高考数学专题复习——求解圆锥曲线离心率的取值范围

合集下载

专题06 圆锥曲线离心率及范围问题(解析版)

专题06 圆锥曲线离心率及范围问题(解析版)

专题6 圆锥曲线离心率及范围问题离心率在圆锥曲线问题中有着重要应用,它的变化会直接导致曲线类型和形状的变化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.关于圆锥曲线离心率(范围)问题处理的主体思想是:建立关于一个,,a b c的方程(或不等式),然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种办法:○1利用圆锥曲线的定义解决;○2利用题中的几何关系来解决问题。

另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、圆锥曲线的离心率方法1:利用定义法求离心率知识储备:椭圆和双曲线的第一定义。

方法技巧:一般情况题中出现圆锥曲线上的点与焦点联系在一起时,尽量转化为定义去考虑,会更简单!例1.(2015年浙江15题)椭圆22221x ya b+=(0a b>>)的右焦点(),0F c关于直线by xc=的对称点Q在椭圆上,则椭圆的离心率是.法一:(当时网上的主流解法)大家上网看到的基本上就是这种解法,此方法入手很容易,但是后期的运算量会很大,并且此题高次方程的因式分解要求很高(对大部分学生来说高次方程分解本来就是一个盲区)。

【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得到OM QF ⊥且M 为QF 中点,又O 为F 1F 的中点,所以OM 为中位线,且1F Q QF ⊥。

由点到线的距离公式计算得到:,bc MF a=再由tan b FOM c ∠=得到:2c OM a =. 所以2,bcQF a=212c QF a =, 据椭圆定义:12QF QF a +=得到:2222bc c a a a+=,化简得: b c =,即22e =.通过比较我们发现法二(定义法)计算过程更加简洁,不易出错。

我在给学生讲题的时候学生经常会问我,哪个时候用定义法,其实大家只要看到有曲线上的点和焦点有联系时,就可以往定义法多思考一些。

高三数学备考冲刺140分问题求圆锥曲线离心率或离心率范围含解析

高三数学备考冲刺140分问题求圆锥曲线离心率或离心率范围含解析

问题33求圆锥曲线离心率或离心率范围一、考情分析离心率的范围问题是高考的热点问题,各种题型均有涉及,因联系的知识点较多,且处理的思路和方法比较灵活,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围.很多同学掌握起来比较困难,本文就解决本类问题常用的处理方法和技巧加以归纳. 二、经验分享离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.2.要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解.(2)要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征||PF 1+||PF 2≥2c的运用 三、知识拓展1.在求椭圆()222210x y a b a b+=>>离心率范围时常用的不等关系:,x a y b ≤≤,a c FP a c -≤≤+,b OP a ≤≤(P 为椭圆上一点)2.在双曲线()222210,0x y a b a b +=>>中,c e a == 四、题型分析(一) 借助平面几何图形中的不等关系根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值 等得到不等关系,然后将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式,从而确定离心率 的范围.【例1】已知两定点()1,0A -和()1,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A D【答案】A【解析】()1,0A -关于直线:3l y x =+的对称点为()3,2A '-,连接A B '交直线l 于点P ,则椭圆C 的长轴长的最小值为25A B '=,所以椭圆C 的离心率的最大值为1555c a ==,故选A. 【点评】求解本题的关键是利用对称性求距离的最小值【小试牛刀】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1[,1)2B .23[,]C .2[,1)D .3[,1) 【答案】C【解析】椭圆上长轴端点向圆外两条切线PA,PB,则两切线形成的角APB ∠最小,若椭圆1C 上存在点P 令切线互相垂直,则只需090APB ∠≤,即045APO α=∠≤, ∴02sin sin 452b a α=≤=解得222a c ≤,∴212e ≥,即22e ≥,而01e <<, ∴212e ≤<,即2,1)2e ∈. (二) 借助题目中给出的不等信息根据试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等,进一步得到离心率的不等关系式,从而求解.【例2】 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【答案】26[【解析】左焦点为1F .连结11,AF BF 可得四边形1AF BF 是矩形,所以AO OF OB c ===.所以2AB c =又,AF BF ⊥所以. 2sin ,2cos AF c BF c αα==.又因为1AF BF =,12AF AF a +=.所以2sin 2cos 2c c a αα+=.即11sin cos 2)4c a πααα==++.因为,,124ππα⎡⎤∈⎢⎥⎣⎦所以62)224πα≤+≤所以262326c a =≤≤=.故填26[23.【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【小试牛刀】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a bΩ+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 132⎛⎝⎭ B. 322⎝⎭ C. 134⎛ ⎝⎭D. 11,43⎛⎫⎪⎝⎭ 【答案】A【解析】由题意, ,D B 关于原点对称,设()()()0000,,,,,D x y B x y A x y --, AD AB k k ∴⋅=22220222220002222000011x x b b a a y y y y y y b x x x x x x x x a⎛⎫⎛⎫--- ⎪ ⎪-+-⎝⎭⎝⎭⨯===--+--, 2222321,,43b c a a ⎛⎫∴-=-∈-- ⎪⎝⎭ 221113,,432c e a ⎛⎛⎫∴∈∴∈ ⎪ ⎝⎭⎝⎭,故选A.(三) 借助函数的值域求解范围根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式,通过确定函数的定义域后,利用函数求值域的方法求解离心率的范围.【例3】已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为( ) A .2(,1)2 B .2(0,)2C .(0,1)D .1(0,)2【答案】A【解析】∵椭圆221:12x y C m n-=+,∴212a m =+,21b n =-,212c m n =++,212122m n n e m m ++==+++,∵双曲线222:1x y C m n+=,22a m =,22b n =-,22c m n =-,∴由条件有2m n m n ++=-,则1n =-,∴21112e m =-+,由0m >,有22m +>,1122m <+,1122m ->-+,∴11122m ->+,即2112e >,而101e <<,∴1212e <<. 【点评】本题根据题设“相同的焦点”建立等量关系,得到函数关系式21112e m =-+,进而根据m 的范围,借助反比例函数求解离心率的范围.【小试牛刀】已知二次曲线2214x y m+=,则当[]2,1m ∈--时,该曲线的离心率e 的取值范围是( )A .2322⎡⎤⎢⎥⎣⎦,B .26,22⎡⎤⎢⎥⎣⎦C .56,22⎡⎤⎢⎥⎣⎦D .36,22⎡⎤⎢⎥⎣⎦【答案】C【解析】由当[]2,1m ∈--时,二次曲线为双曲线,双曲线2214x y m +=即为2214x y m-=-,且224,a b m ==-,则24c m =-,即有456,222c m e a ⎡⎤-==∈⎢⎥⎣⎦,故选C.(四) 根据椭圆或双曲线自身的性质求范围在求离心率的范围时有时常用椭圆或双曲线自身的性质,如椭圆()2222100x y a b a b+=>>,中,a x a -≤≤,P 是椭圆上任意一点,则1a c PF a c -≤≤+等.【例4】设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12 B .13 C .22 D .33【答案】D【解析】设),(00y x P ,由圆锥曲线的共同特征可得()2202200212)(c x e a ex a ex a PF PF =-=-+=,所以222222a e c a x ≤-=,即22222212e e a c a ≤-=-,所以312≥e ,又01e <<,解得133<≤e ,所以离心率的最小值为33,故选D . 【点评】P 为椭圆上的一点是本题的关键条件,根据圆锥曲线的共同特征把212||||2PF PF c ⋅=转化成基本量a ,c ,e 与0x 的关系式,结合椭圆的范围,即可得到e 的不等式,从而求出其最小值. 【小试牛刀】【天津市南开区2019届高三上数学期末】已知双曲线的左、右焦点分别为、,点M 在双曲线的左支上,且,则此双曲线离心率的最大值为A .B .C .2D .【答案】A【分析】先由双曲线的定义得到,再由点M 在双曲线左支上,即可得出结果. 【解析】由双曲线的定义可得,根据点M 在双曲线的左支上,可得,,双曲线离心率的最大值为,故选A . 四、迁移运用1.【湖南省怀化市2019届高三3月第一次模拟】两正数的等差中项为,等比中项为,且,则双曲线的离心率为()A.B.C.D.【答案】D【解析】因为两正数的等差中项为,等比中项为,所以,解得或,因为,所以,所以.故选D2.【江西省上饶市重点中学2019届高三六校第一次联考】设双曲线的右焦点为,过且斜率为1的直线与的右支相交不同的两点,则双曲线的离心率的取值范围是()A. B. C. D.【答案】A【解析】要使直线与双曲线的右支相交不同的两点,需使双曲线的其中一渐近线方程的斜率小于直线即,所以,所以,故选A3.【江西省高安中学2019届高三上学期期中】如图,点在以为焦点的双曲线上,过作轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为()A. B.2 C. D.【答案】C【解析】解:由题意得:四边形的边长为2c, 连接,由对称性可知, ||=||=2c,则三角形为等边三角形.过点P作PH⊥x轴于点H, 则∠=60,||=2c,在直角三角形中, ||=, ||=,则P(2c,), 连接, 则||=.由双曲线的定义知,2a=||-||=-2c=,所以双曲线的离心率为e===,故选C.4.【宁夏银川一中2019届高三第一次模拟】双曲线和直线,若过的左焦点和点的直线与平行,则双曲线的离心率为()A. B. C. D.【答案】A【解析】过的左焦点和点的直线可写为:,即与平行又本题正确选项:5.【辽宁省沈阳市东北育才学校2019届高三第五次模拟】如图,是双曲线的左、右焦点,过的直线与双曲线交于两点,若,则双曲线的离心率为()A. B. C. D.【答案】A【解析】设,,则,,根据双曲线的定义,得,即,解之得:;因为,所以三角形是以为直角的直角三角形,所以,因此;在三角形中,,可得,因此,该双曲线的离心率为.故选A6.【广东省韶关市2019届高三1月调研】设点为双曲线和圆的一个交点,若,其中为双曲线的两焦点,则双曲线的离心率为()A.2 B. C. D.【答案】B【解析】圆是以原点为圆心,以为半径的圆,则,从而有,∴|M|=c,c,,由双曲线的定义得,得离心率为,故选:B.7.【广东省华附、省实、广雅、深中2019届高三上学期期末联考】设,分别是椭圆的左、右焦点,若在直线其中上存在点P,使线段的垂直平分线经过点,则椭圆离心率的取值范围是A. B. C. D.【答案】C【解析】由题意得,,设点,则由中点公式可得线段的中点,线段的斜率与的斜率之积等于,即,,,,,或舍去,.又椭圆的离心率,故,故选:C.8.【陕西省西安市西北工业大学附属中学2019届第一次适应性训练】设,是双曲线的两个焦点,P是C上一点,若,且的最小内角为,则C的离心率为A. B. C. D.【答案】C【解析】解:因为、是双曲线的两个焦点,是双曲线上一点,且满足,不妨设是双曲线右支上的一点,由双曲线的定义可知所以,,,,,为△最小边,△的最小内角,根据余弦定理,,即,,所以.故选:C.9.【北京市丰台区2019届高三上学期期末】已知抛物线的焦点与椭圆的一个焦点重合,且椭圆截抛物线的准线所得线段长为6,那么该椭圆的离心率为A.2 B. C. D.【答案】D【解析】易知抛物线的焦点(2,0),准线x=-2,即椭圆的c=2,因为抛物线的准线恰好过椭圆的焦点,即相交的线段为椭圆的通径;即通径为,又因为c=2解得a=4所以离心率故选D.10.【四川省绵阳市2019上学期期末】若双曲线与双曲线有公共点,则双曲线离心率的取值范围是()A. B. C. D.【答案】C【解析】由得的渐近线方程为,由得的渐近线方程为,因为双曲线与双曲线有公共点,所以只需,即,即,即,解得.故选C11.【河北省武邑中学2019届高三下学期第一次质检】已知直线与双曲线的斜率为正的渐近线交于点,曲线的左、右焦点分别为,若,则双曲线的离心率为()A.4或B.C.D.【答案】D【解析】由渐近线方程与直线求出点A的坐标为,过A点作轴于点B,则由已知可得当时,则故舍去,综上故选D12.【贵州省贵阳市普通中学2019届高三年级第一学期期末】已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若是钝角三角形,则该双曲线的离心率的取值范围是A.B.C.D.【答案】D【解析】双曲线关于x轴对称,且直线AB垂直x轴,,是钝角三角形,是钝角,即有,为左焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,,,即,由,可得,解得或,舍去,则双曲线的离心率的范围是.故选:D.13.【山东省临沂市2019届高三2月教学质量检测】点A、B分别为椭圆的左、右顶点,F为右焦点,C为短轴上不同于原点O的一点,D为OC的中点,直线AD与BC交于点M,且MF⊥AB,则该椭圆的离心率为A. B. C. D.【答案】B【解析】由题意如图:MF⊥AB,且OC⊥AB,∴MF OC,同理MF OD,∴①,,②①②得到:===,∴2(a﹣c)=c+a,∴a=3c,∴e.故选:B.14.【吉林省长春市2019届高三质量监测(二)】已知双曲线的左、右焦点分别为,,过且与渐近线垂直的直线分别与该渐近线和轴相交于,两点,为坐标原点,若,则双曲线的离心率为()A. B. C.2 D.【答案】B【解析】由题意,取双曲线的一条渐近线,即,则过右焦点与渐近线垂直的直线方程为,即,又由焦点到渐近线的距离为,又由,所以,即,又由原点到的距离为,在直角中,由射影定理得,即,又由,整理得,所以,故选B.15.【2019年四川省达州市一诊】已知椭圆的左右焦点分别为、,抛物线与椭圆C在第一象限的交点为P,若,则椭圆C的离心率为A. B.或C. D.或【答案】D【解析】作抛物线的准线l,则直线l过点,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知,易知,轴,则,,设,则,由椭圆定义可知,,在中,由余弦定理可得,整理得,解得或.当时,;当时,离心率为.综上所述,椭圆C的离心率为或.故选:D.16.【山西省吕梁市2019届高三上学期第一次模拟】已知椭圆:,过左焦点作斜率为1的直线与交于,两点,若线段的中垂线与轴交于(为椭圆的半焦距),则椭圆的离心率为()A. B. C. D.【答案】B【解析】设,,则中点.直线的方程为,与椭圆联立得,所以.可得.所以,因为,即,所以,,故选B.17.【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】已知,是椭圆与的左、右焦点,过左焦点的直线与椭圆交于,两点,且满足,,则该椭圆的离心率是A. B. C. D.【答案】B【解析】由题意可得:,,可得,,,,,,,可得,可得.故选B.18.【山东省菏泽市2019届高三下学期第一次模拟】已知椭圆的左右焦点分别为,为坐标原点,为椭圆上一点,且,直线交轴于点,若,则该椭圆的离心率为()A.B.C.D.【答案】D【解析】结合题意,可知,故,结合,可知故,设,所以,,所以,故选D。

罗贤旭离心率

罗贤旭离心率

高考数学专题复习——求解圆锥曲线离心率的值或取值范围求圆锥曲线离心率的值或取值范围是浙江高考的一个热点,也是一个难点,求离心率的难点在于如何如何列出一个与a,b,c,e 有关的等式或不等关系.1、常见题型:求离心率的值(浙江省9年考了求值);求离心率的取值范围2、常用方法:(1)直接求出a,c(2)构造a,c 的齐次式或a,b 齐次式的等式或不等式 (3)利用圆锥曲线相关性质建立a,c 不等关系求解 (4)利用平面几何性质求解离心率的相关问题 (5) 运用数形结合建立a,c 关系求解一、直接求出a ,c例1:过双曲线C :)0(1222>=-b by x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( ) A.10 B. 5 C.310 D.25 变式练习1、已知椭圆12222=+by a x (0>>b a ),点P (-3,1)在直线2a x c =-上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 二、构造a,c 的齐次式或a 、b 齐次式的等式或不等式根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

例2、设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.3 变式练习1设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得2212(||||)3,PF PF b ab -=-则该双曲线的离心率为( )2 B.15 C.4 D.17变式练习2、设双曲线12222=-by a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到直线的距离为c 43,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D.332 变式练习3、(2014浙江理科16,文科17)设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________三、利用圆锥曲线相关性质建立a,c 关系求解.例3、(2013浙江,文理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A .2B .3C .32D .62变式练习1、设椭圆()01:2222>>=+b a b y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________. 变式练习2、(2010浙江理科第8题)设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( )(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=变式练习3、设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为四、利用平面几何性质求解离心率的相关问题例4、已知双曲线)0(12222>>=-a b by a x 的两条渐近线为21,l l ,过右焦点F 作垂直1l 的直线交21,l l 于B A ,两点。

一题多解,思维开花——浅谈离心率取值范围的多种求法

一题多解,思维开花——浅谈离心率取值范围的多种求法

32 福建中学数学 2020年第6期一题多解,思维开花——浅谈离心率取值范围的多种求法郑 婕 华南师范大学(510631)离心率e 是圆锥曲线的重要特征量,求离心率的取值范围是数学高考和数学竞赛中经常考察的热点问题之一,解决这类问题的关键是构造a c ,或者e 的不等式.本文拟通过一题多解的形式,浅谈如何通过构造不等式求圆锥曲线离心率的取值范围.1 题目展示 如图1,设椭圆22221(0)x y a b a b+=>>的左右焦点分别为12F F ,,若椭圆上存在点P ,使1260F PF ∠= ,求椭圆离心率e 的取值范围.2 解法赏析2.1 利用圆锥曲线上点的坐标范围构造不等式 解法1 设00()P x y ,,由椭圆焦半径公式有:10||PF a ex =+,20||PF a ex =−.由焦点三角形面积公式可得:212601tan ||||sin 6022S b PF PF ==⋅⋅ ,化简得2222243a b x e e =−. 又因为2200x a ≤<,所以2222403a b a e ≤−<,将222b a c =−代入,解得1[1)2e ∈,. 2.2 利用焦半径取值范围构造不等式解法2 设2||PF x =,由椭圆的定义可知1||2PF a x =−, 同样由面积公式得:212601tan ||||sin 6022S b PF PF ==⋅⋅ ,可得23(2)4b x a x =−.因为a c x a c −<<+,所以222233)44a cb a (−<≤,解得1[1)2e ∈,.2.3 利用焦点三角形顶角范围构造不等式解法3 P 为椭圆上任意一点,当P 点移动到椭圆的短轴端点B 时,12F PF ∠最大.由已知椭圆上存在点P ,使1260F PF ∠= ,所以一定有1260F BF ∠≥ ,230OBF ∠≥ (O 为坐标原点).在2t OBF ∆R 中,21sin sin 302c OBF a ∠=≥=,故1[1)2e ∈,.2.4 利用均值不等式构造不等式解法4 由余弦定理得2221212||||||PF PF F F +− 122||||cos 60PF PF =⋅⋅⋅ ,即22121212(||||)||3||||PF PF F F PF PF +−=⋅⋅, 由椭圆定义有12||||2PF PF a +=,12||2F F c =,于是22124||||()3PF PF a c ⋅=−.又由均值不等式12||||PF PF ⋅2212||||()2PF PF a +≤=, 所以2224()3a c a −≤,解得1[1)2e ∈,.2.5 利用二次方程有实根的条件构造不等式 解法5 由解法4可知12||||2PF PF a +=,22124||||()3PF PF a c ⋅=−. 所以12||||PF PF ,可以看成方程2242(3x ax a −+−2)0c =的两个根,于是有222164()03a a c ∆=−−≥, 整理得22214c e a=≥,即1[1)2e ∈,. 3 小结通过上述解法可以看出,合理建立不等关系是求解圆锥曲线离心率的取值范围的关键,而构造不等式大致可分为利用几何关系以及利用代数关系两xx2020年第6期 福建中学数学 33 种思路.即在求解这类问题时,一方面可以将所求量离心率e 与已知范围的量如圆锥曲线上点的坐标、焦半径、焦点三角形顶角建立联系,利用已知取值范围求解;另一方面也可以从代数关系如均值不等式、二次方程有实根的条件入手,灵活运用余弦定理、焦点三角形面积公式等知识辅助解题,同样可求出离心率的取值范围.这类题目凸显了知识之间的综合性、联系性,能较好地考察学生思维的全面性、缜密性,具有训练价值.事实上,进行一题多解的训练可以提升思维水平和应试技巧,思维开花,下笔如有神.但重要的是,在做题时应不断总结,择优解题,才能真正在习题训练中提升解题技巧,开拓解题思路.参考文献[1]包建民.圆锥曲线离心率取值范围的九种求法[J].数学大世界(教师适用),2011(1):54圆锥曲线问题解决中引入参数需要厘清的问题雷雄军 广东省东莞市第六高级中学(523420)圆锥曲线作为高考解答题必考内容,考查的范围比较广,难度比较大,是提升学生数学抽象,直观想象,逻辑推理,数学运算等数学核心素养的很好的载体.因此,一线高三数学教师在一轮复习和二轮专题复习中都会在这块知识上花很多的时间和精力,但是效果很多时候并不理想.很多的学生还是仅满足于做出第(Ⅰ)问,对第(Ⅱ)问不敢深入涉及.第(Ⅱ)问主要涉及定点、定值、范围、最值、存在性问题等等下文称作圆锥曲线热点问题.在热点问题的解答过程中,经常会涉及参数的问题.学生正是因为对参数使用把控不到位,所以对第(Ⅱ)问解答只能望而却步.笔者结合近年圆锥曲线的高考题,阐释参数引入过程中需要厘清的几个问题.1 问题1:引入什么变量作为参数圆锥曲线中的热点问题破解的基本思路是建立求解目标与参数的关系(不等关系、函数关系等),最后通过参数的恰当处理,使得热点问题得以解决.这里有一个很重要步骤就是引入恰当的参数.例1 (2016年高考北京卷·理20)已知椭圆:C 22221x y a b +=(0)a b >>(0)A a ,,(0B ,)b ,(00)O ,,OAB ∆的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于N .求证:||||AN BM ⋅ 为定值.解析 (Ⅰ)椭圆C 的方程是2214x y +=.(Ⅱ)涉及的是热点问题中的定值问题,这类问题求解的基本思想是求解目标与某个变量(参数)无关.而题目中没有给出直接参数,这就需要我们引入参数. 由于问题中需要解决的是当椭圆C 上点P 动的时候||||AN BM ⋅为定值.因此就自然选择动点P 的坐标作为参数.解答过程如下: (Ⅱ)由(Ⅰ)知(20)A ,,(01)B ,. 设00()P x y ,,则22004x y +=. (ⅰ)当00x ≠时,直线PA 的方程为00(2y y x x =− 2)−.令0x =,得0022M y y x =−−, 从而002|||1||1|2M y BM y x =−=+−. 在直线PB 的方程0011y y x x −=+中令0y =, 得001N x x y =−−, 从而00|||2||2|1N x AN x y =−=+−. 所以00002|||||2||1|12x y AN BM y x ⋅=+⋅+−−. 22000000000044484||22x y x y x y x y x y ++−−+=−−+=000000004484||22x y x y x y x y −−+−−+4=.。

圆锥曲线微专题----求离心率的取值范围

圆锥曲线微专题----求离心率的取值范围

圆锥曲线离心率的取值范围 专题一、知识纵横1. 求离心率的取值范围基本方法:通过对已知几何条件的代数化翻译,得到关于a ,b ,c 的齐次不等式,最后除以a 相应的次数,得到e 的不等式,解之即可.解决问题的关键在于获知取值范围的来源,也即不等关系的产生原因,常见的范围来源总结如下. ①题中给出:即题目中已经明确给出某个变量的范围,则只需找到e 与此变量的关系即可;②焦半径范围:注意椭圆焦半径范围[],a c a c -+,双曲线中焦半径范围为[),c a -+∞或[),c a ++∞; ③存在性问题:即由几何存在性问题对某个变量的约束所产生的范围.二、典型例题【题型1 题中给出范围】例1. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4例2. 已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,左顶点为A .若点P 为椭圆C 上的点,PF x ⊥轴,且sin PAF ∠C 的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭ B .20,3⎛⎫ ⎪⎝⎭ C .1,13⎛⎫ ⎪⎝⎭ D .2,13⎛⎫ ⎪⎝⎭例3. 已知椭圆2222:1(0)x y C a b a b+=>>,过原点的直线交椭圆于,A B 两点,以AB 为直径的圆过右焦点F ,若,123FAB ππα⎡⎤∠=∈⎢⎥⎣⎦,则此椭圆离心率的取值范围是( )A .1⎤⎥⎣⎦B .⎢⎥⎣⎦C .⎛ ⎝⎦D .⎫⎪⎪⎣⎭【题型2 焦半径范围】例4. 已知P 为椭圆22221(0)x y a b a b+=>>上一点,12F F ,为椭圆焦点,且213PF PF =,则椭圆离心率的范围是( )A .10,3⎛⎤ ⎥⎝⎦B .1,13⎡⎫⎪⎢⎣⎭C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭例5. 已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦例6. 已知椭圆22221x y a b +=(0a b >>)的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c =上存在一点P 满足()0FP FA AP +⋅=,则椭圆的离心率取值范围为( )A .1,12⎡⎫⎪⎢⎣⎭B .⎫⎪⎪⎣⎭C .⎫⎪⎪⎣⎭D .⎛ ⎝⎦例7. 设椭圆E :22221(0)x y a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得9PA PF +=,则椭圆E 的离心率的取值范围是( )A .1[,1)2B .11,32⎡⎤⎢⎥⎣⎦C .11,54⎡⎤⎢⎥⎣⎦D .12,23⎡⎤⎢⎥⎣⎦【题型3 存在性问题】例8. 若双曲线()222210,0x y a b a b-=>>与直线y =没有公共点,则该双曲线的离心率e 的取值范围是( )A .(]1,2B .()1,2C .(D .(例9. 设椭圆22221x y a b+=()0a b >>的两焦点为1F ,2F ,若椭圆上存在点P ,使12120F PF ∠=︒,则椭圆的离心率e 的最小值为( )A .12 B C D例10. 已知椭圆22122:1(0)x y C a b a b +=>>与圆22223:4b x y C +=,若在椭圆1C 上不存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .B .C .D .。

圆锥曲线离心率的取值范围的解题方法(精选课件)

圆锥曲线离心率的取值范围的解题方法(精选课件)

圆锥曲线离心率的取值范围的解题方法一、利用曲线的范围,建立不等关系ﻫ例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。

ﻫ解:设因为,所以ﻫ将这个方程与椭圆方程联立,消去y,可解得二、利用曲线的几何性质数形结合,构造不等关系例2.直线L过双曲线的右焦点,斜率k=2。

若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。

ﻫ解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均在右支上,ﻫ例3。

已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。

若△ABF2是锐角三角形,求双曲线的离心率的取值范围.ﻫ解:如图2,因为△ABF2是等腰三角形,所以只要∠AF2B是锐角即可,即∠AF2F1<45°。

则ﻫ三、利用定义及圆锥曲线共同的性质,寻求不等关系ﻫ例4.已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。

解:因为P在右支上,所以又得所以又ﻫ所以ﻫ例5.已知双曲线的左、右焦点分别是F1、F2,P是双曲线右支上一点,P到右准线的距离为d,若d、|PF2|、|PF1|依次成等比数列,求双曲线的离心率的取值范围。

ﻫ解:由题意得因为,所以,从而,。

又因为P在右支上,所以。

.。

ﻫ四、利用判断式确定不等关系例6。

例1的解法一:解:由椭圆定义知ﻫ例7。

设双曲线与直线相交于不同的点A、B.求双曲线的离心率e的取值范围。

解:..·····谢阅。

[感谢您的阅览以及下载,关注我,每天更新]。

2023年新高考数学大一轮复习专题28 轻松搞定圆锥曲线离心率十九大模型(原卷版)

2023年新高考数学大一轮复习专题28 轻松搞定圆锥曲线离心率十九大模型(原卷版)

专题28 轻松搞定圆锥曲线离心率十九大模型【考点预测】 求离心率范围的方法 一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系. 二、函数法:1、根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2、通过确定函数的定义域;3、利用函数求值域的方法求解离心率的范围. 三、坐标法:由条件求出坐标代入曲线方程建立等量关系. 【题型归纳目录】题型一:建立关于a 和c 的一次或二次方程与不等式 题型二:圆锥曲线第一定义 题型三:圆锥曲线第二定义题型四:圆锥曲线第三定义(斜率之积) 题型五:利用数形结合求解 题型六:利用正弦定理 题型七:利用余弦定理 题型八:内切圆问题 题型九:椭圆与双曲线共焦点题型十:利用最大顶角θ 题型十一:基本不等式 题型十二:已知12PF PF ⋅范围 题型十三:12=PF PF λ 题型十四:中点弦题型十五:已知焦点三角形两底角 题型十六:利用渐近线的斜率 题型十七:坐标法题型十八:利用焦半径的取值范围 题型十九:四心问题 【典例例题】题型一:建立关于a 和c 的一次或二次方程与不等式例1.(2022·全国·高三专题练习)如图所示,已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且2BF AF =,则双曲线C 的离心率是________.例2.(2022·四川·高三阶段练习(理))已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别是1F ,2F ,过右焦点2F 且不与x 轴垂直的直线交C 的右支于A ,B 两点,若1AF AB ⊥,且12AB AF =,则C 的离心率为( )AB .1CD .1例3.(2022·湖北·高三开学考试)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过1F 作直线l 与C 的左、右两支分别交于,M N 两点,且2MNF 是以2MNF ∠为顶角的等腰直角三角形,若C 的离心率为e ,则2e =( )A.533B .5+C .5+D .5+例4.(2022·甘肃·瓜州一中高三期中(文))若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D例5.(2022·江西·高三开学考试(文))设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,点M ,N 在C 上(M 位于第一象限),且点M ,N 关于原点O 对称,若12MN F F =,22NF =,则C 的离心率为( )A B .12C D题型二:圆锥曲线第一定义例6.(2022·重庆八中高三开学考试(理))设椭圆E :2222x y a b+=1(a >b >0)的一个焦点为F (c ,0)(c >0),点A (﹣c ,c )为椭圆E 内一点,若椭圆E 上存在一点P ,使得|P A |+|PF |=9c ,则椭圆E 的离心率取值范围为( ) A .[12,1)B .[13,12]C .[12,23]D .[15,14]例7.(2022·浙江·高三开学考试)已知12,F F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,过1F 的直线与C 交于,P Q 两点,若12125PF PF FQ ==,则C 的离心率是( )A B C D例8.(2022·江苏·南京市金陵中学河西分校高三阶段练习)设双曲线222:1y C x b-=的左、右焦点分别为F 1,F 2,P 是C 上一点,且12F P F P ⊥,若12PF F △的面积为4,则双曲线C 的离心率为( )A B .2 C .3 D例9.(2022·贵州贵阳·高三开学考试(理))已知双曲线222:1(0)5x y C a a -=>的左焦点为(,0)F c -, 点P 在双曲线C 的右支上, (0,4)A .若 ||||PA PF +的最小值是 9 , 则双曲线C 的离心率是_____.例10.(2022·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为( )A.2 B C D .题型三:圆锥曲线第二定义例11.(2022·全国·高三专题练习(文))古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,他指出,平面内到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线;当01e <<时,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.则15=表示的圆锥曲线的离心率e 等于( ) A .15B .45C .54D .5例12.(2022·北京石景山·高三专题练习)已知双曲线22221(,0)x y a b a b-=>的左、右焦点分别为12F F ,P 为左支上一点,P 到左准线的距离为d ,若d 、1||PF 、2||PF 成等比数列,则其离心率的取值范围是( )A.)+∞ B .(1C .[1)+∞D .(1,1例13.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过F 的直线交C 于A 、B 两点,若4AF FB =,则C 的离心率为( ) A .58B .65C .75D .95例14.(2022·四川遂宁·二模(理))已知双曲线22221x y a b -=(0,0a b >> )的离心率为4,过右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于点H ,若10MN =,则HF =( ) A .14 B .16 C .18 D .20例15.(2022·全国·高三专题练习)已知双曲线C :22x a -22y b=1(a >0,b >0)的右焦点为F ,过F 且斜率为C 于A 、B 两点,若5AF FB =,则C 的离心率为( )A .43B .53C .2D .85题型四:圆锥曲线第三定义(斜率之积)例16.(2022·全国·高三专题练习)已知椭圆C :22221x y a b +=(0a b >>),点A ,B 为长轴的两个端点,若在椭圆上存在点P ,使1,03AP BP k k ⎛⎫⋅∈- ⎪⎝⎭,则椭圆的离心率e 的取值范围是______.例17.(2022·全国·高三专题练习)已知点A 、B 为椭圆2222:1(0)x y E a b a b +=>>的长轴顶点,P 为椭圆上一点,若直线P A ,PB 的斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆E 的离心率的取值范围是( )A .12⎛ ⎝⎭B .2⎝⎭C .41⎛ ⎝⎭D .11,43⎛⎫ ⎪⎝⎭例18.(2022·全国·高三专题练习(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .13例19.(2022·湖南郴州·高二期末)双曲线()2222:1,0x y C a b a b-=>的左右顶点为,A B ,过原点的直线l 与双曲线C 交于,M N 两点,若,AM AN 的斜率满足2AM AN k k ⋅=,则双曲线C 的离心率为_________.例20.(2022·云南·罗平县第一中学高二开学考试)已知双曲线()222210,0x y a b a b-=>>的两个顶点分别为A ,B ,点P 为双曲线上除A ,B 外任意一点,且点P 与点A ,B 连线的斜率为1k ,2k ,若128k k ⋅=,则双曲线的离心率为( )AB C .2D .3例21.(2022·全国·高二课时练习)已知A ,B ,P 是双曲线22221x y a b-=(0a >,0b >)上不同的三点,且点A ,B 连线经过坐标原点,若直线P A ,PB 的斜率乘积为43,则该双曲线的离心率为( )A B C D题型五:利用数形结合求解例22.(2022·广西·模拟预测(文))如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为12,F F ,从2F 发出的光线经过图2中的,A B 两点反射后,分别经过点C 和D ,且12tan 5CAB ∠=-,2||?BD AD BD =,则双曲线E 的离心率为( )A .65B C D .3例23.(2022·广西柳州·模拟预测(理))如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D ,且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为( )ABCD例24.(2022·四川·成都七中模拟预测(理))已知双曲线22221x y C a b-=:(0a >,0b >)的左,右焦点分别是1F ,2F ,点P 是双曲线C 右支上异于顶点的点,点H 在直线x a =上,且满足1212PF PF PH PF PF λ⎛⎫⎪=+ ⎪⎝⎭,R λ∈.若215430HP HF HF ++=,则双曲线C 的离心率为( )A .3B .4C .5D .6例25.(2022·全国·二模(理))已知双曲线()2222:10,0x y C a b a b-=>>与椭圆22143x y +=.过椭圆上一点31,2P ⎛⎫- ⎪⎝⎭作椭圆的切线l ,l 与x 轴交于M 点,l与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ 的中点,则双曲线C 的离心率为( ) ABC D例26.(2022·全国·模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,过2F 的直线l 交双曲线C 于P ,Q 两点且使得()2201PF F Q λλ=<<.A 为左支上一点且满足120F A F P +=,1222133F F AFAQ =+,2AF P △的面积为2b ,则双曲线C 的离心率为( ) ABC D例27.(2022·山东潍坊·三模)已知双曲线()2222:10,0x y C a b a b -=>>的左,右顶点分别是1A ,2A ,圆222x y a +=与C 的渐近线在第一象限的交点为M ,直线1A M 交C 的右支于点P ,若△2MPA 是等腰三角形,且2PA M ∠的内角平分线与y 轴平行,则C 的离心率为( )A .2 BC D例28.(2022·浙江·赫威斯育才高中模拟预测)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C 的离心率为e ,则2e =( ) AB .2C .2+D .5+题型六:利用正弦定理例29.(2022·全国·高三专题练习)已知1F ,2F 分别为椭圆()2222:10x yE a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F ,则椭圆E 的离心率为( )A B CD例30.(2022·全国·高三专题练习)过椭圆()222210x y a b a b+=>>的左、右焦点1F ,2F 作倾斜角分别为6π和3π的两条直线1l ,2l .若两条直线的交点P 恰好在椭圆上,则椭圆的离心率为( )A B 1C D例31.(2022·江苏·扬州中学高三开学考试)已知椭圆()222210,0x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,若椭圆上存在点P (异于长轴的端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆离心率e 的取值范围是______.例32.(2022·全国·高三专题练习)过椭圆()222210x y a b a b+=>>的左、右焦点1F ,2F 作倾斜角分别为6π和3π的两条直线1l ,2l .若两条直线的交点P 恰好在椭圆上,则椭圆的离心率为( )A B 1C D题型七:利用余弦定理例33.(2022·全国·高三专题练习)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,若122||||F F AF =,112AF F B =,则椭圆C 的离心率为( )A .57B 2C D .13例34.(2022·河北廊坊·高三开学考试)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,P为C 上一点,且127cos 9F PF ∠=,若1F 关于12F PF ∠平分线的对称点Q 在C 上,则C 的离心率为________.例35.(2022·全国·高三专题练习)椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,若122||||F F AF =,112AF F B =,则椭圆C 的离心率为( )A .57B C D .13例36.(2022·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,过1F的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C 的离心率为e ,则2e =( ) AB .2C .2+D .5+例37.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( )A .3BCD .2题型八:内切圆问题例38.(2022·河南·平顶山市第一高级中学模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,P 是双曲线上一点,且22()0OP OF F P +⋅=(O 为坐标原点),若12PF F △内切圆的半径为2a,则C 的离心率是( )A 1BCD 1例39.(2022·陕西·西北工业大学附属中学模拟预测(理))已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF 的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A B .23C D .12例40.(2022·江苏苏州·模拟预测)已知12,F F 是椭圆221(1)1x y m m m +=>-的左、右焦点,点A 是椭圆上的一个动点,若12AF F △ )A 1B .12C D 1例41.(2022·湖北武汉·模拟预测)已知双曲线C :()222104x y a a -=>的左,右焦点分别为1F ,2F ,点P 在双曲线右支上运动(不与顶点重合),设1PF 与双曲线的左支交于点Q ,2PQF 的内切圆与2QF 相切于点M .若4QM =,则双曲线C 的离心率为( )AB C .2D例42.(2022·浙江·模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,M 为右支上一点,2112120,MF F MF F ∠=︒的内切圆圆心为Q ,直线MQ 交x 轴于点N ,||2||MQ QN =,则双曲线的离心率为( ) A.54B .43C D例43.(2022·内蒙古·赤峰二中模拟预测(文))已知1F 、2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12F F P 是y 轴正半轴上一点,线段1PF 交双曲线左支于点A ,若21AF PF ⊥,且2APF 的内切圆半径为1,则双曲线的离心率是( )A B C D例44.(2022·辽宁·鞍山一中模拟预测)已知点P 为双曲线()222210,0x y a b a b-=>>一点(点P 在第一象限),点12,F F 分别为双曲线的左,右焦点,12PF F △的内切圆的半径为1.圆心为点I ,若123,4F O F I I π∠== )AB C D例45.(2022·江苏南通·模拟预测)在平面直角坐标系xoy 中,12,F F 分别是双曲线C :22221(0,0)x y a b ab-=>>的左,右焦点,过1F 的直线l 与双曲线的左,右两支分别交于点,A B ,点T 在x 轴上,满足23BT AF =,且2BF 经过1BFT 的内切圆圆心,则双曲线C 的离心率为( )AB .2C D题型九:椭圆与双曲线共焦点例46.(2022·甘肃省民乐县第一中学三模(理))设1F ,2F 为椭圆1C 与双曲线2C 的公共焦点,1F ,2F 分别为左、右焦点,1C 与2C 在第一象限的交点为M .若12MF F △是以线段1MF 为底边的等腰三角形,且双曲线2C 的离心率72,2e ⎡⎤∈⎢⎥⎣⎦,则椭圆1C 离心率的取值范围是( )A .45,99⎡⎤⎢⎥⎣⎦B .70,16⎡⎤⎢⎥⎣⎦C .27,516⎡⎤⎢⎥⎣⎦D .2,17⎡⎤⎢⎥⎣⎦例47.(2022·重庆·模拟预测)如图,F 1,F 2是椭圆C 1与双曲线C 2的公共焦点,A ,B 分别是C 1与C 2在第二、四象限的公共点,若AF 1⊥BF 1,设C 1与C 2的离心率分别为e 1,e 2,则8e 1+e 2的最小值为( )A .6+2B .C D例48.(2022·湖南·长沙一中模拟预测)已知椭圆1C 与双曲线2C 的焦点相同,离心率分别为1e ,2e ,且满足21e =,1F ,2F 是它们的公共焦点,P 是椭圆和双曲线在第一象限的交点,若12120F PF ∠=︒,则双曲线2C 的离心率为( )AB C .2 D例49.(2022·河南郑州·一模(文))已知12,F F 知是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 是12,C C 在第二象限的公共点.若12AF AF ⊥,则双曲线2C 的离心率为( )A .65B C D例50.(2022·河南郑州·一模(理))已知 12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且| PF 2 |>| PF 1 |,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为( ) A .4 B .6C.D .8例51.(2022·江西·模拟预测(理))已知12,F F 为椭圆和双曲线的公共焦点,P 是它们的公共点,且1212,,3F PF e e π∠=的值为( )A .1B .2C .3D .4例52.(2022·云南·一模(理))已知1F 、2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则1212e e 的最大值为( ) A .32BCD .1例53.(2022·甘肃白银·模拟预测(理))已知1F ,2F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 是1C ,2C 在第二象限的公共点.若12AF AF ⊥,则2C 的离心率为 A .45BCD例54.(2022·山东日照·二模)已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为( ) A .1 B .2512C .4D .16例55.(2022·陕西省榆林中学三模(理))椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( )A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+= C .2212221cos sin e e θθ+=D .2212221sin cos e e θθ+=题型十:利用最大顶角θ例56.(2022·全国·高二课时练习)已知椭圆C :22221(0)x y a b a b+=>>,点A ,B 是长轴的两个端点,若椭圆上存在点P ,使得120APB ∠=︒,则该椭圆的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .⎫⎪⎪⎣⎭C .⎛ ⎝⎦D .30,4⎛⎤ ⎥⎝⎦例57.(2022·全国·高二专题练习)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则椭圆C 的离心率的取值范围是( )A .B .1)C .D .例58.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,点P 是C 上任意一点,若圆222:O x y b +=上存在点M 、N ,使得120MPN ∠=︒,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .⎫⎪⎪⎣⎭C .10,2⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭例59.(2022·全国·高三专题练习)设1F 、2F 是椭圆()222210x y a b a b +=>>的左、右焦点,若椭圆外存在点P 使得120PF PF ⋅=,则椭圆的离心率的取值范围______.例60.(2022·北京丰台二中高三阶段练习)已知1F ,2F 分别是某椭圆的两个焦点,若该椭圆上存在点P 使得122F PF θ∠=(02πθ<<,θ是已知数),则该椭圆离心率的取值范围是________.例61.(2022·广东·广州市真光中学高三开学考试)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P 使得122π3F PF ∠=,则该椭圆离心率的取值范围是________.题型十一:基本不等式例62.(2022·全国·高三专题练习)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A ,B关于原点对你,且满足0FA FB ⋅=,FB FA ≤,则椭圆C 的离心率的取值范围为( )A .⎫⎪⎪⎣⎭B .1⎤⎥⎣⎦C .)1,1D .⎣⎦例63.(2022·江苏南京·高三阶段练习)设1F 、2F 分别是椭圆E :()222210x y a b a b+=>>的左、右焦点,M是椭圆E 准线上一点,12F MF ∠的最大值为60°,则椭圆E 的离心率为( )A 2B C 2D例64.(2022·山西运城·高三期末(理))已知点A 为椭圆()222210x y a b a b+=>>的左顶点,O 为坐标原点,过椭圆的右焦点F 作垂直于x 轴的直线l ,若直线l 上存在点P 满足30APO ∠=︒,则椭圆离心率的最大值______________.例65.(2022·四川成都·高三开学考试(文))已知双曲线()2222:10,0x y C a b a b-=>>,F 为右焦点,过点F作FA x ⊥轴交双曲线于第一象限内的点A ,点B 与点A 关于原点对称,连接AB ,BF ,当ABF ∠取得最大值时,双曲线的离心率为______.例66.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知双曲线()222210,0x y a b a b-=>>的左、右顶点为A 、B ,若该双曲线上存在点P ,使得直线PA 、PB 的斜率之和为1,则该双曲线离心率的取值范围为__________.题型十二:已知12PF PF ⋅范围例67.(2022·四川省南充市白塔中学高三开学考试(理))已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,A 为右顶点,B 为上顶点,若在线段AB 上(不含端点)存在不同的两点()1,2i P i =,使得2123i i c PF PF ⋅=-,则椭圆C 的离心率的取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎝⎭例68.(2022·全国·高二专题练习)已知1()0F c -,,2(0)F c ,是椭圆C :22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率的取值范围为( ) A. B. C.1D.1)例69.(2022·全国·高三开学考试(理))设1F ,2F 分别是椭圆()2222:10x y E a b a b+=>>的左、右焦点,若椭圆E 上存在点P 满足2122a PF PF ⋅=,则椭圆E 离心率的取值范围( )A.12⎛ ⎝⎭B.12⎡⎢⎣⎦ C .10,2⎛⎫⎪⎝⎭D .10,2⎛⎤ ⎥⎝⎦例70.(2022·四川·高二期末(文))设1F ,2F 是椭圆C :()222210x y a b a b +=>>的左、右焦点,若椭圆C 上存在一点P ,使得2122c PF PF ⋅=,则椭圆C 的离心率e 的取值范围为( )A.2⎣⎦B.⎣⎦ C.⎣⎦ D.⎣⎦例71.(2022·吉林·长春市第二实验中学高二阶段练习)已知()1,0F c -、()2,0F c 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,若椭圆C 上存在一点P 使得2123PF PF c ⋅=,则椭圆C 的离心率e 的取值范围是______.题型十三:12=PF PF λ例72.(2022·江苏·海安县实验中学高二阶段练习)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,若椭圆C 上存在一点P ,使得2112sin sin PF F cPF F a∠=∠,则椭圆C 的离心率的取值范围为( ) A.⎛ ⎝⎭B.()1C.)1,1D.⎫⎪⎪⎝⎭例73.(2022·浙江湖州·高二期中)已知椭圆()222210x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率为e ,若椭圆上存在点P ,使得12PF e PF =,则该离心率e 的取值范围是( ) A.)1,1 B.⎫⎪⎪⎣⎭C.(1⎤⎦D.⎛ ⎝⎦例74.(2022·全国·高二课时练习)已知椭圆()222210x y a b a b+=>>上存在点P ,使得213PF PF =,其中1F ,2F 分别为椭圆的左、右焦点,则该椭圆的离心率的取值范围是( )A .10,4⎛⎤⎥⎝⎦B .1,14⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .1,12⎡⎫⎪⎢⎣⎭题型十四:中点弦例75.(2022·全国·高三开学考试(理))已知双曲线2222:1(0,0)x y C a b a b -=>>与斜率为1的直线交于A ,B 两点,若线段AB 的中点为(4,1),则C 的离心率e =( ) ABCD例76.(2022·福建·晋江市第一中学高三阶段练习)已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN为矩形,且面积为 ) A .13B .23CD例77.(2022·全国·高三开学考试(理))以原点为对称中心的椭圆12,C C 焦点分别在x 轴,y 轴,离心率分别为12,e e ,直线l 交12,C C 所得的弦中点分别为11(,)M x y ,22(,)N x y ,若121220x x y y =≠,221221e e -=,则直线l 的斜率为( ) A .±1 B.C .2± D.±例78.(2022·全国·高三专题练习)已知椭圆C :()222210x y a b a b+=>>的左焦点为F ,过F 作一条倾斜角为60︒的直线与椭圆C 交于A ,B 两点,M 为线段AB 的中点,若3FM OF =(O 为坐标原点),则椭圆C 的离心率为( )A B C D .2例79.(2022·全国·高三专题练习)已知椭圆22221x y a b +=(0a b >>)的右焦点为F F的直线l 交椭圆于A ,B 两点,若AB 的中点为()1,1,则直线l 的斜率为( ) A .14-B .34-C .12-D .1例80.(2022·全国·高三专题练习)过双曲线C :22221x y a b -=(0a >,0b >)的焦点且斜率不为0的直线交C 于A ,B 两点,D 为AB 中点,若12AB OD k k ⋅=,则C 的离心率为( )A B .2 CD例81.(2022·全国·高三专题练习)已知双曲线C 的中心在坐标原点,其中一个焦点为()2,0F -,过F 的直线l 与双曲线C 交于A 、B 两点,且AB 的中点为()3,1N --,则C 的离心率为( )AB CD例82.(2022·广西·高三阶段练习(理))已知双曲线2222:1x y C a b -=的左、右焦点分别为()1,0F c -,()2,0F c ,过1F 的直线l 交双曲线C 的渐近线于A ,B 两点,若22F A F B =,1212285AF F BF F S S c +=△△(12AF F S表示12AF F △的面积),则双曲线C 的离心率的值为( )AB C D例83.(2022·全国·高三专题练习)设直线l 与双曲线2222:1(0,0)x y C a b a b-=>>交于A ,B 两点,若M 是线段AB 的中点,直线l 与直线OM (O 是坐标原点)的斜率的乘积等于2,则双曲线C 的离心率为( )A .2B .3 CD题型十五:已知焦点三角形两底角例84.(2022·广西·江南中学高二阶段练习(文))已知1F ,2F 分别是椭圆D :()222210x y a b a b +=>>的左右两个焦点,若在D 上存在点P 使1290F PF ∠=︒,且满足12212PF F PF F ∠=∠,则椭圆的离心率为( ) AB1CD例85.(多选题)(2022·湖南·高二期末)已知双曲线()2222:10x y C b a a b-=>>的左、右焦点分别为12,F F ,双曲线上存在点P (点P 不与左、右顶点重合),使得21123PF F PF F ∠∠=,则双曲线C 的离心率的可能取值为 ( ) ABCD .2例86.(2022·全国·高三专题练习(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦例87.(2022·河南·商丘市第一高级中学高三开学考试(文))已知1F 、2F 分别为双曲线C :()222210,0x y a b a b -=>>的左、右焦点,O 为原点,双曲线上的点P 满足OP b =,且1221sin 3sin PF F PF F ∠=∠,则该双曲线C 的离心率为( ) AB2C .2 D例88.(2022·全国·高三专题练习(理))已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得12MF F △中,1221sin sin MF F MF F a c∠∠=,则该椭圆离心率的取值范围为( )A .(01) B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D .1,1)题型十六:利用渐近线的斜率例89.(2022·青海·海东市第一中学模拟预测(理))已知点P 是双曲线22221x y a b -=(a >0,b >0)的渐近线上一点,F 是双曲线的右焦点,若|PF |的最小值为2a ,则该双曲线的离心率为( )AB CD例90.(2022·河南·开封市东信学校模拟预测(文))定义:双曲线22221x y a b-=为椭圆2222:1(0)x y C a b a b +=>>的“伴随曲线”.已知点2-⎭在椭圆C 上,且椭圆C 的伴随曲线的渐近线方程为12y x =±,则椭圆C 的离心率为( )A B 2C .12D .3例91.(2022·天津市新华中学模拟预测)已知双曲线22122:1(0,0)x y C a b a b-=>>,抛物线22:2(0)C y px p =>的准线经过1C 的焦点且与1C 交,A B 两点,8AB =,若抛物线2C 的焦点到1C 的渐近线的距离为2,则双曲线1C 的离心率是( )A BCD例92.(2022·江西·赣州市第三中学模拟预测(文))已知椭圆()222104x y b b +=>与双曲线()22210x y a a-=>有公共的焦点,F 为右焦点,O 为坐标原点,双曲线的一条渐近线交椭圆于P 点,且点P 在第一象限,若OP FP ⊥,则椭圆的离心率等于( )A .12B C D例93.(2022·吉林长春·模拟预测(文))已知点1F 和2F 是双曲线C :()222210,0x y a b a b-=>>的两个焦点,过点1F 作双曲线C 的渐近线的垂线,垂足为H ,且213F H F H =,则双曲线C 的离心率为( )AB C D例94.(2022·四川·宜宾市叙州区第二中学校三模(文))已知双曲线22122:1y x C a b-=及双曲线()22222:10,0x y C a b b a-=>>,且1C ()0y kx k =>与双曲线1C 、2C 都无交点,则k 的值是( )A .2B .12C D .1例95.(2022·江西·二模(文))已知双曲线C :()222210,0x y a b a b-=>>的左焦点为(),0F c -,点P 在圆F ':2220x y cx +-=上,若C 的一条渐近线恰为线段FP 的垂直平分线,则C 的离心率为( )A .3B .2C D例96.(2022·山西吕梁·模拟预测(文))已知双曲线2222:1(0,0)y x C a b a b-=>>的上顶点为P ,3OQ OP=(O 为坐标原点),若在双曲线的渐近线上存在点M ,使得90PMQ ∠=︒,则双曲线C 的离心率的取值范围为( )A .⎛ ⎝⎦B .⎛ ⎝⎦C .⎫+∞⎪⎪⎣⎭D .⎫+∞⎪⎣⎭例97.(2022·新疆·二模(理))如图.已知椭圆221:110x C y +=,双曲线()22222:10,0x y C a b a b-=>>,若以椭圆1C 的长轴为直径的圆与双曲线2C 的一条渐近线交于A ,B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则双曲线2C 的离心率为( )A .3BC .2 D题型十七:坐标法例98.(2022·全国·高三专题练习)双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,动点B 在C 上.当BF AF ⊥时,AF BF =.求双曲线C 的离心率.例99.(2022·全国·高三专题练习)已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,A 是其左顶点.若双曲线上存在点P 满足1232PA PF PF =+,则该双曲线的离心率为___________.例100.(2022·河南·宝丰县第一高级中学高三开学考试(理))已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,P 为C 右支上一点,P 与x 轴切于点F ,与y 轴交于A ,B 两点,若APB △为直角三角形,则C 的离心率为______.例101.(2022·山东青岛·高三开学考试)已知双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为1212,,4F F F F =,若线段()4028x y x -+=-≤≤上存在点M ,使得线段2MF 与E 的一条渐近线的交点N 满足:2214F N F M =,则E 的离心率的取值范围是___________.例102.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b+=>>,直线3a x =与椭圆C 交于A ,B 两点,O 为原点,若三角形AOB 是等腰直角三角形,则椭圆C 的离心率为( ) ABCD例103.(2022·河南洛阳·三模(文))已知椭圆()222210x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,过2F 且垂直于x 轴的直线与椭圆在第一象限的交点为M ,12F MF ∠的平分线与y 轴交于点P ,若四边形12MF PF2,则椭圆的离心率e =___________.题型十八:利用焦半径的取值范围例104.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点分别为1212,,2F F F F c =.若双曲线M 的右支上存在点P ,使12213sin sin a cPF F PF F =∠∠,则双曲线M 的离心率的取值范围为___________.例105.(2022·吉林长春·二模(文))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,且124PF PF =,则双曲线离心率的取值范围是( ) A .5,23⎛⎤⎥⎝⎦B .51,3⎛⎤ ⎥⎝⎦C .(]1,2D .5,3⎡⎫+∞⎪⎢⎣⎭例106.(2022·江苏·金沙中学高二阶段练习)设双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2(0)c c >,左、右焦点分别是1F ,2F ,点P 在C 的右支上,且21c PF a PF =,则C 的离心率的取值范围是( )A .(B .)+∞C .(1,1D .)1⎡+∞⎣例107.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,椭圆()222210x y a b a b+=>>上存在点P ,使得213PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是________.例108.(2022·河南·信阳高中高三期末(文))若椭圆()2222:10x y C a b a b+=>>上存在一点P ,使得128PF PF =,其中12,F F 分别C 是的左、右焦点,则C 的离心率的取值范围为______.例109.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( )A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭题型十九:四心问题例110.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>)的左、右焦点分别为()1,0F c -和()212,0,,b F c M x c ⎛⎫⎪⎝⎭为C 上一点,且12MF F △的内心为()2,1I x ,则椭圆C 的离心率为( )A .13B .25C .12D .35例111.(2022·河北衡水·高三阶段练习(理))已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5例112.(2022·江苏·高二单元测试)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( )AB C .2 D例113.(2022·江西南昌·三模(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P是双曲线右支上一点,且212PF F F ⊥,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则双曲线的离心率为( ) AB .2C .3D .4例114.(2022·甘肃酒泉·模拟预测(理))已知双曲线222:1(0)2x y C a a -=>的左、右焦点分别为1F ,2F ,P为C 右支上一点,若12PF F △的重心为11,33G ⎛⎫⎪⎝⎭,则C 的离心率为( )AB .2CD .3例115.(2022·全国·高三专题练习(理))已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的动点,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则椭圆的离心率为( )A .12B C D例116.(2022·重庆·西南大学附中模拟预测)已知1F ,2F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,点P 在第一象限内,2PF a =,G 为12PF F △重心,且满足11112GF F P GF F F ⋅=⋅,线段2PF 交椭圆C 于点M ,若24F M MP =,则椭圆C 的离心率为( )。

2025高考数学总复习离心率的范围问题

2025高考数学总复习离心率的范围问题

由题意知 a=1,b= 1-m2,c=m,
椭圆E上存在点P满足|OP|=m,等价于以O为原点,以c为半径的圆与
椭圆有交点,得c≥b,
所以
c2≥b2=a2-c2,解得ac22≥12,所以
e=ac≥
2 2.

0<e<1,所以椭圆
E
的离心率的取值范围为
22,1.
(2)已知 P 为椭圆ax22+by22=1(a>b>0)上一点,F1,F2 为椭圆焦点,且|PF1|
题型二 利用圆锥曲线的性质求离心率的范围
例 2 (1)(2023·张掖模拟)若椭圆 E:x2+1-y2m2=1(0<m<1)上存在点 P,
满足|OP|=m(O 为坐标原点),则椭圆 E 的离心率的取值范围为
A.0,12
C.0,
2
2
B.12,1

D.
22,1
设椭圆E的长半轴长、短半轴长、半焦距分别为a,b,c,
该双曲线的右顶点,过点 F 且垂直于 x 轴的直线与双曲线交于 A,B 两点,
若△ABE 是锐角三角形,则该双曲线的离心率 e 的取值范围是
A.(1,+∞) C.(2,1+ 2)
√B.(1,2)
D.(1,1+ 2)
由题意可知|AE|=|BE|,即△ABE为等腰三角形, ∵△ABE是锐角三角形, ∴∠AEB<90°,∴∠AEF<45°, 将 x=-c 代入ax22-by22=1,可得 y=±ba2, 故在 Rt△AFE 中,|AF|=ba2,|FE|=a+c, ∵∠AEF<45°,
第八章
§8.7 离心率的范围问题
重点解读
圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知 特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘 应用也可使问题求解更简洁.

圆锥曲线中离心率及其范围的求解专题(教师版)

圆锥曲线中离心率及其范围的求解专题(教师版)

圆锥曲线中离心率及其范围的求解专题【高考要求】1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。

2.掌握解析几何中有关离心率及其范围等问题的求解策略;3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。

【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。

直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。

因此,它们的应用价值在于:① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式∆≥0。

2.解题时所使用的数学思想方法。

(1)数形结合的思想方法。

一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。

(2)转化的思想方汉。

如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。

(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。

(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。

【题型分析】1. 已知双曲线22122:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为( )A BCD .解:由已知可得抛物线的准线为直线2a x c =-,∴ 方程为224a y x c=;由双曲线可知2(,)b P c a ,∴ 2224()b a c a c =⨯,∴ 222222b b a a=⇒=,∴ 212e -=,e =2.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )AB1- C.4(2) D解析:设点P 为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得2112||:||:||2PF PF F F =,所以由椭圆的定义及cea=得:1212||212||||F F c e a PF PF ====+,故选B . 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率1e =+.3. (09浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) ABCD【解析】对于(),0A a ,则直线方程为x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因此222,4,ABBC a b e =∴=∴= C4. (09江西理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) ABC .12D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a =从而可得c e a == B 5.(08陕西理)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )1F 2F xOyPA.BCD6.(08浙江理)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D )(A )3 (B )5 (C )3 (D )57.(08全国一理)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .388.(10辽宁文)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A(B(C(D解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:b c -,()1b ba c∴⋅-=-,2b ac ∴= 220c a ac --=,解得c e a ==9.(10全国卷1理)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:33如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B 为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.【解析1如图,||BF a ==, 作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r ,得 1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232,c a a a =-e ⇒=【解析2】设椭圆方程为第一标准形式22221x y a b+=,设()22,D x y ,F 分 BD 所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++,代入222291144c b a b +=,e ⇒=10. (07全国2理)设12F F ,分别是双曲线2222x y a b -的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( B ) ABCD解1222221222()()(2)AF AF AF a a e AF AF c ì-==ïï??íï+=ïî11. 椭圆22221(0,0)x y a b a b+=>>的左焦点为F ,若过点F 且倾斜角为45o的直线与椭圆交于A 、B 两点且F 分向量BA 的比为2/3,椭圆的离心率e 为: 。

求圆锥曲线离心率的范围

求圆锥曲线离心率的范围

求圆锥曲线离心率及离心率的范围 一、 求圆锥曲线的离心率1. 直接求出a 、c ,求解e已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。

例1. 过双曲线M :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( ) A. 10B.5 C.310 D.25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。

解:易知A (-1,0),则直线l 的方程为1x y +=。

直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。

2. 变用公式,整体求出e例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为( )A.35 B.34 C.45 D.23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。

解:由22222222k 1ab 1a b a a b a ac e +=+=+=+==(其中k 为渐近线的斜率)。

这里34a b =,则35)34(1a c e 2=+==,从而选A 。

3. 统一定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。

例3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( ) A.2 B.22 C.21 D.42 解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ⊥轴,知|MF|是通径的一半,则有22|MF |=。

圆锥曲线中离心率取值范围的求解策略

圆锥曲线中离心率取值范围的求解策略

I教学一得iJiaoXuel■YiDe参数的范围何题是数学中的一大类问题,是高考中的常见题型,圆锥曲 线中离心率取值范围问题更是高考中 解析几何试题的一个备受青睐的考点,其求解策略的关键是建立目标参数的不等式,而建立目标参数不等式的方法一般有:利用圆锥曲线定义、圆锥曲线 的几何性质、题设指定条件、函数的 有界性等。

下面,我就圆锥曲线中离心 率取值范围的求解策略作一些探讨和归纳策略一:利用圆锥曲线的定义例1:若双曲线a b〇)上横坐标为|的点到右焦点的距离大于它到左准线的距离,则双曲线的离 心率的取值范围是(夂A.(1,2)B.(2,+ 〇〇)C.(1,5;)D.(5, + 〇〇!【解析】:•••e%〇-a=e X+ ^-o^3e3—5e—2 >0,.’■:e>2 或 e<务(會去)s/.eG(2,+〇〇 ),故选 B。

例 2:双曲线a b的心支L存-点,它到^焦点及左准 线的距离相等,则双曲线离心率的取值 雜围是(A.(1,V T)B.)c. (1,V^+1)D. [V T+\, +〇〇 )【解析】V e^f«=*.a+^=>(e-l—i-ac c=> —+a^(e^l)a,e-1 ^1+ — =1+ —c'c e1^0=> 1—S^%^r^I+ \>2 .而双曲线的离心率e>1,/.e e(1,#+1 ),故选c.【点评】:例1、例2均是利用定义及 焦半径公式列出方程。

例1根据题设到 右焦点的距离大于它到.左准线的距离建 立不等式;例2是根据&的范围将等式 转化为不等式,从而求解。

策略二:利用圆锥曲线的几何性质例己知巧、Fs是椭圆的两个焦点,满足M厂X=()的点财总在椭圆内部,则椭圆离心率的取值范围是()&刘梅A.(0,1)B.(0士C .(0, )D,【解析】:由题,M的轨迹为以焦距为直径的圆,由财总在椭圆内部,知:c<b=>.c%〈.b1=(^-e2=>e2<^,又_(0,1),所以《£(0,^^),故选(:.,【点评】:利用圆的几何性质判定点M轨迹为圆,再利用椭圆和圆的几何性质建立不等式~例知已知双曲线冬-‘=i(a>〇,a b/>>〇)的右焦点为心若过点^且倾斜角貴60°的直线与双丨丨丨丨线的右支有且只有一个交点,则此双曲线离心率的取值范围是(}。

高考数学深度总结:求离心率取值范围借助的几种_不等关系_谢创

高考数学深度总结:求离心率取值范围借助的几种_不等关系_谢创

数学教学通讯(教师版)数学教学通讯(中等教育)投稿邮箱:sxjk@求离心率取值范围借助的几种“不等关系”谢创江苏盱眙中学211700摘要:离心率是圆锥曲线的一个重要性质,是描述曲线“扁平程度”或“张口大小”的一个重要数据,它常与“定义”、“焦点三角形”、“方程”、“不等式”等联系在一起,因此求离心率及其取值范围,综合性强,所用方法灵活,是解析几何复习的一个重点.关键词:离心率范围;求解;一题多解;不等关系引例(2008福建卷11)双曲线x 2a 2-y2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,若P 为其上一点,且PF 1=2PF 2,则双曲线离心率的取值范围为()A.(1,3)B.(1,3]C.(3,+∞)D.[3,+∞)解析:法一:利用双曲线性质“若点P 在双曲线x 2a 2-y 2b 2=1上,则x ≥a ”,构造不等式求解.PF 1=2PF 2,即ex 0+a=2(ex 0-a ),解得x 0=3ae.又x 0≥a ,所以1<e ≤3.法二:根据余弦函数的有界性求解.cos θ=PF 12+PF 22-F 1F 222PF 1PF 2=(4a )2+(2a )2-(2c )22·4a ·2a =5-e 24∈[-1,1].法三:根据双曲线焦点三角形的面积公式b 2cot θ2,并结合正弦函数的有界性求解.S △F 1PF 2=b 2cotθ2=12×4a ×2a ×sin θ,所以sin 2θ2=b 28a 2.所以b 2a2≤8.又e 2=1+b2a 2≤9,所以1<e ≤3.法四:利用平面几何性质“三角形两边之和大于第三边”构造不等式求解.因为PF 1-PF 2=2a ,PF 1=2PF 2,所以PF 1=4a ,PF 2=2a.由三角形性质PF 1+PF 2≥F 1F 2,得4a+2a ≥2c ,解得1<e ≤3.法五:PF 1≥c+a.点评:法一是利用双曲线性质求解,计算量大;法二、法三都是以焦点三角形为模型,利用正,余弦函数的有界性求解,是解圆锥曲线最值问题常用方法之一.法四、法五以形助数,快速求解,属于“小题巧做”,是非常规解法.襛利用曲线上本身点的坐标的取值范围例1若椭圆x 2a 2+y 2b 2=1(a>b>0)上存在一点P ,使∠OPA=90°,其中O 为原点,A 为椭圆的右顶点,求椭圆离心率e 的取值范围.解析:设P (x 0,y 0),则PO 2+PA 2=OA 2,所以x 20+y 20+(x 0-a )2+y 20=a 2,所以x 20+y 20-ax 0=0.(1)又因为x 20a 2+y 20b 2=1,(2)由(1)(2)得x 0=ab 2a 2-b 2(x 0=a 舍).又因为0<x 0<a ,所以0<ab 2a 2-b 2<a ,所以2%姨2<e<1.点评:本题中∠OPA=90°这个条件很特殊,即可以运用勾股定理,也可以运用圆的性质列出关于点P 的方程,然后借助椭圆上点本身的坐标范围,列出关于a ,b ,c 的不等式,求出e 的取值范围.襛利用三角函数的有界性上例也可以设椭圆的参数方程,解答如下.解析:设P (a cos θ,b sin θ),因为∠OPA=90°,所以O姨P ⊥A 姨P.所以a cos θ(a cos θ-a )+b sin θ·b sin θ=0.所以(a 2-b 2)cos 2θ-a 2cos θ+b 2=0.所以cos θ=1或cos θ=b 2a 2-b 2.当cos θ=1时,A 与P 重合,不合题意.所以-1<b 2a 2-b 2<1,所以2%姨2<e<1.点评:设椭圆的参数方程,可以很好地减少变量,由原来的两个变量x ,y ,减少到一个变量θ,并且将其问题“转化”为三角问题.襛利用已知条件的不等关系例2已知椭圆x 2a 2+y 2b 2=1(a>b>0)的两焦点为F 1,F 2,斜率为k 的直线l 过右焦点F 2,与椭圆交于A ,B ,与y 轴交于C ,B 为C ,F 2的中点,若k ≤25%姨5,求椭圆离心率的取值范围.解析:因为y=k (x -c ),F (c ,0),所以c (0,-kc ).又因为B 为CF 2的中点,所以B ⊥c 2,-kc 2⊥在椭圆上,即c 24a 2+k 2c 24b 2=1,所以k 2=(a 2-c 2)(4a 2-c 2)a 2c2≤45,所以5e 4-中等教育£试题研究>解题技巧45数学教学通讯(教师版)数学教学通讯(中等教育)投稿邮箱:sxjk@试题研究>解题技巧29e 2+20≤0,所以(5e 2-4)(e 2-5)≤0,所以e 2∈∈45,55.又因为e ∈(0,1),所以e ∈∈25%姨5,1姨.点评:本题主要针对已知条件|k|≤25%姨5这个不等关系,借助图形关系,找出a ,b ,c 与k 的等价关系,最后根据k 2≥0这个不等关系,得出离心率的取值范围.襛利用实数性质(非负数)建立关于e 的不等式例3椭圆中心是原点,焦点在x 轴上,过椭圆左焦点F 的直线交椭圆于P ,Q 两点,且OP ⊥OQ ,求椭圆离心率e 的取值范围.y O xF P QB ·F ′图1解析:x 2a 2+y 2b 2=1,P (x 1,y 1),Q (x 2,y 2),当斜率存在时,y=k (x+c ),两式联立,消去y ,得(a 2k 2+b 2)x 2+2a 2k 2cx+a 2k 2c 2-a 2b 2=0,x 1x 2=a 2k 2c 2-a 2b 2a 2k 2+b 2,y 1y 2=k (x 1+c )(x 2+c )=k 2b 2(c 2-a 2)a 2k 2+b.因为OP ⊥OQ ,x 1x 2+y 1y 2=0,a 2k 2c 2-a 2b 2a 2k 2+b 2+k 2b 2(c 2-a 2)a 2k 2+b2=0圯k 2=a 2b2a 2c 2+b 2c 2-a 2b2≥0,所以c 4-3a 2c 2+a 4<0,所以e 4-3e 2+1<0,所以3-5%姨2<e 2<1,所以5%姨-12<e<1.当k 不存在时,将x=-c 代入b 2x 2+a 2y 2=a 2b 2,得y 2=b 4a 2,所以y=±b 2a ,所以c=b 2a ,所以e=5%姨-12.综上,e ∈∈5%姨-12,1姨(注:设l :x=my -c ,避免斜率不存在的讨论,m 2=c 2a 2-b 4b 4+c 2b 2≥0).点评:借助过焦点和垂直这两个条件,设出直线方程,联立方程,借助垂直列出a ,b ,c 与k 的关系式,最后根据k 2≥0求出离心率的范围.襛利用椭圆本身的几何性质例4(2009年高考重庆卷文科第15题)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),若椭圆上存在点P ,使asin ∠PF 1F 2=c sin ∠PF 2F 1,则该椭圆的离心率的取值范围为_________.解析:因为PF 1sin ∠PF 1F 2=PF 2sin ∠PF 1F 2=F 1F 2sin ∠PF 1F 2=PF 1+PF 2sin ∠PF 2F+sin ∠PF 1F,又因为asin ∠PF 1F 2=c sin ∠PF 2F 1,所以PF 2=2a2c+a.因为PF 2∈(a -c ,a+c )(关键处),即c 2+2c -a 2>0,所以e 2+2e -1>0,所以e ∈(2%姨-1,1).例5(2010四川理数(9))椭圆x 2a 2+y 2b 2的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是()A.∠0,2%姨22B.∠0,122C.[2%姨-1,1)%%%D.∈12,1姨解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F 点到P 点与A 点的距离相等,而FA =a2c-c=b 2c ,PF ∈[a -c ,a +c ],于是b 2c ∈[a -c ,a +c ],即ac -c 2≤b 2≤ac +c 2,所以ac-c 2≤a 2-c 2,a 2-c 2≤ac+c22,所以ca≤1,c a ≤-1或c a ≥122222222222222.又e ∈(0,1),故e ∈∈12,1姨.点评:此两例都是借助椭圆本身的几何性质,焦半径的范围[a -c ,a+c ]来解决问题.襛借助一元二次函数对称轴与区间的位置关系例6已知椭圆方程x 2a 2+y 2b 2=1(a>b>0),若椭圆上的点到点P (0,3b )距离的最大值是4b ,求椭圆的离心率的取值范围.解析:设A (x ,y )是椭圆上的任意一点,则PA 2=x 2+(y -3b )2=a 2-a 2b2y 2+(y -3b )2=-c 2b2y 2-6by+a 2+9b 2(-b ≤y ≤b ).因为y 0=--3b 3c 2<0,所以当-3b 3c 2<-b 时,即3b 2>c 2,解得e 2<34,所以e ∈∠0,3%姨2姨,此时恰好当y=-b 时,PA 取得最大值4b ,符合题意.当-3b 3c 2∈[-b ,b ]时,则当y=-3b 3c 2时,PA 取得最大值9b 4c2+a 2+9b 2%姨,又最大值为4b ,故解得3b 2=c 2,即e=2%姨2.综上所述,当椭圆上的点到点P (0,3b )距离的最大值是4b 时,其离心率的取值范围是∠0,3%姨25.点评:本题将圆锥曲线与一元二次函数“动轴定区间”问题有机地联系在了一起,借助讨论其对称轴与区间的位置关系,列出不等式.从以上几例可以看出,求离心率范围所借助的不等关系种类多样,这需要教师在平时的教学过程中引导学生对于不等关系多注意,在解决此类问题要善于联想.同时,笔者发现借助不同的不等关系,对于解题的繁简度也不尽相同,这就需要学生们对于题目多总结、类比,从而在面对此类题目时做到“有的放矢”,达到事半功倍的效果.46。

圆锥曲线离心率的取值范围的解题方法

圆锥曲线离心率的取值范围的解题方法

圆锥曲线离心率的取值范围的解题方法一、利用曲线的范围,建立不等关系例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。

解:设因为,所以将这个方程与椭圆方程联立,消去y,可解得二、利用曲线的几何性质数形结合,构造不等关系例2.直线L过双曲线的右焦点,斜率k=2。

若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。

解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均在右支上,例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。

若△ABF2是锐角三角形,求双曲线的离心率的取值范围。

解:如图2,因为△ABF2是等腰三角形,所以只要∠AF2B是锐角即可,即∠AF2F1<45°。

则三、利用定义及圆锥曲线共同的性质,寻求不等关系例4.已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。

解:因为P在右支上,所以又得所以又所以例5.已知双曲线的左、右焦点分别是F1、F2,P是双曲线右支上一点,P到右准线的距离为d,若d、|PF2|、|PF1|依次成等比数列,求双曲线的离心率的取值范围。

解:由题意得因为,所以,从而,。

又因为P在右支上,所以。

四、利用判断式确定不等关系例6.例1的解法一:解:由椭圆定义知例7.设双曲线与直线相交于不同的点A、B。

求双曲线的离心率e的取值范围。

解:(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

问题8.2 求圆锥曲线离心率或离心率范围-2020届高三数学成功在我之优等生提分精品(学生版)

问题8.2 求圆锥曲线离心率或离心率范围-2020届高三数学成功在我之优等生提分精品(学生版)

专题八 解析几何问题二:求圆锥曲线离心率或离心率范围一、考情分析离心率的范围问题是高考的热点问题,各种题型均有涉及,因联系的知识点较多,且处理的思路和方法比较灵活,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围.很多同学掌握起来比较困难,本文就解决本类问题常用的处理方法和技巧加以归纳.二、经验分享离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.2.要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解.(2)要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征||PF 1+||PF 2≥2c 的运用三、知识拓展1.在求椭圆()222210x y a b a b+=>>离心率范围时常用的不等关系:,x a y b ≤≤,a c FP a c -≤≤+,b OP a ≤≤(P 为椭圆上一点)2.在双曲线()222210,0x y a b a b +=>>中,21c b e a a ⎛⎫==+ ⎪⎝⎭,四、题型分析(一) 借助平面几何图形中的不等关系【例1】【2017届湖南师大附中高三上学期月考三】已知两定点()1,0A -和()1,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55B .105 C. 255 D .2105【小试牛刀】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1[,1)2 B .23[,]22 C .2[,1)2 D .3[,1)2(二) 借助题目中给出的不等信息【例2】 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【小试牛刀】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a b Ω+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 13,23⎛⎫⎪⎪⎝⎭ B. 32,32⎛⎫⎪ ⎪⎝⎭ C. 13,43⎛⎫⎪ ⎪⎝⎭D. 11,43⎛⎫⎪⎝⎭(三) 借助函数的值域求解范围【例3】已知椭圆221:12x yCm n-=+与双曲线222:1x yCm n+=有相同的焦点,则椭圆1C的离心率e的取值范围为()A.2(,1)2B.2(0,)2C.(0,1)D.1(0,)2【小试牛刀】【2017届福建连城县二中高三上学期期中】已知二次曲线2214x ym+=,则当[]2,1m∈--时,该曲线的离心率e的取值范围是()A.2322⎡⎤⎢⎥⎣⎦,B.26,22⎡⎤⎢⎥⎣⎦C.56,22⎡⎤⎢⎥⎣⎦D.36,22⎡⎤⎢⎥⎣⎦(四) 根据椭圆或双曲线自身的性质求范围【例4】【2016届河北省正定中学高三上第五次月考】设12,F F 为椭圆22221(0)x y a b a b+=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C .22 D .33【小试牛刀】【2016届黑龙江省大庆实验中学高三12月月考】已知12,F F 分别为双曲线)0,0(12222>>=-b a b ya x 的左、右焦点,P 为双曲线右支上的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是( )A .(]1,3B .(1,3⎤⎦ C .3,3⎡⎤⎣⎦D .[)3,+∞四、迁移运用1.【湖南省郴州市2018届高三第二次教学质量检测】设椭圆2222:1x yEa b+=(0a b>>)的一个焦点()2,0F点()2,1A-为椭圆E内一点,若椭圆E上存在一点P,使得8PA PF+=,则椭圆E的离心率的取值范围是()A.44,97⎡⎤⎢⎥⎣⎦B.4497⎛⎫⎪⎝⎭, C.22,97⎡⎫⎪⎢⎣⎭ D.22,97⎡⎤⎢⎥⎣⎦2.【广东省珠海一中等六校2018届高三第三次联考】已知点为双曲线的右焦点,直线与交于两点,若,设,且,则该双曲线的离心率的取值范围是( )A. B. C. D.3.【广东省六校2018届高三下学期第三次联考】已知点为双曲线的右焦点,直线与交于,两点,若,设,且,则该双曲线的离心率的取值范围是A. B. C. D.4.【浙江省镇海中学2018届高三上学期期末】已知点P在以为左右焦点的椭圆上,椭圆内一点Q在的延长线上,满足,若,则该椭圆离心率取值范围是()A. B. C. D.5.【福建省宁德市2018届高三上学期期末】已知1F 、2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点,若椭圆C 上存在点A ,满足1223AF AF a -=,则椭圆的离心率取值范围是( ) A. 1,12⎛⎫⎪⎝⎭ B. 1,15⎡⎫⎪⎢⎣⎭ C. 2,15⎛⎫⎪⎝⎭ D. 2,15⎡⎫⎪⎢⎣⎭6.【2017届湖南长沙一中高三月考五】已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为1F ,2F .这两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若1||10PF =,记椭圆与双曲线的离心率分别为1e 、2e ,则12e e 的取值范围是( )A.1(,)9+∞B.1(,)5+∞C.1(,)3+∞ D.(0,)+∞7.【2017届湖南湘中名校教改联合体高三12月联考】过双曲线22221x y a b-=(0a >,0b >)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若35AB CD ≥,则双曲线离心率的取值范围为( )A .5,3⎡⎫+∞⎪⎢⎣⎭B .5,4⎡⎫+∞⎪⎢⎣⎭C .51,3⎛⎤ ⎥⎝⎦D .51,4⎛⎤ ⎥⎝⎦8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,19.已知椭圆22221(0)x y a b a b+=>>上有一点A,它关于原点的对称点为B,点F 为椭圆的右焦点,且满足AF BF ⊥,设ABF α∠=,且[,]126ππα∈,则该椭圆的离心率e 的取值范围为( )A .313[,]22- B .316[,]23- C .6[31,]3- D .3[31,]2-10.已知12,F F 是双曲线22221x y a b-=(0,0)a b >>的左、右两个焦点,以线段12F F 为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N (点M,N 均在第一象限),当直线1MF 与直线ON 平行时,双曲线离心率取值为0e ,则0e 所在区间为( )A .(1,2)B .(2,3)C .(3,2)D .(2,3)11.F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.12.【2016届安徽省六安一中高三上第五次月考】已知P 是椭圆2222111x y a b +=11(0)a b >>和双曲线2222221x y a b -=22(0,0)a b >>的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,1223F PF π∠=,则1211e e ⋅的最大值为13.在平面直角坐标系中,已知点(2,2)F 及直线:20l x y +-=,曲线1C 是满足下列两个条件的动点(,)P x y 的轨迹:①2,PF d =其中d 是P 到直线l 的距离;②00.225x y x y >⎧⎪>⎨⎪+<⎩(1) 求曲线1C 的方程;(2) 若存在直线m 与曲线1C 、椭圆22222:1(0)x y C a b a b +=>>均相切于同一点,求椭圆2C 离心率e 的取值范围.14.椭圆x2a2+y2b2=1(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.(1)求1a2+1b2的值(2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围.。

求圆锥曲线中心离心率的取值范围的方法

求圆锥曲线中心离心率的取值范围的方法

案例分析新课程NEW CURRICULUM 高中政治主观题解题方法之我见黎小琴︵江西省萍乡市芦溪中学︶纵观近几年的高考题,发现全国各地的高考试卷题在书外,理在书中;以教材主干知识为载体,考查学生运用政治基本原理分析和解决问题的能力;根据学生实际出题,不出怪题、偏题、陈题。

但更要突出情景设置,试题体现生活化;更优化问题设计,发挥学生的主体作用;更注重考查学生的全面能力,侧重解释能力、知识迁移能力、推理能力。

2015年全国政治试题命题既具有以往高考政治考查的优点,同时又具备自身的特点,考点全面,整个试题延续了平稳,保持了难度,却加大了创新力度,不仅选择题得分低,连主观题得分也要比往年更低。

为了适应高考的需要,我们应积极探索,开拓创新,不断提升教师自身的教学能力。

下面,就本人在高中思想政治课课堂教学中对主观题的解题方法谈一点拙见。

一般来讲,我们熟知的高考政治主观题分为九大类型:“体现类”主观题、“反映类”主观题、“为什么(原因)类”主观题、“怎么办(对策)类”主观题、“意义或影响类”主观题、“认识(评价)类”主观题、“启示类”主观题、“依据类”主观题、“图表类”主观题。

在平常的教学中,我们会做到以下六步:一看:看设问。

要看出设问的范围、角度(是什么、为什么、怎么样)指向、主体、特殊的限制与要求等,并一次性将所有的问题看完。

二抓:抓住材料的关键词、中心意。

通常可用“首尾法,词语频率法,同一中心法,引导法”来抓。

三领:领悟命题者的意图,主要是考什么知识原理。

从题目的材料出发,去思考该题所处的时政背景,从而判断出命题者的意图,主要是想考查什么知识内容。

四联:紧扣题目的材料联系相应的教材术语和时政术语。

回想相应的教材知识网和相关热点背景,准确完整地联想。

五列:列出答题纲要,按照前面的四部曲的内容,把相关题目设问所要求的材料知识、教材知识、时政知识等内容按先后次序列出答案要点。

六思:反思答案的完整性、科学性,倒推重审题,注意题分值(看分作答)。

圆锥曲线中离心率的求值及其范围

圆锥曲线中离心率的求值及其范围

圆锥曲线中离心率的求值及其范围发布时间:2021-04-14T14:55:21.923Z 来源:《中国教师》2021年第2期作者:谢忠[导读] 圆锥曲线的理论知识点与章节内容在近几年的高考考核中处于重点考察的项目之一谢忠湖南省永兴县第二中学 423300摘要:圆锥曲线的理论知识点与章节内容在近几年的高考考核中处于重点考察的项目之一,在当该方面的理论内容教学与题型讲解方面,需要重点关注求值与范围方面的内容考核,通过针对性讲解使学生能够在内容学习与解题过程中,具备较好的解题思路以及解题方法应用等。

本文通过典型例题的讲解,探讨该部分题型的教学方法,以此使学生能够在较好的指导模式下具备较好的解题思路。

关键词:圆锥曲线;求值;范围;教学一、引言圆锥曲线定义、方程、转换求解以及参数内容的考核在历年的高考中属于重点的考察项目之一,圆锥曲线的相关题型更是在近几年的高考题型中出现频繁,在题型解答教学与理论概念的讲解工作上,需要关注近几年高考考核的变化。

在该类提醒的解答上,一般需要进行目标参数的建立,即圆锥曲线定义以及几何性质方面的理论知识应用;在教学指导上,需要结合题型的基本情况进行解题策略的研究与重点讲解。

本文在该类题型的解答探究上,主要采取定义法、转换法以及利用题设给出的条件进行解答。

二、圆锥曲线定义的应用例1:假如双曲线x2/c2-y2/d2=1(c>0,d>0)上横坐标为3c/2点至右焦点的距离超过它至左准线的距离,则双曲线的离心率取值范围为()A、(1,2)B、(2,+∞)C、(5,+∞)D、(1,5)该类型题在进行解答时,可基于双曲线定义与焦半径公式进行应用,解析为:∵ex0-a=e×3/2a-a>c2d+3/2a→3e2-5e-2>0,∴e>2或e<13(舍去),∴e∈(2,+∞),故选D。

例2:双曲线x2/c2-y2/d2=1(c>0,d>0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是()。

高考数学离心率的求值或取值范围问题解题模板

高考数学离心率的求值或取值范围问题解题模板
以 ,因为 ,所以 ,所以 ,故应选 .
考点:1、双曲线的简单几何性质;2、双曲线的概念.
【方法点评】本题考查了双曲线的简单几何性质和双曲线的概念,考查学生综合知识能力和图形识别能力,
数中档题.其解题的一般思路为:首先根据矩形的性质并将直线 代入双曲线 方程中即可得出点 的坐标,再由矩形的几何性质可得 ,最后可得出所求的结果.其解题的关键是正确地运用矩形的几何性质求解双曲线的简单几何性质.
离心率的求值或取值范围问题解题模版
【高考地位】
圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题,究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础.
因为 为等边三角形,所以 ,
所以 ,
因为 ,所以 ,
因为在 中, , ,
所以 ,
即 ,
所以 ,
所以双曲线的离心率为 ,
故选:B
方法四借助题目中给出的不等信息
万能模板
内容
使用场景
离心率的求值或取值范围
解题模板
第一步找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立, 的范围等;
第二步列出不等式,化简得到离心率的不等关系式,从而求解.
【详解】解:因为过 作垂直于 轴的直线与椭圆交于 两点( 在 轴上方),
所以 为椭圆的一条通径,
所以 , , , ,
因为 ,
所以 ,即: ,
整理得: ,
所以 .
故选:C.
方法三借助平面几何图形中的不等关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习——求解圆锥曲线离心率的
取值范围
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高考数学专题复习——求解圆锥曲线离心率的取值范围
求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点,求离心率的难点在于如何建立不等关系定离心率的取值范围.
一、直接根据题意建立,a c 不等关系求解.
例1:(08湖南)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32
a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是
A.(1,2)
B.(2,+∞)
C.(1,5)
D. (5,+∞)
备选(07北京)椭圆22
221(0)x y a b a b
+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是( ) A.1(0]2, B.2(02, C.1[1)2,
D.21) 二、借助平面几何关系建立,a c 不等关系求解
例2:(07湖南)设12F F ,分别是椭圆22
221x y a b
+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )
A .2(0,
B .3(0],
C .21) D.31)
三、利用圆锥曲线相关性质建立,a c 不等关系求解.
例3:(2008福建)双曲线22
221x y a b
==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为
A.(1,3)
B.(]1,3
C.(3,+∞)
D.[)3,+∞
备选(04重庆)已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A 43 B 53 C 2 D 73
备选已知1F ,2F 分别为22
221x y a b
-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若21
2PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )
A (1,2]
B (1,3]
C [2,3]
D [3,)+∞
例5:已知椭圆22
221(0)x y a b a b
+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围。

例6:椭圆G :22
221(0)x y a b a b
+=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在点M 使1
20FM F M ⋅=. 求椭圆离心率e 的取值范围; 四、运用数形结合建立,a c 不等关系求解
例7:(06福建)已知双曲线22
221(0,0)x y a b a b
-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是
(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞
五、运用函数思想求解离心率
例8:(08全国卷Ⅱ)设1>a ,则双曲线22
22
1(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2(
六、运用判别式建立不等关系求解离心率
例9:在椭圆22
221(0)x y a b a b
+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212MF MF b ⋅=,求椭圆的离心率.
例10:(04全国Ⅰ)设双曲线C :1:)0(1222
=+>=-y x l a y a
x 与直线相交于两个不同的点A 、B.求双曲线C 的离心率e 的取值范围:
1. 双曲线122
22=-b
y a x 的两条渐近线互相垂直,则双曲线的离心率为______ 2. 已知双曲线122
22=-b
y a x 的实轴长、虚轴长、焦距成等差数列,则其离心率等于3。

双曲线122
22=-b
y a x 的左顶点和右焦点分别是A 、F ,点B 的坐标是(0,b ),若,90︒=∠ABF 则双曲线的离心率是________
4.已知F 1、F 2是双曲线122
22=-b
y a x 的两个焦点,AB 是经过焦点F 1且垂直于x 轴的双曲线的弦,若∠AF 2B=90º,则双曲线的离心率为__________
5。

双曲线12222=-b y a x 的离心率为e 1,双曲线122
22=-a
x b y 的离心率为e 2, 则 =+22
2111e e ________, e 1+e 2 的最小值为 . e 1·e 2的最小值为 __ . 6.设双曲线122
22=-b
y a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰过点F ,则双曲线的离心率为_________
7.已知双曲线的一条准线与渐近线的交点为A 、B ,这条准线的相应焦点为F ,如果△ABF 是等边三角形,则双曲线的离心率为 _________
8.双曲线的两条渐近线的夹角为4
3arctan 2则双曲线的离心率是_______ 9. 双曲线122
22=-b
y a x (0,0>>b a )的右焦点2F 到过点),0()0,(b B a A 、的直线的距离等于双曲线虚半轴长的一半,则双曲线的离心率e 等于________
10. 双曲线122
22=-b
y a x (0<a ≤b )的半焦距为c ,直线L 过点(a,0)、(0,b )两点,已知原点到直线L 的距离为c 4
3,那么双曲线的离心率是_______ 11.设双曲线的焦点在x 轴上,两条渐近线为x y 2

=,则该双曲线的离心率=e ( ) A .5 B . 5 C .25 D .45 12.椭圆和双曲线有相同的中心和准线,椭圆焦点F 1、F 2 三等分以双曲线焦点''2
1F F 、为端点的线段,则双曲线的离心率/e 与椭圆的离心率e 的比值是 ( )
A . 2 B. 3 C.2 D.3
13.设双曲线的半焦距为c ,两条准线间的距离为d ,且c=d ,则双曲线的离心率是( )
A . 2 B. 3 C.2 D.3
14.已知双曲线122
22=-b
y a x (0,0>>b a )的半焦距为c,若 042<-ac b , 则双曲线的离心率范围是 ( )
A. 521+<<e B. 522+<<e
C. 5252+<<-e D. 22
3<<e
15.双曲线122
22=-b
y a x ,一直线经过A(a ,0)和B (0,b )两点,若原点到直线AB 的距离为222
1b a +,则双曲线的离心率是 ( ) A .2 B.2 C. 22或 D.
3 16.若双曲线122
22=-b
y a x )0(>>a b 的渐近线所夹锐角为 α2,则它的离心率为() A .αcsc B.αcsc - C.αcos D.αsec
17.双曲线)2(,12222>=-a y a x 的两条渐近线的夹角为3
π,则双曲线的离心率是() A.332 B.3
62 C.3 D.2 18.已知双曲线122
22=-b
y a x (0,0>>b a )的右焦点为F ,若过点F 且倾斜角为060的直线与双曲线的右支有且仅有一个交点,则此双曲线离心率的取值范围是()
A .(1,2] B.(1,2) C. [)+∞,2 D.(2,+∞)。

相关文档
最新文档