第4讲有理数的乘除法

合集下载

有理数的乘除、乘方

有理数的乘除、乘方
4 ( 2) (3)
(4) (1)2 n (n 为整数) (5) (1)
(6)0100
2 n 1
(n 为整数)
1 2 1 1 解:(1)(2 ) ( 2 ) ( 2 ) 2 2 2 乘方的运算可 5 5 25 以转化为乘法 2 2 4 的运算;计算 时先确定幂的 (2)(0.2)3 (0.2) (0.2) (0.2) 符号 0.008 4 (3)(2) (2) (2) (2) (2) 16
6
1 1 [例2] 3 (1 ) 3 5 解:原式 10 6 4 3 5
遇到带分数, 一般先化成假分数。
[例3] 1.2 (2 4 ) (2.5) ( 3 ) 5 7 解:原式 (1.2 2 4 2.5 3 ) 5 7 6 14 5 3 多个数相乘,先定 ( ) 5 5 2 7 符号,再做积。 18 5
四、综合提高 [例13] 1) 若ab0,b0, 则a___0.
2) 若abc0,bc0, 则a___0
解:1) ab0,说明a、b同号,又b0,所以a0
2) abc0, 说明a、bc同号,又bc0, 所以a0,
所以a0
2 22 23 249 [例14] 设 S 1 3 3 5 5 7 97 99
解:原式 30 5
6 6 30 5
有括号 先算括号
36
三、有理数的乘方
1、乘方:求几个相同数的积的运算。
2、乘方运算: 1)正数的任何次幂都是正数; 2)负数的偶数次幂是正数,负数的奇数次幂是负数; 3)0的n次幂是0(n0); 注意:含有混合运算时,要先算乘方,再乘除,再加减。
因数中的小数, 化成假分数。

有理数的乘除知识讲解

有理数的乘除知识讲解

有理数的乘除【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.要点二、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a bb÷=≠.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算1.计算:(1)(-5)×(-4) (2)113135⎛⎫⨯- ⎪⎝⎭ (3)5506⎛⎫-⨯ ⎪⎝⎭【思路点拨】(1)、(2)、(3)均为两数相乘,直接运用乘法法则即可. 【答案与解析】解:(1)(-5)×(-4) (两负数相乘)=+(5×4) (同号得正,并把绝对值相乘) =20(2)113135⎛⎫⨯- ⎪⎝⎭(异号两数相乘)113135⎛⎫=-⨯ ⎪⎝⎭(异号得负,并把绝对值相乘)10635⎛⎫=-⨯⎪⎝⎭(化带分数为假分数便可约分) 4=-(3)55006⎛⎫-⨯= ⎪⎝⎭(任何数同0相乘,都得0)【总结升华】第一个负因数可以不用括号,但是后面的负因子必须加括号,如(-4)×(-0.25)可以写成-4×(-0.25),但不能写成-4×-0.25.2. (1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案与解析】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.【总结升华】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.3.运用简便方法计算: (1) 10.250.5345⎛⎫-⨯⨯-⨯ ⎪⎝⎭ ;(2)245112718839271717⎛⎫-+⨯-⨯+⨯⎪⎝⎭【答案与解析】根据题目特点,(1)可以先用乘法交换律把0.25-与4相乘,再运用乘法结合律将0.5与135-相乘.(2).计算245273927⎛⎫-+⨯ ⎪⎝⎭的值可运用分配律,计算111881717-⨯+⨯的值则可逆用分配律. 解:(1) 原式1611680.250.54(0.254)5255=⨯⨯⨯=⨯⨯⨯=; (2)245112718839271717⎛⎫-+⨯-⨯+⨯⎪⎝⎭245112727+2718839271717⎛⎫=⨯+-⨯⨯-⨯+⨯ ⎪⎝⎭ 1118125(1+)831717=-++-⨯= 【总结升华】首先要观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合. 举一反三:【变式1】计算:23578×(-)+(-8)×-24×(-)551215;【变式2】542(1)()( 2.5)(4)12253-⨯⨯-⨯-; 4(2)(0.125)()16(7)7-⨯-⨯⨯-类型二、有理数的除法运算4.计算:(1)(-32)÷(-8) (2)112(1)36÷-【答案与解析】 (1)(-32)÷(-8)=+(32÷8)= 4 ……用法则二进行计算.(2)117776212363637⎛⎫⎛⎫⎛⎫÷-=÷-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……用法则一进行计算. 【总结升华】(1)乘法、除法的符号法则是一致的,两数相乘除,同号得正,异号得负;(2)除法的两个法则是一致的,应学会灵活选择.5.计算: 17(49)2(3)33⎛⎫-÷-÷÷- ⎪⎝⎭【思路点拨】对于乘除混合运算,首先由负数的个数确定结果的符号,同时应将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.但要注意除法没有分配律. 【答案与解析】 解:17(49)2(3)33⎛⎫-÷-÷÷- ⎪⎝⎭ 331(49)773⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭331493773⎛⎫=-⨯⨯⨯=- ⎪⎝⎭【总结升华】进行乘除混合运算时,往往先将除法转化为乘法,再确定积的符号,最后求出结果.举一反三: 【变式】计算:(1) 1.25(0.375)-÷- (2)111(3)(2)(1)335-÷-÷-类型三:有理数的乘除混合运算5.计算:9481(16)49-÷⨯÷- 【答案与解析】在有理数的乘除运算中,应按从左到右的运算顺序进行运算.9444181(16)811499916⎛⎫-÷⨯÷-=-⨯⨯⨯-= ⎪⎝⎭【总结升华】在有理数的乘除运算中,可将除法运算转化为乘法运算.乘除运算是同一级运算,应按从左到右的顺序进行. 举一反三【变式1】计算:(1)14410(2)893-÷⨯÷- (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭类型四、有理数的加减乘除混合运算6. 计算(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭; (2)111351226412⎛⎫⎛⎫-÷-+-+ ⎪ ⎪⎝⎭⎝⎭【答案与解析】(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭1135(12)26412⎛⎫=-+-+⨯- ⎪⎝⎭ 1135(12)(12)(12)(12)26412⎛⎫=-⨯-+⨯--⨯-+⨯- ⎪⎝⎭=6-2+9-5=8(2)法1:原式=16295181121()()121212121288-+-+⎛⎫⎛⎫-÷=-÷-=⨯= ⎪ ⎪⎝⎭⎝⎭法2:由(1)知:1135182641212⎛⎫⎛⎫-+-+÷-= ⎪ ⎪⎝⎭⎝⎭,所以16295112128-+-+⎛⎫⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭【总结升华】除法没有分配律,在进行有理数的除法运算时,若除数是和的形式,一般先算括号内的,然后再进行除法运算,也可以仿照方法2利用倒数关系巧妙解决. 举一反三: 【变式】 (1)75318 1.456 3.9569618⎛⎫-+⨯-⨯+⨯ ⎪⎝⎭ (2)211213106530⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭类型五:利用有理数的加减乘除,解决实际问题7.气象统计资料表明,高度每增加1000米,气温就降低6℃.如果现在地面的气温是27℃,那么8000米的高空的气温大约是多少?【思路点拨】解决此题的关键是明确高度变化与气温变化的关系.由于“高度每增加1000米,气温就降低6℃”,8000米的高空比地面高度增加8000米,因此气温降低6×8=48℃,由此便可求出高空的气温. 【答案与解析】 解:80002762748211000-⨯=-=-(℃) 因此8000米的高空的气温大约是-21℃.【总结升华】本题是生活实际中的问题,关键是读懂题意,弄清各数量之间的关系,再列出正确的算式.举一反三:【变式】某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下: +10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?类型六、含绝对值的化简8 已知a 、b 、c 为不等于零的有理数,你能求出||||||a b c a b c++的值吗? 【思路点拨】先分别确定a 、b 、c 的取值,再代入求值.【答案与解析】 解:分四种情况:(1)当a 、b 、c 三个数都为正数时,||||||1113a b c a b ca b c a b c++=++=++=; (2)当a 、b 、c 三个数中有两个为正数,一个为负数时,不妨设a 为负数,b 、c 为正数,||||||1111a b c a b ca b c a b c-++=++=-++=; (3)当a 、b 、c 三个数中有一个为正数,两个为负数时,不妨设a 为正数,b 、c 为负数,||||||1111a b c a b c a b c a b c--++=++=--=-; (4)当a 、b 、c 三个数都为负数时,||||||(1)(1)(1)3a b c a b ca b c a b c---++=++=-+-+-=-||||b c b c+的值为:3,3,1,1-- 【总结升华】在含有绝对值的式子中,当不知道绝对值里面的数的正负时,需分类讨论. 举一反三: 【变式】计算a bab+的取值.。

第4讲有理数的乘除运算

第4讲有理数的乘除运算

第四讲 有理数的乘除运算一、【有理数的乘除运算法则】(1)乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。

▲ 任何数同0相乘,都得0.▲ 先定符号,再绝对值相乘(2)除法法则:除以一个数,等于乘以这个数的倒数。

两数相除,同号得正,异号得负,绝对值相除。

▲ 0除以任何一个不等于0的数,都得0. (0不能做除数)▲ 分数可以理解为分子除以分母。

▲ 乘积是1的两个数是互为倒数(0没有倒数) → ab=1乘积是-1的两个数是互为负倒数 → ab=-1正数的倒数是正数,负数的倒数仍是负数填空:正数乘正数积为 数;负数乘正数积为 数;正数乘负数积为 数;负数乘负数积为 数;乘积的绝对值等于各乘数绝对值的 。

【典型例题】[例1](1)9)3(⨯- (2))2()21(-⨯-解:(1)279)3(-=⨯- (2)1)2()21(=-⨯- [例2] 用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每升高1000米,气温变化量为C ︒-6,登高km 3后,气温有什么变化?解:183)6(-=⨯-答:略[例3] 计算:(1))41()59()65()3(-⨯-⨯⨯- (2)41)54(6)5(⨯-⨯⨯-解:(1))41()59(65)3(-⨯-⨯⨯-894159653-=⨯⨯⨯-=(2)41)54(6)5(⨯-⨯⨯-6415465=⨯⨯⨯=[例4] 用两种方法计算12)216141(⨯-+ 解法一:112)126122123(12)216141(-=⨯-+=⨯-+ 解法二:162312211261124112)216141(-=-+=⨯-⨯+⨯=⨯-+[例5] 计算:(1)9)36(÷- (2))53()2512(-÷-解:(1)4)936(9)36(-=÷-=÷-(2)54)35()2512()53()2512(=-⨯-=-÷-[例6] 化简下列分数:(1)312- (2)1245--解:(1)43)12(312-=÷-=-(2)4151245)12()45(1245=÷=-÷-=--【培优】1、-4.035×12+7.535×12-36×(79-57618+)解:原式=12×(-4.035+7.535)-36×79 +36×56 -36×718=12×72 -28+30-14=42-12 = 302、()()()3242311-+⨯---(2)()()219981110.5333⎡⎤---⨯⨯--⎣⎦= -8+3-2-1-12 ×13 ×(-6)= -8+1 =-73、 ()3413312100.51644⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=-{1+[116 +2764 ]×16}÷454=-{1+(1+274 )}×445= -354 ×445 = - 79【课后巩固】1. 计算:(1)=-⨯-)7()8( (2)=-⨯)5(12(3)=-⨯)4.0(9.2 (4)=-⨯)98(41(5)=÷-13)91( (6)=-÷-)14(56(7)=-÷)1(54(8)=÷-8325.0(9)=-⨯⨯-)4(32 (10)=-⨯-⨯-)7()5()6(2. 当3-=a ,6-=b ,6.3=c ,5.2-=d 时,计算下列各式:(1)bd ac + (2)d c b a ÷-÷(3)c b a )(+ (4)d b a ÷-)(3. 用“>”“<”“=”填空:(1)若0<a ,0>b ,则b a ⋅ 0,b a(2)若0>a ,0<b ,则b a ⋅ 0,b a(3)若0<a ,0<b ,则b a ⋅ 0,b a(4)若a=0,b ≠0,那么b a ⋅ 0,b a0 4、235713346⎛⎫⎛⎫⎛⎫-⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5、计算: 22831210.52552142⎛⎫⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++-。

《有理数的乘除法》的教案

《有理数的乘除法》的教案

《有理数的乘除法》的教案《有理数的乘除法》的教案「篇一」[教学目标]1、使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;2、运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的思维能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的`计算能力,培养转化和全面分析问题的能力。

[教学重点、难点]1、教学重点:正确运用有理数除法法则进行有理数除法运算;2、教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件;3、疑点:乘除法运算顺序。

[教学过程设计]一、课前复习提问1、有理数乘法法则;2、有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;3、倒数的意义。

二、讲授新课(一)有理数除法法则的推导[问题]怎样计算8(—4)呢?[提问]小学学过的除法的意义是什么?得出①8(—4)=—2;又②8()=—2;《有理数的乘除法》的教案「篇二」有理数的除法教案教学目标进一步理解有理数乘法和除法的法则,熟练进行有理数乘除混合运算。

重点难点:重点:有理数的乘除混合运算难点:处理结果的符号。

教学过程一激情引趣,导入新课1 复习:(1)有理数乘法运算的法则是什么?两个有理数相乘,同号得___,异号得__,并把绝对值相乘。

(2)有理数的除法运算法则是什么?(两个有理数相除,同号得___,异号得__,并把绝对值相除。

除以一个数等于乘以这个数的____.)3 什么叫互为倒数?(如果两个数的积等于__,那么这两个数互为倒数。

如-5的倒数是__,-0.25的倒数是___.-(- )的倒数是___)。

2 在非负数的范围内,你是怎样进行有理数的乘除混合运算的?3 怎样计算(-10)÷(-5)×(-2)?这节课我们来探究有理数的`乘除混合运算。

二合作交流,探究新知1 只含有除法的混合运算例1 计算:(1)(-56)÷(-2)÷(-8)(2)(-3.2)÷0.8÷(-2)(3)(4)2 含有乘除法的混合运算例2 计算:(1),(2)对于多个有理数相乘,对于确定结果的符合,你有什么经验?3 含有加减乘除的混合运算例3 计算:(1)(2)(3) (4)练一练:P 40 练习题1,2三反思小结,巩固提高有理数乘法除法混合运算的顺序是什么?如果是加减乘除的混合运算呢?四作业:P 42A 4 B组 1、2《有理数的乘除法》的教案「篇三」从实际生活引入,体现数学知识源于生活及数学的现实意义。

《有理数的乘除法》教案

《有理数的乘除法》教案

《有理数的乘除法》教案一、教学目标:1. 让学生掌握有理数的乘法法则,包括同号相乘、异号相乘和零乘以任何数的结果。

2. 让学生理解有理数的除法实质,即乘以倒数,并掌握除法法则。

3. 培养学生运用有理数乘除法解决实际问题的能力。

二、教学内容:1. 有理数的乘法法则:同号相乘得正,异号相乘得负,零乘以任何数得零。

2. 有理数的除法实质:乘以倒数。

3. 除法法则:同号相除得正,异号相除得负。

三、教学重点与难点:1. 教学重点:有理数的乘法法则和除法法则。

2. 教学难点:理解有理数除法实质,掌握除法法则。

四、教学方法:1. 采用讲解法,讲解有理数的乘法法则和除法法则。

2. 采用例题法,通过例题讲解和练习,使学生掌握乘除法运算。

3. 采用提问法,引导学生思考和探讨有理数乘除法的实质。

五、教学过程:1. 导入新课:复习有理数的基本概念,引导学生进入有理数的乘除法学习。

2. 讲解有理数的乘法法则,通过PPT展示公式和例题,让学生理解和掌握乘法法则。

3. 讲解有理数的除法实质,让学生明白除以一个数等于乘以它的倒数。

4. 讲解除法法则,通过PPT展示公式和例题,让学生理解和掌握除法法则。

5. 课堂练习:布置一些乘除法的练习题,让学生运用所学知识解决问题,巩固所学内容。

6. 总结与反思:对本节课的内容进行总结,引导学生思考乘除法在实际生活中的应用。

六、教学评估:1. 课堂练习:通过课堂练习题,评估学生对有理数乘除法法则的掌握情况。

2. 课后作业:布置相关的课后作业,进一步巩固学生的乘除法运算能力。

3. 小组讨论:组织学生进行小组讨论,评估学生对有理数乘除法在实际问题中应用的理解程度。

七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,鼓励学生的正确做法,指出并纠正错误。

2. 针对学生的薄弱环节,进行有针对性的辅导,帮助学生克服困难。

3. 调整教学方法和节奏,确保学生能够扎实掌握有理数乘除法知识。

有理数的乘除法知识点讲解

有理数的乘除法知识点讲解
来 , 果积为零 , 么至少有一个因数为零. 如 那
四 有理戤泵法∞运算 律
() 1 乘法交换律: 在有理数
乘 法 中 。 个 数 相 乘 ,交 换 因数 两
l 仞4 计算:1 一 8 ) 一 5 ×(4 ; () (5 ×(2 ) 一 )
( )( 2


) 0 ×3 ;
点 拔 ① 第一个 因数 可以加括号 , 也可 以不加括号 , 面的负因数 但后
必须加括号 ; 分数 与小数相乘时 , ② 若分数能化成有 限小数 , 也可以把 分数化 成 小数 进行 计算 : 再 进行 乘 法运 算 时 , 数 要 化 成假 分 数 , ③ 带分 以便 于 约分 .
二 倒数的概念
上是通 过符号法则 , 转化为算术
乘 法来完成的.
(一 × ) ‘ × )— 2 (. = = ; )1 一 + 1 } 1 1 .
() 4 0×( o ) 0 一 = ・

( ) ×( l ):一 × 6 ) _ 3 3 一 ( 7 =一 1; 2
时 间消 逝 : 是 慰 藉 者 , 是 镇 痛 剂 。— — 威 廉 ・ 克雷 它 也 萨
于 零 的 有 理 数 相 乘 , 根 据 负 因数 的 个 数 确 定 积 的符 号 , 后 把 绝 对 值相 乘 先 然
作为积的绝对值 ; 几个数相乘 , ③ 如果有一个因数为零 , 那么积就为零 ; 反过
的位置, 积相等, b b. 即a : Ⅱ () 2 乘法结合律: 三个数相
乘 . 把 前 两 个 数 相 乘 , 者 先 先 或
( )( l ) 3+( 1 ) 1一( 1 ) 6 ; 3 一 7 ×4 一 7 X2 一 7 X14 () 1 4 一 3×— —03 +. ×( l ) 2 4× 一3 一

人教版数学七年级 有理数的乘除法课件 张ppt

人教版数学七年级 有理数的乘除法课件 张ppt

知识点及时练
用两种方法计算
(
1 4

1 6

1 2
)×12
解法1:
原式= (
3 12

2 12

6 12
)×12
=-
1 12
×12
=- 1
解法2:
原式=
1 4
×12

1 6
×12-
1 2
×12
= 3 + 2- 6
=- 1
知识点及时练
下列各式中用了哪条运算律?如何用字母表示?
(1)(-4)×8 = 8 ×(-4)
第一组:
(1) 2×3= 6
3×2= 6
2×3 = 3×2
(2) (3×4)×0.25= 3
3×(4×0.25)= 3
(3×4)×0.25 = 3×(4×0.25)
(3) 2×(3+4)= 14 2×3+2×4= 14 2×(3+4) = 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
教材知识点梳理
有理数的除法法则
法则1:除以一个不等于0的数,等 于乘这个数的倒数. 法则2:两数相除,同号得正,异号 得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.
知识点及时练
1 计算: (1) (- 36) ÷9 ;
(2)
25÷( )5.
12
知识点及时练
1 计算:
(1)(-3) × 9
(2)(- 1)×(-2) 2
解:
(1)(-3) × 9 = -(3 × 9 ) = -27
(2)(-
12)×(-2)= +(

2
2
)=

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。

七年级----第四讲---有理数的乘除法-2016

七年级----第四讲---有理数的乘除法-2016

第四讲 有理数的乘除法、乘方类型一、乘除法中的简便运算A 、乘法分配律的运用 例、113526812+-+⨯(-)(-24) )531(135)135()53(135)54(-⨯--⨯--⨯-要点:1、将括号里看成省略加号的代数和的形式,直接运用分配律。

2、对于不符合分配律结构形式的算式,可先变形,使其符合分配律。

练习、1、(-36)×[+()]2、2215130.34133737-⨯-⨯-⨯+⨯(-0.34)3、(1--)×(-24) 4、()3.1435.2 6.2823.3 1.5736.4-⨯+⨯--⨯B 、合理拆项例、8999910⨯(-) 211271113-⨯要点:1、带分数的拆分原则上将带分数拆分成可以和后面的分数的分母直接约分的整数防错 2、注意拆分后的整数部份和分数部份之间是加还是减的关系练习、1、1839919100⨯(-) 1537-56⨯()C 、倒数法的应用例、计算:11322()4261437÷-+- 92-125-183-4387127要点:1、除法没有分配律。

2、1(b c)(b c)a a ÷+=+÷练习:1、)1515131()301(--÷-2、11357--3264812-÷++()类型二、由法则推导字母符号例、若a+b <0,ab <0,则下列各式成立的是( ) A. |a|>|b| B. 当a >0,b <0时,|a|>|b|C. |a|<|b|D. 当a <0,b >0时,|a|>|b|练习1、已知a>0,ab<0,a+b<0,则a ,b ,-a ,-b 的大小关系为_____________2、如果abcd <0,a+b=0,cd >0,那么这四个数中,负因数的个数有_________个3、若|m|=3,|n|=2,且m n <0,则m+n=__________类型三、与绝对值相结合推导符号例、四个有理数a,b,c,d 满足||1abcd abcd =-,则||||||||a b c d a b c d+++的最大值为__________练习、1已知||0|b|ab b ab += ,则||ab ab =_________2、若|abc|=-abc ,则201520131-33•()=__________3、若非零有理数a,b,c 满足a+b+c=0,则|||||||abc |a b c a b c abc+++=__________四、利用整数的性质解题例、四个整数a ,b ,c ,d 互不相等,且abcd=25,则a+b+c+d=_________练习1、四个互不相等的整数a,b,c,d ,它们的积abcd=49,则a+b+c+d= ________2、如果4个不同的正整数m 、n 、p 、q 满足(7-m)(7-n)(7-p)(7-q)=4,那么m+n+p+q 等于______________3、若a 、c 、d 是整数,b 是正整数,且满足a+b=c,b+c=d,c+d=a 那么a+b+c+d 的 最大值是____________五、n a 和-na 的联系与区别例、若a 是有理数,则下列各式一定成立的有( )(1)(-a )2=a 2;(2)(-a )2=-a 2;(3)(-a )3=a 3;(4)|-a 3|=a 3.A .1个B .2个C .3个D .4个练习、1、下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)4和-24D .|-2|3和|2|3 2、-22-(-3)3×(-1)2-(-1)3的结果为( )A .-30B .0C .-1D .243、下面四个等式中,总能成立的是( )A 、22-m m =B 、33-m m =()C 、66-m m =()D 、23m m =六、利用乘方的意义巧算 例、计算12713923(0.125)(1)(8)()35-⨯-⨯-⨯-=___________练习1、(-2)2011+(-2)2010的值是( )A .22011B .-22011C .22010D .-22010 2、201520131-33•()=___________3、计算:32333333251234()0.750.5()(1)()4()44372543-⨯+⨯-+⨯⨯+÷-七、简单的等比数列的求和例、计算:1+5+52+53+…+599+5100=_______练习1、计算23201012222+++++=__________练习2、计算34520103333++++=___________练习3、观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是____;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=____,a n=_____;(2)用由特殊到一般的方法知:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,则a n=______(用含a1,q,n的代数式表示),如果这个常数q≠1,那么S n=a1+a2+a3+…+a n=_________(用含a1,q,n的代数式表示).a a=64,求S8=a1+a2+a3+…+a8(4)已知数列满足(2),且a6-a4=24,35类型八、综合应用例、观察下面三行数:-2,4,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1,2,-4,8,-16,32,…(1)第一行数按什么规律排列?(2)同一列数中,第二、三行数与第一行数分别有什么数量关系?(3)若第n列数的三个数的和为642,求n并写出这三个数.练习、观察下面三行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③(1)第①行第8个数为______;第②行第8个数为_____;第③行第8个数为_______;(2)第③行中是否存在连续的三个数使得三个数的和为768?若存在,求出这三个数;不存在,则说明理由;(3)是否存在这样的一列,使得其中的三个数的和为1282?若存在,则求出这三个数,不存在,则说明理由.。

第4讲 有理数的乘除与乘方

第4讲 有理数的乘除与乘方
有理数的除法
法则: 除以一个不为 0 的数,等于乘这个数的倒数。
a÷b=a×1/b
① 变除为乘
② 从左至右
知识回顾 课程讲解 课堂总结 同步练习 课后习题
P27 例题:计算 (1)(-36)÷9
(2)12÷(-¼)÷3
知识回顾 课程讲解 课堂总结 同步练习 课后习题
将一张纸对折再对折,直到无法对折为止。猜猜看,这时纸有几层?结果填入下表:
知识回顾 课程讲解 课堂总结 同步练习 课后习题
P26 例题:计算 (1)(-5)×(-4)
(2)(-6)×(-4)×2×(-3)
知识回顾 课程讲解 课堂总结 同步练习 课后习题 倒数:乘积是1的两个数互为倒数。 负倒数:先取倒数,再取相反数。
倒数 举例
a
-a
- p/q
0
知识回顾 课程讲解 课堂总结 同步练习 课后习题
课程目标 例题讲解 课堂总结 同步练习 课后习题
总结
有理数
符号 数字
பைடு நூலகம்
有理数混合运算 乘法 除法
乘方
先× ÷,后+ -, 最后an。
课程目标 例题讲解 课堂总结 同步练习 课后习题
P31 填空题 P32 计算题
课程目标 例题讲解 课堂总结 同步练习 课后习题
P34
随堂测试
谢谢观看
对折次数
1
2
3
10
20
...
n
纸的层数
...
知识回顾 课程讲解 课堂总结 同步练习 课后习题
有理数的乘方
1.定义: 求n个相同因数积的运算,叫做乘方。
2.an读作:a的n次方;或者a的n次幂。
3.法则:正数的任何次幂都是正数。 负数的奇次幂是负数,偶次幂是正数。(奇负偶正)

人教版七年级上册数学第一章第四节有理数的乘除法(有理数的乘法)说课稿

人教版七年级上册数学第一章第四节有理数的乘除法(有理数的乘法)说课稿

《有理数的乘法》说课稿有理数的乘法是人教版初中数学七年级上册第一章第四节的内容,我将从教材分析、教学方法、学法指导、教学程序设计等四个部分进行阐述。

一、教材分析1、教材的地位和作用有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。

因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。

有理数的乘法是有理数最基本的运算之一,它是进一步学习有理数运算的基础,也为今后学习实数运算、代数式的运算、解方程以及函数知识的奠定基础。

学好这部分内容,对增强学习代数的信心具有十分重要的意义。

2、教学目标(1)、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

(2)、通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。

(3)、激发学生学习数学的兴趣,培养学生勇于探索新知的精神。

.3、教材的重点和难点本节课的重点是有理数的乘法法则。

这是因为:(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。

(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。

本节课的难点是有理数乘法中的符号法则。

由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。

二、教法分析数学教学是数学活动的教学,教师应从实际出发激发学生的学习积极性,为学生提供从事数学活动的机会,帮助学生在实践活动中真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验.考虑到七年级学生刚接触负数,对负数的意义理解不深,因此我将采用启发式教学为主,讲练结合法为辅展开教学.三、学法分析学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳、分析,采用自主探究的方法进行学习,并使学生从中体会学习的兴趣.四、教学过程本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。

4 有理数的除法——有理数的加减乘除混合运算

4 有理数的除法——有理数的加减乘除混合运算


4.概括文章的主要内容。通篇阅读, 分出层 次,梳 理情节 ,全盘 把握, 根据题 干要求 找出事 件的中 心内容 ,用自 己的语 言简洁 概括。 如可概 括为“我” 见到菜 农后发 生的几 件事及 对他态 度的变 化,由 此表达 了对菜 农的敬 佩之情 。

5.“不怕别人嘲笑奚落的人”理解错误。 菜农具 有憨厚 朴实, 做事专 注认真 ,热爱 生活, 追求内 心的宁 静,不 为名利 所累的 性格特 点。
例1 计算:
知1-讲
(1)
125
5 7
(5);
(2) 2.5 5 ( 1).
84
解:(1)
125
5 7
(5)
(2) 2.55(1) 84
125
5 7
1 5
=581 254
125 1 5 1
=1.
5 75
25 1 25 1 ;
7
7
总结
知1-讲
因为有理数的除法可以化为乘法,所以可以 利用乘法的运算性质简化运算. 乘除混合运算往 往先将除法化成乘法,然后确定积的符号,最后 求出结果.
2 3 2,就可以得到答案3. 7. 不同品牌的计算器的操作方法可能有所不同,
具体参见计算器的使用说明.
知3-练
1 下列说法错误的是( D ) A.开启计算器使之工作的按键是 O N 键 B.输入-5.8的按键顺序是 58+/或 ( ) 58 C.输入0.58的按键顺序是 5 8 D.按键 69+/87/能计算-69-87的结果
B.互为倒数
C.互为相反数且不为零 D.以上都不对
知2-练
3 根据有理数的运算律,下列等式正确的是( B )
A. a-b=b-a

1.4有理数的乘除法数学教案

1.4有理数的乘除法数学教案

1.4有理数的乘除法数学教案
标题:第1单元第4节有理数的乘除法
一、教学目标:
(1)理解并掌握有理数的乘法法则;
(2)理解并掌握有理数的除法法则;
(3)能够运用有理数的乘除法解决实际问题。

二、教学重点与难点:
重点:理解和掌握有理数的乘除法法则。

难点:正确理解和运用符号法则进行计算。

三、教学过程:
(一)复习导入
通过回顾上一节课的内容,引出本节课的主题——有理数的乘除法。

(二)新课讲解
1. 有理数的乘法法则
(1)同号两数相乘,结果为正;异号两数相乘,结果为负。

(2)任何数与零相乘,结果为零。

(3)几个不是零的数相乘,负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负。

教师可以通过具体的例子来解释这些法则,并让学生进行一些简单的练习,以加深他们对法则的理解。

2. 有理数的除法法则
(1)两个有理数相除,同号得正,异号得负,并把绝对值相除。

(2)0除以任何一个不等于0的有理数都为0。

(3)除以一个不等于0的数,等于乘以这个数的倒数。

同样,教师可以通过例子和练习来帮助学生理解这些法则。

四、课堂练习
设计一系列的习题,包括基本的乘除法运算,以及一些需要应用乘除法法则的实际问题,让学生在实践中巩固所学的知识。

五、小结与作业
总结本节课的主要内容,布置一些课后作业,让学生在课后进一步复习和巩固所学知识。

6年级-优质讲义-第4讲:有理数的混合运算(加减乘除、乘方)-展示版

6年级-优质讲义-第4讲:有理数的混合运算(加减乘除、乘方)-展示版
5 96 1 19 5
96 1 = 19
=

115 19
• 二、括号分段法
• 按照运算顺序,有括号的应该先算括号里 面的,而实际上括号把算式分为两段(或三 段),可同时分别对括号内外的算式进行运
算.
例题 2.计算:
3 1 ( 2) (3) 4 5 2
以把算式分成两段(或三段),同时进行计
算.
例题
3.计算: 1 | 5 | (49) | 5 (6 ) | | 9 | 3


分析:本题是含有绝对值的混合运算,按 照分段法的要求应分为5段,进行计算.
3 6 3 6 2
• 1 5 1 5 1 • 解:原式= 5 - 49 + - - 9 = - 53 + - = - 53
2 2 1 5 • 4.计算: 13 34 (13) 34 3 7 3 7
2 2 (2) 2 (3) 2 (3) 2 • 5.计算: 3 2 [(5) ( ) 15] 8 7 1 5
典型例题
1 5 2 5 2 2 • 1.计算: 1 2 2 3 12 3 12 3 5
2 1 2 • 2.计算: (2) (3) 2 (5) 5 5 5
2
1 2 • 3.计算: 3 5 1 2 3 (2) 0.2
• 四、分数线分段法
• 分数线可以把算式分成分子和分母两部分 并同时分别运算.
例题
4.计算: 1 5 6 6 1 1 3 1 ( 3 ) 2 6 4
• • 分析:本题是含有分数线的有理数的混合运算,按照 “分数线分段法”应把分子、分母分别运算,最后再 相除或约分就可以得到结果了. • 2 2 2 3 3 9 6 • 解:原式= 3 1 4 1 1 3 2 6 3 3 9

1.4_有理数的乘除法_辅导资料(含答案)

1.4_有理数的乘除法_辅导资料(含答案)

1.4 有理数的乘除法第四课时本节主要讲了有理数的乘法运算,通过水库水位的变化,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现,归纳出有理数的乘法法则。

通过大量的实例,让学生真正的掌握有理数的乘法运算。

乘法与除法互为逆运算,这在有理数范围内仍然适用。

本节给了一些算式,旨在引导学生发现规律。

从商的符号及其绝对值与被除数和除数的关系,可归纳出有理数的除法法则。

然后又给出倒数的定义,进而将有理数的除法运算转化为乘法运算。

一.有理数乘法法则的运用和运用有理数的除法法则进行简单的运算这是本节的重点知识.如【典例引路】中例1,,【当堂检测】中第4题,【课时作业】中第9题。

二.运算中符号的选择,倒数的求法这是本节的难点.如【基础练习】中第4题,【当堂检测】中第4题,【课时作业】中第14题。

三.易错题目易错点仍然是结果的符号问题,需要学生特别注意。

【课时作业】中第19题。

知识点1.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘得0.乘积是1的两数互为倒数.两数相乘,交换因数的位置,积不变;乘法交换律:ab=ba;三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.乘法结合律:abc=(ab)c=a(bc).一个数同两个数的和相乘,等于这个数分别与这两个数相乘,再把积相加.乘法分配律:a(b+c)=ab+ac;几个不等于0的数相乘,负因数的个数为偶数个时,积为正数; 负因数的个数为奇数个时,积为负数.知识点2.有理数的除法除以一个不为0的数,等于乘这个数的倒数.式子表达为:a ÷b=a ×b1(b 为不等于0的数).两数相除,同号得正,异号得负,并把绝对值相乘.一个数同不为0的数相除,仍得0. 针对性练习:1.填空: (1)-67×76___________; (2)(-1.25)×(-8)=_____________; (3)(-126.8)×0=___________; (4)(-25.9)×(-1)=______________. (5)(-5)×__________=-35; (6)(-73)×____________=73. 【解析】两个有理数相乘,我们根据法则先来确定乘积的符号,再把绝对值相乘.在进行有理数乘法运算时,除了要熟练掌握乘法法则之外,还应当注意以下两点:1.一个数乘以1等于它本身,一个数乘以-1等于它的相反数.2.两个相反数的和与积是完全不同的两个结果,不要混淆.【答案】(1)-1 (2)1 (3)0 (4)25.9 (5)-35(6)73类型之一:巧用运算律简化计算型例1.(1)(-6)×[32+(-21)]=(-6)×32+(-6)×(-21) (2)[29×(-65)]×(-12)=29×[(-65)×(-12)]【解析】本题运用乘法对加法的分配律来计算,过程会比较简单。

新初一数学第四集 有理数的运算——乘除法与乘方

新初一数学第四集  有理数的运算——乘除法与乘方

第四集 有理数的运算——乘除法与乘方【知识储备】1、有理数加减混和运算的方法和步骤:运用减法法则,把式子统一成“和”(即变成加法)的形式运用加法法则.加法交换律.加法结合律进行简便运算2、乘法运算定律乘法交换律:a b b a ⨯=⨯ 乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯乘法分配律:c a b a c b a ⨯+⨯=+⨯)(3、倒数若)0,(1≠=⋅b a b a 成立,则b a ,互为倒数;反之,若b a ,互为倒数,则有1=⋅b a .【本集要点】知识一:有理数的乘法法则:1. 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:1553=+⨯+)()(; 1553=-⨯-)()(; 1553-=-⨯+)()(2. 任何数同0相乘,都得0。

例如: 003=⨯+)(; 003=⨯-)(3.多个有理数相乘时,只要有一个数为0,则乘积为零,几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

简记“奇负偶正”例如:00253=⨯+⨯-⨯-)()()( 30253-=-⨯-⨯-)()()( 30253=+⨯-⨯-)()()(知识二:乘法的运算律(1)乘法交换律:两个数相乘,交换因数的位置积不变,即ba ab =。

(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘积不变,即)()(bc a c ab =。

(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘再把积相加,即ac ab c b a +=+)(知识三:倒数乘积为1的两个数互为倒数,即:如果b a •=1,则b a ,互为倒数,反之,若b a ,互为倒数则有,b a •=1。

任何数与0相乘的积都是0,不可能是1,因此0没有倒数。

一般地,求一个整数的倒数,直接写成这个数的分之一即可,求一个分数的倒数只要把分子、分母的位置颠倒一下即可。

知识四:有理数的除法法则法则一:除以一个数等于乘上这个数的倒数,即)0(1≠•=÷b ba b a 。

2022年初中数学同步 7年级上册 第4讲 有理数的乘除法(教师版含解析)

2022年初中数学同步 7年级上册 第4讲  有理数的乘除法(教师版含解析)

第4讲有理数的乘除法1.掌握有理数乘除法法则;2.掌握倒数的定义;3.会进行有理数乘除的混合运算。

知识点01 有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.1.﹣2×3=()A.﹣6B.﹣8C.﹣9D.﹣23【解答】解:﹣2×3=﹣6.故选:A.2.计算﹣4×(﹣2)的结果等于()A.12B.﹣12C.8D.﹣8【解答】解:原式=4×2=8.故选:C.3.若abc>0,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0或三个大于0D.至少有一个小于0【解答】解:∵abc>0,∴a、b、c有一个大于0,另外两个小于0或三个大于0.故选:C.4.已知|a|=4,|b|=2,那么ab=8或﹣8.【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=4,b=2时,ab=4×2=8;当a=4,b=﹣2时,ab=4×(﹣2)=﹣8.当a=﹣4,b=2时,ab=(﹣4)×2=﹣8.当a=﹣4,b=﹣2时,ab=(﹣4)×(﹣2)=8.∴ab的值为8或﹣8.故答案为:8或﹣8.5.用“>”,“<”或“=”号填空:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0.【解答】解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故答案为:>,<.6.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).【解答】解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.7.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.【解答】解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5) =(﹣7)=﹣3.知识点02 倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。

有理数的乘除法公式

有理数的乘除法公式

有理数的乘除法公式有理数的乘除法公式,这可是数学世界里相当重要的一部分呢!咱先来说说有理数的乘法公式。

有理数乘法法则是这样的:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与 0 相乘,都得0 。

比如说,咱来看看这两个数:-3 和 5 ,一个是负数,一个是正数,相乘就是异号,那结果就得是负的,然后把绝对值相乘,也就是 3×5 = 15 ,所以 -3×5 = -15 。

再比如说 2 和 -4 ,这也是异号相乘,结果为负,绝对值相乘 2×4 = 8 ,所以 2×(-4) = -8 。

要是两个负数相乘呢,像 -2 和 -3 ,同号相乘得正,绝对值相乘2×3 = 6 ,所以 (-2)×(-3) = 6 。

我记得之前给学生们讲这部分知识的时候,有个小同学特别可爱。

当时我在黑板上写了几道题让大家练习,其中有一道是 (-5)×(-6) 。

这个小同学一开始算成了 -30 ,我就问他怎么想的呀,他一脸认真地说:“老师,两个负数相乘,负负得负呀!”这可把大家都逗乐了。

我又耐心给他解释了一遍,他才恍然大悟,那表情别提多有趣了。

说完乘法,咱们再聊聊有理数的除法公式。

有理数除法法则是:除以一个不等于 0 的数,等于乘这个数的倒数。

比如说,6÷(-3) ,就等于 6×(-1/3) ,结果就是 -2 。

再比如,-8÷4 ,就等于 -8×(1/4) ,结果就是 -2 。

在讲除法的时候,还有个小插曲。

有一次课堂上,我出了一道题12÷(-4) ,让大家在本子上算。

有个同学很快就举手说:“老师,我算出来是 -3 !”我就问他:“你能给大家讲讲你是怎么算的吗?”他站起来,特别自信地说:“老师,我先看符号,一正一负得负,然后 12÷4 等于3 ,所以结果就是 -3 !”他讲得头头是道,其他同学都给他鼓掌呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4有理数的乘除法
&1.41有理数的乘法
1.有理数的乘法法则:两个数相乘,同号得正,异号得负,再把绝对值相乘。

任何数与0相乘都得0,与1相乘等于它本身;与-1相乘等于它的相反数。

2.乘积的符号的确定
①.几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数 有奇数个时,积为负。

②.当负因数有偶数个时,积为正。

③.几个有理数相乘,有一个因数为零,积就为零。

乘法运算规则:多个有理数相乘时,先确定积的符号,再定积的绝对值,在运算时把小数化成分数,带分数化为假分数计算。

例题(略)
3.倒数:乘积为1的两个数互为倒数。

①.正数的倒数是正数,负数的倒数是负数。

②.ab 互为倒数,符号一定相同。

且ab=1。

③倒数是本身的只有1和-1。

0没有倒数。

例题(略)
一对一辅导教师辅导讲义
第一章——有理数
课题:
第四讲:有理数的乘除法 备课人: 匡胜林 备课时间: 2015.7.21
教学目标: ✓ 掌握有理数的乘除法的运算法则 ✓ 掌握有理数倒数的性质
✓ 掌握科学计数法
教学内容
4.有理数的除法法则
①除以一个不等于0的数,等于乘这个数的倒数。

②两数相除,同号得正,异号得负,并把绝对值相除。

③0除以任何一个不等于0的数,都得0。

1除以非0数,等于它的倒数。

注:0可以作被除数,但不可以作除数。

5.有理数的乘方
(1)求相同因数的积的运算叫做乘方.
表示n 个a 相乘,一般地记作:n a 。

a 是底数,n 是指数,乘方运算
的结果叫幂.读作:a 的n 次方。

*数的指数为1,通常指数1省略不写,书写负数或分数的乘方时底数要加括号。

注:n a -和n a )(-的区别
(2)有理数乘方的运算法则:
①正数的任何次幂都是正数。

②负数的奇数次幂是负数。

③负数的偶数次幂是正数。

(3)①一个数的平方为它本身,这个数是0和1。

②一个数的立方为它本身,这个数是0、1和-1。

6.有理数混合运算
有理数混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按照从左到右的顺序进行计算,有括号的先算括号里的。

例题(略)
7.科学计数法:
(1).一般情况下,把大于10的数表示成a ×n 10(n 为正整数)的形式,为了统一标准,规定了a 的范围,(1≤a<10),这种记数方法叫做科学记数法。

(2)科学计数法中a 和n 的确定:
①就是把原数的小数点移动到左边第1个不是0的数字后面所得到的数 ②的值比原数的整数位数少1.
(3)还原科学计数法:把科学计数法表示的数a ×n 10还原成原数,只需把a 中的小数点向右移动n 位,并去掉乘号和n 10,若向右移数的位数不够应补0. 比如:13 200=1.32×310; —4.67×710=-46 700 000;
8.近似数:与实际非常接近的数(一般用四舍五入法取近似数)
5.649(精确到0.1); 0.4630(精确到百分位);
近似数1.6万是精确到_____位;近似数1.70所表示的准确数的取值范围_______.
章节练习和章节测试题(略)。

相关文档
最新文档