电子顺磁共振实验讲义
电子顺磁共振谱ESR
谱图解析方法
直接解析法
数据库比对法
通过观察谱线的位置、形状和强度, 结合已知的物质性质和结构信息,直 接解析出被测物质的磁性参数和结构 特征。
将实验谱图与已知的ESR谱图数据库 进行比对,通过相似度匹配来确定被 测物质的类型和结构。
计算机模拟法
利用计算机模拟ESR谱图,通过比较 模拟结果与实验谱图,可以更准确地 解析出被测物质的磁性参数和结构特 征。
应用领域拓展
随着ESR技术的不断发展,其应用领域也在不断拓展,从最初的自由 基研究逐渐拓展到生物医学、环境科学、能源科学等多个领域。
ESR技术面临的挑战
样品制备难度大
由于ESR对样品的纯度和均匀度 要求较高,因此样品制备难度较 大,需要较高的实验技巧和经验。
谱图解析难度高
由于ESR谱图较为复杂,不同组分 的信号容易相互干扰,因此谱图解 析难度较高,需要较高的专业知识 和技术水平。
电子顺磁共振谱(ESR
目录
CONTENTS
• 电子顺磁共振谱(ESR)概述 • ESR实验技术 • ESR谱图解析 • ESR在科学研究中的应用 • ESR技术展望与挑战
01 电子顺磁共振谱(ESR)概述
CHAPTER
ESR定义与原理
定义
电子顺磁共振谱(ESR)是一种研究物质中未成对电子的共振谱技术,通过测量物质在磁场中的电子磁矩变化来 获取物质内部结构和电子状态信息。
选择合适的微波频率,以 避免信号损失和干扰,提 高分辨率。
功率与时间
调整微波功率和曝光时间, 以获得最佳的信号强度和 信噪比。
实验数据处理与分析
数据预处理
对采集到的数据进行滤波、去噪等处理,以提高 信噪比。
参数拟合
近代物理实验-电子顺磁共振
近代物理实验——电子顺磁共振一、引言电子顺磁共振(electron paramagnetic resonance ,EPR )是由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。
对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR )。
二、实验目的1.测定DPPH 中电子的g 因数;2.测定共振线宽;3.掌握电子自旋试验仪的原理及使用三、实验原理电子除了具有质量、电荷,以及在原子中作轨道运动而具有轨道角动量、轨道磁矩以外,还存在自旋s 和自旋磁矩S μ ,在量子力学中,电子的自旋角动量为s P =,式中1/2s = 为电子自旋量子数,因为电子带电,所以它具有平行于自旋轴的磁矩,其大小为s s s P μγγ==,其中s γ 称为电子自旋运动的旋磁比。
如果电子处于磁场B 中,由于它有自旋磁矩,它就会绕外磁场方向进动。
在外磁场中,自旋磁矩只能有某些确定的取向,即S μ在外磁场方向上的投影是确定的:sz s s m μγ= ,s m 是电子的自旋磁量子数,它有21s + 个值。
因1/2s =,故s m 只能取两个值:12±。
所以自旋磁矩在外磁场中只能有两个取向。
一般情况下,原子中电子的磁矩是自旋磁矩与轨道磁矩的矢量和,为了统一描述,通常引入无量纲的朗德因子g 因子,这样电子总磁矩余总角动量之间的关系可写为2j j j j eegP P m μγ=-=- 其中j 是电子的总角动量量子数,j l s =+ ,1l s +- ,…,l s - ()()()()111121j j l l s s g j j +-+++=++2j ee gm γ= 在外磁场方向,电子磁矩的分量为2jz s s j eem m gm μγ==,,1,...,1,mj j j j j =--+- 若电子的磁矩用玻尔磁子2B eem μ=为单位来量度,于是有 jz j B m g μμ=对于电子的轨道运动0s = ,j l = 则1g = ,于是2l eem γ=;对于电子的自旋运动,j s = ,0l = ,则2g = 于是,s ee m γ=。
电子顺磁共振实验
电子顺磁共振实验实验目的了解微波传输特点、电子顺磁共振实验的实践意义,掌握电子顺磁共振仪的调试方法,观察电子顺磁共振信号。
实验仪器电子顺磁共振仪、示波器 实验原理(1)电子顺磁共振。
电子因绕原子核作轨道运动及自旋运动具有轨道磁矩和自旋磁矩。
具有磁矩的电子在稳恒的外加磁场中具有分立的磁位能。
000B mg B B E B Z μμμ-=-=⋅-=相邻能级间隔为0B g B μ。
当在垂直于恒定外磁场方向加一交变电磁场,其频率为0B g hv B μ=时,具有未成对自旋磁矩的顺磁物质将会出现低能级的电子吸收外加的电磁波跃迁到相邻的高能级的共振吸收现象,此现象即电子顺磁共振。
(详见教材P181~184)(2)仪器原理系统的基本构成如图1。
由微波传输部件把X 波段体效应二极管信号源的微波功率馈给谐振腔内的样品,样品处于恒定磁场中,磁铁由50Hz 交流电对磁场提供扫描,当满足共振条件时输出共振信号,信号由示波器直接检测。
各个微波部件的原理、性能及使用方法如下:图 11、谐振腔:谐振腔由矩形波导组成,A 为谐振腔耦合膜片,B 为可变短路调节器也为短路膜片。
谐振腔的工作原理如下:入射透射图 3设A 膜片反射系数为T ,透射为r ,当处于无损状态时:T r 221+=;B 反射系数为1,样品及传输的损耗为η。
输入幅度为I ,经过膜片反射后初次反射为-IT ,因为反射相位与入射相反,所以为 采用负号;经过A 膜片透射强度Ir ,经过一次反射后达到A 膜片这时电磁场为Ir ⋅ηe i kx 2,经A 膜片部分反射部分透射,反射为Ir e T ikx ⋅⋅-η2,透射为Ir e kx 22⋅η同理得出多次反射后反射强度为:Ir e T e i kx kx n⋅--ηη22() (1) 透射为:Ir e T e kx kx n222ηη() (2)真实反射等于初反射和多次透射的叠加如图(5)。
得:-++--=∑IT Ir eIr e T e ikxikx ikx nn 22222110ηηη() (3)=-++⋅-=-+⋅-----IT Ir eIr eT e T e IT Ir eT e ikxikxi kxikxikx ikx22222222211ηηηηηη (4)当谐振时:eikx-=21得:反射强度为:I I T r T out=⋅-+-()21ηη (5)因为共振信号表现为η的变化,所以我们将(5 )式对η求导得:I I I r T T r T T I T T s out =⋅=--+-=⋅--()()()()()ηηηηηη∆η∆η∆η∆η22222211111 (6)增益K I T T =⋅--1122()η (7) 对T 求最大值得 T =η (8)增益最大值K Q =--=-=11112222ηηη() (9)此时反射强度I I out=-+--=(())ηηηηη1102 (10)Q 为品质因素(Q =-112()η)。
EPR电子顺磁共振 - 2
电子顺磁共振(EPR)概论 或电子自旋共振(ESR)概论
陈 家 富
合肥微尺度物质科学国家实验室 顺磁共振室
二00四年十一月
Application Fields of ESR Spectroscopy
Magnetic substance photo-translation Transition metal ion Catalyst Metal complex Teeth, Bone Shell, Coral Quartz, Aging Radiation defects Coal, Oil Erosion Spin label Fluidity SOD activity Aging, Cancer Co-enzyme Vitamin C, E, K Combustion Spin trap Active oxygen Enzyme Glass-fiber
EPR—基本原理三
EPR现象的严格论述,必须运用量子力学。 电子自旋体系的哈密顿算符为:
Ĥ = gβHŜz
Ŝz的自旋本征函数为│α > 和│β >,其本征值分
别为1/2和-1/2。
Ŝz│α > = 1/2│α >
Ŝz│β > = -1/2│β >
EPR—基本原理三
因此,两自旋态的能量为:
Eα = < α│Ĥ │α > = < α│g βHŜz│α > = (1/2) g βH Eβ = < β│Ĥ │β > = < β│g βHŜz│β > = -(1/2) g βH 两能级差: ΔE = E - E = g βH α β 若在与H垂直的方向施加一微波hυ,使得 hυ= gβH,即产生磁共振吸收。
电子顺磁共振(EPR2006-C)
线形 反映
大 小 灵敏度
宽 窄 分辩率
g 因子 分子结 构
形 状 相互作用 类型
EPR—共振波谱三
实际上,我们所观察到的谱线往往不止一条, 实际上,我们所观察到的谱线往往不止一条,
而是若干条分裂谱线,这是为什么呢? 而是若干条分裂谱线,这是为什么呢?
答案是:由于超精细相互作用的结果 答案是:
(hyperfine interactions) )
H = (H0 + H’),H’为局部磁场 为局部磁场; , 为局部磁场
局部磁场H’由分子结构确定 因此,g因子在本质上 局部磁场 由分子结构确定, 因此, 因子在本质上 由分子结构确定 反映了分子内局部磁场的特性, 反映了分子内局部磁场的特性,所以说它是
能够提供分子结构及其环境信息的一个重要参数。
EPR谱线的形状反映了共振吸收强度随磁场变化 谱线的形状反映了共振吸收强度随磁场变化 的关系;理论上EPR谱线应该是无限窄的,实际上 谱线应该是无限窄的, 的关系;理论上 谱线应该是无限窄的 EPR谱线都有一定的宽度,原因: 谱线都有一定的宽度,原因: 谱线都有一定的宽度 a. 寿命增宽 ,S—L作用 作用 δH ~ δE/g β ~ (ћ/g β) ·1/δt 自旋—晶格作用越强, 自旋 晶格作用越强,δt 晶格作用越强 越小, 越大,即谱线越宽。 越小,则δH 越大,即谱线越宽。 b. 久期增宽 ,S—S相互作用 相互作用 顺磁粒子周围存在许多小磁体, 顺磁粒子周围存在许多小磁体,每个小磁体除处在外 磁体 加磁场外,还处于由其它小磁体所形成的局部磁场中。 加磁场外,还处于由其它小磁体所形成的局部磁场中。
EPR—共振波谱三
超精细谱线是µ 核磁矩) 自旋磁矩) 超精细谱线是 I(核磁矩)与µs(自旋磁矩) 相互作用的结果; 相互作用的结果
电子顺磁共振实验报告
电子顺磁共振实验报告电子顺磁共振实验报告一、实验目的1. 学习电子顺磁共振的基本原理和实验方法;;2. 了解、掌握电子顺磁共振谱仪的调节与使用;3.测定DMPO-OH的EPR 信号。
二、实验原理1.电子顺磁共振(电子自旋共振)电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。
1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2、MnCl2等顺磁性盐类发现。
电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。
由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。
近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。
电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。
2.EPR基本原理EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。
不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。
《电子顺磁共振》课件
水质监测
通过电子顺磁共振技术可以检测 水体中的重金属离子、有机污染 物等有害物质,为水质监测和治 理提供技术支持。
土壤污染修复
电子顺磁共振技术可以用于土壤 污染修复过程中的自由基监测, 有助于了解土壤污染的修复机制 和效果评估。
05
电子顺磁共振的未来发展与 挑战
技术创新与突破
检测方法的改进
01
提高检测灵敏度、分辨率和稳定性,实现更快速、准确和自动
样品固定
采用适当的固定方法将样 品固定在实验装置中,以 便进行实验操作。
实验操的电子顺磁共振实验装 置。
参数设置
根据实验样品的特点,设置合适的实验参数,如 磁场强度、微波频率等。
实验操作
按照实验步骤进行操作,记录实验数据。
数据处理与分析
数据整理
整理实验获得的数据,确保数据的准确性和完整性。
通过电子顺磁共振技术可以研究催化剂的活性中心和反应过程中电 子结构的改变,有助于优化催化剂的性能。
化学键断裂与形成
电子顺磁共振可以检测化学键的断裂和形成过程中自由基的变化, 有助于理解化学键的本质和化学反应的动力学过程。
在生物学研究中的应用
自由基生物学
电子顺磁共振技术可以用于研究自由基生物学,探索自由 基在生物体内的生成、代谢和作用机制,以及自由基对生 物体的影响。
现状
目前,EPR已经成为一种重要的物理表征手段,广泛应用于 各个学科领域。
应用领域
物理
EPR在物理领域中主要用于研究物质 的电子结构和磁性性质,如铁电体、 超导体等。
生物学
EPR在医学领域中用于研究生物组织 的结构和功能,如肿瘤、心血管疾病 等。
化学
EPR在化学领域中用于研究分子的电 子结构和反应机理,如自由基反应、 化学键断裂等。
顺磁共振详解
顺磁共振详解
顺磁共振,也称为电子自旋共振(ESR),是一种研究磁场中磁矩与电磁辐射之间相互作用的物理现象。
它主要用于研究未配对电子的状态。
在顺磁共振中,电子的磁矩主要来源于其自旋运动产生的磁矩,因此电子顺磁共振技术也被称为电子自旋共振(ESR)。
电子顺磁共振(EPR)信号是由未配对电子的磁矩产生的。
当外加磁场的频率等于电子自旋进动频率时,就会发生磁共振现象。
此时,处于两个能级之间的电子会吸收电磁波的能量跃迁到高能级中,这就是顺磁共振现象。
通过检测这种吸收信号,就可以得到电子顺磁共振谱线。
此外,电子顺磁共振还常用于检测和表征含有至少一个未成对电子的自由基或其他顺磁性物质。
将顺磁性物质作为探针溶于不同溶液中,通过观察溶液体系中顺磁性探针的EPR参数变化,就可以快速地测量溶液体系的性质。
同时,电子顺磁共振还可以应用于研究如双基(Biradical)或多基(Polyradical)这样的物质,它们在一个分子中含有两个或两个以上未成对电子的化合物,但它们的未成对电子相距较远,相互作用较弱。
电子顺磁共振实验方法
1. EPR波谱仪分类 2. EPR波谱仪的主要组成单元和工作过程 3. ESR波谱仪的主要指标
三. 电子顺磁共振的新技术方法 1. 自旋标记EPR 2. 自旋捕捉EPR 3. 低温- EPR
四. 时间分辨电子顺磁共振波谱仪 1.短寿命自由基的检测方法 2. 时间分辨ESR 3. E-500 型ESR波谱仪及仪器的主要指标 4. TR-ESR波谱的产生、检测及举例 5. TR-ESR 瞬态时间波谱的数据处理 6. TR-ESR瞬态检测的优点
微环境结构特点。
超精细分裂常数 a ------ hyperfine splitting constant,电子自旋与核自旋相互作用。
H
6. EPR技术的研究对象和主要优缺点
对象:*自由基(Free radical)
电子层的最外层具有单电子的原子、分子或离子并且能独立存在。
例如: 单基:四甲基哌啶 (TEMPO)
电子自旋在磁场中的能级分裂称为Zeeman分裂。
二个能级的能量之差: E= ge .e .H
H
S
N
E上 = +1/2 ge .e .H E= ge .e .H
E下 = -1/2 ge .e .H
H=0 H≠0
3.电子顺磁共振的共振条件
电磁辐射能量 h
刚好满足两个能级之间的能量差E
电子从下能级跃迁到上能级
电 子 顺 磁 共 振 (EPR, ESR) 实验方法
目录
一. 电子顺磁共振的基本概念 1. 电子的运动 2. 电子在直流磁场中的行为 - 能级分裂 3. 电子顺磁共振共振条件 4. 超精细相互作用 溶液自由基波谱的特点、解析及举例 5. EPR波谱的一般参数
《电子顺磁共振EPR》课件
contents
目录
• 电子顺磁共振(EPR)简介 • EPR的基本技术 • EPR在来发展与挑战
01
电子顺磁共振(EPR)简介
定义与原理
定义
电子顺磁共振(EPR)是一种研究物质与辐射相互作用的物理方法,通过测量物 质中未成对电子在磁场中的共振吸收来获取物质内部结构和电子状态信息。
数据分析
根据EPR谱图的特征峰位置、形状和 强度,解析物质内部未成对电子的分 布和取向,从而推断出物质的结构和 性质。
03
EPR在科学研究中的应用
分子结构和化学环境研究
总结词
EPR技术可以提供分子结构和化学环境的信息,有助于深入了解分子的电子结 构和化学键的性质。
详细描述
EPR通过测量电子自旋共振信号的频率和强度,可以推断出分子中电子的分布 和跃迁情况,从而揭示分子的结构和化学环境。这对于理解化学反应机理、分 子识别和分子设计等领域具有重要意义。
医学研究
EPR用于研究生物组织中的 自由基、血红蛋白、肌红蛋 白等生物分子的结构和功能 ,以及与疾病相关的变化。
环境科学
EPR用于研究环境污染物的 电子结构和环境因素对其影 响。
02
EPR的基本技术
实验设置与设备
实验原理
电子顺磁共振是研究物质中未成 对电子的共振现象,通过测量样 品在特定频率电磁辐射下的吸收 和发射,可以获得关于物质内部
固体材料中的缺陷和掺杂研究
总结词
EPR技术可以用于研究固体材料中的缺陷和掺杂情况,有助于深入了解材料的物理和化学性质。
详细描述
EPR可以检测固体材料中的自由电子和缺陷态电子,通过测量这些电子的自旋共振信号,可以推断出 固体材料的结构和性质。这对于研究材料的物理和化学性质、新型材料的设计和开发等领域具有重要 意义。
电子顺磁共振实验
电子顺磁共振实验1925年乌仑贝克和哥德斯密,为了说明碱金属原子能级的双层结构,首先提出了电子自旋的假说:电子作自旋转动,由于其带负电,故而电子具有的自旋磁矩的方向与其自旋角动量方向相反,但直到1944年扎伏伊斯基才首先观察到电子自旋共振现象。
电子自旋共振,即(ESR ),它是处于恒定磁场中电子自旋磁矩在射频(或微波)场作用下所引起磁能级的跃迁。
1954年开始,电子自旋共振(ESR )逐渐发展成为一项新技术。
如其研究对象是具有原子固有磁距的顺磁性物质,又称之为电子顺磁共振(即EPR )顺磁物质。
如3d 壳层未满的铁族与3d 壳层未满的稀土族元素所组成的化合物,含有自旋不配对的自由基有机化合物都是研究ESR 的重要对象。
原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构何化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
本实验要求观察电子自旋共振现象,观察顺磁离子对共振信号的影响,测量DPPH 中电子的g 因子,并利用电子自旋共振测量地球磁场的垂直份量。
【实验目的】1.学习电子自旋共振的基本原理,实验现象,实验方法。
2.测量DPPH 样品电子的g 因子及共振线宽。
【实验原理】1.由物理学理论可知电子自旋角动量值应为h S S p s )1(+=,S 是自旋量子数。
由于电子带负电,所以其自旋磁矩应是平行于角动量的。
当它处于稳恒磁场中时,将获得12+S 个可能取向。
或者说,磁场的作用将电子能级劈裂成12+S 个次能级,简言之两相邻次级间的能量差为:0B g E B e ⋅⋅=∆μ (1)如果在电子所在的稳恒磁场区再迭加一个同稳恒磁场垂直的交变磁场1B ,而它的频率f 又恰好调整到使一个量子的能量0f h ⋅刚好等于E ∆ 即:00B g f h B e ⋅⋅=⋅μ则两邻近能级间就有跃迁,即发生E 、S 、R 现象则:00B hg f B e μ⋅= (2) 或 00B h g B e μω⋅=(2)式中 34106262.6-⨯=h J S ⋅ --- 普朗克常数24108024.9-⨯=B μ J 1-⋅T --- 波尔磁子 21=S 时 0023.2=e g 则 8024.20=f 0B (3)(3)式中0f 的单位是MHz ,0B 单位GS 。
最新[PPT]4.5电子顺磁共振PPT课件
换言之,EPR 和NMR 是分别研究电子磁矩和核 磁矩在外磁场中重新取向所需的能量。
[2]. EPR 的共振频率在微波波段, NMR 的共振频率在射频波段。
[3]. EPR的灵敏度比NMR 的灵敏度高, EPR检出所需自由基的绝对浓度约在 10-8M数量级。
顺磁共振中的重要参量 表征着磁场共振的位置 得到化学键和分子或原子结构的信息
具有各向异性的特性
对于无轨道角动量的分子,其g因子刚好等于
自由电子的自旋值ge =2.0023 不少有机自由基的g因子非常接近于这个数值。
另一方面,有的样品如过渡金属离子及其化合
物的g值却是偏离自由电子的ge 值。
4.5.4 超精细相互作用
即 H1 =H0 -a/2 H2 =H0 +a/2
a=H1 -H2
氢原子的能级(体系的S=1/2, I=1/2) (a) 恒定外磁场和可变的微波频率; (b) 可变外磁场和恒定的微波频率
对于一个未成对电子与一个核自旋为I的磁性核 相互作用,可以产生2I+1条等强度和等间距的 超精细线
相邻两谱线间的距离a ------超精细耦合常数
4.5.4 EPR的应用 化学方面
有机自由基的研究
证明自由基的存在 得到分子结构,以及化学反应机理
和反应动力学方面的重要信息
如环辛四烯是一个非平面分子,当用碱金属还 原,生成环辛四烯负离子自由基
得到了九条等间距,强度比是 1:8:28:56:70:56:28:8:1的EPR谱线,
环辛四烯环上的八个质子是等性的, 环辛四烯负离子应该是平面结构分子
EPR的跃迁选律△MS =±1,△MI =0 四个能级间只有二个允许跃迁, 只能产生两条谱线
(整理)电子顺磁共振实验讲义
近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利(Pauli)首先提出了电子自旋的概念。
1944年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一.实验目的1.了解电子顺磁共振的原理。
2.掌握FD-TX-ESR-II型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH的g因子。
二.实验原理A 、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ 与总角动量P J 之间满足如下关系:B J J J gP P μμγ=-= (1)式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比B gμγ=- (2)其中g 为朗德因子。
对于原子序数较小(满足L -S 耦合)的原子的朗德因子可用下式计算,(1)(1)(1)12(1)J J S S L L g J J +++-+=++ (3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S ),则g=2。
电子顺磁共振课(05)
4. ESR的局限性: 必须含有未成对电子,是顺磁性物质。
• 解决办法:
• (1) 辐照, 电解, 氧化还原 方法 相应的自由基 或离子.
制成
• (2) 自旋标记法: 将带有ESR信息的化合物 标记到被研究的物质中去.
• (3)自旋俘获法: 用自旋俘获剂俘获短寿命自 由基.
g = 1.9 ---- 10 之间 晶场的作用:自旋磁距的贡献
轨道磁距的贡献
引出局部磁场的问题
**g因子在本质上反映了分子内部局部磁场的特征,
它是提供分子结构信息的一个重要参数.
• 2. g因子的特点: • (1)自由基: g ge 精确到小数后4位
负离子 > 正离子
(2)过渡族金属离子及其化合物 d壳层电子数小于半充满 g < ge d壳层电子数大于半充满 g > ge d壳层电子数等于半充满 g ge
未成对电子与周围磁性核之间的相互作用叫 超精细相互作用.
2.超精细结构(hfs)
3.磁性核
核自旋 I 不为零的磁性核. (查书) 例如: I=1/2 1H , 19F , 31P , 15N
I=3/2 65Cu
I=5/2 55Mn , 95Mo
I= 7/2 51V ,
I=1
14N
4.超精细相互作用机理
根据量子力学:
μ = - g βS
(2)
电子的自旋磁距
电子的自旋角动量
g 因子 玻尔磁子
3. 将(2)代入(1) 求E:
• E = -μ· H
= - (-g β S ) ·Н = g β S·Н
选H方向为Z方向,则
电子顺磁共振实验讲义
近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利( Pauli)首先提出了电子自旋的概念。
1944 年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一 . 实验目的1.了解电子顺磁共振的原理。
2.掌握 FD-TX-ESR-II 型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH 的 g 因子。
二 . 实验原理A、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ与总角动量 P J之间满足如下关系:g B P J P J(1)J式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比g B(2)其中 g 为朗德因子。
对于原子序数较小(满足L-S 耦合)的原子的朗德因子可用下式计算,J(J 1) S(S1) L(L 1)g 1(3)2J(J1)由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S),则 g=2。
电子顺磁共振(ESR)教程1PPT课件
a
B
“doublet”
DE1 = gbB + a/2 DE2 = gbB - a/2 DE1 – DE2 = a
26
Electron
S (½)
Hyperfine Coupling
Nucleus
I (1)
MS=±½
Ms
MI
+½
+1
+0
-1
DE1 DE2 DE3
-½
-1
+0
+1
a
B
“triplet”
E = gbBSz + (hA0)SzIz
37
应用举例4:羟基自由基与过氧 阴离子自由基
可编辑课件PPT
38
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
具有奇数电子的原子,如氢、氮、碱金属原子。
可编辑课件PPT
20
EPR和NMR都属磁共 振谱,主要的区别
EPR和NMR是分别研究电子磁矩和核磁矩在外磁场中重 新取向所需的能量。
EPR的共振频率在微波波段,NMR共振频率在射频波段。 EPR的灵敏度比NMR的灵敏度高,EPR检出所需自由基
的绝对浓度约在10-8M的数量级。 EPR和NMR仪器结构上的差别,前者是恒定频率,采取
Electron Paramagnetic Resonance, Electron Spin Resonance
可编辑课件PPT
1
磁诱导电子自旋能级裂分
Ms
Ms = +½
±½
DE=hn=gbB
DBpp
Energy
B=0
Ms = -½
高二物理竞赛电子顺磁共振课件
0 J
(J
1) g
2 2 B
0
2 J
H
3kT
3kT
是单个原子的顺磁性磁化率。
是在绝对温度T下,单个原子在磁场方向的平均磁矩。
单位体积的顺磁性磁化率等于 乘以单位体积中的原子数; 一摩尔原子的顺磁性磁化率等于 乘以阿伏伽德罗常数。
➢顺磁性
顺磁性磁化率比抗磁性磁化率大2~3个数量级。
•J≠0的原子在磁场作用下即有抗磁性也有顺磁性。
EPR实验中,一个共振峰代表一个能级差。
顺磁性磁化率同绝热温度成反比——居里定律。
J:=0的原•1子/2 在某磁场些作用物下-只1质/2存在,抗磁如性。铁、钴、镍和某些稀土元素以及好多种氧化物,
是单个原子在的顺外磁性磁磁化场率。中磁化后,显示出比顺磁性强得多的磁性,且去掉
磁场后还保留磁性,这种现象称铁磁性。磁畴沿磁场方向有
-1/2
g1 2
~[1,3,5]L,分为六条。
333
吸收
讨论
1.EPR测量原子基态朗德因子g;
B
2.EPR波谱精细结构:多个共振吸收峰,反 映原子受邻近原子的作用情况,研究分子、
吸收
单原子EPR
固体、液体内部结构;
3.EPR波谱超精细结构:受原子核磁矩的影响, 一个磁能级分裂为2I+1(I<J)或2J+1(I>J)个超 精细结构能级。
m j1
s 1
1 2
2
l 0
j 1 2
g1 2
E 1m j1 g 1 BB BB
l 1
j 1 2
g2
2 3
1 mj2 2
E2mj2g2BB1 3BB
2 P3 / 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利(Pauli)首先提出了电子自旋的概念。
1944年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一.实验目的1.了解电子顺磁共振的原理。
2.掌握FD-TX-ESR-II型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH的g因子。
二.实验原理A 、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ 与总角动量P J 之间满足如下关系:B J J J gP P μμγ=-= (1)式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比B gμγ=- (2)其中g 为朗德因子。
对于原子序数较小(满足L -S 耦合)的原子的朗德因子可用下式计算,(1)(1)(1)12(1)J J S S L L g J J +++-+=++ (3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S ),则g=2。
反之,若磁矩完全由电子的轨道磁矩所贡献(S=0,J=L ),则g=1。
若自旋和轨道磁矩两者都有贡献,则g 的值介乎1与2之间。
因此,精确测定g 的数值便可判断电子运动的影响,从而有助于了解原子的结构。
将原子磁矩不为零的顺磁物质置于外磁场B 0中,则原子磁矩与外磁场相互作用能由0E m B γ∆=决定,相邻磁能级之间的能量差0E B γ∆= (4)如果垂直于外磁场B 0的方向上施加一幅值很小的交变磁场B 1cosωt ,当交变磁场的角频率ω满足共振条件0B ωγ= (5)时,则原子在相邻磁能级之间发生共振跃迁。
这种现象称为电子自旋共振,又叫顺磁共振。
由(2)和(5)两式可解出g 因子:00/B g B ωμ= (6)式中0ω为共振圆频率,为约化普朗克常数,/2h π=。
因此通过共振频率和外磁场磁感应强度的测量可以确定g 因子。
B 、仪器实现本实验所用的FD-TX-ESR-II 型顺磁共振实验仪采用两种方式检测共振信号,低频大调场视频检测或高频小调场相敏检测。
低频大调场视频检测,需要在稳恒磁场上叠加一个低频调制场'''sin m B B t ω=,调制场的调制幅度大于共振谱线的线宽,调制磁场一个周期通过共振点两次,通过视频检波在示波器上看到两个磁共振信号。
当射频场(或微波场)角频率ω满足共振条件时,即0B ωγ=时谱线为等间隔分布,此时B ’=0,共振磁场为B 0。
高频小调场相敏检测,检测的共振信号为微分信号。
小调场的幅度要比吸收线的宽度小得多。
通常选择为略小于共振线宽的1/10。
共振时应对吸收曲线的斜率取样,共振信号电平与吸收曲线的一级微商成正比,小调场的相敏检测过程如图1所示。
当直流磁场慢慢增大至进入吸收曲线附近时,由于小调场调制的结果,输出微波的幅度将是调制的,虽然小调场的调制幅度没变,输出微波的幅度却随共振线的斜率不同而改变,有时甚至为零。
经晶体检波后但未经过相敏检波的信号如图1(b )所示,信号的包络线对应着共振信号,频率等于调制信号的频率,包络内左右两部分的调制信号相位是反相的。
经过相敏检波及低通滤波器后检出共振信号的微分信号如图1(c )所示。
微分信号的的峰谷值对应的磁场间隔为吸收线宽B ∆,记为pp B ∆;微分信号与横轴的交点为共振磁场0B 。
C 、实验样品 本实验的样品为DPPH(Di-Phehcryl PicrylHydrazal),化学名称是二苯基苦酸基联氨,其分子结构式为(C 6H 5)2N-NC 6H 2·(NO 2)2,如图2所示。
它的第二个氮原子上存在一个未成对的电子,构成有机自由基,实验观测的就是这类电子的顺磁共振现象。
三. 实验仪器图2 DPPH 分子结构图p 图 1 小调场相敏检测处理过程FD-TX-ESR-II 电子顺磁共振仪的结构如图3所示,它是由电子顺磁共振仪主机、磁铁、示波器、微波系统(包括微波源、隔离器、阻抗调配器、钮波导、直波导、可变短路器及检波器)构成的。
图 3 FD-TX-ESR-II 电子顺磁共振仪前面板仪器的主机结构如图3所示,各部分的功能如下:1. 直流输出:此输出端将会输出0-600mA 的电流,通过直流调节电位器来改变输出电流的大小。
2. 扫描输出:此输出端将会输出0-1000mA 的交流电流,其大小由扫描调节电FD-TX-ESR-I 电子顺磁共振仪电源直流调节 扫描调节扫频开关 X 轴幅度 X 轴相直流输出 扫描输出 X-out 信号 in out 上海复旦天欣科教仪器有限公司 onoff 图 3 FD-TX-ESR-II 电子顺磁共振仪构成图位器来改变。
3.扫频开关:用来改变扫描信号的频率。
4.IN与OUT:此两个接头是一组放大器的输入和输出端,放大倍数为10倍,IN端为放大器的输入端,OUT端为放大器的输出端。
5.X-out:此输出端为一组正玄波的输出端,X轴幅度为正玄波的幅度调节电位器,X轴相位为正玄波的相位调节电位器。
6.仪器后面板上的五芯航空头为微波源的输入端。
仪器使用方法(1)连线方法:a、通过连接线将主机上的“扫描输出”端接到磁铁的一端。
b、将主机上的“直流输出”端连接在磁铁的另一端。
c、通过Q9连接线将检波器的输出连到示波器上。
d、将微波源与主机相连。
(2)微波系统的连接:a、将微波源上的连接线连到主机后面板上的5芯插座上。
b、将微波源与隔离器相接(按箭头方向联接)。
c、将隔离器的另一端与环型器中的(I)端相连。
d、将扭波导与环型器中的(II)端相接。
e、将环型器中的(III)端与检波器相接。
f、将扭波导的另一端与直波导的一端连接。
g、将直波导的另一端与短路活塞相接。
其装配图如下所示:1-微波源2-隔离器3-环型器 4 -扭波导5-直波导6-样品7-短路活塞8-检波器(3)仪器的调试:a、将DPPH样品插在直波导的小孔中。
b、打开电源,将示波器的输入通道打在直流(DC)档上。
c、调节检波器中的旋钮,使直流(DC)信号输出最大。
d、调节端路活塞,再使直流(DC)信号输出最小。
e、将示波器的输入通道打在交流(AC)档上,幅度为5mV档。
f、这时在示波器就可以观察到共振信号,但此时的信号不一定为最强,可以再小范围的调节短路活塞与检波器,也可以调节样品在磁场中的位置(样品在磁场中心处为最佳状态),使信号达到一个最佳的状态。
g、信号调出以后,关机,将阻抗匹配器接在环型器中的(II)端与扭波导中间,开机,通过调节阻抗匹配器上的旋钮,就可以观察到吸收或色散波形。
四. 实验内容与步骤DPPH 顺磁共振谱线的测量:a 、 先把三个支架放到适当的位置,再将微波系统放到支架上,调节支架的高低位置,使微波系统水平,最后把装有DPPH 样品(二苯基苦酸基联氨,分子式为5226256)()(HO H NC N H C )的试管放在微波系统的样品插孔中;b 、 将微波源的输出与主机后部微波源的电源接头相连,再将电子顺磁共振仪面板上的直流输出与磁铁上的一组线圈的输入相连,扫描输出与磁铁面板上的另一组线圈相连,最后将检波输出与示波器的输入端相连。
c 、 打开电源开关,将示波器调至交流档,将扫描调节旋钮调到最大后往回转半圈,使扫描场最大,以便更容易找到共振信号,同时又不至于电流过大而损坏仪器,逐步调节直流调节旋钮,增大电流,增大稳恒磁场的强度直至观察到共振信号,调节检波器的短路活塞和直波导的短路活塞直至共振信号的振荡幅度最大。
调节直流调节电位器,使得输出信号等间距(10ms )。
d 、 取出样品。
利用数字特斯拉计测量样品所在处的磁感应强度。
在利用数字特斯拉计测量磁场前先进行校零。
测量过程中,特斯拉计探头垂直伸入放置样品的空腔,并保持探头与磁场垂直,缓慢旋转探头,观察特斯拉计读数的变化,取最大值为本次测量值。
反复测量三次,取平均值作为样品所在处的磁感应强度。
根据微波源频率9.37GHz 、测得的磁感应强度和共振条件式(6)计算DPPH 的g 因子。
e、重新将样品放回样品槽,将主机的X-out信号输入示波器的另一通道,将示波器的工作模式切换到X-Y合成模式,此时可观察到李萨如图形。
通过调节主机的X轴幅度和X轴相位旋钮改变实验参数,观察图形变化规律。
调节阻抗调配器上的两个旋钮,使示波器上依次出现吸收信号和色散信号,并绘制记录该信号。
共振吸收信号李萨如图形色散信号李萨如图形DPPH顺磁共振谱线的计算机记录:a、检波器的输出接到示波器上。
b、连接在主机扫描输出上的信号线换到锁相放大器上的电流输出端。
c、调节锁相放大器中的电流调节电位器,使输出到线圈上的电流约为80mA左右,将示波器的幅度调节在最灵敏档。
d、锁相放大器上的调制输出接在高频线圈(在谐振腔的两侧)的输入端。
e、调节锁相放大器上调制幅度为最大,输入/手调开关打在手调上,通过改变主机上的直流输出的大小,观察示波器,可以看到幅度为1-2mV左右的正弦波,如没有发现,可能是锁相放大器上的电流方向接反了,此调节过程需要很细心的去调节。
f、在示波器上出现正弦波后,将此信号送到锁相放大器上的IN端,再调节主机上的直流调节电位器,可以看到表针在中心点附近来回摆动。
g、把灵敏度开关打到最灵敏档(5mV)上,把积分时间开关打在最短时间(10ms)上,指针摆动的幅度最大,积分时间最短,信号看的最明显。
h、将锁相放大器上的输入/手调开关打在输入上,点击软件上的运行按钮,即可看出实验采样到的数据与图形。
i、实验数据采集完后,可对实验的数据及图形进行保存或打印。
通过调节积分时间和灵敏度及调节阻抗匹配器的调节旋钮,改变测量参数,观察吸收谱线的变化。
五.思考题1、ESR的基本原理是怎样的?2、在微波段ESR实验中,应怎样调节微波系统才能搜索到共振信号?为什么?六.参考资料[1] 吴思诚、王祖铨《近代物理实验Ⅰ》北京大学出版社[2] 杨福家《原子物理学》高等教育出版社[3] 王正行《近代物理学》北京大学出版社附录:FD-TX-PLL锁相放大器序言在ESR-I的基础上加锁相放大技术和计算机控制,从而提高信噪比和实验功能。