从三章《线性代数(经管类)》课堂笔记 3
自考线性代数经管类笔记
自考线性代数经管类笔记线性代数是一门应用广泛的数学学科,对于经管类专业的学生来说尤为重要。
本篇笔记将详细介绍线性代数的基本概念和常用方法,以及其中涉及到的经管类应用。
一、向量和矩阵1.1 向量的定义和运算向量是由有序的一组数按照一定顺序排列而成的对象,常用于表示多维度的数据。
向量的加法和数乘是基本的运算操作,能够实现向量之间的合成和缩放。
1.2 矩阵的定义和运算矩阵是由多个向量按行或按列排列而成的矩形数组。
矩阵的加法、数乘和乘法是常见的运算操作,通过这些运算可以实现线性方程组的求解和数据的变换。
二、线性方程组2.1 线性方程组的概念线性方程组是由一组线性方程组成的方程集合,可以用矩阵和向量的形式表示。
线性方程组通常用来描述多个变量之间的关系。
2.2 线性方程组的解法高斯消元法是求解线性方程组的常用方法,通过矩阵的初等行变换将线性方程组化为简化的行阶梯形式,从而得到方程组的解。
三、矩阵的应用3.1 线性变换线性变换是指从一个向量空间到另一个向量空间的一种特殊变换,可以用矩阵表示。
在经管类问题中,线性变换常用于描述经济模型、市场规模和供求关系等。
3.2 特征值与特征向量矩阵的特征值和特征向量是描述矩阵性质的重要指标,可以用来判断矩阵的稳定性和变换的特征。
四、行列式4.1 行列式的概念行列式是一个与矩阵相关的标量,可以用来判断矩阵的可逆性、求解线性方程组和计算面积、体积等几何量。
4.2 行列式的性质行列式具有一系列重要的性质,包括行列式的展开性质、可逆矩阵的行列式性质和矩阵乘法的行列式性质等。
五、矩阵的特殊类型5.1 对称矩阵对称矩阵是指矩阵的转置矩阵等于矩阵本身,具有特殊的性质和应用,常用于描述系统的对称程度和分析力学中的刚体问题。
5.2 正定矩阵正定矩阵是指矩阵的所有特征值都大于零,是优化问题和概率论中常见的矩阵类型。
六、线性代数的应用6.1 经济学中的应用线性代数在经济学中有广泛的应用,如求解均衡价格、计算生产函数、分析供求关系等。
《线性代数》学习笔记三
主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记三——矩阵的概念、运算、分块矩阵1. 矩阵概念定义:由mxn 个数a ij (i-1.2,……,m;j=1.2,……,n)排成m 行n 列的数表 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为一个mxn 矩阵,a ij 称为第i 行第j 列上的元素,可简记作A=(a ij )mxn 或Amxn ,当m=n 时也称Amxn 为n 阶方阵,可记为An 。
当m=1时,Amxn=(a 11,a 12,……a 1n )称为行矩阵,当n=1时,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m mxna a a A 称为列矩阵,有元素皆为0的矩阵称为零矩阵,记作0。
对于n 阶方阵An ,称a n ,a 22 ,…,nn a 为A 的全对角线上元素称∑=ni ii a 1为分阵A 的迹,记作tr A ,即tr A =1nii i a 。
当n 阶方阵A 的主对角线以下(上)的所有元素皆为零称A 为上(下)三角形矩阵,除主对角线上元素外其元素皆为零的方阵为对角形矩阵,主对角线上有元素皆为1的对角形矩阵称为单位方阵,记作F 即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001F 2.矩阵运算1加法A=(ij a )mxn ,B=(ig b )mxn 则A+B=(a ij +b ij )mxn即只有两个矩阵都是mxn 矩阵,也称为同型矩阵,才能做加法运算。
称(-a ij )mxn 为A 的负矩阵,记作-A ,即-A=(-a ij )mxn 。
由此可定义A -B=A+(-B )=(a ij -bij )mxn 。
证与数的加、减运算类似,矩阵的加法运算满足 (1)A+B=B+A (交换律)(2)(A+B )+C=A+(B+C )(结合律) (3)A+O=O+A=A ,(4)A+(-A )=(-A )+A=O 2.数乘:设K 是一个数, mxnijmxnA a 则R 与矩阵A 相乘定义为111212122212n n ijmxnm m mnka ka ka ka ka ka kAka ka kaka也就是ka 是指用k 去乘A 的每一个元素,另证,其满足以下规律: (1)K (A+B )=KA+KB ,(K+L )A=KA+LA ,(分配律) (2)(KL )A=K (LA )=L (KA ),(结合律), (3)若KA=0,则K=0或A=0。
线性代数经管类知识点
线性代数经管类知识点线性代数在经管类学科中具有重要的地位,其涉及的知识点对于分析、建模和解决管理问题具有重要的作用。
本文将介绍一些线性代数在经管类学科中常用的知识点,并探讨其应用。
应用于经管类学科的线性代数知识主要包括矩阵运算、线性方程组的求解以及向量空间的理解。
我们将逐一进行阐述。
1. 矩阵运算:矩阵是一个重要的线性代数工具,在经管类学科中广泛应用于数据的存储和计算。
矩阵的加法、减法和乘法运算能够对数据进行处理和分析。
例如,在经济学中,我们可以通过矩阵乘法来计算不同经济指标的加权平均值,从而对经济状况进行评估。
此外,矩阵的转置运算也可以用于解决一些经济和管理问题,例如对投资组合的评估与优化。
2. 线性方程组的求解:线性方程组是经管类学科中常见的数学模型。
通过线性代数的方法,我们可以求解线性方程组,从而得到方程组的解析解或数值解。
这对于经济学中的均衡分析和管理学中的约束优化问题具有重要的作用。
同时,我们还可以通过求解线性方程组来进行数据拟合和趋势预测,帮助企业做出决策。
3. 向量空间的理解:向量空间是线性代数中的一个重要概念,它描述了向量的线性组合和向量之间的相对位置关系。
在经管类学科中,我们经常遇到多个变量之间的关系,例如市场需求与供给的关系、公司利润与销售额的关系等。
通过将变量转化为向量,我们可以使用向量空间的理论和方法来分析这些关系。
例如,我们可以通过求解向量的线性相关性来检验变量之间的相关性,从而评估市场需求的变化对供给的影响,或者评估公司销售额的变化对利润的影响。
除了以上提到的知识点,线性代数在经管类学科中还有其他重要的应用。
例如,特征值和特征向量的分析可以用于研究矩阵的稳定性和动态系统的行为。
奇异值分解可以用于降维和数据压缩,从而提取关键信息。
矩阵的逆可以用于求解逆问题,例如在金融学中用于对冲或风险管理。
总之,线性代数在经管类学科中扮演着不可或缺的角色。
通过掌握矩阵运算、线性方程组求解和向量空间的理解,我们能够更好地理解和分析经济和管理问题。
线性代数知识点归纳
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
自考本科线性代数(经管类)知识汇总
自考高数线性代数笔记第一章行列式1.1 行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1 a 为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2 当x 取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9 时,所给行列式大于0。
(二)n 阶行列式符号:它由n 行、n 列元素(共个元素)组成,称之为n 阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i 称为行标,它表示这个数在第i 行上;后一个下标j 称为列标,它表示这个数在第j 列上。
所以在行列式的第i 行和第j 列的交叉位置上。
线性代数知识点总结
线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幕知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。
自考本科线性代数(经管类)知识汇总
自考高数线性代数笔记第一章行列式1.1 行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1 a 为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2 当x 取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9 时,所给行列式大于0。
(二)n 阶行列式符号:它由n 行、n 列元素(共个元素)组成,称之为n 阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i 称为行标,它表示这个数在第i 行上;后一个下标j 称为列标,它表示这个数在第j 列上。
所以在行列式的第i 行和第j 列的交叉位置上。
自考线性代数(经管类)重点考点
自考线性代数(经管类)重点考点线性代数(经管类)考点逐个击破第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数aij(i,j1,2)得到下列式子:a11a12a21a22称为一个二阶行列式,其运算规则为a11a12a21a22a11a22a12a212.三阶行列式a11a12a13由9个数aij(i,j1,2,3)得到下列式子:a21a22a23 a31a32a33称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式a11a12a13设有三阶行列式D3a21a22a23a31a32a33对任何一个元素aij,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素aij的余子式,记成Mij例如M11a22a23a32a33ij,M21a12a13a32a33,M31a12a13a22a23再记Aij(1)Mij,称Aij为元素aij的代数余子式.例如A11M11,A21M21,A31M31那么,三阶行列式D3定义为a11a12a13D3a21a22a23a11A11a21A21a31A31a31a32a33简写成D3我们把它称为D3按第一列的展开式,经常ai13i1Ai1(1)i1ai1Mi1i134.n阶行列式一阶行列式D1a11a11a11a12a1nn阶行列式Dna21a22a2nan1an2anna11A11a21A21an1An1其中Aij(i,j1,2,,n)为元素aij的代数余子式.5.特殊行列式a11上三角行列式a12a1na22a2n00ann00a11a22anna11a22ann00a11a21an1a1100下三角行列式a22an2ann000a220对角行列式anna11a22ann(二)行列式的性质性质1行列式和它的转置行列式相等,即DDT性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质5把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式Daijn等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即Dai1Ai1ai2Ai2ainAin(i1,2,,n)或Da1jA1ja2jA2janjAnj(j1,2,,n)前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2n阶行列式Daij的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.n即ai1Ak1ai2Ak2ainAkn0(ik)或a1jA1a2jA2anjAn0(j)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:2141例1计算行列式D4312152327025解:观察到第二列第四行的元素为0,而且第二列第一行的元素是a121,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.2141D4312170255312列251列1021412行11行506270250按第二行展开31237581562按第二列展开15072552323行(2)1行10507375abbb例2计算行列式D4babbbbabbbba解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为a3b(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子a3b,再将后三行都减去第一行:abbbbabbbbabbbbaa3bbbba3babba3bbaba3bbba1b00b00b00ab00(a3b)1 bbb1abb1bab1bba(a3b)ab0ab(a3b)(ab)3方法2观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与D4有相同值的五阶行列式:abbbD4babbbbabbbba1bbbb0abbb0babb0bbab0bbba1行(1)2,3,4,行51111b000bb0b001ab000ab0ab00ab这样得到一个“箭形”行列式,如果ab,则原行列式的值为零,故不妨假设ab,即ab0,把后四列的1倍加到第一列上,可以把第一列的(-1)化为零.ab4b1bbbbab0ab0004b400ab001(ab)(a3b)(ab)ab000ab00000ab1例3三阶范德蒙德行列式V3某11某221某3(某2某1)(某3某1)(某3某2)2某1某2某32(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为a11某1a12某2a1n某nb1,a某a某a某b,2112222nn2an1某1an2某2ann某nbn如果其系数行列式Daijn0,则方程组必有唯一解:某jDjD,j1,2,,n其中Dj是把D中第j列换成常数项b1,b2,,bn后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2设有含n个方程的n元齐次线性方程组a11某1a12某2a1n某n0,a某a某a某0,2112222nnan1某1an2某2ann某n0如果其系数行列式D0,则该方程组只有零解:某1某2某n0换句话说,若齐次线性方程组有非零解,则必有D0,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由mn个数aij(i1,2,,m;j1,2,,n)排成的一个m行n列的数表a11a12a1na21a22a2nAam1am2amn称为一个m行n列矩阵或mn矩阵当mn时,称Aaijnn为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用Omn或O表示2.3个常用的特殊方阵:a11000a022①n阶对角矩阵是指形如A的矩阵00ann100010②n阶单位方阵是指形如En的矩阵001a11a12a1na11000a22a2na21a220③n阶三角矩阵是指形如的矩阵,00aaaan2nnnnn13.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“某”与矩阵记号“某”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵A(aij)mn,B(bij)k,若mk,n,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即aijbij,则称矩阵A与B相等,记为AB 因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设A(aij)mn,B(bij)mn是两个同型矩阵则规定AB(aijbij)mnAB(aijbij)mn注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算。
线性代数学习笔记——第三章
线性代数学习笔记——第三章线性代数学习笔记——第三章肝了两个多⼩时,还是肝完了⼀篇笔记,借鉴了很多其他⼤佬的整理。
(不过基本上还是宋浩⽼师的原话),今天的任务算是完成⼀半了,我东某⼈真是可悲!向量的定义n维向量:n个数组成的有序数组。
⾏向量(α1,α2,α3)。
列向量将上述的竖着写。
零向量:分量全部为零。
负向量:取相反数。
向量相等:同维数,元素对应相等。
只有同维向量才能⽐较⼤⼩,以及相加。
kα = 0 ⇔ k = 0 or α = 0 。
矩阵:AB = 0 ⇏ A=0 or B=0。
向量间的线性关系线性关系:零向量可由任意向量组表⽰。
向量组中任⼀向量可由向量组表⽰eg:\alpha1=\alpha1 + 0\alpha2 + 0\alpha3。
任意向量都可由n维单位向量组表⽰。
向量组的等价:①:同维。
②:两个向量组可以相互线性表⽰。
线性组合:β、α1……αn。
若β可以⽤α向量组表⽰出来,那么就叫β是α向量组的线性组合(或者称β可以由α向量组线性表⽰)。
同时在表⽰的过程中系数可以全取零。
反⾝性、对称性、传递性均适⽤。
线性相关:α1、α2……αn是n个m维向量组,若存在⼀组不全为0的k1,k2……k n,使得k1α1 + ……+ k nαn= 0,那么则叫α1……αn是线性相关。
线性⽆关:①:不是线性相关。
②:找不到⼀组不全为0的k1……k n满⾜线性相关的条件。
③:使得k1+k2+……+k n=0的k1,k2……必定全为零。
向量组中两向量成⽐例,向量组必线性相关。
含零向量的向量组必线性相关。
⼀个⾮零向量必⽆关。
⼀个向量α相关\Leftrightarrowα=0 。
部分组线性相关\longrightarrow整体组线性相关。
整体组线性⽆关\longrightarrow部分组线性⽆关。
线性⽆关的向量组,它的接长向量组也线性⽆关。
线性相关的向量组,它的截短向量组也线性相关。
n个n维向量(维数 = 个数)构成的⾏列式D \neq 0,那么线性⽆关,否则相关。
《线性代数》知识点归纳整理
《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。
它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。
以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。
向量是矩阵的特殊情况,只有一个列的矩阵。
矩阵和向量可以进行加法和数乘运算。
2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。
3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。
行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。
4.向量空间:向量空间是一组向量的集合,满足一定的条件。
向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。
5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。
6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。
向量空间的维数是指基向量的个数。
7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。
秩表示矩阵中线性无关的方向个数。
8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。
9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。
对角化后的矩阵可以简化各种计算。
10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。
11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。
如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。
自考04184线性代数(经管类)讲义-自考高数线性代数课堂笔记
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;符号叫二阶行列式,其大小规定为:例如号叫为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
线性代数(经管类)重点内容_目录
线性代数(经管类)重点内容目录第一章行列式1.简单的二阶、三阶行列式的计算。
(P3)2.利用行列式的定义计算行列式。
(P9)3.利用行列式的六大性质计算行列式。
(P11)4.利用克拉默法则求解线性方程组。
(P27)第二章矩阵5.矩阵的乘法运算。
(P37)6.矩阵乘法运算规律。
(P41)7.方阵的行列式具有的性质。
(P45)8.方阵的逆矩阵及其具有的性质。
(P48)9.利用矩阵的初等变换求解逆矩阵。
(P66)10.矩阵秩的求法。
(P70)11.利用矩阵求解线性方程组。
(P75)第三章向量空间12.线性表示。
(P83)13.线性相关和线性无关的性质与证明。
(P88)14.求向量组的极大无关组。
(P94)15.向量组的秩具有的性质。
(P97)16.求向量组的秩。
(P99)17.求向量空间的基与维数。
(P106)第四章线性方程组18.齐次线性方程组的性质。
(P110)19.求解齐次线性方程组。
(P114)20.非齐次线性方程组解的判别定理。
(P119)21.非齐次线性方程组的求通解方法。
(P120)第五章特征值与特征向量22.特征值与特征向量的定义求法。
(P129)23.特征值与特征向量的一些重要结论。
(P131)24.特征值的性质。
(P132)25.求特征值与特征向量的一般方法。
(P133)26.方阵相似具有的性质。
(P138)27.求向量内积。
(P146)28.正交矩阵的性质与证明。
(P150)第六章实二次型29.实二次型与矩阵之间的相互转换。
(P164)30.实二次型转化为标准形的方法。
(P166)31.用配方法求实二次型的标准形。
(P168)32.求二次型的规范形。
(P169)33.正定矩阵的判定。
(P173)。
《线性代数(经管类)》第三章考点手册
《线性代数(经管类)》第三章 向量空间考点28 n 维向量及其线性运算(★三级考点,选择、填空)1.n 维向量 由n 个数a1,a2,…an 组成的有序数组(a1,a2,…an),称为一个n 维向量,数ai 称为该向量的第i 个分量(i=1,2,…,n )。
注意:向量可以写成一行,也可以写成一列,两种记法无本质区别,通常表为列向量形式,即(a1,a2,…an)T 的形式。
2.向量的线性运算 同矩阵(一行或一列矩阵)的运算。
考点29 向量的线性组合(★★二级考点,选择、填空、计算)1.向量的线性组合 设m ααα,...,,21是一组n 维向量,m k k k ,...,,21是一组常数,则称mm k k k ααα+++...2211为m ααα,...,,21的一个线性组合。
常数m k k k ,...,,21称为该线性组合的组合系数。
2.线性表出与表出系数 若一个n 维向量β可以表示成m m k k k αααβ+++=...2211,则称β是m ααα,...,,21的线性组合,或称β可用m ααα,...,,21线性表出(或线性表示),称mk k k ,...,,21为组合系数,或表出系数。
3.向量组 若干个同维数的向量所组成的集合叫做向量组,m 个向量m ααα,...,,21组成的向量组可以记为R:m ααα,...,,21或R={m ααα,...,,21}。
4.线性表出系数的求法 向量β=(b1,b2,…an1)T 可用向量组α1=(a11,a21,…an1)T ,…, αm =(a1m ,a2m ,…anm)T 线性表出⇔线性方程组x1α1+x2α2+…+xmαm =β有解,即Ax =β有解,其中A=(α1,α2,…,αm )。
若方程组有惟一解,则表明β可用α1,α2,…αm 线性表出,且表示法是惟一的;若方程组有无穷多解,则表明β可用α1,α2,…αm 线性表出,且表示法不惟一;若方程组无解,则表明β不能用α1,α2,…αm 线性表出。
线性代数(经管类)笔记
第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论 2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质 5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法 2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.例4当取何值时,齐次线性方程组只有零解?解:方程组的系数行列式由于故当且且时,方程组只有零解.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A 的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A 的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.例4证明:构成的一个基,并求出在此基下的坐标.解:考虑由这三个3维向量组成的三阶行列式所以线性无关,它们构成的基,令由得唯一解,则所求在此基下的坐标为第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为第五章特征值与特征向量(一)特征值与特征向量1.实方阵的特征值与特征向量的定义与求法设A为一个n阶实方阵,若存在一个数及一个非零n维列向量,使得,则称为A的一个特征值,称是A的属于这个特征值的一个特征向量.特征值必是特征多项式的根,而相应特征向量必是齐次线性方程组的非零解,反之也对.例1 设,求A的特征值和特征向量.解:A的特征方程为则为A的两个特征值.对,求解,即得方程组的一个基础解系为,则为A的属于的一个特征向量.对,同理可求出的一个基础解系为则为A的属于的一个特征向量2.特征值和特征向量的性质性质1设是n阶方阵的全体特征值,则必有这里为矩阵A的n个对角元之和,称为A的迹.性质2 设已知为A的特征值,为相应特征向量,即,那么对任意多项式必有,特别性质3 n阶方阵A的属于不同特征值的特征向量必线性无关.(二)方阵的相似变换1.矩阵相似的定义与相似矩阵的基本性质设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵P,使得,则称A和B是相似的,记为A~B.相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式,但反之不一定.2.方阵相似对角化若n阶方阵A能相似于一个n阶对角矩阵,则说方阵A是可以相似对角化的,有以下基本定理:定理n阶方阵A可相似对角化A有n个线性无关的特征向量.推论当n阶方阵A有n个互不相同的特征值时,A必能相似对角化.3.方阵相似对角化的方法设A为n阶实方阵,若它能相似对角化,即A有n个线性无关的特征向量,不妨设它们属于的特征值依次为(这里可以有重复的)则令为一个n阶可逆矩阵,必有称这个对角矩阵为A的相似标准形.例2 设,求A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形(三)向量内积和正交矩阵1.向量内积的定义和基本性质下面我们在n维向量空间中讨论设为两个n维列向量,把实数,称为向量与的内积向量的内积具有对称性、线性性与正定性.2.向量的长度n维列向量的长度为实数。
自考本科线性代数(经管类)知识汇总(红字重点)
自考高数线性代数笔记第一章行列式行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:.解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
为叙述方便起见,我们用(i,j)表示这个位置。
n阶行列式通常也简记作。
n阶行列式也是一个数,至于它的值的计算方法需要引入下面两个概念。
《线性代数》知识点归纳与梳理_老师给的资料
《线性代数》知识点归纳与梳理_老师给的资料线性代数是数学的一个分支,研究向量空间、线性变换和矩阵的理论和方法。
它在许多领域中都有应用,如物理学、工程学、计算机科学等。
下面是对线性代数的一些主要知识点的归纳与梳理。
1.向量和向量空间向量是有大小和方向的量,可以表示为一个n维的有序实数组。
向量空间是由一组向量组成的集合,满足向量的加法和数乘运算的封闭性、结合律、分配律等性质。
2.矩阵和矩阵运算矩阵是一个由m行n列元素组成的矩形数组。
矩阵运算包括矩阵的加法、减法、数乘、矩阵乘法等。
矩阵乘法具有结合律和分配律,但不满足交换律。
3.行列式行列式是一个标量,用于表示一个n阶矩阵的性质。
行列式的计算可以通过对矩阵进行一系列的行变换来简化。
4.线性方程组线性方程组是由一组线性方程组成的方程组。
求解线性方程组可以通过高斯消元法、矩阵的逆等方法来实现。
当线性方程组有唯一解时,称为非齐次线性方程组;当线性方程组有无穷多个解时,称为齐次线性方程组。
5.向量空间的基和维数向量空间的基是指能够生成该向量空间中所有向量的一组线性无关的向量。
向量空间的维数是指其基的向量个数。
6.线性变换线性变换是指保持向量空间中向量加法和数乘运算的运算规则的变换。
线性变换可以用矩阵来表示,矩阵的列向量是线性变换作用于基向量得到的结果。
7.特征值和特征向量特征值和特征向量是线性变换的重要性质。
特征值是线性变换作用于特征向量后,得到的向量与特征向量平行的倍数。
特征向量是线性变换的不变子空间上的向量。
8.内积空间内积空间是具有内积运算的向量空间。
内积运算满足对称性、线性性和正定性等性质。
内积空间的基础是正交向量和标准正交向量组。
9.正交投影和最小二乘法正交投影是将一个向量投影到一个子空间上,得到其在该子空间上的投影向量。
最小二乘法是通过最小化误差的平方和来求解线性方程组的近似解。
10.特征分解和奇异值分解特征分解将一个矩阵分解为特征向量和特征值的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自学考试《线性代数(经管类)》课堂笔记第三章向量空间本章介绍n维向量的有关概念和向量空间的基本概念,先讨论向量组的线性相关性和线性无关性,然后引进极大线性无关向量组这个概念,定义向量组的秩,并进一步讨论向量组的秩和矩阵的秩之间的关系,最后给出向量空间的概念。
3.1n维向量概念及其线性运算3.1.1n维向量及其线性运算下面我们给出n维向量的概念。
定义3.1.1由n个数a1,a2,…a n组成的有序数组(a1,a2,…a n)称为一个n维向量,数a i称为该向量的第i个分量(i=1,2,…,n)。
向量的维数指的是向量中的分量个数。
向量可以写成一行:(a1,a2,…,a n);也可以写成一列:前者称为行向量,后者称为列向量,列向量也可以写成(a1,a2,…a n)T的形式。
今后,我们将用小写黑体字母…来表示向量,用带下标的白体字母a i,b i,x i,y i,…来表示向量的分量。
行向量与列向量是有区别的,一个行向量与一个列向量即使对应的分量相等,也不能把它们等同起来。
由于向量定义为有序数组,那么向量与数组中数的次序有关。
例如(1,2)≠(2,1)。
n维向量还可以用矩阵方法进行定义,一个n维向量就直接定义为一个1×n矩阵α=(a1,a2,…,a n)。
一个n维列向量就定义为一个n×1矩阵既然向量又是一种特殊的矩阵,则向量相等、零向量、负向量的定义及向量运算的定义,自然都应与矩阵的相应的定义一致。
定义3.1.2所有分量都是零的n维向量称为n维零向量,零向量记作0=(0,0,…0)。
注意:不同维数的零向量是不相等的。
[把向量α=(a1,a2,…,a n)的各个分量都取相反数组成的向量,称为α的负向量,记作-α=(-a1,-a2,…-a n)。
定义3.1.3如果n维向量α=(a1,a2,…,a n)与n维向量β=(b1,b2,…b n)的对应分量都相等,即αi=b i(i=1,2,…,n),则称向量α与β相等,记作α=β。
定义3.1.4(向量的加法)设n维向量α=(a1,a2,…,a n),β=(b1,b2,…b n),则α与β的和是向量a+β=(a1+b1,a2+b2,…a n+b n)。
利用负向量的概念,可以定义向量的减法:a-β= a+(-β)=(a1-b1,a2-b2,…a n-b n)。
定义3.1.5(数与向量的乘法)设α=(a1,a2,…,a n)是一个n维向量,k为一个数,则数k与α的乘积称为数乘向量,简称为数乘,记作kα,并且kα=k(α1,α2,…αn)=(kα1,kα2,…kαn)我们约定:对于任意实数k以及任意的n维向量α,都有kα=αk。
以上是就行向量的情形,定义了向量的加法、减法和数乘运算,对列向量的情形可完全类似地定义向量的加法、减法和数乘运算。
向量的加法运算及数乘运算统称为向量的线性运算,这是向量最基本的运算。
向量的运算满足下列8条运算律:设α,β,γ都是n维向量,k,l是数,则(1)α+β=β+α;(加法交换律)(2)(α+β)+γ=α+(β+γ);(加法结合律)(3)α+0=α;(4)α+(-α)=0(5)1×α=α;(6)k(α+β)=kα+kβ;(数乘分配律)(7)(k+l)α=kα+lα;(数乘分配律)(8)(kl)α=k(lα)。
(数乘向量结合律)3.1.2向量的线性组合1.向量的现行组合例1:设α=(2,1,3),β=(-1,3,6),γ=(2,-1,4),求向量2α+3β-γ。
解:2α+3β-γ=2(2,1,3)+3(-1,3,6)-(2,-1,4)=(4,2,6)+(-3,9,18)-(2,-1,4)=(-1,12,20)例2:α=(4,5),β=(-1,-2),求向量α+3β。
解:α+3β=(4,5)+3(-1,-2)=(4,5)+(-3,-6)=(1,-1)例3,矩阵则(1)A按行分块时,可得得到一个行向量组α1,α2,…αm,其中α1=(a11,a12,…a1n),α2=(a21,a22…,a2n),…,αm=(a m1,a m2,…a mn)。
简写作:αi=(a i1,a i2…,a in),(i=1,2…m)(2)矩阵A按列分块时,可得A=(β1,β2,…βn),得到一个列向量组β1,β2,…βn,其中…简写作:定义向量组ε1=(1,0,0,…0),ε2=(0,1,0…0),…εn=(0,0,0,…1),其中每一个向量只有一个分量为1,其余分量为0,叫标准单位向量组。
显然,任何一个向量都可以表示为标准单位向量组的线性组合。
例如若α=(a1,a2,…a n),则有α=a1ε1+a2ε2+…a nεn。
2.向量的线性表出关系例4:(1)因为(2,4,6)=2(1,2,3,),所以β=(2,4,6)可用α=(1,2,3)线性表出:β=2α,但γ=(2,4,5)不能用α=(1,2,3)线性表出。
(2)因为(5,10,15)=(1,2,3)+2(2,4,6),所以γ=(5,10,15)可用α=(1,2,3),β=(2,4,6)线性表出:γ=α+2β。
3.线性组合的矩阵表示法为了充分利用矩阵来研究向量之间的关系,我们要引进线性组合的矩阵表示法。
向量β=(b1,b2,…a n1)T可用向量组α1=(a11,a21,…a n1)T,…, αm=(a1m,a2m,…a nm)T线性表出的充分必要条件是存在m个数k1,k2,…k m使得k1α1+k2α2+…k mαm=β(3.1)利用向量的线性运算,(3.1)式可以写成如下的m元线性方程组:那么,存在m个数k1,k2,…k m使得(3.1)式成立当且仅当方程组(3.2)有解。
构造n×m矩阵A=(α1,α2,…αm),并令x=(x1,x2,…x m)T,根据分块矩阵的乘法规则,方程组(3.2)可写成矩阵形式:x1α1+x2α2+…+x mαm=(α1,α2,…αm)或简写成AX=β于是满足(3.1)式的表出系数k1,k2,…k m就是线性方程组Ax=β的解。
若方程组(3.2)有惟一解,则表明β可用α1,α2,…αm线性表出,且表示法是惟一的.若方程组(3.2)有无穷多解,则表明β可用α1,α2,…αm线性表出,且表示法不惟一.若方程组(3.2)无解,则表明β不能用α1,α2,…αm线性表出。
如果α1,α2,…αm和β都是n维行向量,此时必须构造n×m矩阵,即把所给的行向量全部转置成列向量再依次存放构造出矩阵A,则有解。
即与方程组3.2相同。
4.表出系数求法举例例5问β=(-1,1,5)T能否表示成α1=(1,2,3)T,α2=(0,1,4)T,α3=(2,3,6)T的线性组合?解设线性方程组为x1α1+x2α2+x3α3=ββ能否表示成α1,α2,α3的线性组合,取决于该方程是否有解,对它的增广矩阵施行行初等变换,得显然,x1α1+ x2α2+ x3α3=β的同解方程组Tx=d就是它的惟一的解就是x1=1,x2=2,x3=-1,所以β可以惟一地表示成α1,α2,α3的线性组合,且β=α1+2α2-α3例6问β=(4,5,5)能否表示成α1=(1,2,3),α2=(-1,1,4),α3=(3,3,2)的线性组合?解:考察线性方程组用矩阵的初等行变换化简方程组的增广矩阵:方程组的同解方程组为取x3=k,则有β=(3-2k)α1+(k-1)α2+kα3,k可任意取值。
3.2线性相关与线性无关定义3.2.1设α1,α2,…,αm是m个n维向量,如果存在m个不全为零数k1,k2,…,km,使得k1α1+ k2α2+…k mαm=0。
则称向量组α1,α2,…αm线性相关,称k1,k2,…k m为相关系数,否则,称向量组α1,α2,…αm线性无关。
即只有k1=k2=…k m=0,才能使k1α1+ k2α2…k mαm=0。
就说向量组线性无关。
根据向量组线性相关性定义,可以直接有下面结论(1)含有零向量的向量组一定线性相关。
例如:m个向量为α1, α2,…,αm-1,0。
必有0α1+0α2+…+0αm-1+1×0=0所以α1,α2…,αm-1,0线性相关。
(2)一个向量生成的向量组α线性相关α=0。
证:①充分性,若α线性相关,按定义,存在k≠0。
使②必要性,若α=0,则有1×α=1×0=0∴α=0必线性相关。
(3)两个向量的向量组α,β线性相关α与β的分量成比例。
证:①若α与β线性相关。
设α=(a1,a2,…a n),β=(b1,b2,…b n)则存在k,l不全为0,有kα+lβ=0.例1说明标准单位向量组ε1=(1,0,0,…0),ε2=(0,1,0,…0),…εn=(0,0,0,…1)一定线性无关。
解:例2问向量组α1=(2,3,1), α2=(1,2,1), α3=(3,2,1)是否线性相关?解设x1α1+ x2α2+ x3α3=0,即x1(2,3,1)+ x2(1,2,1)+ x3(3,2,1)=(0,0,0)令等式两边的三个分量分别相等,就可以列出组合系数满足的线性方程组因为它的系数行列式所以此线性方程组只有零解,这说明α1, α2, α3线性无关。
例3讨论向量组α1=(1,1,2), α2=(1,2,4),α3=(2,3,6)的线性相关性。
解:例4若α1, α2, α3线性无关,证明以下向量组线性无关:β1=α2+α3, β2=α1+α3, β3=α1+α2证设k1β1+ k2β2+ k3β3=0,将已知条件代入得k1(α2+α3)+ k2(α1+α3)+ k3(α1+α2)=0把它整理后可得(k2+ k3)α1+(k1+ k3)α2+(k1+ k2)α3=0因为α1, α2, α3线性无关,必有k2+k3=0, k1+k3=0, k1+k2=0,把它们相加得到2(k1 +k2+ k3)=0,据此得k1= k2= k3=0,这就证明了β1, β2, β3线性无关。
两个重要结论:(1)n个n维列向量α1,α2,…αn,线性无关矩阵A=(α1,α2,…αn)的行列式(2)当m>n时,m个n维列向量α1,α2,…αm一定线性相关。
这是由于当m>n时,齐次线性方程组Ax=0中的变量个数m大于方程个数n,它必有可以任意取值的自由变量,因此,它必有非零解。
例5因为所以下面的两个向量组都是线性相关组:因为所以下面的两个向量组都为线性无关组:这就是说,若方阵的行列式等于零,则它的行向量组和列向量组都线性相关;若方阵的行列式不为零,则它的行向量组和列向量组都线性无关。
例6向量组α1(1,2,1),α2(1,1,0),α3(1,0,1),α4(1,2,3)一定线性无关。
原因是向量个数m>分量个数n,其中m=4,n=3,所以一定线性相关。