的关键.11.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.【答案】=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.【答案】12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD==+=;故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.【答案】1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.14.如图,△P AB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△P AB与△PCD的面积之差为_____.【答案】10【分析】由“SAS”可证△APC≌△BPD,可得S△APC=S△BPD,由面积和差关系可求解.【详解】解:∵△P AB与△PCD均为等腰直角三角形,∴PC=PD,∠APB=∠CPD=90°,AP=BP,∴△APC≌△BPD(SAS),∴S△APC=S△BPD,∵S△APB﹣S△PCD=S△APC+S△ABC﹣(S△BPD﹣S△BCD),∴S△APB﹣S△PCD=S△BCD+S△ABC=10,故答案为:10.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△APC≌△BPD是本题的关键.三、解答题15.如图所示,AC BC ⊥,DC EC ⊥,垂足均为点C ,且AC BC =,EC DC =.求证:AE BD =.【答案】见解析【分析】根据SAS 证明ACE BCD △≌△即可.【详解】证明:∵AC BC ⊥,DC EC ⊥,∴90ACB ECD ∠=∠=︒∴ACB BCE ECD BCE ∠+∠=∠+∠即ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACE BCD ≌△△ ∴AE BD =【点睛】此题主要考查了全等三角形的判定与性质,证明ACE BCD ∠=∠是解答此题的关键. 16.如图,点B ,E ,C ,F 在一条直线上,//,,AB DE AB DE BE CF ==.求证:A D ∠=∠.【答案】证明见解析【分析】根据平行得出B DEF ∠=∠,然后用“边角边”证明ABC DEF △≌△即可.【详解】证明:∵//AB DE ,∴B DEF ∠=∠.∵BE CF =,∴BE EC CF EC +=+.∴BC EF =.在ABC 和DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△.∴A D ∠=∠.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.17.如图,四边形ABCD 的对角线交于点O ,点E 、F 在AC 上,//DF BE ,且DF BE =,AE CF =.求证:AB CD =,且//AB CD .【答案】见解析【分析】根据已知条件可证得ABE CDF △≌△,从而由全等三角形的性质可得要证的结论.【详解】//DF BEBEO DFO ∴∠=∠AEB CFD ∴∠=∠又DF BE =∵,AE CF =ABE CDF ∴△≌△AB CD ∴=,BAE DCF ∠=∠//AB CD ∴【点睛】本题考查了三角形全等的的判定的性质,关键是得出AEB CFD ∠=∠.18.如图,BD ,CE 分别是ABC 的边AC 和AB 边上的高,点P 在BD 的延长线上,点Q 在CE 上,BP AC =,CQ AB =,请说明AQ 与AP 的关系.【答案】AP =AQ 且AP ⊥AQ【分析】由于BD AC ⊥,CE AB ⊥,可得ABD ACE ∠=∠,又由对应边的关系,进而得出ABP QCA ∆≅∆,即可得出AQ=AP .在此基础上,可证明90PAQ ∠=︒.【详解】解:证明:BD AC ⊥,CE AB ⊥(已知),90BEC BDC ∴∠=∠=︒,90ABD BAC ∴∠+∠=︒,90ACE BAC ∠+∠=︒(直角三角形两个锐角互余),ABD ACE ∴∠=∠(等角的余角相等),在ABP ∆和QCA ∆中,BP AC ABD ACE CQ AB =⎧⎪∠=∠⎨⎪=⎩()ABP QCA SAS ∴∆≅∆,∴=AP AQ .ABP QCA ∆≅∆,CAQ P ∴∠=∠,BD AC ⊥,即90P CAP ∠+∠=︒,90CAQ CAP ∴∠+∠=︒,即90QAP ∠=︒,AP AQ ∴⊥.【点睛】本题主要考查了全等三角形的判定及性质问题,能够熟练掌握并运用.19.平面上有ACD △与,BCE AD 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==∠=∠.(1)求证:≌ACD BCE ;(2)55,145ACE BCD ∠=︒∠=︒,求BPD ∠的度数.【答案】(1)证明见解析;(2)∠BPD =140°.【分析】(1)利用SAS 证明△ACD ≌△BCE 即可;(2)由全等三角形的性质可知:∠A =∠B ,再根据已知条件和四边形的内角和为360°,即可求出∠BPD 的度数.【详解】解:(1)证明:∵∠ACB =∠ECD ,∠ACE =∠ACE ,∴∠BCE =∠ACD ,在△ACD 和△BCE 中,AC BC BCE ACD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(2)∵△ACD ≌△BCE ,∴∠A =∠B ,∠BCE =∠ACD ,∴∠BCA =∠ECD ,∵∠ACE =55°,∠BCD =155°,∴∠BCA +∠ECD =100°,∴∠BCA =∠ECD =50°,∵∠ACE =55°,∴∠ACD =105°∴∠A +∠D =75°,∴∠B +∠D =75°,∵∠BCD =145°,∴∠BPD =360°-75°-145°=140°.【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.20.(1)如图1,一扇窗户打开后,用窗钩AB将其固定,这里所运用的几何原理是:;(2)如图2,小河的旁边有一个甲村庄所示,现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:(3)如图3,在新修的小区中,有一条“Z”字形长廊ABCD,其中AB∥CD,在AB,BC,CD三段长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.【答案】(1)三角形具有稳定性;(2)见解析,垂线段最短;(3)合理,见解析【分析】(1)根据三角形的稳定性解答;(2)根据垂线段最短解答;(3)首先证明△MEB≌△MFC,根据全等三角形的性质可得ME=MF.【详解】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形具有稳定性;故答案为:三角形具有稳定性;(2)过甲向AB作垂线,如图2所示;运用的原理是:垂线段最短;故答案为:垂线段最短;(3)合理,∵AB ∥CD ,∴∠B =∠C ,∵点M 是BC 的中点,∴MB =MC ,在△MCF 和△MBE 中BE CF B C BM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MEB ≌△MFC (SAS ),∴ME =MF ,∴想知道M 与F 之间的距离,只需要测出线段ME 的长度.【点睛】此题主要考查了垂线段的性质,三角形的稳定性,以及全等三角形的应用,关键是掌握全等三角形判定定理,会用它证明对应边相等.。
三角形全等的判定1(SAS)
6
5
③
2.在下列图中找出全等三角形,并把它 们用直线连起来.
30º
Ⅰ
Ⅱ Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º
Ⅵ
Ⅴ
30º
Ⅷ
Ⅶ
范例学习
例1:
已知:如图,AD∥BC,AD=CB 求证:△ADC≌△CBA
A D 1
分析:观察图形,结合已知条件,知, AD=CB,AC=CA,但没有给出两组 对应边的夹角(∠1,∠2)相等。 所以,应设法先证明∠1=∠2,才能 B 使全等条件充足。
课的内容
• 1,确定一个三角形形状需要几个元素 • 2,判断两个三角形全等至少需要几个条件 • 3,利用SAS判断三角形全等
复习:全等三角形的性质
若△AOC≌△BOD, 对应边: AC= BD , AO= BO , CO= DO , 对应角有: ∠A= ∠B , ∠C= ∠D , ∠AOC= ∠BOD ;
B
C
归纳总结,继续探究
• 确定一个三角形的形状,大小需要三个元 素,确定三角形形状,大小的条件能否作 为判断三角形全等的条件呢?
操作:
1.只给一个条件(一组对应边相等或一组对应角相等).
①只给一条边长为4cm:
②只给一个角为60°:
可以发现只给一个 条件画出的三角形 不能保证一定全等
60°
60°
A D
B
C
E
F
在人工湖的岸边有A、B两点,难以直 接量出A、B两点间的距离。你能设计一种 量出A、B两点之间距离的方案吗?
A
B
C
如图,在湖泊的岸边有A、B两点,难 以直接量出A、B两点间的距离。你能设计 一种量出A、B两点之间距离的方案吗?
三角形全等的判定二SAS(分层作业)(解析版)docx
12.2.2三角形全等的判定㈡SAS夯实基础篇一、单选题:1.如图,AC与BD相交于点P,AP=DP,则需要“SAS”证明△APB≌△DPC,还需添加的条件是()A.BA=CD B.PB=PC C.∠A=∠D D.∠APB=∠DPC【答案】B【知识点】三角形全等的判定(SAS)【解析】【解答】在△APB和△DP C中,当AP DPAPB DPCPB PC时,△APB≌△DPC,∴则需要“SAS”证明△APB≌△DPC,还需添加的条件是PB=PC,故答案为:B【分析】根据有两边及夹角对应相等的两个三角形全等可得还需添加的条件是PB=PC。
2.如图,下列三角形中全等的是()A.①②B.②③C.③④D.①④【答案】A【知识点】三角形全等的判定(SAS )【解析】【解答】解:根据“SAS ”可判断图①的三角形与图②的三角形全等.②③,③④,①④均不符合题意,故答案为:A.【分析】观察各选项图形中已知的边长和角度,用“两边及夹角对应相等的两个三角形全等”可判断求解.3.如图,将两根钢条AA ,BB 的中点O 连在一起,使AA ,BB 可绕点O 自由转动,就做成了一个测量工件,则A B 的长等于内槽宽AB ,那么判定OAB OA B ≌的理由是()A .边角边B .角边角C .边边边D .角角边【答案】A 【知识点】三角形全等的判定(SAS )【解析】【解答】由已知OA OA OB OB,∵AOB A OB∴OAB OA B ≌(SAS )故答案为:A .【分析】根据题意可得:OA OA OB OB ,,结合对顶角相等,可利用“SAS ”证明OAB OA B ≌。
4.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为()A .50°B .65°C .70°D .80°【答案】A 【知识点】三角形的外角性质;三角形全等的判定(SAS )【解析】【解答】根据题意ABE ACD (SAS ),∴30B C∵DME B BDC ,BDC C A∴307030130DME B A C∴180********BMD DME故答案为:A .【分析】利用“SAS ”证出三角形全等,得到30B C ,再利用三角形的外角得到∠BDM =∠A +∠C ,再利用三角形的内角和求解即可。
SAS程序及函数详解
第一章 SAS编程操作预备知识一、SAS系统简介SAS是一个庞大的系统,它目前的版本可以在多种操作系统中运行。
当前在国内被广泛使用的最新版本是8.2版,功能很强大,我深有体会。
据说9.0版已在国外面世,已经有一些有关它的抢先报道在网络上广为流传,说它如何如何美妙,令人不禁充满期待。
SAS8.2的完整版本包含以下数十个模块。
BASE,GRAPH,ETS,FSP,AF,OR,IML,SHARE,QC,STAT,INSIGHT,ANALYST,ASSIST, CONNECT,CPE,LAB,EIS,WAREHOUSE,PC File Formats,GIS,SPECTRAVIEW,SHARE*NET, R/3,OnlineTutor: SAS Programming,MDDB Server,IT Service Vision Client, IntrNet Compute Services,Enterprise Reporter,MDDB Server common products,Enterprise Miner,AppDev Studio,Integration Technologies 等。
所谓模块,我的理解是将功能相近的程序、代码等集中起来组成相对独立的部分,就称之为模块,类似于办公软件系统office中包含的word、excel、access 等。
各模块具有相对独立的功能范围,我们常用的模块有base,graph,stat,insight,assist,analyst模块等,分别执行基本数据处理、绘图、统计分析、数据探索、可视化数据处理等功能。
其余模块我用得很少,知道得也很少,所以也就不多说了。
SAS系统的长处,体现于它的编程操作功能的无比强大。
SAS一直以来也是注重于其编程语言的发展,对于可视化方式的菜单操作投入较少,其较早的版本仅有很少的菜单操作功能,使用起来也是非常的别扭。
这很可能就是在windows 人机交互式操作系统占统治地位的今天,SAS较少被人问津的原因之一。
SAS 9.3编程作业1
Lesson #1 Homework1. Depending on how you plan to use SAS in the future, you might want to seriously consider being certified before you graduate. A number of undergraduate statistics majors have told me that they were drilled in their job interviews about their knowledge of the SAS programming language. If you want to get a leg up on the competition, well then ... :-)2a. There is basically no effect of dropping the S in the OPTIONS statement -- no warning is made in the log file, no change takes place in the program editor, and the output appears to be formatted just fine . Therefore, we might consider this one of the SAS System's forgivable errors.2b. If the LS= is dropped from the OPTIONS statement, there is no effect in the program editor. However, the following error message appears in the log file:ERROR 13-12: Unrecognized SAS option name, 78.Although the output appears to be unaffected, it clearly would be if our output was longer than 78 characters.2c. Deleting the semi-colon at the end of the TITLE statement causes the color-coding of the program to change suggesting that a syntax error exists in the program. SAS gives plenty of notice in the log file:WARNING: The TITLE statement is ambiguous due to invalid options or unquoted text.4336 InPuT subject gender $-----180ERROR 180-322: Statement is not valid or it is used out of proper order.4337 exam1 exam2 hwgrade $;4338 DATALINES;---------180ERROR 180-322: Statement is not valid or it is used out of proper order.4339 10 M 80 84 A--180ERROR 180-322: Statement is not valid or it is used out of proper order.SAS attempts to print the data that is in the data set grade (from the previous runs of SAS), except the title in the output is not as intended:Example: getting started with SAS DATA grade2d. The error is a show-stopper, as SAS is not capable of reading in what it thinks is a new data set. This is the error message that appears in the log file:ERROR: File WORK.GRADE2.DATA does not exist.The color-coding in the program editor remains changed suggesting a syntax error exists. SAS prints no output.2e. Deleting the semi-colon at the end of the DATALINES statement again causes major problems. The errors in the log file are extensive:4488 DATALINES4489 10 M 80 84 A--2276ERROR 22-322: Syntax error, expecting one of the following: ;, CANCEL, PGM.ERROR 76-322: Syntax error, statement will be ignored.4490 7 . 85 89 A4491 4 F 90 . BNOTE: DATA statement used (Total process time):real time 0.10 secondscpu time 0.00 secondsNOTE: The SAS System stopped processing this step because of errors.WARNING: The data set WORK.GRADE2 may be incomplete. When this step wasstopped there were 0 observations and 5 variables. WARNING: Data set WORK.GRADE2 was not replaced because this step was stopped.4492 20 M 82 85 B4493 25 F 94 94 A4494 14 F 88 84 C4495 ;4496 RUN;---180ERROR 180-322: Statement is not valid or it is used out of proper order.The color-coding in the program editor remains changed suggesting a syntax error exists. SAS prints no output.2f. The effect an error has on a SAS program and the final output naturally depends on the severity of the error. The program editor is useful in that DATA steps and PROC steps appear dark blue, keywords in light blue, data lines in yellow, etc. If a syntax error exists, the color of these SAS objects change giving the user a pretty big hint that an error exists. If the programmer doesn't identify the syntax error while typing the program in the program editor, SAS will report the error in the log file. Sometimes SAS will ignore the error and proceed with what it thinks the programmer intended. On the other hand, if theerror is severe enough, SAS will halt the execution. The worst thing that could happen is that SAS produces erroneous output that goes unnoticed by the programmer. It is strongly recommended that you always check the log window before checking the output window.3. Here is my formatted and commented version of the program:/*********************************************************Filename: C:\lsimon\stat480\data\survey.sasWritten by: Laura J. SimonDate: 04 Sept 2006This program illustrates the value of adequate formatting and commenting.**********************************************************/ OPTIONS ps=58 ls=80;LIBNAME stat 'c:\lsimon\stat480\data';/********************************************************** The following DATA step reads in the data from the survey. **********************************************************/ DATA survey1;input no init $ q1 q2 q3;DATALINES;1 mn2 0 12 cp 2 1 03 ky 1 1 14 kd 0 1 05 cd 0 1 1;RUN;/*********************************************************** The following print procedure prints the survey data set.**********************************************************/ PROC PRINT data=survey1;title 'DATASET: survey1';var no init q1 q2 q3;RUN;。
三角形全等SAS作业
三角形全等SAS 作业一、解答题1.已知如图,AB=AC ,AD=AE ,∠BAC=∠DAE ,试说明BD=CE 。
2.如图,在△ABC 中,AB =AC ,D 是BC 的中点,E ,F 分别是AB ,AC 上的点,且AE =AF.求证:DE =DF.3.把两个含有45°角的直角三角板如图放置,点D 在AC 上,连接AE 、BD ,试判断AE 与BD 的关系,并说明理由.4.ABC ∆和ADE ∆是等边三角形,求证:BD CE =.BD5.如图,已知:点D 是AB 上一点,DF 交AC 于点E ,DE=EF ,AE=CE ;求证:∠B+∠BCF=180°;6.如图,在正方形ABCD 和正方形ECGF 中,连接BE ,DG .求证:BE=DGG FED CBA7.如图,△ABC,△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上,试说明:△CDA≌△CEB.8.如图,已知AB AC ⊥, AB AC =, AD AE =, BD CE =,试猜想AD 与AE 的位置关系并说明理由.9.如图,△ABC 和△ADE 都是等腰三角形,且∠BAC=90°,∠DAE=90°,点B 、C 、D 在同一条直线上;试说明:∠ADB =∠AEC ;10.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明你的结论.11.在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
12.如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.。
七下第四章三角形3探索三角形全等的条件第3课时三角形全等的条件SAS作业新版北师大版
3
第3课时
三角形
探索三角形全等的条件
三角形全等的条件(SAS)
知识点1 判定两个三角形全等的方法:“边角边”
1.【2023·凉山州】如图,点E,点F在BC上,BE=CF,∠B
=∠C,添加一个条件,不能证明△ABF≌△DCE的是
(
D
)
A.∠A=∠D
B.∠AFB=∠DEC
C.AB=DC
D.AF=DE
EB,下列结论中:①∠FAC=40°;②AF=AC;③AD=
①②④
AC;④∠EFB=40°,其中正确的是___________.
1
2
3
4
5
6
7
8
9
10
11
12
13
点拨:在△ABC和△AEF中,
=,
ቐ∠=∠,
=,
所以△ABC≌△AEF(SAS),
所以AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正
△ABC≌△DEF,所以AB=DE.
因为AB∥DE,所以∠BAE=∠DEA.
又因为AE=EA,所以△BAE≌△DEA(SAS),
所以AD=BE,∠BEA=∠DAE,所以AD∥BE.
同理可得AD=CF,AD∥CF,
所以AD=CF=BE,AD∥CF∥BE.
1
2
3
4
5
6
7
8
9
10
11
12
13
13.【学科素养·推理能力】(1)方法学习:数学兴趣小组
B.180°-2α
C.90°+α
D.90°+2α
1
2
3
4
5
6
7
8
9
Sas代码作图详解(图文并茂)
Sas代码作图详解SAS/Graph太强大了,本文主要讲一些常用且功能强大的Graph相关的过程步。
1 proc gplot的简单例子proc gplot data=sashelp.shoes;plot Returns * Sales ;run;结果:2 我们也可以只画出符合条件的数据的图形。
proc gplot data=sashelp.shoes;where Region in("United States", "Eastern Europe");plot Returns * Sales ;run;结果:3 输出的图像都是默认的黑色的小十字,因此我们不能区分来自不同地区的数据,下面的程序就是为了解决这一问题proc gplot data=sashelp.shoes;where Region in("United States", "Eastern Europe");plot Returns * Sales= Region;run;结果:这里红色的来自美国,黑色的来自东欧,当然我们也可以自己设定颜色(SAS基本颜色有:black, red, green, blue, cyan, magenta, grey, pink, orange, brown, and yellow)。
4 设定坐标轴和所有文字和颜色proc gplot data=sashelp.shoes;where Region in("United States", "Eastern Europe");plot Returns * Sales= Region/caxis=bluectext=redgrid;run;结果:5 如果要对网格进行更精细地设置,则要用到AUTOHREF和AUTOVREF选项。
AUTOHREF中,LHREF设置水平线的线类型,CHREF设置水平线的线颜色;AUTOVREF中,LVREF设置垂直线的线类型,CVREF设置垂直线的线颜色。
2017八上培优第7讲 全等三角形的判定(一)
A DBC EF 第七讲:全等三角形的判定(一)SAS【知识要点】1.求证三角形全等的方法(判定定理):①SAS ;②ASA ;③AAS ;④SSS ;⑤HL ; 需要三个边角关系;其中至少有一个是边;2.“SAS ”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:()如②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用;③“边边角”不能证明两个三角形全等;3.三角形全等的的应用:①证明线段相等;②证明角相等;4.注意不需要预备证明而直接利用的隐藏条件:公共边、公共角、对顶角.【新知讲授】“SAS ”公理的运用例1、已知:如图,C 为AB 的中点,CD ∥BE ,CD=BE ,求证:∠D=∠E.巩固练习1.如图,点E 、A 、C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD ,求证:BC=DE.2.已知:如图,AB=AC ,D 、E 分别为AB 、AC 的中点,求证:∠B=∠C.例2.已知:如图,AB=CD ,∠ABC=∠DCB ,求证:∠ABD=∠ACD.巩固练习: 1.已知:如图,AB ∥CD ,AB=CD ,AE=DF ,求证:CE ∥BF.2.已知:如图,AB=AD ,AC=AE ,∠1=∠2,求证:∠DEB=∠2.例3.如图,BD 、CE 为△ABC 的两条中线,延长BD 到G ,使BD=DG ,延长CE 到F ,使CE=EF.(1)求证:AF=AG ;(2)试问:F 、A 、G 三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB=CD ,BE=DF ,求证:∠EAF=∠ECF.2.已知:如图,AB=AC ,AD 平分∠BAC ,求证:∠DBE=∠DCE.A B C D E FA B D E FEF 例4.已知:如图,OA=OB ,OC=OD ,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1.已知:如图,OD=OE ,OA=OB ,OC 平分∠AOB ,求证:∠A=∠B.2.已知:如图,AB=CD ,BE=CF ,∠B=∠C ,求证:∠EAF=∠EDF.【课后作业】1.如图,已知点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A =∠D,AF=DC ,求证:BC∥EF.2.已知:如图,AB ⊥BD ,CD ⊥BD ,AB=DE ,BE=CD ,试判断△ACE 的形状并说明理由.3. 如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE=DF ,AB=DC ,求证:∠ACE=∠DBF.A B E DC AD B CE A D C B 4.已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.5.如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.6.如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为.(用含α的式子表示)7.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.8.如图,在△ABC 中,D 是BC 边的中点,F 、E 分别是AD 及其延长线上的点,请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段),并能用“SAS ”公理进行证明.(1)你添加的条件是:;(2)证明:。
三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)
三角形全等的判定“边角边”(7种题型)【知识梳理】全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【考点剖析】题型一:用“边角边”直接证明三角形全等例1.已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【解析】证明:∵CD ∥BE ,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )【变式1】如图,AC DF =,12∠=∠,如果根据“SAS ”判定ABC DEF △≌△,那么需要补充的条件是( )A .A D ∠=∠B .AB DE =C .B E ∠=∠D .BF CE =【答案】D 【详解】解:需要补充的条件是BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,在△ABC 和△DEF 中,12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).故选:D .【变式1】如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,BE =CF ,∠B =∠DEF .求证:△ABC ≌△DEF .【解答】证明:∵BE =CF ,∴BE+CE =CF+EC .∴BC =EF .在△ABC 和△DEF 中,{AB =DE∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS).【变式3】如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS).【变式4】如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.【解答】解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,{BC=DF∠ACB=∠EFD AC=EF,∴△ABC≌△EDF(SAS).【变式5】如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒−︒=75°,故答案为75. 【变式6】(2023春·江苏·七年级统考期末)如图,在ABC 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接BD CE 、.(1)求证:ABD ACE ≌△△. (2)图中BD 和CE 有怎样的关系?试证明你的结论.【详解】(1)解:90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠+∠=∠+∠∴BAD EAC ∠=∠AB AC =,AD AE =∴ABD ACE ≌△△. (2)解:如图,设BD 和CE 交点为FABD ACE ≌△△∴ACE ABD ∠=∠90BAC ∠=︒∴90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒即90ECB DBC ∠+∠=︒∴()18090BFC ECB DBC ∠=︒−∠+∠=︒∴BD CE ⊥.题型二:用“边角边”间接证明三角形全等例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【变式1】如图所示,点O 为AC 的中点,也是BD 的中点,那么AB 与CD 的关系是________.【答案】平行且相等【详解】解:∵点O 为AC 的中点,也是BD 的中点,∴AO=OC ,BO=OD ,又∵∠AOB=∠DOC ,∴△AOB ≌△COD (SAS )∴AB=CD ,∠A=∠C ,∴AB//CD,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【变式2】如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB//CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式3】如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【变式4】已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.【详解】解:(1)在△ADB 和△AEC 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵12∠=∠,∴BAN CAM ∠=∠,∵△ADB ≌△AEC ,∴B C ∠=∠,∴180180B BAN C CAM ︒−∠−∠=︒−∠−∠,即M N ∠=∠.【变式5】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD题型三:边角边与倍长中线例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【答案与解析】 证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .14.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.【答案】2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE <6+2是解此题的关键.题型四:边角边与截长补短例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【答案与解析】 证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ). ∴AB =AE ,∠B=∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =(AB +AD ), 求证:∠B +∠D =180°.【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=12A EDC B∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型五:边边角不能判定两个三角形全等例5.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是()A .∠ABC =∠BADB .∠C =∠D =90° C .∠CAB =∠DBA D .CB =DA【答案】A CEB CEFEC =EC EB EF=⎧⎪∠=∠⎨⎪⎩12(AF ADFAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)【分析】根据全等三角形的判定方法即可一一判断;【详解】在△ABC 与△BAD 中,AC =BD ,AB =BA ,A 、SSA 无法判断三角形全等,故本选项符合题意;B 、根据HL 即可判断三角形全等,故本选项不符合题意;C 、根据SAS 即可判断三角形全等,故本选项不符合题意;D 、根据SSS 即可判断三角形全等,故本选项不符合题意;故选:A . 题型六:尺规作图——利用边角边做三角形例6.(2023春·广东揭阳·七年级统考期末)已知:线段a ,c ,α∠.求作:ABC .使BC a =,AB c =,ABC α∠=∠.(要求:尺规作图,不写作法,保留作图痕迹)【详解】解:如图所示:【变式1】(2023春·陕西宝鸡·七年级校考阶段练习)尺规作图:已知:线段m ,n ,∠β.求作:ABC ,使AB m =,BC n =,ABC β∠=∠(保留作图痕迹,不写作法).【详解】解:如图所示:ABC ∴即为所作.题型七:边边边与边角边综合 八年级假期作业)如图,在ABC 中,(1)图中有___________对全等三角形;(2)请选一对加以证明.【详解】(1)图中有3对全等三角形:ABD ACD ≌△△,ABE ACE ≌△△,BDE CDE ≌V V . 故答案为3;(2)∵D 是BC 的中点,∴BD CD =.在ABD △和ACD 中,AB AC BD CDAD AD =⎧⎪=⎨⎪=⎩, ∴()SSS ABD ACD ≌V V ;∴BAE CAE ∠=∠.在ABE 和ACE △中,AB AC BAE CAEAE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABE ACE △△≌; ∴BE CE =.在BDE △和CDE 中,BE CE BD CDDE DE =⎧⎪=⎨⎪=⎩, ∴()SSS BDE CDE ≌V V . 【过关检测】一、单选题A .SSSB .SASC .ASAD .AAS【答案】B 【分析】由题意可知根据“边角边”可证OAB OCD VV ≌即可选择.【详解】解:∵在OAB 和OCD 中,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()OAB OCD SAS ≌△△.故判定这两个三角形全等的依据是“SAS ”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键. 2.(2023春·江西景德镇·七年级统考期末)如图,AB AC =,点D 、E 分别在AC 和AB 边上,且AD AE =,则可得到ABD ACE △△≌,判定依据是( )A .ASAB .AASC .SASD .SSS【答案】C 【分析】根据SAS 证明ABD ACE △△≌,即可求解. 【详解】解:在ABD △与ACE △中,AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE △△≌()SAS ,故选:C . 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·四川成都·七年级统考期末)如图,在ABF △和DCE △中,点E 、F 在BC 上,AF DE =,AFB DEC ∠=∠,添加下列一个条件后能用“SAS ”判定ABF DCE ≌△△的是( )A .BE CF =B .BC ∠=∠ C .AD ∠=∠ D .AB DC =【答案】A 【分析】先根据BE CF =得到BF CE =,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,A 选项,因为BE CF =,AFB DEC ∠=∠,BF CE =,满足“SAS ”判定ABF DCE ≌△△,符合题意; B 选项,因为B C ∠=∠,AFB DEC ∠=∠,BF CE =,是用“AAS ”判定ABF DCE ≌△△,不符合题意; C 选项,因为A D ∠=∠,AF DE =,AFB DEC ∠=∠,是用“ASA ”判定ABF DCE ≌△△,不符合题意; D 选项,因为AB DC =,AF DE =,AFB DEC ∠=∠,不能判定ABF DCE ≌△△,不符合题意; 故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.4.(2023春·四川达州·七年级统考期末)如图,在2×3的正方形方格中,每个正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190∠−∠=︒C .1290∠+∠=︒D .12180∠+∠=︒【答案】C 【分析】先证明ABC CDE △△≌,再利用全等三角形的性质和等量代换求解即可. 【详解】解:如图,在ABC 和CDE 中,2901AC CE ACB CED BC DE ==⎧⎪∠=∠=︒⎨⎪==⎩,∴ABC CDE △△≌()SAS ,∴1DCE ∠=∠, ∵290DCE ∠+∠=︒,∴1290∠+∠=︒,故选:C .【点睛】本题考查了全等三角形的判定与性质,利用网格证明三角形全等是解题的关键.A .20cmB .45cmC .25cmD .65cm【答案】D 【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌,得到CF DG =,即可求出答案.【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OFC OGD ≌,∴CF DG =,又20cm DG =,∴20cm CF DG ==,∴小明离地面的高度=支点到地面的高度452065cm CF +=+=,故D 正确.故选:D .【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 七年级统考期末)如图,已知在ABC 和BAD 中,直接判定ABC BAD ≌的依据是( A .SSSB .AASC .ASAD .SAS【答案】D 【分析】找出两个三角形中已知相等的对应边和对应角,然后根据判定方法即可判断.【详解】解:在ABC 和ABD △中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC BAD SAS ≌.故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(2023春·上海浦东新·七年级校考阶段练习)如图,AD 平分BAC ∠,AB AC =,连接BD 、CD ,并延长交AC 、AB 于F 、E 点,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对【答案】B 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD 与ACD 中,AB AC BAD CADAD AD ⎧⎪∠∠⎨⎪⎩===,()SAS ABD ACD ∴≌,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ∴≌,BDE CDF ≌,ABF ACE ≌.AED AFD ∴≌,ABD ACD ≌,BDE CDF ≌,ABF ACE ≌,共4对.故选:B .【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2023春·河北保定·七年级校考阶段练习)如图,在AOB 和COD △中,OA OB =,OC OD =,AOB COD ∠=∠,AC ,BD 交于点M ,关于结论Ⅰ,Ⅱ,下列判断正确的是( )结论Ⅰ:AC BD =;结论Ⅱ:CMD COD ∠>∠A .Ⅰ对,Ⅱ错B .Ⅰ错,Ⅱ对C .Ⅰ,Ⅱ都对D .Ⅰ,Ⅱ都错【答案】A 【分析】根据已知条件可知三角形的全等,根据全等三角形的性质可知边相等,再根据三角形的内角和即可求出角的大小.【详解】AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,AOC BOD ∴∠=∠,∴在AOC 和BOD 中,∴OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴≌, AC BD ∴=,故Ⅰ正确;AOC BOD ≌,OCA BDO ∴∠=∠,MDC MDO ODC ∴∠=∠+∠,OCD OCA MCD ∴∠=∠+∠,180()COD OCD ODC ∠=︒−∠+∠,180()CMD MDC MCD ∠=︒−∠+∠,180()CMD MDO ODC MCD ∴∠=︒−∠+∠+∠,180()COD OCA MCD ODC ∠=︒−∠+∠+∠,CMD COD ∴∠=∠,故Ⅱ错误;故选:A .【点睛】本题考查了全等三角形的性质,熟记对应性质和判定定理是解题的关键. 9.(2023春·江苏·七年级统考期末)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AD AB >,下列结论正确的是( )A .AD AB CD BC −=−B .AD AB CD BC −>− C .AD AB CD BC −<−D .AD AB −与CD BC −的大小关系无法确定【答案】B 【分析】在AD 上截取AE AB =,BAC EAC ≌,由DE CD CE >−即可求解.【详解】解:如图,在AD 上截取AE AB =,AC 平分BAD ∠,BAC EAC ∴∠=∠,在BAC 和EAC 中AB AE BAC EACAC AC =⎧⎪∠=∠⎨⎪=⎩,∴BAC EAC ≌(SAS ),BC EC ∴=,在CDE 中:DE CD CE >−,AD AB AD AE CD BC −=−>−.故选:B .【点睛】本题考查了三角形中三边的关系,三角形全等的判定及性质,掌握性质,并根据题意作出辅助线是解题的关键. 10.(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法: ①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=. 其中正确的有( )【答案】B 【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDEDF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.二、填空题【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG 与BAC 中,,AD AB DAG BACAG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键. 七年级统考期末)如图,在锐角ABC 中,24ABC S = 【分析】先根据三角形全等的判定定理与性质可得ME MN =,再根据两点之间线段最短可得BM MN +的最小值为BE ,然后根据垂线段最短可得当BE AC ⊥时,BE 取得最小值,最后利用三角形的面积公式即可得.【详解】如图,在AC 上取一点E ,使AE AN =,连接ME ,AD 是BAC ∠的平分线,EAM NAM ∴∠=∠,在AEM △和ANM 中,AE AN EAM NAMAM AM =⎧⎪∠=∠⎨⎪=⎩,()SAS AEM ANM ∴≌, ME MN ∴=,BM MN BM ME ∴+=+,由两点之间线段最短得:当点,,B M E 共线时,BM ME +取最小值,最小值为BE ,又由垂线段最短得:当BE AC ⊥时,BE 取得最小值,248,ABC S AC ==,1182422AC BE BE ∴⋅=⨯⋅=,解得6BE =,即BM MN +的最小值为6,故答案为:6.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出BM MN +取得最小值时BE 的位置是解题关键. 13.(2023春·广东云浮·八年级校考期中)如图,小明与小红玩跷跷板游戏,已知跷跷板的支点O (即跷跷板的中点)至地面的距离是48cm ,当小红从水平位置CD 下降28cm 时,这时小明离地面的高度是___________cm .【答案】76【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌V V ,得到CF DG =,即可【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)OFC OGD ≌V V ,∴CF DG =,又28cm DG =,∴28cm CF DG ==,∴小明离地面的高度=支点到地面的高度482876cm CF +=+=,故答案为:76.【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 14.(2023春·广东佛山·七年级校考期中)在测量一个小口圆形容器的壁厚(厚度均匀)时,小明用“X 型转动钳”按如图方法进行测量,其中OA OD =,OB OC =,测得3cm AB =,5cm EF =,圆形容器的壁厚是______cm .【分析】由题证明AOB DOC ≌,由全等三角形的性质可得,AB CD =,即可解决问题.【详解】在AOB 和DOC △中,OA OD AOB DOCBO OC =⎧⎪∠=∠⎨⎪=⎩,(SAS)AOB DOC ∴≌,3cm AB CD ∴==,cm 5EF =Q ,∴圆柱形容器的壁厚是1(53)1(cm)2⨯−=,故答案为:1.【点睛】本题考查了全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.【答案】25米/25m【分析】根据SAS 可证明ACB DCE ≌△△,再根据全等三角形的性质可得AB DE =,进而得到答案. 【详解】解:∵点C 是AD 的中点,也是BE 的中点,∴AC DC =,BC EC =,∵在ACB △和DCE △中,AC DC ACB DCEBC EC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ACB DCE ≌,∵25DE =米,∴25AB =米,故答案为:25米.【点睛】此题考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理. 16.(2022秋·陕西宝鸡·八年级统考期末)如图,E 是ABC ∆外一点,D 是AE 上一点,AC BC BE ==,DA DB =,EBD CBD ∠=∠,70C ∠=︒,则BED ∠的度数为___________.【答案】35︒/35度【分析】连接DC ,则DC 垂直平分AB ,可得35ADC DCB ∠=∠=︒,再证明BED BCD ∆≅∆,即可得到35BED DCB ∠=∠=︒.【详解】连接DC ,DA DB =,CA CB =,DC ∴是AB 的垂直平分线,1352DCB ACB ∴∠=∠=︒,在BED 和BCD △中BD BD EBD CBDBE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)BED BCD ∴≌,35BED DCB ∴∠=∠=︒,故答案为:35︒.【点睛】本题主要考查等腰三角形的性质,由条件得到DC 是AB 的垂直平分线再想到证明BED BCD △≌△是解题的关键. 17.(2023·全国·八年级假期作业)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是________.【答案】SAS /边角边【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS AOC DOB ≌, 故答案为:SAS .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋·山东聊城·八年级统考期末)如图,在ABC ∆中,已知 AB AC =,BD CF = ,BE CD =.若40A ∠=︒,则EDF ∠的度数为__________.【答案】70°【分析】(1)证△BED ≌△CDF ;(2)利用AB=AC 得到∠B 与∠C(3)利用整体法求得∠EDF【详解】∵AB=AC ,∴∠B=∠C∵BD=CF ,BE=CD∴△BED ≌△CDF ,∴∠FDC=∠BED∵∠A=40°∴∠B=∠C=70°∴在△BED 中,∠BED+∠BDE=110°∴∠EDB+∠FDC=110°∴∠EDF=70°【点睛】求角度,常见的方法有:(1)方程思想;(2)整体思想;(3)转化思想本题就是利用全等,结合整体思想求解的角度三、解答题 19.(2023秋·广东广州·八年级统考期末)已知:如图,12BC DC =∠=∠,,求证:ABC ≌ADC △.【答案】见解析【分析】先证明ACB ACD ∠=∠,再结合AC AC =,BC DC =,即可得到结论.【详解】.证明:12∠=∠,ACB ACD ∴∠=∠,AC AC BC DC ==,,ABC ∴≌ADC △.【点睛】本题考查的是全等三角形的判定,掌握“利用SAS 证明两个三角形全等”是解本题的关键. 20.(2021秋·广东广州·八年级广州市第八十九中学校考期中)如图,点E 、F 在BC 上,BF EC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.【答案】证明见解析【分析】证明()SAS ABF DCE ≌△△,然后根据全等三角形的性质即可得出结论.【详解】证明:在ABF △和DCE △中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF DCE ≌△△, ∵A D ∠=∠.【点睛】本题考查全等三角形的判定和性质.掌握全等三角形的判定是解题的关键.21.(2023春·陕西西安·七年级校考阶段练习)已知:如右图ABCD ,AB CD =.求证:ADC CBA ≌.【答案】见解析【分析】由AB CD ,得ACD CAB ∠=∠,再利用SAS 即可证得结论.【详解】证明:∵ABCD ,∴ACD CAB ∠=∠,在ADC △与CBA △中:AB CD ACD CAB AC CA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADC CBA ≌.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 22.(2023春·陕西咸阳·七年级统考期末)如图,点D 在线段BE 上,AB CD ,AB DE =,BD CD =.ABD △和EDC △全等吗?为什么?【答案】ADB ECD △≌△,理由见解析【分析】先根据平行线的性质得到ABD EDC =∠∠,再利用SAS 证明ADB ECD △≌△即可得到结论.【详解】解:ADB ECD △≌△,理由如下:∵AB CD ,∴ABD EDC =∠∠,∵AB ED =,BD DC =,∴()SAS ADB ECD △≌△.【点睛】本题主要考查了全等三角形的判定,平行线的性质,熟知边角边证明三角形全等是解题的关键.(1)求证:AEC DFB △△≌; (2)若6AEC S ∆=,求三角形BEC 的面积.【答案】(1)见解析(2)92BEC S =△【分析】(1)根据AE DF ∥得A D ∠=∠,根据AB CD =得AB BC CD BC +=+,即AC DB =,根据ASA 即可证明AEC DFB △△≌; (2)在AEC △中,以AC 为底作EH 为高,则12AEC S EH AC ∆=⋅,12BCE S EH BC ∆=⋅,根据13AB CD BC ==得43AC BC =,6AEC S ∆=,即可得.【详解】(1)证明:∵AE DF ∥,A D ∴∠=∠, ∵AB CD =,AB BC CD BC ∴+=+AC DB ∴=,在AEC △和DFB △中,AE DF A DAC DB =⎧⎪∠=∠⎨⎪=⎩,SAS AEC DFB ∴≌()△△;(2)解:如图所示,在AEC △中,以AC 为底作EH 为高,12AEC S EH AC ∆∴=⋅,12BCE S EH BC ∆=⋅,∵13AB CD BC ==,43AC BC ∴=,6AEC S ∆=, ΔΔ3 4.54BEC AEC S S ∴==.【点睛】本题考查了三角形的判定与性质,三角形的面积,解题的关键是理解题意,掌握这些知识点. 24.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证. 【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△, ∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·全国·八年级假期作业)如图,在△ABC 中,已知AB AC =,2BAC DAE ∠=∠,且DAE FAE ∆≅∆.求证:ABD ACF ∆≅∆.【答案】见解析【分析】先根据全等三角形的性质以及已知2BAC DAE ∠=∠得出BAD CAF ∠=∠,再利用SAS 即可证出ABD ACF ∆≅∆.【详解】证明:∵DAE FAE ∆≅∆,∴,AD AF DAE FAE =∠=∠.∵2BAC DAE ∠=∠,∴BAD EAC DAE FAE ∠+∠=∠=∠,∵FAC EAC FAE ∠+∠=∠∴BAD CAF ∠=∠.在ABD ∆和ACF ∆中,AB AC BAD CAFAD AF =⎧⎪∠=∠⎨⎪=⎩∴ABD ACF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键. 八年级假期作业)如图,在ABC 和V(1)求证:ABD ACE △△≌(2)若35BDA ∠=︒,则【答案】(1)见解析(2)70【分析】(1)根据等式的性质,可得=BAD CAE ∠∠,根据SAS 可得两个三角形全等;(2)根据全等三角形的性质,可得对应角相等,根据等腰三角形的性质,可得ADC AEC ∠∠=,根据等量代换,可得证明结论.【详解】(1)证明:=BAC DAE ∠∠,BAC DAC DAE DAC ∴∠−∠=∠−∠,即=BAD CAE ∠∠.在ABD △和ACE △中,AB AC BAD EACAD AE =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACE ∴≌();(2)证明:ABD ACE ≌△△, ADB AEC ∴∠=∠,AD AE =ADC AEC ∴∠=∠35BDA ADC ∴∠=∠=︒∴223570BDC BDA ∠∠==⨯︒=︒.故答案为:70.【点睛】本题考查了全等三角形的判定与性质,利用SAS 证明三角形全等,利用全等三角形的性质,证明对应角相等,再利用等量代换得出证明结论. 27.(2023春·全国·七年级专题练习)如图,已知点B ,E ,C ,F 在一条直线上,AB DE =,BF CE =,B E ∠=∠.求证:ABC DEF ≌△△【答案】见解析【分析】用边角边定理进行证明即可.【详解】解:∵BF CE =∴BF FC CE FC +=+即:BC EF =在ABC 和DEF 中AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC DEF ≌. 【点睛】本题考查边角边定理证明三角形全等,根据题意找到相应的条件是解题关键. 求证:DE BF =.证明:AD BC (已知)∴∠_______=∠_______(两直线平行,内错角相等)AF CE =∴ADE CBF ∴≌( 【答案】A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【分析】根据平行线的性质得到∠A =∠C ,根据等式的性质得到AE CF =,然后证明ADE CBF V V ≌即可得到结论.【详解】证明:AD BC (已知)∴∠A =∠C (两直线平行,内错角相等)AF CE =(已知)∴AF EF CE EF −=−(等式的基本性质)即AE CF =在ADE V 和CBF V 中AD BC A CAE CF =⎧⎪∠=∠⎨⎪=⎩,ADE CBF ∴≌(SAS )DE BF ∴=(全等三角形对应边相等)故答案为:A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理是解题的关键.【答案】见解析【分析】根据BE CF =可得BC EF =,根据AC DF ∥可得ACB DFE ∠=∠,即可根据SAS 进行求证.【详解】证明:∵BE CF =,∴BE CE CF CE −=−,即BC EF =,∵AC DF ∥,∴ACB DFE ∠=∠,在ABC 和DEF 中,AC DF ACB DFEBC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DEF △△≌. 【点睛】本题主要考查了全等三角形的判定,解题的关键是根据题目所给条件,得出相应的边和角度相等,熟练掌握三角形全等的判定定理. 求证:(1)AE CF =;(2)AE CF ∥;(3)∠=∠AFE CEF .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据“边角边”证明ABE CDF △≌△,即可证得结论;(2)根据全等三角形的性质可得AEB CFD ∠=∠,进而可得结论;(3)由全等三角形的性质可得AE CF =,根据“边角边”证明AEF CFE △≌△,即可证得结论.【详解】(1)证明:在ABE 和CDF 中,∵AB CD =, B D ∠=∠,BE DF =,∴ABE CDF△≌△()SAS ,∴AE CF =; (2)证明:∵ABE CDF △≌△,∴AEB CFD ∠=∠,∴AE CF ∥;(3)证明:∵ABE CDF △≌△,∴AE CF =,又∵AEB CFD ∠=∠,EF FE =,∴AEF CFE △≌△,∴∠=∠AFE CEF .【点睛】本题考查了全等三角形的判定和性质以及平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键. 求作:ABC ,使 【答案】见解析【分析】先作CAB α∠=∠,再在角的两边上分别截取AC b =,AB c =,从而可得答案.【详解】解:ABC 即为所求.【点睛】本题考查的是作三角形,掌握作一个角等于已知角是解本题的关键. 32.(2023·全国·八年级假期作业)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC 的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED AD EDB ADCDB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键. 33.(2023春·全国·七年级期末)如图,在ABC 中,D 是BC 延长线上一点,满足CD BA =,过点C 作CE AB ∥,且CE BC =,连接DE 并延长,分别交AC ,AB 于点F ,G .(1)求证:ABC DCE ≅;(2)若12BD =,2AB CE =,求BC 的长度.【答案】(1)见解析(2)4【分析】(1)根据SAS 证明≌ABC DCE 即可;(2)根据全等三角形的性质解答即可.【详解】(1)∵CE AB ∥,∴B ECD ∠=∠,在ABC 与DCE △中,AB CD B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCE ≌;(2)∵≌ABC DCE ,∴,AB CD BC CE ==,∵2AB CE =,∴2CD BC =,∵12BD =,∴312BD CD BC BC =+==∴4BC =.【点睛】此题考查全等三角形的判定和性质,关键是掌握全等三角形的判定和性质.。
用“SAS”判定三角形全等人教版八年级数学上册作业ppt课件
13.如图所示,A,F,C,D四点在同一直线上,AF=CD,AB ∥DE,且AB=DE.求证:
(1)△ABC≌△DEF; (2)∠CBF=∠FEC.
证明:(1)∵AB∥DE, ∴∠A=∠D. ∵AF=CD, ∴AF+FC=CD+FC, 即AC=DF. 在△ABC和△DEF中, AC=DF,
∠A=∠D, AB=DE, ∴△ABC≌△DEF(SAS).
(2)由(1)知△ABC≌△DEF, ∴BC=EF,∠ACB=∠DFE. 在△FBC和△CEF中,
BC=EF, ∠FCB=∠CFE, FC=CF, ∴△FBC≌△CEF(SAS). ∴∠CBF=∠FEC.
03 综合题
14.(教材P44习题T10变式)如图1,AC和BD相交于点O,OA= OC,OB=OD.
是
边角边(或SAS)
.
7.如图所示,有一块三角形镜子,小明不小心将它打破成 1、2
两块.现需配成同样大小的一面镜子,为了方便起见,需带上第1 块,
其理由是
两边和它们的夹角分别相等的两个三 角形全 等.
易错点 误用“SSA”判定三角形全等 8.如图,AD平分∠BAC,BD=CD,则∠B与∠C相等吗?为什 么?
(1)求证:△AOB≌△COD; (2)如图2,连接BC,若AB=4, BC=5,求OB的取值范围; (3)如图3,连接BC,AD, 求证:AD∥BC且AD=BC.
解:(1)证明:在△AOB和△COD中,
OA=OC, ∠AOB=∠COD, OB=OD, ∴△AOB≌△COD(SAS).
(2)由(1)知△AOB≌△COD, ∴CD=AB=4,OB=OD. 在△BCD中,BC-CD<BD<BC+CD, ∴1<2OB<9. ∴12<OB<92.
八上培优第7讲 全等三角形的判定(一)
A DB C E F第七讲:全等三角形的判定(一)SAS【知识要点】1.求证三角形全等的方法(判定定理):①SAS;②ASA;③AAS;④SSS;⑤HL;需要三个边角关系;其中至少有一个是边;2.“SAS”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:()如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用;③“边边角”不能证明两个三角形全等;3.三角形全等的的应用:①证明线段相等;②证明角相等;4.注意不需要预备证明而直接利用的隐藏条件:公共边、公共角、对顶角. 【新知讲授】“SAS”公理的运用例1、已知:如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1.如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2.已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.在△ABC和△DEF中:AB DEA DAC DF=⎧⎪∠=∠⎨⎪=⎩∴△ABC∽△DEF.(SAS)例2.已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1.已知:如图,AB∥CD,AB=CD,AE=DF,求证:CE∥BF.2.已知:如图,AB=AD,AC=AE,∠1=∠2,求证:∠DEB=∠2.例3.如图,BD、CE为△ABC的两条中线,延长BD到G,使BD=DG,延长CE到F,使CE=EF.(1)求证:AF=AG;(2)试问:F、A、G三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB⊥BD于点B,CD⊥BD于点D,AB=CD,BE=DF,求证:∠EAF=∠ECF.2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.A BC DEFABDEF例4.已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1.已知:如图,OD=OE,OA=OB,OC平分∠AOB,求证:∠A=∠B.2.已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.【课后作业】1.如图,已知点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC∥EF.2.已知:如图,AB⊥BD,CD⊥BD,AB=DE,BE=CD,试判断△ACE的形状并说明理由.A B E D C A D B C E F A D B C E A D C B4.已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.5.如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.6.如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)7.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.条件,使△BDE≌△CDF (不再添加其它线段),并能用“SAS”公理进行证明.(1)你添加的条件是:;(2)证明:。
八年级数学上学期全等三角形判定一(SSS,SAS)(基础)知识讲解——含课后作业与答案
全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.【巩固练习】一、选择题1. (2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. (2016春•成安县期末)如图,由∠1=∠2,BC =DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A.SASB.ASAC.AASD.SSS4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9.(2016•牡丹江)如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是.10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. (2014春•章丘市校级期中)如图A 、B 两点分别位于一座小山脚的两端,小明想要测量A 、B 两点间的距离,请你帮他设计一个测量方案,测出AB 的距离.并说明其中的道理.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】A ;【解析】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC 和△DFB 中,,∴△EAC≌△FDB(SAS ),故选:A .2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】A ;【解析】通过等量加等量得到∠BCA=∠DCE, 从而由SAS 定理判定全等.4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】AE=CE ;【解析】由题意得,BE=DE ,∠AEB=∠CED (对顶角),可选择利用SAS 进行全等的判定,答案不唯一.10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:如图所示:在AB 下方找一点O ,连接BO ,并延长使BO=B′O,连接AO ,并延长使AO=A′O,在△AOB 和△A′OB′中:,∴△AOB≌△A′OB′(SAS ),∴AB=A′B′,量出A′B′的长即可.14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等; ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等; AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。
三角形全等的判定(二)(“SAS”)作业手册
∴△ABD≌△ANM(SAS), ∴∠B=∠ANM.
课时作业(十一)
10.如图 K-11-9,C 是线段 AB 的中点,CD=BE,CD∥BE. 求证:∠D=∠E.
图 K-11-9
课时作业(十一)
证明:∵C 是线段 AB 的中点, ∴AC=CB. ∵CD∥BE, ∴∠ACD=∠B. 在△ACD 和△CBE 中,
12.2017·南充 如图 K-11-11,DE⊥AB,CF⊥AB,垂足分别 是 E,F,DE=CF,AE=BF.求证:AC∥BD.
图 K-11-11
课时作业(十一)
证明:∵AE=BF, ∴AE+EF=BF+EF, 即 AF=BE. ∵CF⊥AB,DE⊥AB, ∴∠AFC=∠BED=90°. 在△AFC 和△BED 中,
AF=BE, ∠AFC=∠BED, CF=DE,
∴△AFC≌△BED(SAS),∴∠A=∠B, ∴AC∥BD.
课时作业(十一)
13.2016·曲靖 如图 K-11-12,已知点 B,E,C,F 在一条 直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若 BF=13,EC=5,求 BC 的长.
图 K-11-7
课时作业(十一)
三、解答题
9.2017·黄冈 已知:如图 K-11-8,∠BAC=∠DAM,AB=AN,
AD=AM.
求证:∠B=∠ANM.
图 K-11-8
课时作业(十一)
证明:∵∠BAC=∠DAM, ∴∠BAC-∠DAC=∠DAM-∠DAC, 即∠BAD=∠NAM. 在△ABD 和△ANM 中,
图 K-11-2
课时作业(十一)
3.如图 K-11-3,AE∥DF,AE=DF,要使△EAC≌△FDB,需 要添加下列选项中的( A ) A.AB=CD C.∠A=∠D B.EC=BF D.AB=BC
1.2怎样判定三角形全等(第1课时SAS)(同步课件)-八年级数学上册教材配套教学课件同步(青岛版)
∴ = − = 11.2 − 8 = 3.2,
1
1
2
2
∴ △ = ⋅ = × 8 × 3.2 = 12.8,
2.下列结论不正确的是( )
A. 两边一角分别相等的两个三角形全等.
B. 两直角边分别相等的直角三角形全等.
C. 一腰及顶角分别相等的两个三角形全等.
∠BAC=∠DAC,
AC=AC,
∴ △ABC≌△ADC(SAS)
B
A
C
D
解决该题的关键是
要注意挖掘“公共
边”这个隐含条件.
例2 为了测量池塘边上不能直接到达的两点A,B之间的距离,小明的设
计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D
点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE
个三角形不一定全等,即“SSA”不能作为判定两个三角形全等
的条件.
两边夹角对应相等
两边一角
对应相等
(边角边)
√
两边一对角对应相等
(边边角)
×
例1 已知如图,AB=AD,∠BAC=∠DAC,△ABC
与△ADC全等吗?试说明理由.
解:△ABC与△ADC全等. 理由如下:
在△ABC与△ADC中,
AB=AD,
2024-2025学年八年级数学上册教材
配套同步课件+同步练习(青岛版)
第1章
全等三角形
1.2怎样判定三角形全等(第1课时)
SAS
01
教学目标
1.知道三角形全等“边角边”的内容;
2.会运用“SAS”识别三角形全等,为证明线段相等或
角相等创造条件;
5 探索全等三角形的条件(1)-边角边(SAS)(基础检测)(解析版)
专题1.5 探索全等三角形的条件(1)-边角边(SAS )(基础检测)一、单选题1.在△ABC 和△DEF 中,下列给出的条件,能用“SAS”判定这两个三角形全等的是( ) A .AB =DE ,BC =DF ,∠A =∠DB .AB =BC ,DE =EF ,∠B =∠E C .AB =EF ,AC =DF ,∠A =∠DD .BC =EF ,AC =DF ,∠C =∠F 【答案】D【分析】根据三角形全等的判定条件“SAS”逐项判断即可.【详解】A .BC 边和EF 边是对应边,所以所给条件证明不出ABC DEF ≅.故A 不符合题意. B .边AB 与BC 都在ABC 中,边DE 与EF 都在DEF 中,所给条件不是对应边相等,所以证明不出ABC DEF ≅,故B 不符合题意.C .AB 边和DE 边是对应边,所以所给条件证明不出ABC DEF ≅,故C 不符合题意.D .相邻两对应边分别相等且所夹的角相等,可以利用SAS 证明ABC DEF ≅,故D 符合题意. 故选:D .【点睛】本题考查利用“SAS”判定三角形全等,理解判定条件“SAS”的意义是解答本题的关键. 2.如图,由∠1=∠2,BC=DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A .SASB .ASAC .AASD .SSS【答案】A 【解析】试题分析:∵∠1=∠2,∴∠ACD+∠2=∠ACD+∠1,即∠ACB=∠ECD .又∵BC=DC ,AC=EC ,∴△ABC ≌△EDC (SAS ).故选A .考点:全等三角形的判定.3.如图,OA OB =,OC OD =,50O ∠=︒,30D ∠=︒,则AEC ∠等于( )A .60︒B .50︒C .70︒D .30【答案】C 【分析】首先由已知可求得∠OAD 的度数,通过三角形全等及三角形外角的性质可得∠AEC .【详解】解:∵如图,在△AOD 中,∠O =50°,∠D =30°,∴∠OAD =180°-50°-30°=100°,在△AOD 与△BOC 中,OA OB O O OD OC =⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC (SAS ),故∠D =∠C =30°.∴∠AEC =∠OAD -∠C =70°,故选:C .【点睛】本题考查了全等三角形的判定及性质.解题过程中用到了三角内角和和三角形外角的性质,要根据题目的要求及已知条件的位置综合运用这些知识.4.如图,已知AC =DB ,AO =DO ,CD =100 m ,则A ,B 两点间的距离()A .大于100 mB .等于100 mC .小于100 mD .无法确定【答案】B 【分析】已知AC=DB ,AO=DO ,得OB=OC ,∠AOB=∠DOC ,可以判断△AOB ≌△DOC ,所以AB=CD=100m .【详解】∵AC=DB ,AO=DO ,∴OB=OC ,又∠AOB=∠DOC ,∴△AOB ≌△DOC ,∴AB=CD=100m .故选B .【点睛】考查了全等三角形判定及性质的应用;题目巧妙地借助两个三角形全等来处理问题,寻找所求线段与已知线段之间的等量关系.本题的关键是证△AOB ≌△DOC ,然后利用全等的性质解题.5.如图,射线AB 交CD 于O ,AC =AD ,BC =BD ,则图中全等三角形的对数是( )A .1B .2C .3D .4【答案】C 【分析】先据图找出看起来全等的三角形,再根据全等三角形的判定和性质分析即可.【详解】解:全等三角形有:△ACB ≌△ADB ,△ACO ≌△ADO ,△BCO ≌△BDO ,共3对,理由是:∵在△ACB 和△ADB 中AB AB AC AD BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌△ADB (SSS ),∴∠CAO =∠DAO ,在△ACO 和△ADO 中AC AD CAO DAO AO AO =⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△ADO (SAS ),∴CO =DO ,在△BCO 和△BDO 中BC BD BO BO CO DO =⎧⎪=⎨⎪=⎩∴△BCO ≌△BDO (SSS ),故选:C .【点睛】本题考查全等三角形的判定和性质,熟记全等三角形的判定定理并能灵活应用是解决此题的关键. 6.如图,为了测量池塘两侧,A B 两点间的距离,在地面上找一点C ,连接,AC BC ,使90ACB ∠=,然后在BC 的延长线上确定点D ,使,CD BC =得到ABC ADC ≅∆,通过测量AD 的长,得AB 的长,则ABC ADC ≅△△的理由是( )A .HLB .SASC .AASD .ASA【答案】B 【分析】根据SAS 即可证明ABC ADC ≅△△,由此即可解决问题.【详解】解:在△ACB 和△ACD 中,90AC AC ACD ACB CD BC =⎧⎪∠=∠=⎨⎪=⎩,∴ABC ADC ≅△△(SAS ),故选:B .【点睛】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.二、填空题7.如图所示,若AD=AB,AC=AG,∠DAE=∠GAC=60°,则∠DOC =___.【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG △与BAC 中,,AD AB DAG BAC AG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键.8.如图,在ABC ∆中,,AB AC D =是BC 的中点,点E 在AD 上,则图中全等三角形共有_____对.【答案】3【分析】由已知条件可分别根据三角形全等的判定定理SSS 证得△ABD ≌△ACD ;根据SAS 证得△ABE ≌△ACE ;根据SSS 证得△BDE ≌△CDE ;因为D 是BC 的中点,所以BD =DC ,又因为AB =AC ,AD =AD ,所以可根据SSS 判定△ABD ≌△ACD .【详解】解:图中的全等三角形有:△ABD ≌△ACD ,△ABE ≌△ACE ,△BDE ≌△CDE ;∵D 是BC 的中点,∴BD =DC ,AB =AC ,AD =AD ,∴△ABD ≌△ACD (SSS );∵AB =AC ,点D 为BC 的中点,∴AE 为∠BAC 的平分线,即∠BAE =∠CAE ,在△ABE 和△ACE 中,∵AE =AE ,∠BAE =∠CAE ,AB =AC ,∴△ABE ≌△ACE ;∵△ABE ≌△ACE ,∴BE =CE ,在△BDE 和△CDE 中,∵BE =CE ,BD =DC ,DE =DE ,∴△BDE ≌△CDE .综上,共有3对全等三角形,故答案为:3.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.9.如图,在ABC 与ABD △中,AD 与BC 相交于点M ,12∠=∠,在不再添加其他线段,不再标注或使用其他字母的情况下,要证明AC BD =.需添加的一个条件是___________.【答案】AD =BC (答案不唯一)【分析】要使AC =BD ,可以证明△ACB ≌△BDA ,从而得到结论.【详解】解:添加条件:AD =BC ,∵BC =AD ,∠2=∠1,AB =BA ,∴△ABC ≌△BAD (SAS ),∴AC =BD .【点睛】本题考查了全等三角形的判定及性质,判定两个三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角,难度适中.10.如图是由4个全等的小正方形组成的网格,点A 、B 、C 、D 、E 都在格点上,则ABC ∠与EDC ∠的数量关系为__________.【答案】互补【分析】如图,由已知条件可知,DE BF =,CE CF =,BFC DEC ∠=∠,然后利用全等三角形的判定和性质解答即可.【详解】如图∵DE BF =,CE CF =,BFC DEC ∠=∠,∴BFC DEC △≌△,∴FBC EDC ∠=∠,∴180ABC EDC ABC FBC ∠+∠=∠+∠=︒,故答案为:互补.【点睛】本题考查了全等三角形的判定和性质、补角的性质,解答本题的关键是根据已知条件证明三角形全等.11.如图,把两根钢条的中点连在一起,就做成了一个可以测量工件内槽宽的工具(卡钳),在图中要测量工件内槽宽AB ,只要测量出线段______的长度即可.【答案】CD【分析】测量两点之间的距离,只要符合全等三角形全等的条件之一SAS ,只需要测量易测量的边CD .【详解】解:只要测量CD .理由:连接AB ,CD ,如图,∵点O 分别是AC 、BD 的中点,∴OA=OC ,OB=OD .在△AOB 和△COD 中,OA=OC ,∠AOB=∠COD (对顶角相等),OB=OD ,∴△AOB ≌△COD (SAS ).∴CD=AB .答:需要测量CD 的长度,即为工件内槽宽AB ,故答案为:CD .【点睛】本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.12.如图,有一个池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接达到点A 和B ,连接AC 并延长到点D ,使CD=CA ,连接BC 并延长到点E ,使CE=CB ,连接DE ,那么量出DE 的长度就是A ,B 的距离,这是根据全等三角形判定______证明______全等______,从而得出DE 的长就是A ,B 的距离.【答案】SAS △ABC △DEC【分析】利用 “SAS”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【详解】在△ABC 和△DEC 中,BC CE ACB DCE CA CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (SAS ),∴AB=DE .∴DE 的长就是A ,B 的距离.故答案为:SAS ,△ABC ,△DEC .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.13.如图所示AB=AC ,AD=AE ,∠BAC =∠DAE ,∠1=28°,∠2=30°,则∠3=_________.【答案】58°【分析】根据∠BAC =∠DAE 能够得出∠1=∠EAC ,然后可以证明△BAD ≌△CAE ,则有∠2=∠ABD ,最后利用∠3=∠1+∠ABD 可求解.【详解】∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠1=∠EAC ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩∴△BAD ≌△CAE (SAS ),∴∠2=∠ABD =30°,∵∠1=28°,∴∠3=∠1+∠ABD =28°+30°=58°,故答案为:58°.【点睛】本题主要考查全等三角形的判定及性质,三角形外角性质,掌握全等三角形的判定方法及性质是解题的关键.14.如图所示,128,232AB AC AD AE BAC DAE ==∠=∠∠=︒∠=︒,,,,点B ,D ,E 三点在一条直线上,则3∠=__________.【答案】60︒【分析】根据题意证明ABD ACE △≌△,可得2ABD ∠=∠,再利用外角定理即可. 【详解】BAC DAE ∠=∠1∴∠=∠EAC,AB AC AD AE ==∴()ABD ACE SAS △≌△,2=32ABD ∴∠=∠︒, 又点B ,D ,E 三点在一条直线上,3∴∠为ABD △的外角,128∠=︒∴3=1+=28+32=60ABD ∠∠∠︒︒︒,故答案为:60︒.【点睛】本题考查了全等三角形的证明及性质运用,及三角形的外角定理,灵活利用外角定理是快速解决本题的关键.三、解答题15.如图,在ABC 和AEF 中,AE AB =,AC AF =,CAF BAE ∠=∠.求证:BC EF =.【答案】证明见解析.【分析】先根据角的和差可得EAF BAC ∠=∠,再根据三角形全等的判定定理与性质即可得证.【详解】证明:CAF BAE ∠=∠,CAF CAE BAE CAE ∴∠+∠=∠+∠,即EAF BAC ∠=∠,在ABC 和AEF 中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,()ABC AEF SAS ∴≅,BC EF ∴=.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键. 16.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.【答案】(1)证明见解析;(2)55︒.【分析】(1)先根据线段的和差可得AB ED =,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得GBD GDB ∠=∠,再根据三角形的外角性质即可得.【详解】证明:(1)AD EB =,AD BD EB BD ∴+=+,即AB ED =,在ABC 和EDF 中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,()ABC EDF SAS ∴≅;(2)由(1)已证:ABC EDF ≅,ABC EDF ∴∠=∠,即GBD GDB ∠=∠,110GBD G D DB CG ∠+∠=∠=︒,5512CG BD D G ∠∴=∠=︒. 【点睛】本题考查了三角形全等的判定定理与性质、三角形的外角性质等知识点,熟练掌握三角形全等的判定方法是解题关键.17.如图,B 、C 、D 、E 在同一条直线上;//AC DF BC DE AC DF ==,,.求证:AB EF =.【答案】见解析【分析】直接证明△ACB≌△FDE即可证明.【详解】证明:∵//AC DF,∴ACD FDC∠=∠,∴ACB FDE∠=∠,∴在ACB△和FDE中,AC DFACB FDE BC DE=⎧⎪∠=∠⎨⎪=⎩,∴ACB FDE SAS≌(),∴AB EF=.【点睛】本题考查全等三角形判定和性质的综合运用,比较简单,解题关键是根据平行线找角度相等. 18.如图,点B、F、C、E在一条直线上,BF=EC,AC=DF,AC∥DF.求证:∠A=∠D.【答案】证明见解析【分析】先由平行线的性质得∠ACB=∠DFE,再证 BC = EF ,然后由 SAS 证△ABC≌△DEF ,即可得出结论.【详解】证明:∵AC∥DF,∴∠ACB=∠DFE,又∵BF=EC,∴BF+FC=EC+FC,即BC=EF,在△ABC 和△DEF 中,AC DF ACB DFE BC EF =⎧⎪∠∠⎨⎪=⎩=,∴△ABC ≌△DEF (SAS ),∴∠A =∠D .【点睛】本题考查了全等三角形的判定与性质以及平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.19.已知:如图,点A 、B 、C 在一条直线上,//BD CE ,AB=EC ,BD=CB .求证:AD=EB .【答案】证明见解析【分析】根据SAS 证明ABD ECB ∆∆≌,可得结论.【详解】证明:∵//BD CE ,∴∠ABD =∠C ,在ABD ∆和ECB ∆中,∵AB EC ABD C BD CB =⎧⎪∠=∠⎨⎪=⎩,∴ABD ECB ∆∆≌(SAS ),∴AD EB =.【点睛】本题考查了三角形全等的性质和判定,熟练掌握三角形全等的判定是关键,属于基础题. 20.如图,A 、B 两点分别位于一个池塘的两侧,池塘西南边有一座假山D ,在DB 的中点C 处有一个雕塑,小川从点A 出发,沿直线AC 一直向前经过点C 走到点E ,并使CE CA =,然后他测量点E 到假山D 的距离,则DE 的长度就是A 、B 两点之间的距离.请根据题意完成下列问题:(1)题中给出的已知条件是什么?已知:_______________________________________________________;(2)得出的结论是什么?结论:______________________________________________________;(3)根据题意写出证明.证明:【答案】(1)BC CD =,AE 与BD 相交于C ,CE CA =;(2)AB DE =;(3)见解析【分析】(1)根据题意写出已知即可;(2)根据全等三角形的性质写出结论即可;(3)利用两边切夹角相等的两三角形全等,即可得出答案.【详解】(1)已知:BC CD =,AE 与BD 相交于C ,CE CA =;(2)结论:AB DE =;(3)在△ECD 和△ACB 中,∵CE CA DCE BCA DC BC ⎧⎪∠∠⎨⎪⎩===,∴△ECD ≌△ACB(SAS),∴DE=AB .【点睛】本题主要考查了全等三角形的判定与性质,根据已知得出△ECD ≌△ACB 是解题关键.。
专项12-4 三角形全等的判定(AAS、ASA)(解析版)
2020—2021八年级上学期专项冲刺卷(人教版)专项12.4 三角形全等的判定(AAS)与(ASA)姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.以上全不对【答案】C【分析】根据图形,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.2.如图所示,亮亮课本上的一个三角形被墨迹污染了一部分,很快他就根据所学知识画一出一个与这个三角形全等的图形,那么这两个三角形全等的依据是()A.SSS B.SAS C.AAS D.ASA【答案】D【分析】根据全等三角形的判定方法解答即可.【详解】解:画一个三角形A ′B ′C ′,使∠A ′=∠A ,A ′B ′=AB ,∠B ′=∠B ,符合全等三角形的判定定理ASA ,故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.3.如图四个三角形中,能构成全等三角形的是( )A .①②B .②③C .①③D .③④【答案】C【分析】 先根据三角形内角和定理得到一个内角的度数,再根据ASA 可证2个三角形全等,依此即可求解.【详解】解:①中未知角的度数为:180°﹣70°﹣50°=60°;②中未知角的度数为180°﹣70°﹣60°=50°; ③中未知角的度数为180°﹣70°﹣60°=50°;④中未知角的度数为180°﹣60°﹣50°=70°; 又三角形中边长为25所相邻的角分别为:①70°、50°;②60°、50°;③70°、50°;④60°、50°;根据ASA 可证2个三角形全等是③和①、②和④;故选:C【点睛】本题考查三角形全等,利用ASA 定理进行证明去,重点在寻找对应角和对应边相等;4.如图,已知BAD CAD ∠=∠,则下列条件中用AAS 使ABD ACD △≌△的是( )A .BC ∠=∠B .BDA CDA ∠=∠C .AB AC =D .BD CD =【答案】A【分析】 利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A :∠BAD =∠CAD ,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS),此选项符合; B :∠BAD =∠CAD ,AD 为公共边,若∠BDA =∠CDA ,则△ABD ≌△ACD (ASA );此选项不符 合;C :∠BAD =∠CAD ,AD 为公共边,若AB= AC ,则△ABD ≌△ACD (SAS),此选项不符合; D :∠BAD =∠CAD ,AD 为公共边,若BD=CD ,不能判定△ABD ≌△ACD ,此选项不符合; 故选: D.【点睛】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.5.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是______,这么做的依据是______.( )A .带①去,SASB .带②去,SASC .带③去,ASAD .①②③都带去,SSS【答案】C【分析】 根据全等三角形的判定定理,结合实际分析即可.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】全等三角形判定的实际应用.6.如图,在MPN △中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .6【答案】B【分析】 先证明MQP NQH △≌△,再由全等三角形的性质可得PQ =QH =5,根据MQ =NQ =9,即可得到答案.【详解】解:∵MQ ⊥PN ,NR ⊥PM ,∴∠NQH =∠NRP =∠HRM =90︒,∵∠RHM =∠QHN ,∴∠PMH =∠HNQ ,在MQP △和NQH 中,90PMQ QNH MQ NQMQP NQH ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴MQP NQH △≌△(ASA ),∴PQ =QH =5,∵NQ =MQ =9,∴MH =MQ ﹣HQ =9﹣5=4,【点睛】本题考查全等三角形的判定和性质,解题的关键是推理证明三角形的全等三角形,找到边与边的关系解决问题.7.如图,已知AB CD =,12∠=∠,和3AO =,则OC =( )A .3B .4C .5D .6【答案】A【分析】 由“AAS ”可证△AOB ≌△COD ,可得AO =CO =3,即可求OC 的长.【详解】解:∵AB =CD ,∠1=∠2,∠AOB =∠COD ,∴△AOB ≌△COD (AAS ),∴AO =CO =3,故选:A .【点睛】本题考查了全等三角形的判定和性质,证明△AOB ≌△COD 是本题的关键.8.如图,点D ,E 分别在线段AB ,AC 上,且BD CE =,BE 与CD 交于点O ,则从下列三个条件①B C ∠=∠,②BDO CEO ∠=∠,③OD OE =中选一个能使OB OC =成立的是( )A .①B .①或②C .②或③D .①或②或③【答案】B根据全等三角形的判定和性质定理即可得到结论.【详解】解:选①或②,理由:∵∠BOD=∠COE ,∠B=∠C ,BD=CE ,∴△BOD ≌△COE (AAS ),∴OB=OC ;∵∠BOD=∠COE ,∠BDO=∠CEO ,BD=CE ,∴△BOD ≌△COE (AAS ),∴OB=OC ;故选:B .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的性质和判定是解题的关键. 9.如图,D 是AB 上一点.DF 交AC 于点,,//E DE FE FC AB =,若1,3BD CF ==,则AB 的长是( )A .6B .72C .3D .4【答案】D【分析】 根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,即可求线段AB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∴314AB AD BD =+=+=,故选D .【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ADE FCE ∆≅∆是解此题的关键.10.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .5【答案】C【分析】 由一线三直角∠ADC=∠CEB=90º推得∠ACD=∠CBE ,再加上AC=BC ,易证△ACD ≌△CBE (AAS )便可求出ED=EC-CD 即可.【详解】∵90ACB ∠=︒,∴∠ACD+∠ECB=90º,∵AD CE ⊥,BE CE ⊥,∴∠ADC=∠CEB=90º,∴∠ECB+∠CBE=90º,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,∵∠ADC=∠CEB=90º,∠ACD=∠CBE ,AC=BC ,∴AD=CE=6,CD=BE=2,∴ED=EC-CD=6-2=4.故选择:C.【点睛】本题考查全等三角形中的线段差问题,关键掌握三角形全等的证明方法,会用差线段来解决问题.11.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4 cm2B.0.5 cm2C.13cm2D.0.6 cm2【答案】B【分析】延长AP交BC于T.利用全等三角形的性质证明AP=PT即可解决问题.【详解】解:如图,延长AP交BC于T.∵BP⊥AT,∴∠BPA=∠BPT=90°,∵BP=BP,∠PBA=∠PBT,∴PA =PT ,∴S △BPA =S △BPT ,S △CAP =S △CPT ,∴S △PBC =12S △ABC =12=0.5, 故选:B .【点睛】本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.12.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H ,已知EH =EB =3,AE =5,则CH 的长是( )A .1B .2C .35D .53【答案】B 【分析】 由AD 垂直于BC ,CE 垂直于AB ,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS 得到三角形AEH 与三角形EBC 全等,由全等三角形的对应边相等得到AE EC =,由EC EH -,即AE EH -即可求出HC 的长.【详解】解:AD BC ⊥,CE AB ⊥,90ADB AEH ∴∠=∠=︒,AHE CHD ∠=∠,BAD BCE ∴∠=∠,在HEA ∆和BEC ∆中,BAD BCE AEH BEC EH EB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()HEA BEC AAS ∴∆≅∆,5AE EC ∴==,则532CH EC EH AE EH =-=-=-=.故选:B .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD 、BE 的交于点F ,若BF =AC ,CD =6,BD =8,则线段AF 的长度为___.【答案】2【分析】首先证明△BDF ≌△ADC ,再根据全等三角形的性质可得FD =CD ,AD =BD ,根据AD =8,DF =6,即可算出AF 的长.【详解】解:∵AD 是BC 边上的高,BE 是AC 边上的高,∴∠ADC =∠FDB =90°,∠AEB =90°,∴∠1+∠C =90°,∠1+∠2=90°,∴∠2=∠C ,∵∠2=∠3,∴∠3=∠C ,在△ADC 和△BDF 中,3C FDB CDA BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC (AAS ),∴FD =CD ,AD =BD ,∵CD =6,BD =8,∴AD =8,DF =6,∴AF =8-6=2,故答案为:2.【点睛】本题考查的是全等三角形的判定及性质,熟练掌握性质定理是解题的关键.14.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC CD =,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上.若想知道两点A ,B 的距离,只需要测量出线段__________即可.【答案】D E【分析】由垂线的定义可得出∠B =∠EDC =90°,结合BC =DC ,∠ACB =∠ECD ,即可证出△ABC ≌△EDC (ASA ),利用全等三角形的性质可得出AB =ED .【详解】解:∵AB ⊥BF ,DE ⊥BF ,∴∠B =∠EDC =90°.在△ABC 和△EDC 中,B EDC BC DC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△EDC (ASA ),∴AB =ED .故想知道两点A ,B 的距离,只需要测量出线段DE 即可.故答案为:DE .【点睛】本题考查了全等三角形的应用,利用全等三角形的判定定理ASA 证出△ABC ≌△EDC 是解题的关键.15.如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【分析】如图,延长BD 交AC 于点E ,根据已知证得ADB ADE ≌,则得BD DE =,由三角形的面积公式得ABD AED S S =△△,BCD ECD SS =,即可证明12ADC ABC S S =,从而可以解答本题.【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△. 即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【点睛】本题主要考查全等三角形的判定与性质,明确题意,利用三角形全等证明12ADC ABC SS =是解答此题的关键.16.如图,BE ⊥AE ,CF ⊥AE ,垂足分别为E 、F ,D 是EF 的中点,CF =AF .若BE =4,DE =2,则△ACD 的面积为_______.【答案】12【分析】由BE ⊥AE ,CF ⊥AE ,得∠BED =∠CFD ,再由D 是EF 的中点,得ED =FD ,根据角边角公里可得出△BED 与△CFD 全等,进而可得CF =EB =4,然后可得CF =4,再计算出AD 的长,利用三角形面积公式可得答案.【详解】解:∵BE ⊥AE ,CF ⊥AE ,∴∠BED =∠CFD ,∵D 是EF 的中点,∴ED =FD ,CFD DEB DF DECDF BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BED ≌△CFD (ASA ).∴CF =EB =4,∵AF =CF ,∴AF =4,∵D 是EF 的中点,∴DF =DE =2,∴AD =6,∴△ACD 的面积:11641222AD CF ⋅=⨯⨯=. 故答案为:12.【点睛】本题考查了全等三角形的判定和性质,判定一般三角形全等有SSS 、SAS 、ASA 、AAS ,判定两个直角三角形全等还有HL .17.如图,B 、C 、E 共线,AB BE ⊥,DE BE ⊥,AC DC ⊥,AC DC =,5cm BE =,则AB DE +=______.【答案】5cm【分析】根据三垂直模型,可证得ABC CED △≌△,从而得到AB DE BC CE BE +=+=计算即可.【详解】由题意:∠ACD=90°,∠B=∠E=90°,∴∠ACB 与∠ECD 互余,∠A 与∠ACB 互余,∴∠A=∠ECD ,B E A ECD AC DC ⎧⎪⎨⎪=∠=∠∠=⎩∠∴△ABC ≌△CED (AAS )∴AB=CE ,BC=DE ,∴AB+DE=BC+CE=BE=5cm ,故答案为:5cm .【点睛】本题考查全等三角形的判定与性质,熟练根据题意证明全等三角形,并运用全等三角形的性质是解题关键.18.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.【答案】3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB和△ADC中,BCE CADBEC CDA AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB≌△ADC(AAS);∴BE=CD,CE=AD=9.∵DC=CE-DE,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图,点E在△ABC的边AC上,且∠ABE=∠C,AF平分∠BAE交BE于F,FD∥BC交AC 于点D.(1)求证:△ABF≌△ADF;(2)若BE=7,AB=8,AE=5,求△EFD的周长.【答案】(1)见详解;(2)10【分析】(1)由“AAS”可证△DAF≌△BAF;(2)由全等三角形的性质得AD=AB=8,BF=DF,结合BE=7,AB=8,AE=5,即可求解.【详解】(1)证明:∵FD∥BC,∴∠ADF=∠C,∵∠ABE=∠C,∴∠ADF =∠ABF ,∵AF 平分∠BAE ,∴∠DAF =∠BAF ,又∵AF =AF ,∴△ABF ≌△ADF (AAS );(2)∵△ABF ≌△ADF ,∴AD =AB =8,BF =DF ,∵AE =5,∴DE =8-5=3,∴EF +DF = EF +BF =BE =7,∴△EFD 的周长= EF +DF +DE =7+3=10.【点睛】本题主要考查全等三角形的判定和性质,角平分线的定义,熟练掌握“AAS ”证三角形全等,是解题的关键.20.如图,在ABC 中,AC BC =,点D 在AB 边上,点E 在BC 边上,连接CD ,DE .已知ACD BDE ∠=∠,CD DE =.(1)猜想AC 与BD 的数量关系,并证明你的猜想;(2)若3AD =,5BD =,求CE 的长.【答案】(1)AC BD =,证明见解析;(2)2【分析】(1)根据“AAS ”证ADC BED △≌△可得;(2)由(1)ADC BED △≌△,根据全等三角形性质可得;【详解】(1)解:AC BD =,理由如下:在ABC 中,AC BC =A B ∴∠=∠∴在ADC 和BED 中A B ACD BED CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC BED AAS ∴△≌△AC BD ∴=(2)由(1)知ADC BED △≌△5AC BD ∴==,3BE AD ==5BC AC ∴==2CE BC BE ∴=-=【点睛】考核知识点:全等三角形的判定和性质.理解全等三角形的判定和性质是关键.21.如图123,,5AB AD AE ∠=∠=∠==,求AC 的长度.【答案】5【分析】根据三角形内角和得到∠D =∠B ,再根据等量代换得到∠DAE =∠BAC ,利用ASA 证明△ADE ≌△ABC ,得到AE =AC 即可.【详解】解:如图,∵∠1=∠3,∠AFD =∠BFE ,∴∠D =∠B ,∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,即∠DAE =∠BAC ,又∵AD =AB ,∴△ADE ≌△ABC (ASA ),∴AE =AC =5.【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据已知条件找到三角形全等的条件. 22.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,//AB DE ,A D ∠=∠.(1)求证:ABC DEF △≌△;(2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析;(2)4【分析】(1)先证明∠ABC =∠DEF ,再根据ASA 即可证明.(2)根据全等三角形的性质即可解答.【详解】解:(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 与△DEF 中,ABC DEF AB DEA D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF ;(2)∵△ABC ≌△DEF ,∴BC =EF ,∴BF +FC =EC +FC ,∴BF =EC ,∵BE =10,BF =3,∴FC =10-3-3=4.【点睛】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.23.如图,在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E .(1)求证:△ABD ≌△ACE ;(2)若BD =2cm ,CE =4cm ,DE = cm .【答案】(1)见解析;(2)6【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等得∠CAE =∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ;(2)根据全等三角形的性质得出AE =BD ,AD =CE ,于是DE =AE+AD =BD+CE .【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE =90°,∵∠BAD+∠ABD =90°,∴∠CAE =∠ABD ,∵在△ABD 和△ACE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (AAS ),(2)∵△ABD ≌△ACE ,∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE ,∵BD =2cm ,CE =4cm ,∴DE =6cm ;故答案为:6.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD 是解题的关键.24.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D . (1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.【答案】(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SAS作业(1)详解
By 乔兴龙P57 13.下表分别给出两个文学家马克吐温(Mark Twain)的8篇小品文以及斯诺特格拉斯(Snodgrass)的10篇小品文中由3个字母组成的词的比例:
马克
0.225 0.262 0.217 0.240 0.230 0.229 0.235 0.217
吐温
斯诺
0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223 0.220 0.201 特格
拉斯
设两组数据分别来自正态总体,且两个总体方差相等,两个样本相互独立。
问两个作家所写的小品文中包含由3个字母组成的词的比例是否有显著的差异(取α=)?
0.05
分析:检验是否有差异,即检验u1-u2=0,方差相等且未知,因此要用t检验法,置信区间a=0.05
操作:
在program editor 中输入
Data P59Q13;
input x y @@;
card;
0.225 0.209 0.262 0.205 0.217 0.196 0.240 0.210 0.230 0.202 0.229 0.207 0.235 0.224 0.217 0.223 . 0.220 . 0.201
proc print;
run;
点击运行一次。
Solutions—analysis—analyst
File—open by sas name—work—p59q13—OK
Statistics—hypothesis tests—two sample t test for means
选中two variables,x—group 1,y—group 2,mean1-mean2=0,alternative选择第一个,test—confidence intervals选择interval,95.0%
OK—OK
所得结果:
Two Sample t-test for the Means of x and y 8
09:29 Wednesday, October 7, 2011
Sample Statistics
Group N Mean Std. Dev. Std. Error ----------------------------------------------------
x 8 0.231875 0.0146 0.0051 y 10 0.2097 0.0097 0.0031
Hypothesis Test
Null hypothesis: Mean 1 - Mean 2 = 0 Alternative: Mean 1 - Mean 2 ^= 0
If Variances Are t statistic Df Pr > t ----------------------------------------------------
Equal 3.878 16 0.0013 Not Equal 3.704 11.67 0.0032
95% Confidence Interval for the Difference between Two Means
Lower Limit Upper Limit ----------- ----------- 0.01 0.03
Mean1-mean2可能性=0.0013<0.05,拒绝原假设,两者存在显著性差异。
P57 14.在第13题中分别记两个总体的方差为21σ和22σ。
试检验假设(取0.05α=)
2222
012112
H =H : σσσσ≠: ,
以说明在13题中我们假设22
12=σσ是合理的。
分析:方差未知,检验二者是否相等,即检验σ12/σ22=1,使用F 检验 操作:(继续13题的操作)Statistics —hypothesis tests —two sample t test for variance 选中two variables , x —group 1,y —group 2,variance1/ variance2=1,alternative 选择第一个, intervals —interval ,95.0%—OK —OK
输出结果:
Two Sample Test for Variances of x and y 9
09:29 Wednesday, October 7, 2011
Sample Statistics
Group N Mean Std. Dev. Variance --------------------------------------------------
x 8 0.231875 0.0146 0.000212 y 10 0.2097 0.0097 0.000093
Hypothesis Test
Null hypothesis: Variance 1 / Variance 2 = 1 Alternative: Variance 1 / Variance 2 ^= 1
- Degrees of Freedom -
F Numer. Denom. Pr > F ----------------------------------------------
2.27 7 9 0.2501
95% Confidence Interval of the Ratio of Two Variances
Lower Limit Upper Limit ----------- ----------- 0.5415 10.961
结果显示Pr>F 的可能性为0.2501>0.05,接受原假设,说明在13题中我们假设
22
12
=σσ是合理的
P81 1 将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表
列出5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
试在水平
0.05α=下检验这些百分比的均值有无显著的差异。
设各总体服从正态总体,且方差相同。
青霉素 四环素 链毒素 红霉素 氯霉素 29.6 27.3 5.8 21.6 29.2 24.3 32.6 6.2 17.4 32.8 28.5 30.8 11.0 18.3 25.0 32.0
34.8
8.3
19.0
24.2
分析:属于单因素试验的方差分析
操作: 输入
Data P81Q1; input c $ y @@; cards;
1 29.6
2 27.
3 3 5.8
4 21.6
5 29.2 1 24.3 2 32.
6 3 6.2 4 17.4 5 32.8 1 28.5 2 30.8 3 11.0 4 18.3 5 25.0 1 32.0 2 34.8 3 8.3 4 19.0 5 24.2 proc print; run; 运行
Solutions-analysis-analyst
File-open by sas name-work-p81q1-OK
Statistics-anova-one way anova
C-independent,y-dependent,means-significance level选择0.05—OK—OK
输出结果:
10:17 Wednesday, October 7, 2011 1
The ANOVA Procedure
Class Level Information
Class Levels Values
c 5 1 2 3 4 5
Number of observations 20
10:17 Wednesday, October 7, 2011 2
The ANOVA Procedure
Dependent Variable: y
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 4 1480.823000 370.205750 40.88 <.0001
Error 15 135.822500 9.054833
Corrected Total 19 1616.645500
R-Square Coeff Var Root MSE y Mean
0.915985 13.12023 3.009125 22.93500
Source DF Anova SS Mean Square F Value Pr > F
c 4 1480.823000 370.205750 40.88 <.0001
差异。