(完整word版)一元一次方程知识点总结归纳45444,推荐文档
一元一次方程知识点总结
一、等式与方程 .等式:
(1)定义:含有等号的式子叫做等式.
(2)性质: ①等式两边同时加上(或减去)同一个整式,等式的值不变. 若那么 ②等式两边同时乘以一个数或除以同一个不为0的整式,等式的
值不变. 若那么有或()
③对称性:若,则. ④传递性:若,则.
(3)拓展: ①等式两边取相反数,结果仍相等. 如果,那么 ②等式两边不等于0时,两边取倒数,结果仍相等. 如果,那么 ③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的 性质.
(5)列一元一次方程解应用题的基本步骤及注意点: ①“审” 要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知
量、未知量及其相互关系. ②“设” 设一个恰当的未知数,若有单位一定加单位,表示多项
式加单位括号. ③“列” 根据等量关系列出方程,即所列的方程应满足两边的量要相等;方
程两边的代数式的单位统一,用题目中的原数;题中条件应充 分利用,不能漏也不能将一个条件重复利用,重复用一个条件 会得到恒等式,解不出来. ④“解” 解出方程,一定在草纸上一步步认真计算,先化简往往 会简化计算. ⑤“验” 检验两方面,一是解得是否正确,用代入法;二是是 否符合实际情况.
根据是等式的性质①. Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边
对含未知数的项合并,右边对常数项合并,方便求解.
(4)解一元一次方程的一般步骤及根据: ①去分母——等式的性质② ②去括号——分配律 ③移项——等式的性质① ④合并——合并同类项法则 ⑤系数化为1——等式的性质② ⑥检验——把方程的解分别代入方程的左右边看求得的值是否
路程=时间×速度,时间=,速度=.
(注意单位:路程——米、千米;时间——秒、分、时;速度
(完整版)一元一次方程知识点完整版),推荐文档
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪
⎪
⎪
⎪
⎪⎪⎪
⎪
⎨⎧⎪⎪
⎪⎪⎪⎪⎪⎪⎩⎪
⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨
⎧⎩⎨⎧⎪⎪⎩⎪⎪
⎨⎧⎪⎪
⎪⎪⎪
⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎪
⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧年龄问题数字问题工程问题打折利润问题行船问题环形跑道问题时钟问题的追及路程中的追及追及问题相遇问题行程问题一般调配按比分配调配问题和、差、倍、分问题程实际问题与一元一次方况有绝对值,讨论解的情方程中不含参数,但含,求参数已知两个方程有相同解已知解,求参数
的解判断某个数是否为方程方程的解有无数个解无解有唯一解讨论未知数的系数问题含有参数换元法化系数为移项、合并同类项去括号去分母基本法不含参数解方程分数的基本性质等式的基本性质等式的基本性质等式的基本性质一元一次方程,求参数方程中含参数,并且是程判断哪些是一元一次方定义一元一次方程.7.6.5.44.33.32.2.31.2.32.31.3.32.21.2.2.1.5.4.3.2.1.4.3.2.1-1.4.3.2.1.321.2.1[版权归武汉英儒教育集团所有,禁止任何人全部复制粘贴]。
一元一次方程基础知识点精要
一元一次方程基础知识点精要(一)概念 1、等式: 叫做等式。
2、方程 : 叫做方能,一个式子只有同时具备下面的两个条件时,它才是方程。
即:(1)是等式,(2)含有未知数这两个条件缺一不可。
3.一元一次方程: ,这样的方程叫一元一次方程。
应特别注意: (1)把ax=b (a ≠0)叫做一元一次方程的最简形式。
ax 十b=0(其中x 是末知数,a 、b 是己知数,且a ≠0)叫做一元一次方程的标准形式。
(2)判断一个具体的方程是否是一元一次方程特别要注意两个方面:一要看是否是一元一次方程特别要注意两个方面:一要看是否是整式方程,二是要看这个方程化简后是不是一元一次方程的最简形式。
即ax=b (a ≠0)若该方程是整式方程且化简是最简形式。
则是一元一次方程,否则不是。
例如方程x 2-2=x ,21=x ;3x=3x 十2等都不是一元一次方程,而方程x2-2=x 十2x (3+21x );142.0201.0-=-x x 是一元一次方程。
4.与方程有关的一些概念 (1) 方程的解: (2) 解方程: 对这两个概念必须注意它们之间的区别:方程的的解是演箅的结果,即求出的适合方程的末知数的值;解方程是求方程的解的演算过程。
(二)、规律 1、等式的基本性质: (1)性质1 (2)性质2等式还具有其它一些性质比较常用的有: (1) 对称性:若a=b 则b=a ,即等式的左右两边交换位置所得结果仍是等式 (2) 传递性:若a=b 且b=c ,那么a=c ,这一性质也叫做等式代换。
2、移项 方程中的任何一项,都可以在改变符号之后,从方程的左边移到另一边,这种变形叫做移项。
移项的依据是等式的性质1。
在进行移项时,应注意(1)移项必须从左边移到右边,或从右边移到左边,(2)移项一定要改变符号,但不移的项不要改变符号。
3、一元一次方程的一般步骤解一元一次方程,一般要通过 , 、 , 、 等步骤。
把一元一次方程转化成x=a 的形式。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块1.定义2.等式的基本性质一元一次方程 3.解方程4.方程的解5.实际问题与一元一次方 程知识梳理【知识点一:方程的定义】方程: 含有未知数的等式就叫做方程。
注意未知数的理解, x, m, n 等,都可以作为未知数。
题型: 判断给出的代数式、等式是否为方程 方法: 定义法例 1、判定下列式子中,哪些是方程?(1) xy 4 ( 2) x 2 ( 3) 2 4 6 (4) x29 (5)11x 2【知识点二:一元一次方程的定义】 一元一次方程 :①只含有一个未知数( 元 ) ;②并且未知数的次数都是 1(次);③这样的整式方程叫做一元一次方程。
题型一 :判断给出的代数式、等式是否为一元一次方程方法: 定义法例 2、判定下列哪些是一元一次方程?2( x2x) x 0 , 2x 17 , x0 , xy 1, x1 3 , x 3x , a 3x题型二 :形如一元一次方程,求参数的值方法: x 2 的系数为 0; x 的次数等于 1; x 的系数不能为 0。
例 3、如果m 1 x m 5 0 是关于 x 的一元一次方程,求 m 的值例 4、若方程 2a 1 x 2 ax 5 0是关于 x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质 1:等式两边都加上 ( 或减去 ) 同个数 ( 或式子 ) ,结果仍相等。
即:若 a=b ,则 a± c =b ± c等式的性质 2:等式两边同时乘以同一个数,或除以同一个不为 0 的数,结果仍相等。
即:若 ab ,则 ac bc ;若 a b , c 0且abcc例 5、运用等式性质进行的变形,不正确的是( )A 、如果 a=b ,那么 a-c=b-cB 、如果 a=b ,那么 a+c=b+cC 、如果 a=b ,那么ab D、如果 a=b ,那么 ac=bccc【知识点四:解方程】方程的一般式是: axb 0 a 0题型一 :不含参数,求一元一次方程的解 方法:步骤1. 去分母2. 去括号3. 移项4. 合并同类 项5. 化系数为 1具体做法依据 注意事项在方程两边都乘以各分等式基本性质防止漏乘(尤其整数项) ,母的最小公倍数2注意添括号;括号前面是“ +”号,括先去小括号,再去中括去括号法则、号可以直接去, 括号前面 号,最后去大括号分配律是“ - ”号,括号里的每一项都要变号把含有未知数的项都移到方程的一边,其他项 等式基本性质移项要变号,不移不变都移到方程的另一边 1号;( 移项一定要变号 )将方程化简成合并同类项法计算要仔细ax b a 0则方程两边同时除以未知数的系数 a ,得到方程 等式基本性质计算要仔细, 分子分母勿2颠倒的解例 7、解方程x 32 3x5 48 2练习 1、 2 x 5 x 4 3 2x 1 5x 3练习 2、 0.2x 0.1 0.5x 0.11练习 3、32 1 1 2 2 x 0.6 0.42 3 4题型二: 解方程的题中,有相同的含 x 的代数式方法: 利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
(word完整版)一元一次方程知识点及经典例题,推荐文档
、知识要点梳理知识点一:方程和方程的解1. _______________________ 方程:含有的叫方程注意:a.必须是等式 b. 必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示, 也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:⑴.8-7=1+0 (2).1、一元一次方程:一元一次方程的标准形式是:ax+b=O(其中x是未知数,a,b是已知数,且0)。
要点诠释:一元一次方程须满足下列三个条件:J(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a = b,那么進土c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果店二,那么鹤三阮;如果口二心仗工0),那么c亡要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用bX -------①a^0时,方程有唯一解懣;②a=0, b=0时,方程有无数个解;③a=0, b^0时,方程无解。
牛刀小试例1、解方程例2、由两个方程的解相同求方程中子母的值已知方程x 10 4x的解与方程5x 2m 2的解相同,求m的值.例3、解方程知识与绝对值知识综合题型解方程:|2x 1173、经典例题透析类型一:一元一次方程的相关概念2 丄—丄①2x—5= 1;②8- 7= 1 ;③x+ y;④ 2 x—y = x2;⑤3x+ y = 6;⑥5x+ 3y + 4z = 0;⑦艸总=8 :⑧x= 0。
一元一次方程知识点总结
一元一次方程知识点总结一元一次方程是由一个未知数和其系数构成的方程,其中未知数的最高次数为1。
它是初中数学的基础内容,也是解决实际问题的重要工具。
本文将对一元一次方程的定义、解法、性质以及应用进行总结。
一、一元一次方程的定义一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。
在方程中,a称为x的系数,b称为常数项。
1. 解的定义:对于一元一次方程ax + b = 0,满足这个方程的实数x 称为方程的解。
2. 解集表示:方程的解可以通过求解过程得到,解集用花括号{}表示。
二、一元一次方程的解法1. 移项法:对于一元一次方程ax + b = 0,我们可以通过移项的方式求解。
- 如果方程中未知数x的系数不为0,我们可以将常数项b移到等号的另一侧,即ax = -b,再通过除以系数a的操作得到x的值。
- 如果方程中未知数x的系数为0,方程变为0 = 0,这种情况下方程的解是任意实数。
2. 消元法:如果给定的一元一次方程有两个未知数和两个方程,我们可以利用消元法求解。
- 通过消元,将两个方程中的一个未知数消去,得到只含有一个未知数的一元一次方程,然后利用移项法求解。
三、一元一次方程的性质1. 唯一解:一元一次方程只有一个解或者无解。
如果方程的系数是非零实数,那么方程有且只有一个解;如果方程的系数为0,那么方程有无穷多个解。
2. 一次性质:一元一次方程的最高次数为1,即方程中未知数的指数为1,没有其他次数的项。
3. 等式性质:一元一次方程可以通过等式性质进行等式运算,即可以在等式两边同时加减相同的数、乘除相同的非零数,仍然保持等式成立。
四、一元一次方程的应用1. 解决实际问题:一元一次方程可以应用于各种实际问题的求解,如速度、距离、时间等之间的关系问题。
- 例如,已知某车以每小时60公里的速度行驶,行驶t小时后的总路程为100公里,可以通过建立一元一次方程来求解t的值,进而得到行驶的时间。
一元一次方程知识点总结
一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bcc≠)÷=÷(0=或a c b c③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0=≠,那么11a b=a b③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0+=(a,b为常数,x为未知数,且0a≠).ax b(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13x+=,它不是一x元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
一元一次方程知识点总结
一元一次方程知识点总结一、一元一次方程的概念1. 定义- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一元一次方程的一般形式是ax + b=0(a≠0),其中x是未知数,a是未知数的系数,b是常数项。
例如2x + 3 = 0就是一个一元一次方程,这里a = 2,b=3。
2. 方程的解- 使方程左右两边相等的未知数的值叫做方程的解。
例如方程x+1 = 3,当x = 2时,方程左边=2 + 1=3,方程右边=3,所以x = 2就是方程x + 1=3的解。
二、一元一次方程的解法1. 移项- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
例如在方程2x+3 = 5x - 1中,为了求解x,我们把5x移到左边变为-5x,把3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
2. 合并同类项- 在移项后,我们需要对同类项进行合并。
例如在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程就变为-3x=-4。
3. 系数化为1- 方程两边同时除以未知数的系数,将未知数的系数化为1,从而得到方程的解。
在方程-3x=-4中,两边同时除以-3,得到x=(4)/(3)。
这一步的依据是等式的基本性质2:等式两边同时乘(或除以)同一个不为0的整式,等式仍然成立。
三、一元一次方程的应用1. 列方程解应用题的一般步骤- 审:审题,理解题意,找出题目中的已知量、未知量以及它们之间的关系。
- 设:设未知数,一般有直接设元和间接设元两种方法。
例如,若要求某个数,可直接设这个数为x;若通过某个数与其他数的关系来求解,可间接设与这个数有关的量为x。
- 列:根据题目中的等量关系列出方程。
- 解:解这个方程,求出未知数的值。
- 验:检验方程的解是否符合题意,包括是否满足方程本身以及实际问题中的条件。
一元一次方程相关知识点
一元一次方程一、知识点梳理1、一元一次方程(1)、含有未知数的等式是方程。
(2)、只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)、列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)、求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)、求方程的解的过程,叫做解方程。
2、等式的性质(1)、用等号“=”表示相等关系的式子叫做等式。
(2)、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b ,那么a ±c=b ±c.(3)、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b ,那么ac=bc;如果a=b 且c ≠0,那么cb c a . (4)、运用等式的性质时要注意三点:①等式两边都要参加运算,并且是作同一种运算;②等式两边加或减,乘或除以的数一定是同一个数或同一个式子; ③等式两边不能都除以0,即0不能作除数或分母。
3、解一元一次方程——合并同类项与移项(1)、合并同类项的依据:乘法分配律。
合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a (a 是常数)的形式。
(2)、把等式一边的某项变号后移到另一边,叫做移项。
(3).移项依据:等式的性质 1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a (a 是常数)的形式。
4、解一元一次方程——去括号与去分母(1)、方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)、顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)、工作总量=工作效率×工作时间。
(4)、工作量=人均效率×人数×时间。
5、实际问题与一元一次方程(1)、售价指商品卖出去时的的实际售价。
一元一次方程知识点总结
《一元一次方程》知识要点总结1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解通常用代入法解答”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1,移项要变号。
6.一元一次方程:只含有一个未知数,并且含未知数项的次数是1的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几9.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.10.应用题类型:知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量 知识点2: 方案选择问题知识点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
七年级数学《一元一次方程》知识点汇总
七年级数学《一元一次方程》知识点汇总七年级数学《一元一次方程》知识点汇总
第一节:从问题到方程
1.一元一次方程:只含有一个未知数,并且未知数
的次数是1,并且含未知数项的系数不是零的整式方程
是一元一次方程。
2.一元一次方程的标准形式:ax b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
第二节:解一元一次方程
一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
第三节:用一元一次方程解决问题
(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.
(2)找出等量关系:找出能够表示本题含义的相等关系.
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案。
一元一次方程章节复习.docx
一元一次方程知识点一:等式的概念:用等号连接,表示相等的关系的式子叫做等式。
在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。
注意:有等号的式子就是等式例:下列各式中,那些是等式?leu 1 C4x-3 1+5+7=13 — y + 3 = 5 2x=3x+l x+y=5 2=3 x<3 — = 32 x知识点二:等式的基本性质:性质止等式的两边同时加上或减去同一个数或式子,等式仍成立。
用字母表示:若护b, 则a±c = b±c性质2:等式的两边同时乘以一个数或者式子,或同除一个不为0的数或式子,等式仍成立。
用字母表示:若a二b,则ac = beCi h若a=b且CH O,则-=-c c等式的对称性:若a=b,则b=a等式的传递性:若a=b, b二c,则a=c例:根据等式的性质填空(1) ___________________ 、若a=b,则a+2=b+ (2)、若a-6=b-6,贝U⑶、若3x-5=9,则3x=9+ ______ (4)、若-3x=15,则x二(5)、若3x=2x-8,则3x・__ =-8 (6)、若x二y,则2x+ ___ =2y+9(7)若2x=y,y=3z,则x= _______ (用含z的代数式填空)知识点三:方程与方程的解方程的概念:含有未知数的等式叫做方程。
注意:(1)、方程一定是等式,但等式不一定是方程。
(2)、方程必备的两个条件:1、是等式2、含有未知数例:判断下列各式是不是方程,并指出其中的未知数。
(1) 、3x-7=-3+x (2)、2|y|-2 = 3 (3)、3x2 -5x4-1 (4)、-l-l=-2(5)、——4 (6)、----- = 1 (7)、x-2>0 (8)、3x 05 2(9) - + - = 0兀y方程与方程的解:使方程左右两边相等的未知数的值叫方程的解判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.注意:求方程的解的过程叫解方程。
《一元一次方程》知识点整理
《一元一次方程》知识点整理一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数x,未知数x的指数都是1,这样的方程叫做一元一次方程.例如:1700+50x=1800,2=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值,而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质:等式两边都加上同个数,结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b,那么ac=bc三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1、去分母2、去括号3、移项4、合并形式)5.系数化为1.六、用方程思想解决实际问题的一般步骤1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2、设:设未知数3、列:根据题意列方程.4、解:解出所列方程.5、检:检验所求的解是否符合题意.6、答:写出答案七、有关常用应用类型题及各量之间的关系1、和、差、倍、分问题:倍数关系:通过关键词语\\"是几倍,增加几倍,增加到几倍,增加百分之几,增长率……\\"来体现.多少关系:通过关键词语\\"多、少、和、差、不足、剩余……\\"来体现.2、等积变形问题:\\"等积变形\\"是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3、劳力调配问题:这类问题要搞清人数的变化,常见题型有:既有调入又有调出;只有调入没有调出,调入部分变化,其余不变;只有调出没有调入,调出部分变化,其余不变4、数字问题要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为:100a+10b+c.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示.5、工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间6、行程问题:行程问题中的三个基本量及其关系:路程=速度×时间.基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7、商品销售问题有关关系式:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价;商品利润率=商品利润/商品进价;商品售价=商品标价×折扣率8、储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率。
一元一次方程知识点总结归纳45444
一元一次方程知识点总结归纳45444于包含关系,方程是等式的一种特殊形式。
方程中含有未知数,需要通过解方程来求得未知数的值,使得方程成立。
解方程的过程就是求出未知数的值,使得方程两边相等。
解方程的方法有很多种,包括平移法、消元法、代入法等。
在解方程的过程中,需要注意等式的性质,如等式两边同时加减同一个数、同时乘除同一个数等。
同时也需要注意方程的根的范围,有时候方程可能没有实数根,只有复数根。
总之,掌握好方程的基本概念和解方程的方法,是数学研究中的重要基础,也是实际问题中解决未知数的值的关键。
等式不一定含有未知数,但是一定有不可逆性的关系。
一元一次方程的解是使方程中等号左右两边相等的未知数,这个未知数所代表的具体数值就是方程的解。
解方程是求解方程的解的过程,可以通过变形来实现。
要检验一个数是否是方程的解,只需要将这个数代入方程中,如果等式两边的值相等,那么这个数就是方程的解。
一个方程可能有无解、一个解或多个解。
等式的基本性质是解方程的依据,解方程是得到方程解的过程。
在应用题中,寻找等量关系是解题的关键,可以通过关键词、不同角度的表示、基本公式和不变量等方法来确定等量关系。
解一元一次方程可以通过将方程的解代入方程,得到关于待定字母的方程来实现。
一元一次方程是只含有一个未知数,未知数次数为1,等号两边都是整式的方程。
其标准形式为ax+b=0(a、b为已知数,a≠0)。
要夯实基础,需要掌握一元一次方程的定义、标准形式和解法等基本知识。
二.移项移项是解一元一次方程的基本方法之一,其定义为把等式一边的某项变号后移到另一边。
例如,解方程3x-2=2x+5时,我们可以在方程的两边先加2,再减去2x,得到3x-2+2-2x=2x+5+2-2x,即变形为x=7.在移项的过程中,我们需要注意以下几点:①移项的原理就是等式的性质1.②移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。
(完整)七年级上册数学《一元一次方程》-知识点整理,推荐文档
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行 2)当括号内含有分数时,常由外向内先去括号,再去分母 3)当分母中含有小数时,可用分数的基本性质化成整数 4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2)根据数量关系与解题需要设出未知数,建立方程; 3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题; 4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形; 8)优化方案问题9)浓度问题:溶液×浓度=溶质 10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。
(完整)一元一次方程知识点总结归纳,推荐文档
精心整理第三课时一元一次方程廖雅欣2月3日1、从算式到方程①一元一次方程⑴方程:方程是含有未知数的等式。
列方程式,要先设字母表示未知数(通常用x、y、z等字母表示未知数),,然后根据题目中的相等关系写出等式。
注:Ⅰ、方程有两个条件,一是含有未知数,二是含有“=”,二者缺一不可。
如都是方程。
Ⅱ、方程一定是等式,但等式不一定是方程,如6+2=8,又如a+b=b+a,a+2a=3a,它们是表示运算律的恒等式,其中的字母不是未知数而是任意数,故他们也不是方程。
⑵一元一次方程:只含有一个未知数(元),未知数的次数是1,等号两边都是整式(包含单项式与多项式)的方程。
注:Ⅰ、一元一次方程中分母不含未知数,即方程是由整式组成的,如就不是一元一次方程。
Ⅱ、一元一次方程中只含有一个未知数,如就不是一元一次方程。
(注意含参数的一元一次方程)Ⅲ、一元一次方程化简以后未知数的次数为1,是指含有未知数的项的最高次数为1,如就不是一元一次方程,而可以化简为,故是一元一次方程。
Ⅳ、注意判别一元一次方程与恒等式(式中的字母取任意值等式都恒成立)。
⑶解方程:解方程就是求出使方程中等号左右两边相等的未知数的值,这个使方程中等号左右两边相等的未知数的值叫做方程的解。
归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2、等式的性质①等式的性质1:等式的两边加上(或减去)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±ca=b÷a.②合并同类项:把含有未知数的项合并在一起。
③移项:把方程一边的某项变号后移到等号的另一边,叫移项。
移项的依据是:等式的基本性质1(注:一般的我们把含未知数的项移到等号的左边,把常数项移到等号的右边。
)④把未知数x的系数化成1。
(可能要进行去分母)【总结】解一元一次方程的一般步骤:(1)去括号(2)移项(3)合并同类项(4)化为最简方程ax=b(a≠0)(5.例1⑴若⑵若⑶⑷⑸例2、(整体求值法)已知5a+8b=3b+10,试利用等式的性质求3(a+b)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
一元一次方程
方程的有关概念
夯实基础
一.等式
b a =,2,②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。
b.传递性:如果
c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
(1)如果
51134=-x ,那么+=53
4
x ; (2)如果c by ax -=+,那么+-=c ax ;
(3)如果4
3
34=-t ,那么=t 。
三.方程
程的解;如果不相等,这个数就不是方程的解。
②方程可能无解,可能只有一个解,也可能有多个解。
③等式的基本性质是解方程的依据。
④方程的解释结果,而解方程是得到这个结果的一个过程。
例3:下列方程中解为2=x 的是() A.x x =+33 B.03=+-x
C.62=x
D.825=-x
那么怎
例2:已知2=x 是关于x 的方程
)2(3
1
+=+-x k k x 的解,则k 的值应为()。
A.9B.91
C.3
1
D.1
一元一次方程
解一元一次方程
夯实基础
一.一元一次方程
1.定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
2.标准形式:方程0=+b ax (其中x 是未知数,a 、b 是已知数,并且0≠a )叫做一元一次方程的标准形式。
“x 3”例2:下列各题中的变形为移项的是()。
A.由
1)2(21=+x ,得112
1
=+x B.由5735+=-x x ,得3557-=+x x
C.由625=+--x x ,得652=--x x
D.由x x -=-85,得58+=+x x 三.去括号与去分母
解一元一次方程的最终目标是要得到“a x =”这一结果。
为了达到这一目标,方程中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质2去掉分母,即为去分母。
C.)1(18)12(18+-=-+x x x
D.)1(33)12(23+-=-+x x x
四.解一元一次方程的一般步骤
一.一元一次方程概念的应用
原方程为一元一次方程,即未知数的次数为1,系数不为0,由此来确定原方程中待定字母的值。
例1:(1)若2122
=+-m x
是关于x 的一元一次方程,则m =;
(2)若方程20152014)4(=+-x m 是关于x 的一元一次方程,则=m 。
二.利用合并同类项与移项解方程的方法
(1)合并同类项时,不能用连等号与原方程相连。
(2)几个常数项也是同类项,移项时应该把它们放到一起。
(3)移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。
(4)移项必变号,不变号不能移项。
例2:解方程:(1)x x 23273-=+;(2)14
3
621-=-a a 。
三.利用去分母解方程的方法
利用等式的性质2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系
(1 (2例3例4求其中(1(2例5
一元一次方程
列一元一次方程解应用题
夯实基础
一.列一元一次方程解应用题的一般步骤 (1)审:弄清题意和题目中的数量关系。
(2)设:用字母表示题目中的一个未知量。
(3
(4(5(6(7(1(2(3 ③如果应用题涉及的量较多,各量之间的关系又不明显,若能设立适当的辅助未知数,把不明显的关系表示出来,就可以顺利地列出方程或方程组。
例1:通讯员原计划5h 从甲地到乙地,因为任务紧急,他每小时比原计划快3km ,结果提前1h 到达,求甲、乙两地间的距离。
解析:解法一:直接设未知数。
设甲、乙两地间的距离为x km 。
利用速度间的关系作相等关系:原计划速度=+3实际速度,得
1
535-=+x
x ,解得60=x 。
解法二:间接设未知数,设原计划的速度为x km/h,则实际的速度为)3
x km/h。
利用路程关系作
(+
相等关系:原计划的路程=实际的路程,得)3
-
=x
⋅
x,解得12
)1
(
5(
5+
x,甲、乙两地的距离为
=
x=
⨯
=。
5
5km
12
(
)
60
答:甲、乙两地的距离为60km。
例2:一只船在逆水中航行,船上的一只救生圈掉入水中,5分钟后,发现救生圈落水,船掉头去追赶救生圈,几分钟能够追上救生圈?(船掉头的时间忽略不计)
是抓住配套比,设出未知数,然后根据配套比列出方程,通过解方程解决问题。
例1:某场共有120名生产工人,每名工人每天可产生螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少人名工人生产螺母,才能使每天生产出来的产品配成最多套?
二.用列表法解决增长率、数字等问题
解复杂的问题时,可借助表格来确定等量关系。
先找出已知量、未知量,并用含已知量或未知量的式子把中
间的那些起桥梁作用的量表示出来,同时利用表格显示出等量关系。
例2:已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的单价各是多少元。
三.用图示法解决行程、工程等问题
有关工程、行程问题,经常利用图示表示题目中各量间的关系,揭示出潜在的条件,使问题清晰明了,能迅速列出方程,求解问题。
例3:甲、乙相距40km,甲先出发,1.5h后乙再出发,甲在后,乙在前,两人同向而行,甲的速
+负
5份试卷进行分析,如下表所示:
(1)某同学得70分,他答对了多少道题?
(2)有一同学H 说他得86分,另一个同学G 说他得72分,谁在说谎?
六.列一元一次方程解决储蓄问题
解决储蓄问题,首先要弄清以下几个概念:顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息,本金与利息的和叫本息和,存入银行的时间叫期数,每个期数内的利息与本金的比叫利率。
根据上述定义,每个期数内,利率本金
利息 ,所以利息=本金×利率×期数,这个公式是解决储蓄问题时常用的等量关系式。
例7,乙
例8的圆。