第二章_热力学第二定律
热力学第二定律
熵的定义(克劳修斯1865)
dS (
def
Q
T
)R
B
S S B S A (
A
Q
T
)R
式中 QR为可逆热, T 为可逆换热 QR时 体系的温度. 熵是状态函数,广度性质,单位J· K-1
二、不可逆循环过程与不可逆过程的热温 商
由卡诺定理可知,若体系作不可逆循环 T2 T1 Q2 Q1 Q2 Q1 > <0 T2 Q2 T2 T1 即对于任意不可逆循环过程有 ( Qi ) T <0 i
(2)真空膨胀时不可逆过程,所以假设同一 始终态的可逆过程,即为过程(1)
QR WR V2 P S体系 nRT ln nRT ln 1 19.14 J K 1 T T V1 P2 Q实 S环境 T环
实际过程真空膨胀Q实 0 S环境 0 S孤立 S体系 S环境 19.14 J K 1>0
H实 H1 H2 H3
H1 nCp,m,l T
H 2 H H3 nCp,m,s T
s l
P96,5
设计一个可逆相变,外压为标准压力下的相变 QR vap H S体 T T
实际过程是真空蒸发,所以W 0 由U Q +W Q实 U 实
第二章 热力学第二定律
2.1热力学第二定律
一、自发过程的共同特征 自发过程:无需外力,自动发生的过程 水,一般从高处流向低处 热,从高温物体传向低温物体 气体,由高压流向低压
实践告诉我们,自然界一切自发过程都有 确定的方向和限度
2、自发过程的共同特征 自发过程都是不可逆过程。所谓不 可逆性并不是不能逆向进行,而是要借 助外力的作用,但体系虽然完全复原, 但环境不能复原。
物理化学第2章 热力学第二定律
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
第二章热力学第二定律
第二章热力学第二定律§2.1热力学第二定律2.1.1 什么是热力学第二定律热力学第一定律指出能量在转化的过程中严格遵守守恒的原则,但并没有指出能量转化的方向。
例如温度不同的铁球相接触,两球进行热传递时,第一定律指出一个球放出的热量必等于另一个球吸收的热量,但并没有指出哪个球放热,哪个球吸热。
事实上我们总是看到温度高的球放热,温度低的球吸热。
其相反的过程是不可能发生的。
例如一石块从高处自由落下,其势能变为动能,动能在石块与地面发生撞击时变为热能被环境吸收。
第一定律指出石块失去的势能与环境得到的热能严格相等,但并未指出静止在地面的石块能否从环境中吸热使之变为等量的功将石块举起。
虽然这个过程并不违反第一定律,但是它是不能发生的。
例如在一个恒温槽中置一容器,容器内有一隔板,隔板两边一边是真空,另一边盛有一定量理想气体。
若将隔板上开一个孔,气体将自动充满整个容器。
第一定律指出气体初、末态的热力学能是严格相等的,但并未指出终态的气体能否通过隔板上的孔自动地从一边聚集到另一边。
这样的过程并不违反第一定律,事实上它也是不可能发生的。
无数事实说明能量在转化过程中不仅严格遵守守恒的原则,而且总是沿着一定的方向进行的。
这个方向就是热力学第二定律所揭示的能量转化的方向。
热力学第二定律是人类长期生产实践与科学研究的经验总结。
它是十九世纪人们对蒸汽机的应用进行深入研究过程中发现的。
1824年法国工程师卡诺分析了热机工作的基本过程,设想了一部理想热机(可逆热机),即卡诺热机,此热机的循环过程称为卡诺循环(§1.4.2)。
卡诺在当时的历史条件下曾经证明如下结论:“所有工作于两个温度一定的热源之间的热机,以可逆机的效率为最大。
”并推论出“可逆热机的效率与工作物质无关”。
这就是著名的卡诺定理及其推论。
卡诺定理提出的时候,热力学第一定律尚未建立,当时卡诺对这个定理的证明采用了错误的“热质说”。
十九世纪中叶在热力学第一定律建立后,人们重新研究卡诺的工作,发现尽管卡诺定理的证明是错误的,但卡诺定理是不能违背的。
第二章 热力学第二定律
p r ir B V A
δQir δQr ,故 dS > 又 dS = T T δQir δQr 将 dS = 与 dS > 合并, 合并, T T
得: d S
ir ≥ r
δQ T
第2定律的数学表达式 定律的数学表达式 T是环境还是系统温度? 是环境还是系统温度? 是环境还是系统温度
=C
n m
特点: 数学概率大;故体系自动 特点: >1, 大,数学概率大;故体系自动 , 从概率小的状态向概率大的状态移动, 从概率小的状态向概率大的状态移动,其逆过 程不可能自动实现. 程不可能自动实现.
二,规定熵
δQr nC p ,m = dT 定压下:dS = 定压下: T T
则: S = ∫T
T2
1
nC p ,m T
dT
T2 ln T1
理想气体: 理想气体: S
= nC
p ,m
δ 恒容可逆变温: ★ 恒容可逆变温: Qr = dUV
= nCV ,m dT
则: S = ∫T
T2
1
nC V ,m T
dT
理想气体: 理想气体: S
= nC V ,m
T2 ln T1
★可逆变T,p,V 可逆变 , ,
§4. 熵的物理意义和规定熵
一,熵的物理意义 理想气体等温混合熵变△ 理想气体等温混合熵变△mixS = - R∑nilnxi > 0 说明:混合后系统熵值大于混合前系统熵值; 说明:混合后系统熵值大于混合前系统熵值; 混合后: , 气体混在一起 不易区分,混乱; 气体混在一起, 混合后:A,B气体混在一起,不易区分,混乱; 混合前: , 气体分别放置 容易区分,有序; 气体分别放置, 混合前:A,B气体分别放置,容易区分,有序; 由教材中的例题可得: 由教材中的例题可得: 蒸发过程△ 例3.3 → 蒸发过程△S > 0,则同物质 Sg > Sl; , 升温过程△ 例3.5 → 升温过程△S > 0,则同物质 S高温>S低温; , 膨胀过程△ 例3.6 → 膨胀过程△S > 0,则同物质 S低压>S高压; , 结论: 结论:更混乱的状态熵值大于相对有序状态熵值
热力学第二定律
注意:
稳定单质的标准熵Som不为零,因为它们不是 绝对零度的完善晶体。
2.5熵变的计算和熵判据的应用
一. 物理过程中体系的熵变化
1824 年,法国工程师 N.L.S.Carnot (1796~1832) 设计了一个循环,以理想 气体为工作物质,从高温 T2热源吸收的热量Q2,一 部分通过理想热机用来对 外做功W,另一部分 热量 Q1放给低温T1热源。这种 循环称为卡诺循环。
高温热源 (T2)
Q2 W
Q1<0
(T1) 低温热源
程有可能自发发生。
23
自发过程:不需要环境作功就能自动发生 的过程。如,自发过程:热Q由高温物体低 温物体的传递; 非自发过程:电解水 需要环境作电功。
隔离系统中:实际发生的过程都是自发过程,熵有 自发增大的趋势。
平衡后,宏观的实际过程不再发生,熵不再继 续增加,即熵达到某个极大值。
3、环境熵变的计算
A
B
δ Qr T
0
可逆循环
可逆过程2
dS def δ Qr T
S——熵 。 是状态函数,是广度性质,SI单位 J·K-1 。
将上式积分,有
dS S2 S1
S2
S1
S
2 δ Qr 1T
这个熵变的计算式习惯上称为熵的定义
式,即熵的变化值可用可逆过程的热温
商值来衡量
20
不可逆循环过程,如图
B ir
Qir A δQr < 0
⒈ 单向性 ⒉ 具有做功的能力 ⒊ 有一定限度
章热力学第二定律
任意可逆循环热温商的加和等于零,即:
i
(
Qi Ti
)R
0
或
Q ( T )R
0
证明如下:(1)在如图所示的任意可逆
循环的曲线上取很靠近的PQ过程;
(2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线,
(3)在P,Q之间通过O点作等温可逆膨胀线VW,使两个 三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
则有
( i
Q T )IR,AB
A Q
( BT
)R
0
A B
(
Q T
)R
SA
SB
或
SB SA ( i
Q T
)IR,A
B
Q
SAB (
i
T )IR,AB 0
如AB为可逆过程
SAB (
i
Q T
)R,AB
0
Q
将两式合并得 Clausius 不等式:
SAB (
i
T )AB 0
上一内容 下一内容 回主目录
过程1:等温(Th ) 可逆膨胀由 p1V1 到 p V2 2 (A B)
U1 0
W1
V2 V1
P外 dV
V2 V1
RTh V
dV
RTh ln V2 V1
Qh W1
所作功如AB曲线下的面积所示。
上一内容 下一内容 回主目录
返回
2024/6/21
一、卡诺循环(Carnot cycle)
上一内容 下一内容 回主目录
第二章 热力学第二定律
2.9 变化的方向和平衡条件 2.10 G的计算示例 2.11 几个热力学函数间的关系 2.12 克拉贝龙方程 2.13 热力学第三定律与规定熵
第二章 热力学第二定律
从而使众多 小卡诺循环的总 效应与任意可逆 循环的封闭曲线 相当,所以任意 可逆循环的热温 商的加和等于零, 或它的环程积分 等于零。
对于任意可逆循环,可用一连串极小的卡诺循环来代替。 (Qi ) R (Qi ) R 0 0 因此, 或
TI
TI
任意可逆循环的热温商之和等于零。
若任意一循环由可逆过程Ⅰ (A→B ) 和Ⅱ( B → A )构成, 则必有
V2 R(T2 T1 ) ln V1 T2 T1 T1 W R 1 V Q2 T2 T2 RT2 ln 2 V1
ηR 只与T1 、 T2 有关;热机须工作于两热源( 以T 为标志 )间,
否则η =0 ;0 K 不可能达到,故η <1 。
第四节
卡诺定理: 1、ηR ≥ η任意 ;
∵
T2V2γ-1 = T1V3γ-1
T2V1γ-1 = T1V4 γ-1 ∴ (V2/ V1) = (V3 / V4 ) W = -(Q1 +Q2 ) = RT2 ln(V2/ V1) -RT1 ln (V3 / V4 )
= R(T2 - T1 ) ln(V2/ V1)
热机从高温(T2 ) 热源吸热Q2 ,作功为W ,向低温(T1 ) 热源 放热Q1 。则热机效率η 为
ΔS体=
第六节 B Q R
熵变的计算
ΔS环= -
A
Q实际 T环
T
一、等温过程中熵变的计算 (一) 理想气体等温过程 ΔU = 0 ,QR = Wmax
ΔS体=
例 1 ΔS体 ΔS环
pdV p1 V2 = nR ln = nR ln T p2 V1
( 无论可逆或不可逆过程,将体系始终态的 p V T 变化代入上式计算) 。故始终态相同, ΔS体相同。 ( 按实际过程计算Q实际 )
2第二章 热力学第二定律
/ S 2 定压
/ 1
/
三、理想气体PVT均变化过程的熵变
理想气体发生(T1V1---T2V2)状态变化:
V2 S nR ln nCv , mLn T 2 T1 V1
理想气体发生(T1P1-----T2P2)状态变化:
p1 S nR ln nCP , mLn T 2 T1 p2
13
第三节 熵的概念—熵与熵增原理
一、可逆循环过程与可逆过程的热温商: 对于一任意可逆循环过程:
p
a
2
QR Q R T T 0
再将循环分成途径a(12)和b(21), 有
1 QR 0 1 2 T a T b 2 QR
1
b
第二类永动机:从单一热源吸热使之完全变为功而不留 下任何影响的机器。
7
第二节 卡诺循环与卡诺定理 蒸气机发展史上研究热机效率的初衷, 只是寻求解决 热功转化的方向和限度问题。 热不能完全转化成功,如何在理论上求热功转化的 最大效率?
1824年Carnot N L S 提出热机效率有一个极限; Clausius R J E和Kelvin L 分别于1850年和1851年得出了热力学 第二定律.
4
第一节 自发过程的共同特征-不可逆性 • 要使环境也恢复原状,则取决于在不引起其他变化 的条件下,环境得到的热能否全部转变为功。
• 自发过程的不可逆性本质: • 功和热转化的不可逆性-----功可以全部转变为热, 但在不引起其他变化条件下,热不能全部转变为功。 要使热全部转变为功,必然引起其他变化(即一定 有一部分热传给温度较低的热源。 所以实际可能发 生的过程都必然是不可逆的.)
二、不可逆循环过程与不可逆过程的热温商
第二章 热力学第二定律(简明教程物理化学)
§2.1 热力学第二定律的经典表述
1. Clausius说法:不可能把热从低温物体传到高温物 体而不引起其它变化。 2. Kelvin & Plank说法:不可能从单一热源吸热使之 完全变为功而没有任何其它变化。 3.第二类永动机是不可能造成的。 第二类永动机乃是一种能够从单一热源吸热,并 将所吸收的热全部变为功而无其他影响的机器。 强调说明: 1. 第二类永动机是符合能量守恒原理的; 2. 热可以完全变为功,注意其限制条件; 3. 可以判断过程进行的方向。
T2
2.卡诺热机的效率只与热源温度有关,而与工作 介质无关。 卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。 单一热源:T1=T2, = 0,即热不能转化为功。
证明卡诺定理1:
反证法 假定I > R , 则|W’ | > | W |
高温热源T2
吸热Q2 吸热 Q 22 放热 Q
* 不同种理气 (或理想溶液)的等温混合过程,并 V 符合分体积定律,即 xB B
V总
1mol A,T,V
1mol B,T,V
n=nA + nB T, 2V
mix S R nB ln xB
B
二、定容或定压变温过程
定容
S
T2
T1
Qr
T
nCV ,m
T1
T2
若CV,m为常数
第二章 热力学第二定律
不可能把热从低温 物体传到高温物体, 而不引起其它变化
化学与材料科学学院
§2.1 自发过程的共同特征
自发过程:能够自动发生的过程。
经验说明:自然界中一切自发过程都是有方向和限度的。
如: 方向 热: 高温低温 电流:高电势低电势 气体:高压低压 钟摆:动能热
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
《物理化学》02章_热力学第二定律
V2 V4 nRT2 ln nRT1 ln V1 V3
V2 V4 nRT2 ln nRT1 ln V1 V3 W 热机效率: V2 Q2 nRT2 ln V1
BC:绝热可逆膨胀,T2 V2-1 = T1 V3-1 DA:绝热可逆压缩, T2 V1-1 = T1 V4-1 两式相除: V2 /V1 =V3 /V4
不违背第一定律的事情是否一定能成功?
例1: 1/2O2(g)+ H2(g) H2O(l)
r H m (298.15 K) =-286KJ.mol-1
加热不能使其反向进行 例2: OH-+ H+H2O(l) 极易进行
但最终[OH-][H+]=10-14mol2.dm-6 该反应不能进行到底
§2.1 自发过程的共同特征
一.自发过程的方向和限度
自发过程:在一定环境条件下,环境不做非体积功,系
统中自动发生的过程.反之,只有环境做非体积功才 能发生的过程为非自发过程.通常所说的”过程方 向” 既是指自发过程的方向. 举例: ①.气流:高压 低压
②.传热:高温
③.扩散:高浓度
低温
低浓度
④.反应:Zn+CuSO4
对微小变化
Q dS ( )R T
B
Q SB SA S ( )R A T
二.热力学第二定律的数学表达式
对两个热源间的不可逆 循环:热温商之和小于零. Q1 T1 Q2 T2
+
<0
对任意的不可逆 循环:ຫໍສະໝຸດ ∑δQ T1 ir
<0
对不可逆循环,A
ir
B
r
A
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
热力学第二定律
1、 气、液、固体的定p或定V的变T 过程
定压变温过程:由δQp=dH=nCp,mdT
得:S= 2 Qr T2 nC p,m dT ;
1T
T1 T
视C
为常
p,m
数
S
nC
p ,m n
T2 T1
(2-4-1)
定容变温过程:由δQV=dU=nCV,mdT
同理得:S
nCV ,mn
自发
S孤立 0 或 dS孤立 0平衡
(2-3-4) (2-3-5)
熵增加原理:系统经绝热过程由一状态到达另一状态, 熵值不减少;自发变化的结果,必使孤立系统的熵增加 (孤立系统中可以发生的实际过程都是自发过程)。
方向:孤立系统的熵增加
限度:孤立系统熵值达到最大——平衡态。
二、 熵增原理及平衡的熵判据
mix
S
SA nARn
S 1 yA
BnBnRARnny1VB AVAVnBRBnByRBnnyVBAV(B2V-4B-6)
∵yB < 1,∴ΔmixS > 0
结论:定T定p理气混 合过程系统熵增加
nA, V + nB, V 定温定容 nA+nB, V
AT
BT
BQir BQr S
AT
AT
得:S BQ
AT
或
dS
Q
T
不可逆 可逆
(2-3-3)
——热力学第二定律的数学表达式 依具体情况方向判据的形式
二、 熵增原理及平衡的熵判据
绝热过程,δQ=0,则有
S绝热 0
或
不可逆
dS绝热 0 可逆
物理化学 第二章 热力学第二定律
101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0
第二章热力学第二定律
第⼆章热⼒学第⼆定律第⼆章热⼒学第⼆定律引⾔⼀、热⼒学第⼀定律的局限性:凡是违背第⼀定律的过程⼀定不能实现,但是不违背第⼀定律的过程并不是都能⾃动实现的。
例如: 1.两块不同温度的铁相接触,究竟热从哪⼀块流向哪⼀块呢?按热⼒学第⼀定律,只要⼀块铁流出的热量等于另⼀块铁吸收的热量就可以了,但实际上,热必须温度从较⾼的⼀块流向温度较低的那块,最后两块温度相等,⾄于反过来的情况,热从较冷的⼀块流向热的⼀块,永远不会⾃动发⽣。
2.对于化学反应:以上化学反应计量⽅程告诉我们,在上述条件下,反应⽣成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ ,均未违反热⼒学第⼀定律,但热⼒学第⼀定律不能告诉我们,在上述条件下的混合物中,究竟是发⽣NO 2的分解反应,还是NO 2的⽣成反应?假定是⽣成NO 2的反应能⾃动进⾏,那么进⾏到什么程度呢?这些就是过程进⾏的⽅向和限度问题,第⼀定律⽆法解决,要由第⼆定律解决。
⼆、热⼒学第⼆定律的研究对象及其意义:1.研究对象:在指定条件下,过程⾃发进⾏的⽅向和限度:当条件改变后,⽅向和限度有何变化。
2.意义:过程⾃发进⾏的⽅向和限度是⽣产和科研中所关⼼和要解决的重要问题。
例如:在化⼯及制药⽣产中,不断提出新⼯艺,或使⽤新材料,或合成新药品这⼀类的科学研究课题,有的为了综合利⽤,减少环境污染,有的为了改善劳动条件不使⽤剧毒药品,……等。
这些⽅法能否成功?也就是在指定条件下,所需要的化学反应能否⾃动进⾏?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进⾏各种实验来解决这⼀问题,但若能事先通过计算作出正确判断,就可以⼤⼤节省⼈⼒,物⼒。
理论计算认为某条件下根本不可能进⾏的反应,就不要在该条件下去进⾏实验了。
NO(g)+12O 2(g)2(g)KJH m r 0.57298..=?KJ H m r 0.57298..-=?NO(g)+12O 2(g)NO 2(g)§2–1 ⾃发过程的共同特征⼀、⾃发过程举例:1.理想⽓体⾃由膨胀2.热量由⾼温物体传向低温物体3.锌投⼊硫酸铜溶液中发⽣置换反应:Zn + CnSO4→ Cu + ZnSO4⼆、⾃发过程的共同特征:由上述例⼦可以分析,所有⾃发变化是否可逆的问题,最终都可归结为“热能否全部转变为功⽽没有其他变化”这样⼀个问题。
热力学第二定律
第五节 熵(entropy)
一、熵的概念 据第一定律: I: ∆ UI=Qr +Wr II: ∆ UII=Qir +Wir Qr +Wr = Qir +Wir Qr–Qir=-(Wr –Wir )>0 Qr>Qir
等温过程: I:可逆
始态
终态
II:不可逆
除以T:
Qr > Qir
TT
1. 恒压变温过程:始态(P1,V1,T1)
终态(P1,V2,T2)
变温过程中 无相变
S
T2 δQr T T1
T2 T1
C pdT T
Cp
ln T2 T1
2. 恒容变温过程: 始态(P1,V1,T1)
终态(P2,V1,T2)
S
T2 Qr
T T1
T2 T1
CV dT T
CV
ln T2 T1
2244.8 300
7.48
J
K 1
100
S孤立=S系统+S环境=19.14-7.48=11.66 J K1 0
(2) S只决定于始终态,与过程无关, 所以 S系统 = 1914 JK1
由于 p外= 0,所以 Q = W = 0 , S环境= 0
S孤立=S系统+S环境=19.14 J K1 0
若T2>T1,则S >0,S高温>S低温
二、变温过程中熵变的计算
等容过程 等压过程
ΔS =
C T2
T1 v
dT T
ΔS =
T2 T1
C
p
dT T
S高温 >S低温
七、不可逆相变系统熵变的计算
∆S总=∆S体+∆S环境≧0
第二章 热力学第二定律
高温热源
Q1>0
(T1)
W<0
Q2<0 低温热源 (T2)
U= Q1 +W+ Q2 =0
def W Q1 Q2 Q1 Q1
图 热转化为功的限度
问题:能否 Q2 =0,– W = Q1 ,
=100 ?
2、卡诺循环 卡诺(Carnot)循环是一个特殊的循环过程,它是以理想气体为
§3—1 热力学第二定律
1、自发过程 系统中无需环境施加影响就可以自动进
行的过程称为自发过程(spontaneous process) 。 自发过程的共同特征:不可逆性 例如:热传递过程; 气体的膨胀过程; 化学反应过程; 水从高处流向低处; 溶液从高浓度向低浓度扩散。
• 在绝热条件下系统发生一个变化后系统
的熵值永不会减小,这个结论叫做熵增 原理(principle of entropy increasing)。 • 在绝热过程或孤立系统中熵永不减少。
根据熵增原理,对于绝热过程可以利用系统本
身熵变值的符号来判别过程的可逆性; 在孤立系统中可以用熵的增量来判断过程的自 发和平衡。
S
2
Q r
T
1
2
1
T2 C p , m dH dT T1 T T
S nC p , m ln
T2 T1
S (3 29.1 ln
300 )J K 1 25.1J K 1 400
• 由于等压热δQp与焓变dH相等,而dH与等压过程是否
可逆无关,即有δQp=dH=δQr, • 上式对理想气体的等压可逆过程和不可逆过程都是适 用的。
物理化学 第二章 热力学第二定律
卡诺定理的意义:
(1)引入了一个不等号 i r ,原则上解决了热机 效率的极限值问题。 (2)证实了热不能完全转化为功,因为T1 /T2 = 0 是 不可能的。
卡诺定理(1)的证明: i r 证明:反证法 假设: i 热机效率大于 r :
高温 T2
Q’2 Q2
i
W Q
' 2
r
上式的意义:系统由状态 A 到状态 B,S有唯一的值, 等于从 A 到B 可逆过程的热温商之和。
熵的特别提醒:
(1)熵(S)是状态函数;热温商(Qr/T)是与途径 相关的概念; (2)可逆过程热温商(Qr/T)不是熵(S) ;它只 是过程熵变(ΔS)的一种量度,一种测定方法; (3)熵(S)是广度性质,具有加和性;但 Sm 是强 度性质。
这个设计就相当于热从低温热源传到高温热源而 没有发生其它变化 ---违背热力学第二定律
因此 B A
卡诺定理(2)的证明:
2. 如果A带动B,使B倒转:
高温 T2
Q’2
Q2
假设A可逆热机效率大于B
A
W
Q
' 2
B
W
Q2
A®
W W
' Q2 Q2
B®
Q2 W
Q ’2 W
卡诺定理(2)的证明:
证明: 1. 如果B带动A,使A倒转:
高温T2
Q’2
Q2
假设B可逆热机效率大于A
B
W Q
' 2
A
W Q2
B®
W W
' Q2 Q2
A®
Q2 W
Q ’2 W
低温T1
循环净结果为: 1. 两热机均恢复原态 2. 高温热源得热: Q2 Q2 3. 低温热源失热:
02热力学第二定律
Q
Q
四、热力学第二定律数学表达式
Clausius不等式:S 意义:
δQi δQ 或dS Ti T
(1)在热力学可逆过程中, dS δQR
注意: (1) Q是实际过程热,可逆过程与不可逆过程中的Q 不同。 (2)式中的T是环境的温度,可逆过程中, T体系 T环境
T (2)在热力学不可逆过程中, dS > δQIR T (3) dS < δQ 的过程不存在。 T
(3)熵S是广度性质的状态函数,不守恒。
五.熵增加原理
δQi δQ Clausius不等式:S 或dS Ti T 1.绝热过程
δQ 0
S (绝热) 0或dS (绝热) 0 结论:绝热过程中,封闭体系的熵永不减少。 如果过程是可逆的,则熵的数值不变;如果过程 是不可逆的,则熵的数值增加。 思考题:熵变是否与过程有关?
气体流动 溶质扩散
P高P低 c高c低
两处P相等 两处C相等
压力差 浓度差
自发过程的逆过程不能自动发生,但可由环境来完成。
二、热力学第二定律的经典表述
1.开尔文说法:
不可能从单一热源取热使之全部变为功而不产生其它 的变化。
2.克劳修斯说法:
不可能把热从低温物体传到高温物体而不发生其它 变化。
3.Ostwald说法:
T T相
T相
T
例1:1mol金属银在定容下由273.2K加热到303.2K,求 ΔS。 CV ,m 24.48J K -1 mol-1 。 已知在该温度区间银的 解:
T2 303.2 S nCV,m ln 1 24.48 ln T1 273.2 2.531(J K -1 )
绝热可逆过程和绝热不可逆过程所到达的最终状态是不同 的,因而熵也不同,因而不能错误地理解为熵变与过程有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
上午4时52分18秒
Qi Ti
) IR 0
Clausius 不等式
设有一个循环, A B 为不可逆过程, B 为可逆过程,整个循环为不可逆循环。 则有
(
i
A
Q T
) IR ,A B
A
(
B
Q T
)R 0 Q T ) IR ,A B
A
(
B
Q T
)R S A S B
上午4时52分18秒
熵增加原理
对于绝热体系,
Q 0
,所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不 可逆过程。熵增加原理可表述为:在绝热条件下, 趋向于平衡的过程使体系的熵增加。或者说在绝 热条件下,不可能发生熵减少的过程。
如果是一个孤立体系,环境与体系间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个孤立体系的熵永不减少。
任意可逆过程
熵的定义
Clausius根据可逆过程的热温商值决定于始终态 而与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位为: K 1 J 设始、终态A,B的熵分别为 S 和 S ,则:
SB SA S
B
(
A
Q T
A
B
)R
或
S
(
i
第二章
不可能把热从低温 物体传到高温物体, 而不引起其它变化
上午4时52分18秒
第二章
2.1
热力学第二定律
自发变化的共同特征
2.2 2.3
2.4 2.5 2.6 2.7
热力学第二定律 卡诺循环与卡诺定理
熵的概念 克劳修斯不等式与熵增加原理 熵变的计算 热力学第三定律
2.8
热力学第二定律的本质和熵的统计意义
从而使众多小卡诺循环的总效应与任意可逆循 环的封闭曲线相当,所以任意可逆循环的热温商的 加和等于零,或它的环程积分等于零。
上午4时52分18秒
任意可逆循环的热温商
上午4时52分18秒
熵的引出
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
(2)解决了热机效率的极限值问题。
上午4时52分18秒
2.4 熵的概念
•从卡诺循环得到的结论
•任意可逆循环的热温商
•熵的引出 •熵的定义
上午4时52分18秒
从卡诺循环得到的结论
W Qh
1 Qc Qh 1
Qh Qc Qh
Tc Th
Th Tc Th
Qc Tc
Qh Th
'
c
c
'
h
h
Qc ' W
Tc Th Tc
式中W表示环境对体系所作的功。
上午4时52分18秒
卡诺定理
卡诺定理:所有工作于同温热源和同温冷源之间的热 机,其效率都不能超过可逆机,即可逆机的效率最大。 卡诺定理推论:所有工作于同温热源与同温冷源之间 的可逆机,其热机效率都相等,即与热机的工作物质 无关。 卡诺定理的意义: (1)引入了一个不等号 I R ,原则上解决了化学 反应的方向问题;
h h c c
W Qh
Qh Qc Qh
Th
(Q c 0 )
)
Qh
W
或
n R ( T h T c ) ln ( n R T h ln ( V2 V1
V2 V1
热机
Th Tc Th
1
Tc Th
Tc
Qc
)
1
上午4时52分18秒
低温存储器 卡诺循环
冷冻系数
如果将卡诺机倒开,就变成了致冷机.这时环境 对体系做功W,体系从低温 ( T ) 热源吸热 Q ,而放 给高温 ( T ) 热源 Q 的热量,将所吸的热与所作的 功之比值称为冷冻系数,用 表示。
Clausius 不等式
S A B (
i
Q T
)A B 0
Q 是实际过程的热效应,T是环境温度。若是不
可逆过程,用“>”号,可逆过程用“=”号,这 时环境与体系温度相同。
对于微小变化: 或
dS Q T Q 0
dS
T
这些都称为 Clausius 不等式,也可作为热力 学第二定律的数学表达式。
过程1:等温(T ) 可逆膨胀由 p V 到 p
h
1 1 2
V 2 ( A B)
U 1 0
W 1 n R T h ln V2 V1
Q h W 1
所作功如AB曲线下的面积所示。
上午4时52分18秒
卡诺循环(Carnot cycle)
上午4时52分18秒
卡诺循环(Carnot cycle)
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。
上午4时52分18秒
2.3 卡诺循环与卡诺定理
•卡诺循环 •热机效率 •冷冻系数 •卡诺定理
上午4时52分18秒
卡诺循环(Carnot cycle)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设计 了一个循环,以理想气体为
ABCD曲线所围面积为 热机所作的功。
上午4时52分18秒
卡诺循环(Carnot cycle)
上午4时52分18秒
卡诺循环(Carnot cycle)
•根据绝热可逆过程方程式 过程2: T h V 2
1
T cV 3
1Leabharlann 相除得V2 V1
V3 V4
过程4: T h V 1 1 T cV 4 1
Qi Ti
)R
Q T )R
S
(
i
Qi Ti
)R 0
对微小变化
dS (
这几个熵变的计算式习惯上称为熵的定义式, 即熵的变化值可用可逆过程的热温商值来衡量。
上午4时52分18秒
2.5 Clausius 不等式与熵增加原理
•Clausius 不等式
•熵增加原理
•Clausius 不等式的意义
上午4时52分18秒
任意可逆循环的热温商
p
P R V T
O
PVO和OWQ的面积相等
Q
W
MXO’和O’NY的面积相等
X
N
M
O'
S
Y
U
任意可逆循环
上午4时52分18秒
V
任意可逆循环的热温商
用相同的方法把任意可逆 循环分成许多首尾连接的小卡 诺循环,前一个循环的等温可 逆膨胀线就是下一个循环的绝 热可逆压缩线,如图所示的虚 线部分,这样两个过程的功恰 好抵消。
Th
高温存储器
Qh
工作物质,从高温 (T )热源吸
h
热机
Qc
W
收 Q 的热量,一部分通过理
h
想热机用来对外做功W,另一 部分 Q 的热量放给低温 (T ) 热
c
c
Tc
源。这种循环称为卡诺循环。
上午4时52分18秒
低温存储器
卡诺循环
卡诺循环(Carnot cycle)
1mol 理想气体的卡诺循环在pV图上可以分为四步:
所以
W
1
W 3 n R T h ln
V2 V1
n R T c ln
V4 V3
n R (T h T c ) ln
上午4时52分18秒
V2 V1
热机效率(efficiency of the engine )
任何热机从高温 ( T ) 热源吸热 Q ,一部分转化 为功W,另一部分 Q 传给低温 ( T ) 热源.将热机所作 的功与所吸的热之比值称为热机效率,或称为热机 转换系数,用 表示。 恒小于1。 高温存储器
上午4时52分18秒
Clausius 不等式的意义
Clsusius 不等式引进的不等号,在热力学上可 以作为变化方向与限度的判据。
dS
Q T
“>” 号为不可逆过程 “=” 号为可逆过程 “>” 号为不可逆、自发过程 “=” 号为处于平衡状态
d S iso 0
因为隔离体系中一旦发生一个不可逆过程,则 一定是自发过程。
过程4:绝热可逆压缩由
p 4V 4 Tc
到
p 1V 1T h ( D A )
Q4 0
W4 U 4
Th Tc
C V ,m d T
环境对体系所作的功 如DA曲线下的面积所示。
上午4时52分18秒
卡诺循环(Carnot cycle)
上午4时52分18秒
卡诺循环(Carnot cycle)
上午4时52分18秒
第二章
2.9 2.10 2.11 2.12
热力学第二定律
亥姆霍兹自由能和吉布斯自由能 G的计算示例 几个热力学函数间的关系 温度和压力对吉布斯自由能的影响
2.13
克拉贝龙方程
上午4时52分18秒
2.1
自发变化的共同特征
自发变化 某种变化有自动发生的趋势,一旦发生就无 需借助外力,可以自动进行,这种变化称为自发变化。 自发变化的共同特征—不可逆性 任何自发变化的逆 过程是不能自动进行的。例如: (1) 焦耳热功当量中功自动转变成热; (2) 气体向真空膨胀; (3) 热量从高温物体传入低温物体; (4) 浓度不等的溶液混合均匀; (5) 锌片与硫酸铜的置换反应等, 它们的逆过程都不能自动进行。当借助外力,体系恢 复原状后,会给环境留下不可磨灭的影响。