太原市数学中考《第四章整式的乘除》知识点聚焦

合集下载

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

整式的乘除知识点

整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。

整式的除法运算是指对一个整式除以另一个整式的运算。

整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。

一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。

例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。

例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。

例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。

例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。

例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。

例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。

这个性质可以简化计算,使得整式的乘法更加灵活。

2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。

这个性质可以改变运算次序,简化计算过程。

3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。

整式乘除知识点总结

整式乘除知识点总结

整式乘除知识点总结为了让大家更好的迎接中考,那么,整式的知识点是必不可少的。

下面是小编与大家分享的整式乘除知识点总结,欢迎大家参考借鉴!整式乘除知识点总结(一)1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到整式乘除知识点总结(二)单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:a)积的系数等于各因式系数积,先确定符号,再计算绝对值。

整式的乘除知识点归纳

整式的乘除知识点归纳

整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m m n a a a )()(==如:23326)4()4(4== 已知:23a =,326b =,求3102a b +的值;7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

整式乘除知识点总结归纳

整式乘除知识点总结归纳

整式乘除知识点总结归纳一、整式的基本定义1. 整式的定义:整式是由多项式相加(减)得到的式子。

多项式是一个或多个单项式的和。

整式可以包含有限个数的变量,并且变量的次数为非负整数。

2. 整式的分类:整式可以根据变量的次数和系数的种类进行分类,分为一元整式和多元整式;再细分为单项式、多项式和混合式。

二、整式的乘法整式的乘法是代数学中的基本运算之一,它涉及到多项式之间的相乘。

在进行整式的乘法时,主要需要掌握以下几个要点:1. 单项式相乘:同底数的单项式相乘,指数相加;不同底数的单项式相乘,底数相乘,指数相加。

2. 多项式相乘:多项式相乘时,需要用分配律(乘法分配律)进行展开,然后对每一对单项式进行乘法运算。

3. 多项式的乘法规则:多项式相乘的规则与单项式相乘的规则一致,同底数指数相加,底数相乘。

需要注意的是,展开乘法时,需要对每一对单项式进行乘法运算,并将得到的结果进行合并。

例题:(1)计算:(3x+4y)*(2x-5y)解:按照乘法分配律,展开得到:6x^2-15xy+8xy-20y^2合并同类项,得到最终结果:6x^2-7xy-20y^2三、整式的除法整式的除法是代数学中的难点之一,它涉及到多项式之间的相除。

在进行整式的除法时,主要需要掌握以下几个要点:1. 用辅助线将被除式和除数进行排列,然后进行长除法计算。

2. 长除法计算过程:(1)确定被除式中的最高次项,选择一个除数,使得除数的最高次项与被除式中的最高次项相同。

(2)将除数乘以一个常数倍数,使得乘积的最高次项与被除式中最高次项的系数相同。

(3)将得到的乘积与被除式相减,得到一个新的多项式。

(4)重复以上步骤,直至新的多项式的次数小于除数的次数。

(5)最终得到商式和余数。

例题:(2x^2+7xy-3y^2)÷(x-2y)解:按照长除法步骤,得到商式和余数为:2x+11y-5 和 -21y+12所以,商式为2x+11y-5,余式为-21y+12。

初中数学整式的乘除与因式分解知识点考点梳理

初中数学整式的乘除与因式分解知识点考点梳理

初中数学整式的乘除与因式分解知识点考点梳理一、整式的乘法整式的乘法是指对两个或多个整式进行乘法运算。

整式乘法主要包括常数与整式相乘、整式与整式相乘和整式与多项式相乘。

1.常数与整式相乘:用一个常数乘以一个整式,只要将该整式的每一项乘以该常数即可。

2.整式与整式相乘:对于两个整式相乘,可以使用分配律和合并同类项的方法来进行乘法。

3.整式与多项式相乘:整式与多项式相乘时,要将整式中的每一项分别与多项式相乘,然后将所得的乘积合并同类项。

二、整式的除法整式的除法是指对一个整式除以另一个整式的操作。

整式的除法主要涉及到多项式的除法和多项式的带余除法。

1.多项式的除法:多项式的除法要求被除式和除式都是多项式。

多项式的除法可以使用长除法的方法,将被除式从左到右每一项与除式进行相除,然后将所得商依次写下。

2.多项式的带余除法:多项式的带余除法是对多项式进行除法运算时同时求出商和余数。

在多项式的带余除法中,我们要先根据需要进行合并同类项或补零操作,然后按正常的多项式除法进行运算。

三、因式分解的基本概念因式分解是将一个整式写成多个整式的乘积的过程,这些被乘积的整式称为因式。

因式分解是整式运算中的重要部分,它在解决实际问题和简化计算中起到了重要的作用。

四、因式分解的常用方法1.提取公因式:提取公因式是指将多项式中多个项的公共因子提取出来。

提取公因式的方法是将多项式中每一项的各个因子进行相应的整理,找出它们的最大公因式。

2.公式法:公式法是指将一些特定的整式的乘积进行因式分解。

例如,平方差公式、差平方公式和完全平方公式等,都是常用的公式法。

3.组合因式法:组合因式法是根据多项式的特点,将多项式进行适当的组合,然后找出其因式。

组合因式法是一个灵活运用的方法,可以根据需要进行不同形式的组合。

五、因式分解的应用因式分解在数学中有广泛的应用。

它可以帮助我们解决实际问题、简化计算和求解方程等。

1.解决实际问题:通过因式分解,我们可以将实际问题转化为求解因式的问题,从而帮助我们更好地理解和解决实际问题。

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳整式是指由字母和常数经过加、减、乘、除运算得到的代数式。

乘除整式的运算及因式分解是代数学中非常基础和重要的知识点,下面将对乘除整式及因式分解的相关知识进行归纳。

一、乘法运算乘法运算是整式运算中最基本的运算。

在乘法运算中,有以下几个重要的法则:1.乘法交换律:a*b=b*a2.乘法结合律:(a*b)*c=a*(b*c)3.分配律:a*(b+c)=a*b+a*c4.单项式相乘法则:单项式相乘时,将各个单项式的系数相乘,同类项的指数相加。

例子:(2x^2)(3x^3)=2*3*x^2*x^3=6x^(2+3)=6x^5二、除法运算除法运算是整式运算中的一种重要运算。

除法运算可分为两种情况:1.恒等除法:当被除式为0时,整式除以0是没有意义的。

即0除以0没有定义。

2.非恒等除法:非零整式除以非零整式时,被除式乘以除数的倒数。

例子:(4x^4)/(2x^2)=4/2*x^4/x^2=2x^(4-2)=2x^2三、因式分解因式分解是指将一个整式表示为几个其它整式相乘的结果,称这些整式为原式的因式。

1.提取公因式:将一个整式的公因式提取出来,得到一个公因式和一个把原式除以公因式的商。

例子:8x^3+12x^2=4x^2(2x+3)2.根据乘法结合律和分配律,将每一个单项式的因式分别提出来。

例子:3xy + 9x + 6y + 18 = 3(x + 3) + 6(y + 3) = 3(x + 3 +2(y + 3)) = 3(x + 2y + 9)3.因式分解中,根据不同的整式形式,可以采用不同的方法进行因式分解。

常见的因式分解方法有:(1)一元二次整式的因式分解:对形如ax^2 + bx + c的一元二次整式,可以使用因式分解公式 (ax + m)(cx + n)进行分解,其中m、n分别是满足m*n=ac的两个数。

例子:x^2-5x+6=(x-2)(x-3)(2)立方差公式:对形如a^3 - b^3的整式,可以使用立方差公式 (a - b)(a^2 + ab + b^2)进行分解。

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。

下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。

将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。

例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。

2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。

将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。

然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。

例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。

然后将乘积减去被除式,得到0。

所以结果为2x + 3。

3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。

例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。

这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。

《整式的乘除》全章复习与巩固(基础)知识讲解

《整式的乘除》全章复习与巩固(基础)知识讲解

乐博思
《整式的乘除》全章复习与巩固(基础)
责编:张强
【学习目标】
1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、
多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;
2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行
乘法运算;
3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法
公式简化运算;
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:
(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).
同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a
-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.
要点二、整式的乘法和除法
1.单项式乘以单项式
单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有。

整式的乘除与因式分解基本知识点

整式的乘除与因式分解基本知识点

&单项式与多项式相乘的乘法法则 :单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的整式的乘除与因式分解基本知识点、整式的乘除:合并同类项:把多项式中的同类项合并成一项,叫做合并同类项3x 2y -2xy + xy 2 -4x 2y +2x 3 +10xy-2x 3 =同底数幕的乘法法则:a m - a n =a m+n (m, n 是正整数).例如:a 3a积的乘方的法则:(a b ) m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘5、同底数幕的除法法则:a m + a n =a m-n (a M 0, m n 都是正整数,并且同底数幕相除,底数不变,指数相减.规定:a 0 =1 (a 工0) 例如:a 3 rn a =6、单项式乘法法则单项式与单项式相乘, 把它们的系数相乘、 相同字母的幕分别相加,因式。

7、单项式除法法则单项式相除,把系数与同底数幕分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数 作为商的一个因式.例如:3a - a =2 2 ;a +a =1、 2、 同底数幕相乘, 底数不变,指数相加3、 幕的乘方法则 :(a m )n =a mn(m ,n 是正整数).幕的乘方,底数不变,指数相乘 例如:(a 2)3;(x 5)2 = ;(a 4)3-(a 3)。

4、 例如:(ab )3 =;(-2a 2b)3 = ;(—5a 3b 2)2 = 其余字母连同它的指数不变, 作为积的2x ”3y(―2x 2y)(5xy 2) (3xy)2 <-2xy 2) , 2,\3 / 2,\2 (—a b) (a b)24x 2 y 斗(一 6xy ) (6X108 片(3"05)积相加.9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. (8a 2 -4abF( -4a)2a 2c--b 2C L - c2 丿211、整式乘法的平方差公式 :(a+b )( a-b )= a 2-b 2. 两个数的和与这两个数的差的积,等于这两个数的平方差(-3 + x)(-3-x) =2 2 2 2 2 212、整式乘法的完全平方公式 :(a+b) =a +2ab+b , (a-b) =a -2 ab+b .两数和(或差)的平方,等于它们的平方和,加 (或减)它们的积的2倍.例如:(2a+5b 2 =(-ab +22 =二、因式分解:m(a +b +c)2x(—2x-3y +5) -3ab(5a - ab + 2b 2)(X + 2)(x-6)(2x -3y)(x -2y +1) (a + b^a 2 -ab+ b 2) (6 xy + 5 X 户 X ; (20a 4 b- 45a 2b ^5a 2 b 例如:(4a — 1) (4a+1)= (3a — 2b) (2b+3a)=1、提公共因式法(1 )、如果一个多项式的各项含有公因式 ,那么就可以把这个公因式提出来 ,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法女0:ab + ac = a (b+ c)(2)、概念内涵:① 因式分解的最后结果应当是“积”② 公因式可能是单项式,也可能是多项式;③提公因式法的理论依据是乘法对加法的分配律 ,即:ma + mb-mc=m(a+ b-c)练习2、公式法.:3、分组分解法:如: am +a n +bm +b n = a(m + n) +b(m + n) = (a + b)(m + n)(2)、概念内涵:分组分解法的关键是如何分组 ,要尝试通过分组后是否有公因式可提 ,并且可继续分解,分组后是否可利用 4 xy - yX 2 +x 3 2 " 3 , + 12x +4x m(a -1) + n(a — 1)(1 )、平方差公式: a 2 - b 2 = (a + b)(a - b)x 2 -1 4a 2 —9b 2 16x 2 -(y + z)2 (a+2b)2 -(2a-b)2(2)、完全平方公式: a 2 +2ab +b 2 = (a + b)2a 2 - 2ab + b 2 = (a - b)2 m 2 -4m +49x 2 +6xy + y 2 16x 2 +24x + 9(a + b)2 -12(a + b) + 36公式法继续分解因式.(3)、注意:分组时要注意符号的变化4、“十字相乘法”:即式子 x +(p+q)x+pq 的因式分解.X +(p+q)x+ pq=(x+ p)(x+q).有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法, 把二次三项式进行因式分解,这种方法叫十字相乘法。

《整式的乘除》全章复习与巩固(学生)知识讲解

《整式的乘除》全章复习与巩固(学生)知识讲解

《整式的乘除》全章复习与巩固要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.6.负指数幂:1n n a a-=(a ≠0,n 是正整数). 要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算 例1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+-.举一反三:当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值.例2、已知空气的单位体积质量是0.001239g/cm 3,一个体积是480m 3的房间内的空气质量是多少?(保留3个有效数字)举一反三:计算:(1)73(310)(210)-⨯⨯⨯;(2)423(210)(510)--⨯⨯⨯;(3)62(610)(310)-⨯÷⨯;(4)2332(210)(410)---⨯÷⨯.类型二、整式的乘除法运算例3、解下列方程.(1)2(1)(25)=12x x x x ---; (2)3(7)=18(315)x x x x ---例4、 “若m na a =(a >0且a≠1,m 、n 是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果9273x =,求x 的值;(2)如果528162x x ÷⨯=,求x 的值;(3)如果22383515x x x ++-⨯=,求x 的值.举一反三:(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值.(3)已知23m =,24n =,求322m n -的值.类型三、乘法公式例5、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?举一反三:计算:(1)()225m -+; (2)()()()2339a a a +-+例6、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +。

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳整式是由常数、变量及它们的积和和差经过有限次加、减、乘运算得到的式子。

整式有不同的运算法则,包括乘法、除法和因式分解。

以下是整式的乘除与因式分解的知识点归纳:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

在整式相乘时,需注意以下几点:-两个或多个常数相乘,结果仍是常数;-两个或多个同类项相乘,结果是它们的系数相乘,指数相加的同类项;-不同类项相乘时,按照乘法交换律和乘法结合律可以调整次序、合并同类项;-乘法运算中可以运用分配率,将一个整式乘以一个括号内的整式,再将结果分别与括号内的各项相乘,最后合并同类项得出结果。

2.整式的除法:整式的除法是指将一个整式除以另一个整式的运算。

在整式相除时,需要注意以下几点:-除法的定义:对于两个整式f(x)和g(x),若存在整式q(x)和r(x),使得f(x)=q(x)·g(x)+r(x),且r(x)是0或次数低于g(x)的整式,则称g(x)是f(x)的除式,q(x)是商式,r(x)是余式;-除法的步骤:进行长除法运算,从被除式中选择一个最高次项与除式的最高次项相除,得到商式的最高次项;-对除式乘以商式后减去得到的结果,继续进行除法计算,重复以上步骤;-最后得到的商式即为整式的商,最后得到的余式即为整式的余式。

3.整式的因式分解:因式分解是指将一个整式拆分成多个整式的乘积。

在进行因式分解时,需要注意以下几点:-提取公因式:当一个整式的各个项都有相同的因子时,可以提取出该因子作为公因式;-分解差的平方:对于形如a^2-b^2的差的平方,可以分解成(a+b)(a-b)的乘积;-分解一些特殊形式的整式,如完全平方差、完全立方和差、完全立方和等;-假设原式可分解成两个较简单的整式,然后根据求解思路进行分解。

整式的乘除运算和因式分解是数学中重要的操作,有广泛的应用。

在代数方程求解、多项式计算、消元法等多个数学领域中,都需要运用到整式的乘除与因式分解的知识。

整式的乘除知识点及题型复习

整式的乘除知识点及题型复习

整式的乘除知识点及题型复习整式的乘除是初中数学中的重要内容,它不仅是后续学习分式、二次根式等知识的基础,也在实际生活中有着广泛的应用。

接下来,我们将对整式的乘除相关知识点及常见题型进行详细的复习。

一、整式乘法的知识点1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。

即:$a^m×a^n =a^{m+n}$($m$、$n$都是正整数)例如:$2^3×2^4 = 2^{3+4} = 2^7$2、幂的乘方幂的乘方,底数不变,指数相乘。

即:$(a^m)^n = a^{mn}$($m$、$n$都是正整数)例如:$(2^3)^4 = 2^{3×4} = 2^{12}$3、积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即:$(ab)^n = a^n b^n$($n$为正整数)例如:$(2×3)^4 = 2^4×3^4$4、单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:$3x^2y×(-2xy^3) = 3×(-2)×(x^2×x)×(y×y^3) =-6x^3y^4$5、单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

例如:$2x(3x^2 5x + 1) = 2x×3x^2 2x×5x + 2x×1 = 6x^3 10x^2 + 2x$6、多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:$(x + 2)(x 3) = x×x + x×(-3) + 2×x + 2×(-3) =x^2 3x + 2x 6 = x^2 x 6$二、整式除法的知识点1、同底数幂的除法同底数幂相除,底数不变,指数相减。

《整式的乘除》全章复习与巩固(基础)知识讲解

《整式的乘除》全章复习与巩固(基础)知识讲解

《整式的乘除》全章复习与巩固(基础)责编:赵炜【学习目标】1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算; 【知识网络】【要点梳理】要点一、幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (mn ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, mn ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.6.负指数幂:1nn aa-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁. 要点二、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++ 要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+ (3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+-【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘. 【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯.(2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+-6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别. 举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭.2、已知空气的单位体积质量是0.001239g/cm 3,一个体积是480m 3的房间内的空气质量是多少?(保留3个有效数字)【答案与解析】解: ∵ 36383480m 48010cm 4.8010cm =⨯=⨯,∴ 83850.001239 4.810 1.23910 4.810 5.947210(g)-⨯⨯=⨯⨯⨯=⨯ 25.947210(kg)=⨯≈25.9510(kg)⨯. 【总结升华】当数据太大或太小时,可逐步计算,力求使计算准确无误. 举一反三:【变式】计算:(1)73(310)(210)-⨯⨯⨯;(2)423(210)(510)--⨯⨯⨯;(3)62(610)(310)-⨯÷⨯;(4)2332(210)(410)---⨯÷⨯.【答案】解:(1)原式734(32)(1010)610--=⨯⨯⨯=⨯;(2)原式838311(410)(510)(45)(1010)2010-----=⨯⨯⨯=⨯⨯⨯=⨯10210-=⨯;(3)原式6(2)8(63)10210--=÷⨯=⨯; (4)原式66121018101012810 1.281016---⎛⎫=⨯÷⨯=⨯=⨯⎪⎝⎭. 类型二、整式的乘除法运算3、解下列方程.(1)2(1)(25)=12x x x x --- (2)3(7)=18(315)x x x x --- 【答案与解析】解:(1)222225=12x x x x --+,3=12x ,=4x .(2)22213=18315x x x x --+,6=18x ,=3x .【总结升华】利用乘法法则进行去括号、合并同类项,按照解一元一次方程的方法求解.4、(2015春•扬州)“若mna a =(a >0且a≠1,m 、n 是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行! (1)如果9273x=,求x 的值; (2)如果528162xx÷=,求x 的值; (3)如果22383515x x x ++-=,求x 的值.【思路点拨】(1)把等号左边的式子利用幂的乘方转化为以3为底数的幂,根据等式的左边=右边,即可求解.(2)把等号左边的式子利用幂的乘方以及同底数的幂的乘法法则转化为以2为底数的幂,则对应的指数相等,即可求解;(3)把等号左边的式子利用积的乘方的逆运用转化为以15为底数的幂,则对应的指数相等,即可求解. 【答案与解析】 解:(1)()33927333xxx ===,∴3x =9,解得:x =3.(2)2816x x÷=()()34222xx÷=34134522222x x x x -+÷==,∴1﹣3x +4x =5, 解得:x =4. (3)()22223835351515x x x x x ++++-=⨯==,∴x +2=3x ﹣8, 解得:x =5.【总结升华】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方法则. 举一反三: 【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a=,1105b=,求293a b÷的值. (3)已知23m=,24n=,求322m n-的值.【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m--=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a=.由已知1105b=,得211025b=. ∴ 221101040025ab ÷=÷,即2241010a b-=.∴ 224a b -= ∴ 22222493333381aba b a b -÷=÷===.(3)由已知23m=,得3227m=.由已知24n =,得2216n =. ∴ 32322722216m nm n -=÷=. 类型三、乘法公式5、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么? 【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,。

初二数学上册第四章知识总结:整式的乘除与因式分解

初二数学上册第四章知识总结:整式的乘除与因式分解

初二数学上册第四章知识总结:整式的乘除与因式分解一.定义1.整式乘法(1).am·an=am+n[m,n都是正整数]同底数幂相乘,底数不变,指数相加.(2).(am)n=amn[m,n都是正整数]幂的乘方,底数不变,指数相乘.(3).(ab)n=anbn[n为正整数]积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.(5).m(a+b+c)=ma+mb+mc单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,(6).(a+b)(m+n)=am+an+bm+bn多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.2.乘法公式(1).(a+b)(a-b)=a2-b2平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(2).(a±b)2=a2±2ab+b2完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.3.整式除法(1)am÷an=am-n[a≠0,m,n都是正整数,且m>n]同底数幂相除,底数不变,指数相减.(2)a0=1[a≠0]任何不等于0的数的0次幂都等于1.(3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.(4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.4.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二.重点1.(x+p)(x+q)=x2+(p+q)x+pq2.x3-y3=(x-y)(x2+xy+y2)3.因式分解两种基本方法:(1)提公因式法.提取:数字是各项的最大公约数,各项都含的字母,指数是各项中最低的.(2)公式法.①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积②a2±2ab+b2=(a±b)2两个数的平方和加上[或减去]这两个数的积的2倍,等于这两个数的和[或差]的平方.。

整式的乘除知识点

整式的乘除知识点

整式的乘除知识点整式的乘除是数学中的基础内容之一,它在代数学中扮演着重要的角色。

本文将从整式的定义开始,逐步讨论整式的乘法和除法的相关知识点。

对于初学者来说,希望通过本文的解析,能够更好地掌握整式的乘除运算。

一、整式的定义及基本概念整式由多项式组成,多项式是由若干项按照加法和减法进行运算形成的表达式。

其中项由系数与单项式的乘积构成,单项式是由常数与字母的乘积构成。

在整式中,字母表示未知数或变量,系数表示字母的倍数,常数表示不带字母的数。

而整式的次数是指整式中单项式的最高次幂。

例如,3x² + 2xy - 5是一个三项式,其中3、2、-5为系数,x²、xy 为单项式。

二、整式的乘法运算整式的乘法运算是指将两个或多个整式相乘的过程。

具体运算规则如下:1. 乘法分配律:整式A、B、C相乘,可以先将A与B的每一项相乘,然后将所得结果相加(或相减),再与C的每一项相乘,最后将所得结果相加(或相减)。

2. 同底数幂相乘:若整式中出现了同样字母的多项式相乘,只需将它们的次数相加。

3. 字母之间相乘:在整式的乘法中,字母之间相乘的结果仍然是单项式。

三、整式的除法运算整式的除法运算是指将一个整式除以另一个整式的过程。

在进行整式的除法运算时,首先要明确整除和除式的概念。

整除是指当一个整式A除以整式B时,如果存在另一个整式C,使得A=BC成立,则称B整除A,记作B|A。

除式是指进行整除的除数。

在整式的除法运算中,可以利用带余除法的思想进行,具体步骤如下:1. 对于整式A除以整式B,不妨设A的次数为m,B的次数为n (m≥n)。

2. 设立商式Q和余式R,使得A=QB+R,其中Q的次数为m-n,R 的次数小于n。

3. 再次利用带余除法,将B除以R,得到商式和余式。

4. 重复以上步骤,直到余式的次数小于除式,停止运算。

四、整式的乘除综合运算整式的乘除运算经常结合使用,可以通过以下例子加深理解。

例子:将 (5x² + 2xy) × (3x - 4) ÷ (x + 2) 进行计算。

初中数学《整式的乘除》知识点精讲

初中数学《整式的乘除》知识点精讲

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;b)多项式相乘的结果应注意合并同类项;c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。

整式的除法单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

整式乘法法则1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。

数学符号表示:am.an=am+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。

数学符号表示:(am)n=amn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。

(即等于积中各因式乘方的积。

)数学符号表示:(ab)n=anbn(其中n为正整数)4、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

5、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

6、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

7、乘法公式:平方差公式:(a+b)·(a-b)=a2-b2,完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章整式的乘除高频考点考查频率所占分值1.幂的有关运算★★2.整式的乘法★3.乘法公式(平方差公★★★式、完全平方公式)4.整式的除法★3~9分5.因式分解★★★6.整式的混合运算★★知能图谱同底数幂的乘法字母表示:(,都是正整数)幂的乘方字母表示:(,都是正整数)积的乘方字母表示:(是正整数)幂的运算同底数幂的除法字母表示:(,,都是正整数,并且)零指数幂字母表示:负整数指数幂字母表示:(,为正整数)单项式乘单项式:单项式与单项式相系,把它们的系数、同底数幂别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为的一个因式整式的乘法单项式乘多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再整式的乘除把所得的积相加多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每—项,再把所得的积相加多项式乘多项式平方差公式:乘法公式完全平方公式联系单项式除以单项式整式的混合运算整式的除法转化多项式除以单项式因式分解的意义因式分解的方法因式分解整式乘法因式分解的步骤一般步骤:一提、二套、三分组、四彻底利用因式分解解决相关问题第7讲幂的运算性质知识能力解读知能解读 (一)同底数幂的乘法同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(,都是正整数).注意:(1)在学习同底数幂的乘法过程中,不仅要记住结论?更重要的是掌握结论的推导过程.(2)这一运算性质可推广到三个或三个以上同底数幂相乘,如(,,都是正整数).(3)运算性质可以逆用,如(,都是正整数).(4)幂的底数可以是单项式,也可以是多项式,如,.(5)当幂指数为l时,不要误以为指数为0,如,而不是.(二)幂的乘方幂的乘方法则:幂的乘方,底数不变,指数相乘,即(,都是正整数).注意:(1)不要把幂的乘方与同底数幂的乘法混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).(2)根据同底数幂的运算性质可推出结论:(3)此性质可以逆用:,如.(三)积的乘方积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(是正整数).注意:(1)同理,三个或三个以上的因数(或因式)的积的乘方,也具备这一性质,如(为正整数).(2)此性质可以逆用:,如.(3)积的乘方公式中,,可以表示数,也可以表示含有字母的代数式.(四)同底数幂的除法同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(,,都是正整数,并月).注意:(1)当三个或三个以上同底数幂相除时,也具有这一性质,如(,,,都是正整数,且).(2)底数不能为0,若为0,则除数为0,除法就没有意义了.(3)注意指数为“1”的情况,如,不能把的指数当成“0”.(4)该法则可以逆用,即(,,都是正整数,且).(五)零指数幂与负整数指数幂(1)零指数幂的意义:任何不等于零的数的零次幂都等于1,即.(2)负整数指数幂的意义:任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即( ,为正整数).在中,当时,规定.当时,规定,如.(3)零指数幂与负整数指数幂的注意事项:①在中,底数不等于零,否则无意义.底数可以是不等于0的数或式子.②学习零指数幂和负整数指数幂后,正整数指数幂的运算性质推广到了整数指数幂.如:;;;等.方法技巧归纳方法技巧 (一)同底数幂的乘法、除法运算解题技巧同底数幂的运算法则,无论是乘法法则,还是除法法则,只适用于同底数幂的乘除,当底数不同时要看能否化为同底,若不能化为同底,则不能用上述法则.(二)幂的乘方、积的乘方运算解题技巧运用幂的乘方时,一定要注意底数的符号;在进行积的乘方运算时,应把底数的各因式分别乘方,不要忽略任何一项.幂的乘方和积的乘方法则均可逆用.(三)零指数幂和负整数指数幂的解题技巧(四)利用幂的运算性质比较数的大小的解题技巧(拓展)当所给幂的指数、底数均不相同,且指数较大时,可利用幂的乘方性质化为同指数幂,根据底数大小关系确定原来三个幂的大小关系.比较几个幂的大小时,可以将它们逆用幂的乘方法则,化成同底数或同指数的幂再比较大小.易混易错辨析易混易错知识1.同底数幂的乘法法则与合并同类项法则容易混淆.同底数幂相乘,底数不变,指数相加,如;而合并同类项的法则是只把系数相加,字母和字母的指数都不变,如.此处易犯的错误.故解题时,应认真审题,看清题目是什么运算,然后准确选用法则.2.幂的乘方法则与同底数幂的乘法法则容易混淆.幂的乘方运算是转化为指数的乘法运算(底数不变),同底数幂的乘法运算是转化为指数的加法运算(底数不变).在运算时,特别注意二者的区别,如的运算顺序为先乘方,再乘法,不要出现类似的错误.易混易错 (一)在运用积的乘方法则时,没有把每个因式分别乘方,忽略某些因式的乘方,或符号山错(二)对同底数幂的除法法则理解不透导致出错(三)忽略零指数幂和负整数指数幂底数不为0的条件中考试题研究中考命题规律本讲的考点主要有同底数幂的乘除法,积的乘方和幂的乘方运算以及零指数幂和负整数指数幂的运算,题型以选择题、填空题为主,也有简单的解答题.中考试题 (一)同底数幂的乘法(二)幂的乘方和积的乘方(三)零指数幂和负整数指数幂(四)幂的综合运算第8讲整式的乘法知识能力解读知能解读 (一)单项式与单项式相乘的法则单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.如:.注意:(1)对于三个或三个以上的单项式相乘,法则仍然适用.(2)由法则可知,在用法则解题时,可按三步进行:①系数相乘——确定积的系数,相乘时注意符号;②相同字母的幂相乘——底数不变,指数相加;③只在一个单项式里含有的字母——连同字母的指数写在积中,不要漏掉这个因式.记忆口诀:系数乘系数,字母乘字母.(二)单项式与多项式相乘的法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即.注意:(1)单项式与多项式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.(2)单项式乘多项式,结果仍是多项式,其项数与因式中多项式的项数相同.(3)计算时注意符号,多项式中的每一项都包括它前面的符号,根据这一特点确定乘积中每一项的符号.(4)运算结果中有同类项时要合并同类项,从而得到最简结果.(三)多项式与多项式相乘的法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.(1)要用一个多项式的每一项分别乘另一个多项式的每一项,不要漏乘项.(2)注意多项式中的符号问题,多项式的每一项都包括它前面的符号,计算时要细心.(四)乘法公式1.平方差公式(1)公式:.(2)意义:两个数的和与这两个数的差的积,等于这两个数的平方差.这个公式叫作平方差公式.记忆口诀:和乘差,平方差.(3)特征:①左边是两个二项式相乘,这两项中有一项相同,另一项互为相反数;②右边是左边二项式中两项的平方差(相同项的平方减相反项的平方);③公式中的和可以是具体的数,也可以是含有字母的代数式.(4)公式的几何背景:如图所示,最上层的矩形的面积为,它等于大正方形的面积与小正方形的面积的差,即.Image2.完全平方公式(1)公式:;.(2)意义:两个数的和(或差)的平方,等于它们的平方和加上(或减去)它们的积的2倍.(3)特征:①左边是—个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简记为“首平方,尾平方,积的2倍在中央”.②公式中的,可以是单项式,也可以是多项式.(4)公式的几何背景:如图所示,用图形面积表示图①的几何意义为,表示图②的几何意义为.Image(五)特殊乘法公式(拓展)(,是常数).(利用多项式乘法运算法则可从左边得到右边)公式特征:(1)相乘的两个因式都只含有一个相同的字母.都是一次二项式,并且一次项的系数为1.(2)乘积是二次三项式,二次项系数是1,一次项系数是两常数项之和,常数项等于两个因式中的常数项之积.方法技巧归纳方法技巧 (一)单项式与单项式相乘的解题方法单项式与单项式相乘的顺序是:(1)系数相乘;(2)同底数的幂相乘;(3)只在一个单项式里含有的字母,连同它的指数一起写在积中.故正确进行幂的运算是解题的关键;要先确定符号,再计算.(二)单项式与多项式相乘的解题方法单项式与多项式相乘,实质是利用乘法的分配律,计算时注意运算顺序,不要漏项.(三)多项式与多项式相乘的解题方法多项式乘多项式,其主要方法是分项轮乘,依次转化为单项式乘单项式,不要漏乘项.(四)整式乘法的综合创新题整式乘法的综合创新题主要考查整式乘法法则的运用能力,一般是由特殊情况推测一般规律,培养创新能力.(五)利用乘法公式计算的解题技巧乘法公式是一种特殊形式的乘法法则,它通过多项式的乘法法则,把特殊多项式的运算结果写成公式形式并加以应用.运用公式计算可使多项式相乘变得方便简捷,但运用时要掌握公式的结构特征,只要符合公式结构特征就可以运用公式进行计算,否则不能用.公式中的字母可以是具体数,也可以是含有字母的代数式.1.直接应用公式计算2.开放探究题3.乘法公式巧变形(六)整式的混合运算整式的混合运算一般应注意以下几点:(1)将多项式的运算转化为单项式的运算;(2)确定符号;(3)确定运算顺序与运算类型;(4)尽量运用乘法公式简化多项式的乘法运算.1.混合运算2.化简求值易混易错辨析易混易错知识1.在整式乘法法则的运用上易出错.错误有:(1)漏乘多项式的某些项;(2)单项式与多项式相乘时,易出现符号错误(多项式中每一项都包括它前面的符号,还要注意单项式的符号).2.对平方差公式理解不透导致出错.(1)分不清哪一项相当于公式中的,哪一项相当于公式中的,导致误用.(2)对不具备平方差公式特征的运算误用了平方差公式.如出现之类的错误,实际上本题应该用多项式与多项式相乘的法则计算:.3.混淆完全平方公式与平方差公式.运用完全平方公式时常出现的错误有:(1)与平方差公式混淆,误写成;(2)弄错中间项“积的2倍”的符号.易混易错(一)单项式乘多项式时易漏乘或弄错符号(二)错用乘法公式(三)运用乘法公式时易弄错符号中考试题研究中考命题规律本讲的考点主要是整式的乘法,它是初中数学的重点内容,是有理数乘法和幂的运算法则的综合,是代数式变形、化简、求值、因式分解等的重要基础,题型以填空题、选择题、计算题为主,有的为化简求值题,多与其他知识(分式、根式、方程(组)、不等式(组)等)综合命题,有时也会联系几何知识综合命题,一般为容易题和中等难度题.中考试题 (一)考查运算法则和完全平方公式的运用(二)考查运算法则与平方差公式的运用(三)整式乘法的综合应用(四)利用整式乘法化简求值第9讲整式的除法知识能力解读知能解读 (一)单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.注意:对法则的理解应注意三点:(1)两个单项式相除,只要将系数及同底数幂分别相除即可.(2)只在被除式里含有的字母不要漏掉.如.(3)在单项式除以单项式中只研究整除的情况,因此,在除式中所出现的一切字母,在被除式中不仅也要出现,而且其指数要分别都不小于除式中同一字母的指数.在这个前提下,单项式相除,可以按系数、相同字母、被除式单独有的字母这几部分进行.(二)多项式除以单项式法则一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.如:.注意:(1)这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这样计算的.例如:.(2)多项式的每一项都包括它前面的符号.(3)计算时不要漏项.方法技巧归纳方法技巧 (一)单项式除以单项式的解题技巧单项式相除,把系数与同底数幂分别相除,其运算顺序为:首先将系数相除,然后将同底数幂相除,最后将被除式中单独有的字母连同它的指数一起作为商的一个因式,系数相除时要注意先确定商的符号.(二)多项式除以单项式的解题技巧多项式除以单项式,除掌握法则外,还应注意:(1)多项式除以单项式所得商的项数与多项式的项数一致,在计算时不要漏项;(2)计算时,多项式的各项要包括它前面的符号,注意符号的变化.易混易错辨析易混易错知识1.单项式除以单项式时,容易出现的错误.(1)忽略系数的符号;(2)当某一字母指数为1时容易忽略该指数.2.多项式除以单项式时,容易出现的错误.(1)漏项;(2)符号错误.易混易错 (一)审题、计算不认真致错(二)除式的系数忘记变成其倒数(三)由于对法则理解不透或粗心致错中考试题研究中考命题规律本讲的考点主要是整式的除法,它是数学中的重要基础知识.单独考查时,以填空题、选择题为主,也常与其他知识综合考查,题型以解答题为主.中考试题整式的综合运算第10讲因式分解知识能力解读知能解读 (一)因式分解的意义把一个多项式化为几个整式的积的形式,这种变形叫作这个多项式的因式分解,也叫作把这个多项式分解因式,即多项式几个整式的积.化为因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程.要求把每个因式都分解到不能再分解为止,否则就是不完全的因式分解,怎样才算不能再分解呢?这要看题目的要求,若指出在有理数范围内因式分解,则就符合要求,若指出在实数范围内因式分解,则才符合要求.注意:(1)因式分解时应注意以下几点:①结果一定是积的形式,分解的对象是多项式;②每个因式必须是整式,且每个因式的次数都必须低于或等于原多项式的次数;③分解因式必须分解到不能再分解为止.(2)因式分解与整式乘法是两种不同的变形过程,它们是互逆关系.如(二)公因式的定义多项式的各项都含有的公共的因式,叫作这个多项式各项的公因式.如中,各项都含有因式,故叫作这个多项式各项的公因式.公因式可以是一个数或一个字母,也可以是含有字母的代数式,如中,公因式是.公因式的构成如下:(1)系数——取各项系数的最大公约数;(2)字母——取各项都含有的字母;(3)次数——取相同字母的最低指数.(三)因式分解的方法1.提公因式法(1)定义:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫作提公因式法.如,这个变形就是用提公因式法分解因式.这里的可以表示单项式,也可以表示多项式,称为公因式.(2)提公因式法的步骤:第一步:确定公因式;第二步:提出公因式并确定另一个因式,提出公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式,注意:提公因式法是因式分解的最基本的方法,因式分解必须首先考虑多项式各项之间是否存在公因式,因此关键是确定公因式,为了准确迅速地找出公因式,必须做到“五看”.(1)看系数公因式的系数是各项系数的最大公约数.(2)看字母公因式中的字母应是各项中的相同字母.(3)看字母的指数公因式中字母的指数是各项中相同字母的最低指数.(4)看整体有时在多项式中,如果各项都含有相同的“多项式”,就应把它作为一个“整体”提出来.尤其要注意,有时多项式的符号相反时,变号后再提出.(5)看首项符号如果多项式首项系数为负,应提出“-”,或用加法交换律使首项的符号为正.2.公式法如果把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫作公式法.(1)逆用平方差公式:;(2)逆用完全平方公式:.注意:(1)公式中的字母,可代表一个单项式或一个多项式.(2)逆用平方差公式分解因式的特点①左边是二项式,两项都是平方的形式且符号相反;②右边是两个数的和与这两个数的差的积.(3)逆用完全平方公式分解因式的特点①左边是三项式,其中首末两项分别是两个数(或式子)的平方,且这两项的符号都为正,中间一项是这两个数(或式子)的积的2倍,符号正负均可.②右边是两个数(或式子)的和(或差)的平方,当左边中间的乘积项与首末两项的符号相同时,是和的平方;当左边中间的乘积项与首未两项的符号相反时,是差的平方.(4)选用公式的方法:主要从项数上看,若多项式是二项式,应考虑逆用平方差或立方和(差)公式;若多项式是三项式,可考虑逆用完全平方公式.然后观察各项系数、次数是否符合公式特征运用公式的关键是将多项式改写成符合公式的形式.3.分组分解法(拓展)分组分解法是把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时用到添括号,添括号时要注意各项符号的变化.注意:当多项式的项比较多时,可将多项式进行合理分组.分组方法不一定唯一.4.型式子的因式分解(拓展)利用把二次三项式分解因式,也叫“十字相乘法”.注意:(1)十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘的和等于一次项系数.(2)不是所有的二次三项式都能用“十字相乘法”分解因式.(四)因式分解的—般步骤及注意问题因式分解的步骤概括为“一提”“二套”“三分组”“四彻底”.一提:若多项式各项有公因式时,应先提公因式.二套:多项式各项没有公因式时,如果是二项式就考虑能否逆用平方差公式或立方和(差)公式,如果是三项式就考虑能否逆用完全平方公式或二次三项式的因式分解.三分组:若是四项或四项以上的多项式,通常采用分组分解法.四彻底:分解因式,必须进行到每一个多项式都不能再分解为止.因式分解的结果,必须是几个整式的积.例如,虽然这里的右边是乘积的形式,但不是整式,所以不是因式分解.方法技巧归纳方法技巧 (一)因式分解与整式乘法的识别判断一个变形是不是因式分解,主要看这个变形是否符合因式分解的意义,故只有当左边是“和、差”的形式,而右边是积的形式的时候才可以判断自左向右的变形可能是因式分解.当然,变形前后,等号两边的式子必须都是整式且相等.(二)提公因式法分解因式的规律提公因式法是因式分解最基本、最常用的方法,其实质是逆用了分配律.运用这个方法,关键是确定公因式,然后提公因式并确定另一个因式.(三)公式法分解因式的规律运用公式法的关键是熟悉各公式的形式的特点.(四)因式分解中的特殊方法因式分解除了提公因式法和公式法之外,分组分解法、十字相乘法等尽管不作要求,但应用很方便.1.分组分解法2.型式子的因式分解(十字相乘法)(五)利用因式分解化简求值易混易错辨析易混易错知识1.因式分解与整式乘法的联系与区别,(1)因式分解和整式乘法是互逆变形,多项式的因式分解是把和差的形式化为积的形式,而整式乘法是把积的形式化为和差的形式,都是恒等变形,但它们是互逆的两个过程,如是因式分解,而反过来,是整式乘法.(2)鉴于因式分解与整式乘法是互逆变形,因此可用将因式分解的结果还原成一个多项式的方法检验因式分解是否正确,同时,这也是一种逆向思维的训练.若混淆了因式分解与整式乘法,易犯“循环分解”的错误,例如分解因式,误写成原式.2.因式分解不彻底.因式分解的最终结果必须分解到每个因式不能再分解为止.易混易错 (一)因式分解结果不彻底(二)错在漏项(三)因式分解走回头路(四)运用公式出错中考试题研究中考命题规律本讲的考点主要是因式分解,它是一种重要的恒等变形,是进一步学习分式运算、解方程、函数变形及其他数学知识的重要基础,它与代数式的化简求值、整式的乘法及今后学习的分式、一元二次方程等许多内容密切相关,故中考试题都以直接或间接的方式进行考查,常以填空题、选择题的形式出现,综合题以解答题为主.中考试题 (一)公因式的确定(二)分解因式(三)利用因式分解求值(四)因式分解的综合创新(五)实际问题中的因式分解。

相关文档
最新文档