八年级数学上册 第二章《平方根》教案 北师大版

合集下载

北师大版初中数学八年级上册第二章2.2《平方根》教案

北师大版初中数学八年级上册第二章2.2《平方根》教案
具体举例说明:
1.教学重点举例
-定义举例:通过具体的数值,如9、16等,让学生理解平方根的概念,掌握求平方根的方法。
-运算举例:通过计算√9+√16、√9×√16等,让学生熟练掌握平方根的运算规则。
-性质举例:通过分析正数、非负数的平方根特点,如√9=3,-√9=-3,让学生掌握平方根的性质。
-估算举例:以√10为例,教授学生使用近似计算方法估算平方根,如先找到最接近的完全平方数9,再计算√10与√9之间的差距。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算,它是解决几何、物理等问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,求解一个边长为10cm的正方形的面积,通过平方根的概念可以轻松得到面积为100cm²。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和运算这两个重点。对于难点部分,比如平方根的性质和估算,我会通过举例和比较来帮助大家理解。
4.估算平方根:学会使用近似计算方法估算一个数的平方根。
5.应用平方根解决实际问题:运用平方根知识解决生活中的问题,如面积、体积等计算。
二、核心素养目标
1.培养学生的逻辑推理能力,通过平方根的定义和性质的学习,使学生掌握数学推理的基本方法,提高分析问题和解决问题的能力。
2.培养学生的数学运算能力,让学生熟练掌握平方根的运算规则,提高数学计算的速度和准确性。
-实际问题举例:将实际问题,如计算正方形面积,转化为求平方根的问题,教授学生如何建模和求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。

北师大版八年级数学上册2.2.2平方根教学设计

北师大版八年级数学上册2.2.2平方根教学设计
3.教师要认真批改作业,及时给予反馈,关注学生的进步和存在的问题,为下一节课的教学提供参考。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平方根的概念、性质及其计算方法。
2.难点:平方根性质的灵活运用以及解决实际问题中平方根的计算。
(二)教学设想
1.创设情境,引入新课
教学伊始,通过一个与学生生活密切相关的实际问题,如计算正方形桌布的面积,引导学生思考如何求解边长的问题。由此引出平方根的概念,激发学生的学习兴趣。
(3)错题分析:收集学生在练习过程中出现的典型错误,组织学生进行分析,找出错误原因,提高学生的解题能力。
(4)课后辅导:针对学生的薄弱环节,进行课后辅导,帮助学生克服难点,提高数学素养。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将利用一个与学生生活息息相关的问题来引起学生的兴趣和好奇心。我会问学生们:“假设我们班要举行一次象棋比赛,我们想要一张边长为4米的正方形棋盘,那么这张棋盘的面积应该是多少呢?”学生通过计算得出16平方米。接着我会追问:“如果只知道棋盘的面积是16平方米,我们该如何确定它的边长呢?”这个问题将引导学生思考如何求解一个数的平方根。
(二)讲授新知,500字
在讲授新知环节,我会首先明确平方根的定义,即一个数的平方根是另一个数,它的平方等于原来的数。我会用数学符号表示出来,并强调正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
接着,我会通过具体的例子,如4的平方根是2和-2,来解释平方根的概念。然后,我会教授如何计算简单数的平方根,引导学生发现平方根的计算规律。在这个过程中,我会强调估算和检验的重要性,培养学生严谨的计算习惯。
4.能够运用平方根解决一些实际问题,如面积、速度等与平方根有关的问题。

北师大版数学八年级上册2《平方根》教学设计2

北师大版数学八年级上册2《平方根》教学设计2

北师大版数学八年级上册2《平方根》教学设计2一. 教材分析《平方根》是北师大版数学八年级上册第2章的教学内容。

本节内容是在学生已经掌握了有理数乘方的基础上进行学习的,通过学习平方根,让学生了解平方根的概念,掌握求一个数的平方根的方法,并会运用平方根解决实际问题。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘方概念的理解和运用已经比较熟练。

但是,平方根的概念和求法相对于乘方来说比较抽象,学生可能难以理解。

因此,在教学过程中,需要通过具体例子和实际问题,帮助学生理解和掌握平方根的概念和求法。

三. 教学目标1.知识与技能:让学生掌握平方根的概念,了解求一个数的平方根的方法,并能够运用平方根解决实际问题。

2.过程与方法:通过具体例子和实际问题,引导学生探究平方根的概念和求法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。

四. 教学重难点1.重点:平方根的概念和求法。

2.难点:理解平方根的性质和运用平方根解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探究,通过案例分析和实际问题解决,让学生理解和掌握平方根的概念和求法,通过小组合作学习,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,包括平方根的概念、求法以及实际问题的案例。

2.教学素材:准备一些实际问题和相关案例,用于引导学生探究和分析。

3.学习任务单:设计学习任务单,让学生在课堂上进行自主学习和探究。

七. 教学过程1.导入(5分钟)通过提出一个问题,如“一个正方形的边长是5厘米,求这个正方形的面积。

”让学生思考和回答,引导学生进入平方根的学习。

2.呈现(10分钟)通过PPT呈现平方根的概念和求法,让学生了解平方根的定义和求法。

同时,给出一些实际问题,如“已知一个数的平方是25,求这个数。

八年级数学上册..平方根教育教学案北师大版

八年级数学上册..平方根教育教学案北师大版

一、自主学习
1、上节课我们学习了算术平方根的概念,性质.知道若一个正数 x 的平方等于 a,即 x2=a.
则 x 叫 a 的算术平方根,记作 x= a ,而且 a 也是非负数,比如正数22=4,则 2 叫 4 的算术
平方根,4 叫 2 的平方,但是(-2)2=4,则-2叫 4 的什么根呢?下面我们就来讨论这个 问题. 2、.平方根、开平方的概念 3、请大家先思考两个问题. (1)9 的算术平方根是 3,也就是说,3 的平方是 9,还有其他的数,它的平方也是 9 吗?
(1)-0.01 是0.1 的平方根.………………………………( )
(2)-52 的平方 根为-5.…………………… …………(

(3)0 和负数没有平方根.…………………………………( )
(4)因为 1 的平方根是± 1 ,所以 1 =± 1 …………(

16
4
16 4
(5)正数的平方根有两个,它们是互为相反数.……( )
学校
励志名言
104
1. x2 81
2. 3x2 48
; ;8 的平方根
3.
3 x2 1 47
(5) 52
52
0.82
(七)综合诊断:
1.
0.36的平方根是
,算术平方根是 ;
2. 16 的 算术平方根是

3. 81 的算术平方根的平方根是

4.想想看,填上适当的数:
(1) 一个数的算术平方根是它本身,则这个数是
2.选择题
1)下列各数中没有平方根的数是( )
A.-(-2)3
B.3-3‫ ﻩ‬C.a0‫ ﻩ‬D.-(a2+1)
(2) a 2 等于(

八年级数学上册2.2平方根第2课时平方根教学设计 (新版北师大版)

八年级数学上册2.2平方根第2课时平方根教学设计 (新版北师大版)

八年级数学上册2.2平方根第2课时平方根教学设计(新版北师大版)一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍了平方根的定义、性质和运算方法。

本节内容是学生进一步理解实数体系的重要环节,也为后续学习二次根式打下基础。

教材通过例题和练习,使学生掌握平方根的概念,能够熟练求一个数的平方根,并理解平方根的性质。

二. 学情分析八年级的学生已经学习了有理数、无理数等概念,对实数体系有了一定的了解。

但是,学生对于平方根的理解可能还存在困难,需要通过具体的例题和实践活动来加深理解。

同时,学生对于数学符号和公式的记忆还不够牢固,需要在教学中加强巩固。

三. 教学目标1.理解平方根的定义,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.平方根的定义和求法。

2.平方根的性质。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,通过案例分析和实践操作,使学生理解和掌握平方根的概念和性质,通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过复习上节课的内容,引导学生回忆无理数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)PPT展示平方根的定义和性质,通过讲解和例题,使学生理解平方根的概念,掌握求一个数的平方根的方法。

3.操练(15分钟)学生独立完成练习题,教师巡回指导,及时解答学生的疑问。

4.巩固(5分钟)学生分享解题心得,教师总结平方根的求法和性质,帮助学生巩固知识点。

5.拓展(5分钟)通过教学视频或案例,让学生了解平方根在实际生活中的应用,提高学生的数学素养。

6.小结(5分钟)教师引导学生总结本节课所学内容,加深对平方根的理解。

7.家庭作业(5分钟)布置适量作业,让学生巩固所学知识,提高解题能力。

八年级数学上册第二章实数:平方根第1课时算术平方根教案新版北师大版

八年级数学上册第二章实数:平方根第1课时算术平方根教案新版北师大版

八年级数学上册教案新版北师大版:2.2平方根第1课时算术平方根教学目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)教学过程一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6; (4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用. 【类型二】利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0,a ≥0教学反思让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.。

北师大版八年级数学上册:2.2《平方根》教案

北师大版八年级数学上册:2.2《平方根》教案

北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。

本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。

通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。

二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。

但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够运用平方根的知识解决实际问题。

3.培养学生的逻辑思维能力和创新能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

3.平方根在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。

2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。

3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。

六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。

2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。

3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。

提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。

同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。

3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。

北师大版 2_平方根_教案2八年级 八年级数学上册

北师大版 2_平方根_教案2八年级 八年级数学上册

平 方 根(二)学习目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系; 重、难点:学习重点:平方根和算术平方根的联系与区别学习难点:平方根的概念和求数的平方根。

学习过程:(一)自学释疑引入:如果一个数的平方等于9,这个数是多少?2542 x ,则x 等于多少呢? 预习基础题:1. ,则这个数是 。

2.求下列各数的算术平方根:(1)900;(2)1;(3)4964;(4)14. 3.( )2 =9;( )2 =181;( )2 =0.25.(二)知识梳理:通过预习回答:1.一个正数的平方根有___个,它们互为______.一个正数的正的平方根,记作“ ”,正数的负的平方根记作“ ”,这两个平方根合起来记作“ ”,读作“正、负根号”。

2. a 的取值有什么限制吗?3. 任何一个非负数的平方根和算术平方根有什么关系?零的平方根和算术平方根有什么关系?4. 回答:(1)9的平方根是什么?5的平方根是什么?(2)0的平方根是什么?0的平方根有几个?(3)-4,-8,-36有平方根吗?为什么?(4)由此,你得到了什么结论?思考下面几个问题:1. 平方等于4的数有几个?是哪些数?2. 平方等于零的数有几个?是哪些数?有平方等于负数的数吗?3. 平方等于它本身的数有哪些?4. 平方根和算术平方根有联系与区别?(三)知识综合运用基础题:1. 求下列各数的平方根。

(1) 100 (2)169 (3) 0.25 (4) -162. 求下列各数的平方根和算术平方根。

(1) 24125 (2)22(1)3-提高题:计算:(1) ;(2 ;(3)思考题: 1.a 表示什么意思,这里的a 可取什么样的数呢?1--x 该怎样理解?这里的x 又可取什么样的数呢?2. 用大小完全相同的300块正方形地板砖,铺一间长18米,宽6米的长方形会议室的地面,求每块正方形地板砖的边长。

北师大版八年级数学上册:2.2《平方根》教学设计2

北师大版八年级数学上册:2.2《平方根》教学设计2

北师大版八年级数学上册:2.2《平方根》教学设计2一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。

本节主要让学生掌握平方根的概念,了解平方根的性质,会求一个数的平方根。

教材通过引入问题情境,让学生感受数学与生活的联系,培养学生的数学应用意识。

同时,平方根的学习也为后续学习立方根、算术平方根等概念打下基础。

二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。

但平方根的概念与有理数的乘方有所不同,需要学生能够较好地理解和掌握。

此外,学生可能对实数的概念不是很清晰,需要在教学中引导学生正确理解实数与平方根的关系。

三. 教学目标1.理解平方根的概念,掌握平方根的性质。

2.能够求一个正数的平方根。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.重点:平方根的概念和性质。

2.难点:求一个数的平方根,特别是非正数的平方根。

五. 教学方法1.情境教学法:通过引入生活情境,让学生感受数学与生活的联系。

2.启发式教学法:引导学生思考,发现规律,培养学生的数学思维能力。

3.练习法:通过大量的练习,让学生巩固所学知识。

六. 教学准备1.教学课件:制作平方根的概念、性质和求平方根的课件。

2.练习题:准备一些有关平方根的练习题,包括正数、负数和零的平方根。

3.教学视频:准备一个有关平方根的数学故事视频,用于导入新课。

七. 教学过程1.导入(5分钟)播放教学视频,让学生了解平方根的由来。

然后提问:什么是平方根?引导学生思考并回答。

2.呈现(15分钟)讲解平方根的概念,用PPT展示平方根的性质。

让学生观察并总结平方根的性质。

3.操练(15分钟)让学生分组讨论,每组找一个数的平方根,并解释如何找到这个平方根。

然后让学生上台展示并讲解。

4.巩固(10分钟)让学生独立完成练习题,检验学生对平方根的理解。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)引导学生思考:平方根有哪些应用?让学生举例说明,培养学生的数学应用意识。

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第2章第2节的内容。

本节主要让学生了解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根的性质。

通过学习本节内容,为学生进一步学习立方根、四次方根等概念打下基础。

二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。

但是,平方根的概念和求法对学生来说是一个新的内容,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对平方根的性质有一定的困惑,需要通过大量的练习和讲解来加深理解。

三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根的概念和性质解决实际问题。

3.培养学生的逻辑思维能力和数学运算能力。

四. 教学重难点1.平方根的概念和求法。

2.平方根的性质和运用。

五. 教学方法1.采用问题驱动法,引导学生通过探索和发现来学习平方根的概念和性质。

2.使用实例和练习,让学生通过动手操作和思考来掌握求一个数的平方根的方法。

3.采用分组讨论和合作交流的方式,让学生在小组内共同解决问题,提高学生的合作能力和沟通能力。

六. 教学准备1.PPT课件七. 教学过程导入(5分钟)教师通过提问:“你们知道什么是乘方吗?乘方和平方有什么关系?”引导学生回顾乘方的概念,为新课的学习做好铺垫。

呈现(15分钟)1.教师通过PPT展示平方根的定义,解释平方根的概念。

2.教师用实例来讲解如何求一个数的平方根,如求9的平方根。

操练(10分钟)1.学生独立完成练习题,求出指定数的平方根。

2.教师选取部分学生的作业进行点评和讲解。

巩固(10分钟)1.学生分组讨论,总结平方根的性质。

2.各小组汇报讨论结果,教师进行点评和讲解。

拓展(10分钟)1.教师提出一些实际问题,让学生运用平方根的概念和性质来解决。

2.学生独立思考和解决问题,教师进行指导。

小结(5分钟)教师引导学生回顾本节课所学的内容,总结平方根的概念和性质。

北师大版数学八年级上册2.2.2 平方根教案

北师大版数学八年级上册2.2.2 平方根教案

第2课时平方根●置疑导入有一块正方形的菜地,面积为36 m2,你能说出这个正方形的边长吗?结果只有一个吗?说说你的道理.【教学与建议】教学:从现实生活中提出问题,从而激发学生的研究兴趣.建议:教学中教师注意引导学生自主思考,小组交流,培养学生团队协作意识,提高知识的应用能力.●复习导入(1)什么叫做算术平方根?怎样表示?(2)填空:4的算术平方根是__2__,23的算术平方根是__23__.(3)我们已经学习过哪些运算?它们中互为逆运算的是什么?(4)什么叫乘方?什么叫幂?(5)填空:①42=__16__,(-4)2=__16__;②(0.7)2=__0.49__,(-0.7)2=__0.49__.(6)平方等于16的数有几个?平方等于0.49的数有几个?【教学与建议】教学:复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,从而导入新课.建议:本环节采用小组互查的方式,可以更好地激发学生的学习兴趣.命题角度1求一个数的平方根若x2=a,则x=± a ,只有非负数有平方根.【例1】(1)7的平方根是(D)A.7 B.±7 C.7D.±7(2)9的平方根是±3,用数字符号表示是__±9=±3__.命题角度2概念的双重应用熟练利用算术平方根和平方根概念解题.【例2】(1)64的平方根是(A)A.±22B.22C.±8 D.8(2)16的平方根是__±2__,它的算术平方根是__2__.命题角度3利用平方根与平方为互逆运算求解任何一个正数的平方根都是一正一负的,而任意一个数的平方都是非负数.【例3】(1)如果 a 的平方根是±3,那么a=__81__.(2)若-3是m的一个平方根,则m-2的平方根是__±1__.命题角度4利用平方根的性质求解平方根的性质:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【例4】(1)如果一个正数的两个不同的平方根是2a-1和a-5,那么a=__2__,这个正数是__9__.(2)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,则a+2b的平方根是__±3__.高效课堂教学设计1.了解平方根、开平方的概念,会求一个正数的平方根.2.了解平方根和算术平方根的性质.3.使学生明确平方根与算术平方根的区别和联系,提高学生学习数学的能力.▲重点平方根和开平方的概念、性质.▲难点平方根与算术平方根的区别与联系.◆活动1创设情境导入新课(课件)上节课我们学习了算术平方根的概念、性质,知道若一个正数x的平方等于a,即x2=a,则x叫a的算术平方根,记作x= a ,而且 a 也是非负数,比如正数22=4,则2叫做4的算术平方根,4叫做2的平方.但是(-2)2=4,则-2叫做4的什么根呢?下面我们就来讨论这个问题.◆活动2实践探究交流新知【探究1】探究新知32=( 9 )( ±3 )2=9【探究2】形成概念一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根).而把正的平方根叫做算术平方根.表达式:若x 2=a ,那么x 叫做a 的平方根,记作± a .例:(±4)2=16,则+4和-4都是16的平方根,即16的平方根是±4;4是16的算术平方根.【探究3】平方与开平方的关系如果x 2=a ,那么x =± a ,这种运算叫做__开平方__.给出几组具体的数据,由平方探知开平方与平方的互逆关系.【探究4】平方根的性质(1)144的平方根是什么?(2)0的平方根是什么?(3)64121的平方根是什么? (4)-4的平方根是什么?【归纳】正数有__两个__平方根,它们互为__相反数__;0的平方根是__0__,负数__没有__平方根. 【探究5】概念辨析 平方根与算术平方根的联系与区别:联系:1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根.3.0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示不同:正数a 的平方根表示为± a ,而算术平方根表示为 a .◆活动3 开放训练 应用举例【例1】(教材P 28例3)求下列各数的平方根:(1)64;(2)49121;(3)0.000 4;(4)(-25)2;(5)11. 【方法指导】灵活运用平方根的概念及性质解决问题.解:(1)因为__(±8)2__=64,所以64的平方根是__±8__,即±64 =__±8__;(2)因为__⎝⎛⎭⎫±711 2 __=49121 ,所以49121 的平方根是__±711 __,即±49121 =__±711__; (3)因为(±0.02)2=0.000 4,所以0.000 4的平方根是__±0.02__,即±0.000 4 =__±0.02__;(4)因为(±25)2=(-25)2,所以(-25)2的平方根是__±25__,即±(-25)2 =__±25__;(5)因为(±11 )2=11,所以11的平方根是【例2】若x +3 +|y -2|=0,求y -x 的平方根.【方法指导】根据非负数的性质求出x ,y 的值,再利用平方根的性质求平方根.解:由题意,得x +3=0,y -2=0,解得x =__-3__,y =__2__,y -x =__5__,y -x 的平方根是__.◆活动4 随堂练习1.下列各数中没有平方根的是(B)A .0B .-4C .20D .1042.25的平方根是(A)A .±5B .5C .-5D .±253.16 的平方根为__±2__;(-10)2 =__10__.4.求下列各数的平方根:(1)0.04; (2)214; (3)(-17)2.解:(1)±0.2;(2)±32;(3)±17. 5.求下列各式中的x .(1)16x 2=81;解:x =±94; (2)(x +3)2-36=0.解:x 1=3,x 2=-9.◆活动5 课堂小结与作业学生活动:本节课的主要收获是什么?教学说明:掌握平方根和开平方的概念,理解算术平方根与平方根之间的关系.作业:课本P 29随堂练习T 1、T 2、T 3,习题2.4中的T 1~T 6.本节课为学生提供了富有数学含义的问题,引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.学生在理解平方根的概念时,易与算术平方根混淆,特别是符号表示,还应通过练习去体会.。

北师大版八年级数学上册:2.2《平方根》教案1

北师大版八年级数学上册:2.2《平方根》教案1

北师大版八年级数学上册:2.2《平方根》教案1一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。

本节课主要介绍平方根的概念,让学生理解并掌握平方根的性质,能够运用平方根解决实际问题。

本节课的内容是学生进一步学习指数函数、对数函数等数学知识的基础,对于学生形成完整的数学知识体系具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、算术平方根等知识,对于平方根的概念和性质有一定的了解。

但部分学生对于平方根的运用和实际问题解决能力仍需提高。

此外,学生对于数学概念的理解和掌握,需要通过大量的练习和实际应用来加深。

三. 教学目标1.让学生理解平方根的概念,掌握平方根的性质。

2.培养学生运用平方根解决实际问题的能力。

3.提高学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.平方根的概念和性质。

2.运用平方根解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作交流,掌握平方根的知识和运用。

六. 教学准备1.教学PPT。

2.相关练习题。

3.教学素材(如实际问题案例)。

七. 教学过程1.导入(5分钟)利用一个实际问题引入平方根的概念,如“一个正方形的面积是25,求这个正方形的边长。

”引导学生思考,激发学生的学习兴趣。

2.呈现(15分钟)讲解平方根的定义和性质,通过PPT展示相关知识点,引导学生跟随讲解,理解并掌握平方根的概念。

3.操练(15分钟)让学生进行一些有关平方根的练习题,巩固所学知识。

教师可适时给予解答和指导,帮助学生提高解题能力。

4.巩固(5分钟)通过一些实际问题,让学生运用平方根的知识解决问题,巩固所学内容。

教师可引导学生进行思考和讨论,提高学生解决问题的能力。

5.拓展(10分钟)引导学生思考平方根在实际生活中的应用,如测量物体长度、面积计算等。

通过小组合作学习,让学生分享自己的观点和实例,拓展学生的知识运用。

6.小结(5分钟)对本节课的内容进行总结,强调平方根的概念和性质,引导学生形成系统的知识结构。

北师大版平方根教案

北师大版平方根教案

北师大版平方根教案【篇一:新北师大版数学八年级上册《2.2平方根》优秀教学设计】第二章实数2.2. 平方根(第1课时)一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大的正方形,那么有a2=2,a=,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:x2=,y2=,z2=,w2=.目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示x2=2,y2=3,z2=4,w2=5;能求得z=2,但不能求得x,y,w的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念x2=2,y2=3,z2=4,w2=5,已知幂和指数,求底数x,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x,y是1到2之间的数,w是2到3之间的数但无法表示x,y,w,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 就叫做a的算术平方根,记为“a”,读作“根号a”.特别地,我们规定0的算术平方根是0,即0=0.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用巩固概念例1求下列各数的算术平方根:(1) 900; (2) 1; (3) 49;(4) 14. 64目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是.【篇二:八级数学下册..平方根教学设计(新版)北师大版-精】平方根(一)创设情境,引入新知活动一:复习旧知问题1:老师手中有一正方形图片,若已知边长是3时,同学们说其面积是多少呢?2生:3=9 并在黑板上写出.问题2:以上算式属于我们学过的什么运算?在此算式中存在几个量?分别是什么?生:乘方运算;存在三个量;底数、指数和幂.问题3:乘方运算是知道了哪些量求哪个量的运算?生:底数、指数求幂的运算.活动二:探究新知问题4:若正方形的面积是9时,同学们说其边长是多少呢?师:同学们我们比较这两种运算,有什么区别?生:第一种运算,是知道了底数、指数求幂的运算即乘方运算;第二种运算,是知道了幂、指数求底数的运算.师:很好,第二种运算就是今天我们要学习的一种新运算---求一个正数的算术平方根的运算.(板书1)2.2算术平方根设计意图:通过利用旧知,引入新知.学生乐于去做,敢于发言,同时,让学生感受到,通过自己的探究,“玩”出了很多意想不到的收获,使数学课不再枯燥.注重了用数学的方法去研究问题,从数学的角度去思考问题,使数学课更具有数学味,同时,也揭示了本节课的教学重点.问题5:若正方形的面积是3时,同学们说其边长m又是多少呢? m生:1.7<m<1.8,1.73<m<1.74,?;是无限不循环小数.设计意图:通过自主探索,让学生亲身体验概念的形成过程, 感受到概念引入的必要性,充分体现了学生的主体作用.结论:像以上算式m=3中,我们就把正数m叫做3的算术平方根.记作:”,即2问题6:请仿照上面表示“若m=3,则x. 2(1)x=3 (2) x=5 (3) x=7 (4) x=a(a>0)设计意图:算术平方根的概念是由具体到抽象、由特殊到一般而形成的.通过问题6的尝试,培养学生抽象概括的能力.(二)多方联动、理解新知师:现在我们一起来概括算术平方根的定义:(板书2):一般的,一个正数x的平方等于a,即x=a,则这个正数x就叫做a的算术平方根.记为“a”22222读作“根号a”.(板书3):0的算术平方根是0,即0=0.问题1:用含根号的式子表示下列各数的算术平方根.(多媒体出示) (1) 16 (2) 25 (3) 7(4) 14(学生独立完成后交流,并不失时机地追问)师:通过此问题,你会有什么新的发现?一样,这些正数可以写成有理数平方的形式,其算术平方根就可以用一个非负有理数表示,而有些正数写不成有理数平方的形式,其算术平方根只能用根号表示,如上面的7和14,它们的算术平方根只能分别写成7、.设计意图:强化对算术平方根概念的认识,当细则细,为求出数的算术平方根搭建引桥,目的在于慢中求进,扎实有效.师:根据同学们的认识,我们一起来完成例题1.例题1:求下列各数的算术平方根:(多媒体出示)(1)1 (2)900解:(2)(老师板演第2题的解题过程)2∵30=900∴ 900的算术平方根是30即 =30. (3)106 (4)4964解:(4) (老师板演第4题) 749∵ ()2= 864∴的算术平方根是49 787即=8(5)10设计意图:体验求一个正数的算术平方根的过程,摸索利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如:10的算术平方.思考:通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?(多媒体出示)设计意图:让学生感知平方运算和求正数的算术平方根是互逆的关系.问题2:仿照“例题1”,请同学们自己编写两道类似的题目,供其他同学解答.设计意图:要把所学的新知识,融入到自己已有的知识结构中来,通过编题,增进学生对概念的理解,力求做到学以致用,举一反三.师:同学们,我们都能编题了,真了不得!看来下面的实际问题已不在话下.(出示例题2)2例题2:自由下落的物体的高度h(米)与下落时间t(秒)的关系为h= 4.9t.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?(多媒体出示)(多媒体演示解题过程)解:将h=19.6代入公式h=4.9t得t=4,所以t=4=2(秒),即铁球到达地面需要2秒. 22设计意图:用算术平方根的知识解决实际问题,把数学与生活实施了链接,以增进学生对数学价值的体悟.问题3:-7有意义吗? 为什么? (多媒体出示)分析:7无意义,因为任何数的平方都是非负数,即a≥0,故-7无意义. 2(板书4):性质算术平方根是非负数,负数没有算术平方根.用式子表示为a(a≥0)为非负数,这是算术平方根的一条很重要的性质.设计意图:让学生认识到算术平方根定义中的两层含义:a中的a是一个非负数,a的算术平方根a也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.师:现在,同学们对算术平方根的认识可以说已经较为全面,事实到底如何呢?小试牛刀,看看自己的身手吧!(三)自主运用、强化新知1.填空:(多媒体出示) (1)4的算术平方根是_________. 9(2)17的算术平方根为_________. 9(3)的算术平方根为_________.设计意图:通过三个递进式的填空题,检测学生对算术平方根概念的把握情况,并通过(3)小题突出审题意识、优化学生的思维习惯. 2.若一个正方形的边长为3时,当面积扩大原来的4倍后,其大正方形的边长b变为原来的多少倍?(多媒体出示)∴b==62倍.3.请同学们写出一些数的算术平方根,使它分别是整数、分数、无限不循环小数.(多媒体出示) 设计意图:通过这样的开放式训练,使学生对算术平方根概念的认识和理解得到升华,让学生再一次品尝到成功的喜悦.在师生互动的过程中,将课堂推向了高潮,把难以理解的知识,像剥竹笋一样一层一层的剥开,使学生眼前豁然一亮.同时,也突破了本节课的教学难点.师:同学们说的都很好,看来我们通过今天的学习,有了很多的收获.(四)合作交流、归纳总结同学们,通过本节课的共同学习,请你从知识、方法与情感等方面谈一谈自己的认识.师:这节课主要就平方根中的算术平方根进行讨论,?求一个正数的算术平方根与求一个正数的平方正好是互逆的过程,因此,求正数的算术平方根实际上可以转化为求一个数的平方运算. 只不过,只有正数和0才有算术平方根,负数没有算术平方根.设计意图:通过回顾、梳理、反思,使学生对所学知识得到充分的消化和吸收,理顺了各知识点间的关系.老师重点从以下几个方面进行强调:1.算术平方根概念引入的重要性,尤其是让学生经历概念的形成过程以及里面所蕴含的数学思想;2.算术平方根概念应用的广泛性;3.倡导学生善于发现、勇于探索、敢于创新.(五)布置作业,自我巩固1.必做题:p40习题1、2、3.2.选做题:(1)一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?(2)一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?设计意图:设置分层作业,兼顾不同水平的学生,关注差异,使学生获得各自的发展,加深学生对“公式”的进一步理解的同时,扩展学生的思维,让优秀生有舒展的舞台.附课外阅读材料:“根号的由来”现在,我们都习以为常地使用根号(如怎样产生和演变成现在这种样子的呢?根;印度人在开平方时,在被开方数的前面写上ka;阿拉伯人用表示;1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”等等),并感到它使用起来既简明又方便,那么,根号是表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。

本节内容是在学生已经掌握了有理数的乘方、算术平方根的基础上,进一步引导学生探索平方根的概念,理解平方根与算术平方根的联系和区别,以及掌握平方根的运算方法。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的乘方、算术平方根等概念有一定的了解。

但是,学生对于平方根的理解可能会存在一定的困难,因此需要通过实例来帮助学生直观地理解平方根的概念。

三. 教学目标1.理解平方根的概念,掌握平方根的运算方法。

2.能够运用平方根的概念解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.重点:平方根的概念,平方根的运算方法。

2.难点:平方根与算术平方根的联系和区别。

五. 教学方法采用讲授法、引导发现法、实践操作法、小组合作交流法等,结合多媒体教学手段,以学生为主体,教师为指导,引导学生自主探索、合作交流,从而达到理解平方根的概念,掌握平方根的运算方法。

六. 教学准备1.教学课件:制作平方根的教学课件,包括平方根的定义、例题、练习等。

2.教学素材:准备一些有关平方根的实际问题,以及一些关于平方根的图片素材。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如:“一个正方形的边长是6厘米,求它的面积。

”让学生思考如何求解这个问题。

2.呈现(10分钟)引导学生回顾算术平方根的定义,然后给出平方根的定义:“一个非负数x的平方根是另一个非负数y,使得y²=x。

”接着,通过PPT展示一些平方根的例子,让学生观察、思考,加深对平方根的理解。

3.操练(10分钟)让学生自主完成一些关于平方根的练习题,如:求下列各数的平方根:(1)4;(2)-4;(3)9;(4)-9。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生分组讨论,总结平方根的运算方法,以及平方根与算术平方根的联系和区别。

北师大版数学八年级上册2《平方根》教案3

北师大版数学八年级上册2《平方根》教案3

北师大版数学八年级上册2《平方根》教案3一. 教材分析《平方根》是北师大版数学八年级上册第2章的内容。

本节课主要让学生掌握平方根的定义,理解平方根与乘方的关系,会求一个数的平方根,并了解平方根在实际生活中的应用。

通过本节课的学习,为学生进一步学习立方根、算术平方根等概念奠定基础。

二. 学情分析学生在七年级已经学习了乘方,对乘方的概念和运用有一定的了解。

但是,对于平方根的定义和求法,以及平方根在实际生活中的应用,还需要通过本节课的学习来掌握。

此外,学生需要通过实例来加深对平方根的理解,并能运用平方根解决实际问题。

三. 教学目标1.知识与技能:理解平方根的概念,掌握求一个数的平方根的方法,了解平方根在实际生活中的应用。

2.过程与方法:通过实例探究,培养学生的观察、分析和归纳能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新精神和团队合作意识。

四. 教学重难点1.重点:平方根的定义和求法,平方根在实际生活中的应用。

2.难点:平方根的性质和平方根在实际问题中的运用。

五. 教学方法采用问题驱动法、实例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,从而达到理解平方根的概念,掌握求一个数的平方根的方法。

六. 教学准备1.课件:制作平方根的课件,包括平方根的定义、求法、应用等内容。

2.实例:准备一些实际问题,用于引导学生运用平方根解决实际问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用乘方的概念,引导学生回顾乘方的定义和运用,为新课的学习做好铺垫。

2.呈现(10分钟)呈现平方根的定义,通过实例解释平方根的概念,让学生理解平方根的内涵。

3.操练(10分钟)让学生尝试求一些数的平方根,引导学生总结求平方根的方法,并归纳平方根的性质。

4.巩固(10分钟)通过一些练习题,让学生运用平方根的知识解决问题,巩固所学内容。

5.拓展(10分钟)引导学生思考平方根在实际生活中的应用,举例说明平方根在解决实际问题中的作用。

北师大版初中数学初二上册第二章《平方根》教案

北师大版初中数学初二上册第二章《平方根》教案

北师大版初中数学初二上册第二章《平方根》教案(一)创设情境,引入新知活动一:温习旧知标题1:老师手中有一正方形图片,若已知边长是3时,同砚们说其面积是几多呢?生:32=9 并在黑板上写出.标题2:以上算式属于我们学过的什么运算?在此算式中存在几个量?分别是什么?生:乘方运算;存在三个量;底数、指数和幂.标题3:乘方运算是知道了哪些量求哪个量的运算?生:底数、指数求幂的运算.活动二:探究新知标题4:若正方形的面积是9时,同砚们说其边长是几多呢?师:同砚们我们比较这两种运算,有什么区别?生:第一种运算,是知道了底数、指数求幂的运算即乘方运算;第二种运算,是知道了幂、指数求底数的运算.师:很好,第二种运算便是本日我们要学习的一种新运算---求一个正数的算术平方根的运算.(板书1)§2.2算术平方根设计意图:议决利用旧知,引入新知.学生乐于去做,敢于发言,同时,让学生感受到,议决自己的探究,“玩”出了很多意想不到的收获,使数学课不再枯燥.注重了用数学的要领去研究标题,从数学的角度去思考标题,使数学课更具有数学味,同时,也展现了本节课的传授重点.标题5:若正方形的面积是3时,同砚们说其边长m 又是几多呢?m师:生:1.7<m <1.8,1.73<m <.师:同砚们,这是我们在小学遇到过“π”的基础上,又一次遇到不能准确的去表示一个数,为了能 ,读作“根号”.m ,这就好比小学中我们学过的圆周率3.1415926…,它便是一个无穷不循环小数,为了能表示它,就用一个标记“π”来表示一样的原理.设计意图:议决自主探索,让学生切身体验概念的形成历程, 感受到概念引入的必要性,充分表现了学生的主体作用.结论:像以上算式m 2=3中,我们就把正数m 叫做3的算术平方根.记作:”,即标题6:请仿制上面表示“若m 2=3,则x.(1)x 2=3 (2) x 2=5 (3) x 2=7 (4) x 2=a (a >0)设计意图:算术平方根的概念是由具体到抽象、由特殊到一般而形成的.通干涉题6的尝试,培育学生抽象概括的能力.(二)多方联动、理解新知师:现在我们一起来概括算术平方根的定义:(板书2):一般的,一个正数x的平方即是a,即x2=a,则这个正数x就叫做a的算术平方根.记为“a”读作“根号a”.(板书3):0的算术平方根是0,即0=0.标题1:用含根号的式子表示下列各数的算术平方根.(多媒体出示)(1) 16 (2) 25 (3) 7 (4) 14(学生独立完成后交流,并不失时机地追问)师:议决此标题,你会有什么新的发觉?生:象16=4,25=5一样,这些正数可以写成有理数平方的形式,其算术平方根就可以用一个非负有理数表示,而有些正数写不成有理数平方的形式,其算术平方根只能用根号表示,如上面的7和14,它们的算术平方根只能分别写成7、14.设计意图:深化对算术平方根概念的明白,当细则细,为求出数的算术平方根搭建引桥,目的在于慢中求进,扎实有效.师:根据同砚们的明白,我们一起来完成例题1.例题1:求下列各数的算术平方根:(多媒体出示)(1)1 (2)900解:(2)(老师板演第2题的解题历程)∵302=900∴ 900的算术平方根是30即 =30900设计意图:范例学生解题的格式,让学生明确解题的思路.49(3)106 (4)64解:(4) (老师板演第4题)∴的算术平方根是即(5)10设计意图:体验求一个正数的算术平方根的历程,摸索利用平方运算求一个正数的算术平方根的要领,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如:10的算术平10.同时,突出了本节课的传授重点.思考:议决上面的例题,大众思考一下,我们在求算术平方根时是借助于哪一种运算来求的?(多媒体出示)设计意图:让学生感知平方运算和求正数的算术平方根是互逆的干系.标题2:仿制“例题1”,请同砚们自己编写两道类似的标题,供其他同砚解答.设计意图:要把所学的新知识,融入到自己已有的知识布局中来,议决编题,增进学生对概念的理解,力求做到学以致用,举一反三.师:同砚们,我们都能编题了,真了不得!看来下面的实际标题已不在话下.(出示例题2)例题2:自由下落的物体的高度h (米)与下落时间t (秒)的干系为h = 4.9t 2.有一铁球从19.6米高的建筑物上自由下落,抵达地面需要多长时间?(多媒体出示)(多媒体演示解题历程)解:将h =19.6代入公式h =4.9t 2得t 2=4,所以t =4=2(秒),即铁球抵达地面需要2秒. 设计意图:用算术平方根的知识办理实际标题,把数学与生活实施了链接,以增进学生对数学代价的体悟.标题3:7-有意义吗? 为什么? (多媒体出示)剖析:7-偶然义,因为任何数的平方都是非负数,即a 2≥0,故7-偶然义.(板书4):性质算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的一条很重要的性质.设计意图:让学生明白到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.师:现在,同砚们对算术平方根的明白可以说已经较为全面,事实到底怎样呢?小试牛刀,看看自己的身手吧!(三)自主运用、深化新知1.填空:(多媒体出示)(1)94的算术平方根是_________. (2)719的算术平方根为_________. (3)81的算术平方根为_________.设计意图:议决三个递进式的填空题,检测学生对算术平方根概念的把握环境,并议决(3)小题突出审题意识、优化学生的思维习惯.2.若一个正方形的边长为3时,劈面积扩大原来的4倍后,其大正方形的边长b 变为原来的几多倍?(多媒体出示)解:∵b 2 = 4×32 =36即:大正方形的边长是原来边长的2倍. 3.(多媒体出示)366b ∴==设计意图:议决这样的绽放式训练,使学生对算术平方根概念的明白和理解得到升华,让学生再一次品尝到成功的喜悦.在师生互动的历程中,将讲堂推向了高潮,把难以理解的知识,像剥竹笋一样一层一层的剥开,使学生眼前豁然一亮.同时,也突破了本节课的传授难点.师:同砚们说的都很好,看来我们议决本日的学习,有了很多的收获.(四)合作交流、概括总结同砚们,议决本节课的互助学习,请你从知识、要领与情绪等方面谈一谈自己的明白.师:这节课主要就平方根中的算术平方根举行讨论,•求一个正数的算术平方根与求一个正数的平方正好是互逆的历程,因此,求正数的算术平方根实际上可以转化为求一个数的平方运算. 只不过,只有正数和0才有算术平方根,负数没有算术平方根.设计意图:议决回顾、梳理、反思,使学生对所学知识得到充分的消化和吸收,理顺了各知识点间的关系.老师重点从以下几个方面举行夸大:1.算术平方根概念引入的重要性,尤其是让学生履历概念的形成历程以及里面所蕴含的数学思想;2.算术平方根概念应用的普遍性;3.倡导学生善于发觉、勇于探索、敢于创新.(五)布置作业,自我稳固1.必做题:P40习题1、2、3.2.选做题:(1)一个正方形的面积为原来的100倍时,它的边长变为原来的几多倍?(2)一个正方形的面积变为原来的n倍时,它的边长变为原来的几多倍?设计意图:设置分层作业,兼顾不同水平的学生,存眷差异,使学生获得各自的成长,加深学生对“公式”的进一步理解的同时,扩展学生的思维,让优秀生有舒展的舞台.附课外阅读质料:“根号的由来”现在,我们都习以为常地使用根号(如等等),并感到它使用起来既简洁又方便,那么,根号是怎样产生和演变成现在这种样子的呢?古时候,埃及人用暗记“┌”表示平方根;印度人在开平方时,在被开方数的火线写上ka;阿拉伯人用表示;1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。

北师大版八年级数学上册教案《平方根》

北师大版八年级数学上册教案《平方根》

《平方根》◆教材分析“平方根”是“实数”的第一节内容。

由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。

运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。

因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。

◆教学目标【知识与能力目标】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.3.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.4.会求一个数的平方根,明确算术平方根与平方根的区别与联系.【过程与方法目标】1经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.2经历求一个数的平方根与平方互为逆运算的过程,培养学生求同和求异的思维方法,能从相似的事件中找到它们的共同点和不同点.【情感态度价值观目标】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲. 【教学重点】1了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.2了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平方根与平方根. 3平方根与算术平方根的区别和联系.【教学难点】1理解算术平方根的概念、性质.2平方根与算术平方根的区别和联系.3负数没有平方根,即负数不能进行开平方运算.一、创设情境,引出课题上节课我们学习了无理数、 了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a 2=2中,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、探索新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:◆ 教学过程◆ 教学重难点◆x2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w不是有理数,而是无理数,即,.因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/8;(4)14.【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.运用新知,深化理解1.填空题.(1,则这个数是. (2)49的算术平方根是.(3)正数的平方为144/25,719的算术平方根为.(4)(-1.44)2的算术平方根为.(5的算术平方根为,= 2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124.3.自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1=7.4;(2=3.9;=1.5;(4=3/2.3.解:将h=19.6代入公式h=4.9t2得t2=4,所以=2(秒)即铁球到达地面需要2秒.平方根在我们学习了算术平方根的概念、性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.【教学说明】通过回顾算术平方根是一个正数正的平方根,从而顺其自然引出还有一个负数的平方等于这个正数,为下面学习平方根做了心理准备.思考探究,获取新知1.平方根、开平方的概念请大家思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?【教学说明】学生很容易看出有正负两个数的平方为一个正数,让他们对平方根的概念有了初步认识.【归纳结论】3的平方等于9,-3的平方也等于9,3是9的算术平方根,-3是9的平方根.平方等于4/25的数有两个,即2/5和-2/5,平方等于0.64的数也有两个,即0.8和-0.8.一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【教学说明】让学生找出平方根和算术平方根的相同点与不同点,对于正确理解两个不同的概念和学生准确解题很有帮助.【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根、算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a a(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?【教学说明】使学生明白加与减、乘与除、平方与开平方都是互为逆运算.平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?【教学说明】通过前面的学习,学生不难得出一个正数有两个平方根,且它们互为相反数;0有一个平方根是0;负数没有平方根,加深对平方根概念的理解.【教学说明】由平方根的定义,学生不难得出结果,对于平方根的求法再次加深,以达到熟练运用.运用新知,深化理解1.求下列各数的平方根.1.44,0,8,100/49,441,196,10-42.填空(1)25的平方根是;(2)(-5)2= ;(3)(5)2= .3.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a2;(6)a2-2a+2【教学说明】学生自主完成,加深对平方根概念的理解和检测学生对平方根求法的掌握情况,及时点拨,得以强化.【答案】1.±1.2,0,±,±107,±21,±14,±11002.(1)±5,(2)5,(3)53.有平方根的是:(-3)2,0,a2-2a+2,因为它们都是非负数;-0.01,-52没有平方根,因为它们都是负数;-a2,只有当a=0时它才有平方根.三、归纳总结:1. 本节课你学习了哪些新知识?还有什么困难?请与同学们交流.师生共同回顾平方根和开平方的概念以及只有非负数才有平方根.2.本节课你有哪些收获?还存在哪些不足?【教学说明】引导学生回顾知识点,找出它们之间的联系与区别以及学习过程中存在的不足,便于进一步深化和查漏补缺.略◆教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省枣庄市第四十二中学八年级数学第二章《平方根》教案北师大

教学目标:
1.了解算术平方根的概念,会用根号表示一个数的算术平方根.
2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.
3.了解算术平方根的性质.
教法与学法指导:
学生已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.这节课的教学,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性.
课前准备:
制作课件,学生课前进行相关调查及预习工作.
教学过程
一.创设情境
1.我们已在上学期学过了有理数的加法、减法、乘法、除法、乘方这五种运算。

在这五种运算中那些是逆运算呢?
a加法与减法互为逆运算;
b乘法与除法互为逆运算
c那么乘方与谁互为逆运算呢?
要剪出一张边长是5厘米的正方形纸片,它的面积是多少?
这个问题实际上就是求:
我们把问题反过来,要做一张面积是25平方厘米的方桌面,它的边长是多少厘米?
实际上就是要求出一个数,使它的平方等于25,即:
显然,括号里应是±5,但-5不符题意。

∴方桌面的边长应是5厘米
如果这块正方形的面积为单位1,那么它的边长是多少?如果面积分别为9、16、36、呢?那么3呢?怎么求呢?怎么表示?
二.自主探究合作交流
上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题。

实际上是已知一个正数,求这个正数平方根的问题。

对于面积为3的直接求不出来,那么怎样准确的把它表示出来呢?
阅读课本38页并回答以上问题。

(找同学回答并说明理由)
问题1:你能叙术算术平方根的概念吗?
一般地:如果一个正数的平方等于a,即=a,那么这个正数叫做a的算术平方根。

a的算术平方根记为,读作“根号a”,a叫做被开方数。

强调:书写时根号一定要把被开方数盖住。

问题2:表示什么意思?它的值是怎样的数?
这里的被开方数a应该是怎样的数?
问题3:0的算术平方根是多少?怎么表示?
归纳:表示a的算术平方根。

算术平方根为非负数,即:0,被开方数为非负数,即a0,负数没有算术平方根,即:当a<0时,无意义。

三.巩固练习加深理解
(一)例题精讲
.例1:求下列各数的算术平方根。

900; 1; 49/64 ;14; 92 -9;0
学生活动:模仿教材例1的模式,注意语言的准确性和书写的规范性。

学生板演,全班同学做完后修改板演同学的错误,用彩笔改出来。

对于 92 -9;0 三个问题的设置加深对算术平方根的非负性的理解,进一步提高语言表达的准确性和书写的规范性。

例2:下列各式表示什么意思?你能求出它们的值吗?
能展示学生对算术平方根的思考过程,全班纠错,小组互相监督,培养学生良好的学习习惯。

(二)巩固提高:
1(口答)
16的算术平方根是___________
的值是__________
的算术平方根是____________
(二) 能力提升
1、一个数的算术平方根等于它本身,这个数是()。

2. 已知y= + +3,求xy的算术平方根()。

3、若4a+1的平方根是±5,则a²的算术平方根是()。

4、算术平方根等于()。

5、若|a-9|+ =0,则的平方根是()。

四.课堂小结
本节课你有什么收获?你提醒大家需要注意什么?
让学生按这一模式进行小结,培养学生学习——总结——学习——反思的良好习惯;同时通过自我评价来获得成功的快乐,提高学习的自信心。

五.作业
作业布置:习题2.3第1题、第2题。

教学反思:
初中生自制力较差,小组合作学习涉及人多,若组织不当就会使学生精力分散。

所以在小组合作学习前就要明确任务要求,并及时检查、评价。

在本节课的自主学习1、2过程中,学生明确了学习的任务要求,在检查反馈时学生掌握很好,从而增强了学生的成功感,激发了学习的兴趣,为下一个环节的进行做了良好的准备。

“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,”的“正数x”,即被开方数是正的,由平方的意义,a也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
不足之处:学生对
的算术平方根是___这类题掌握的不够,也许是教师讲的太快,有
些学生没有完全理解;也有一些学生太马虎。

总之,这类题应多强调多练习。

“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.
板书设计。

相关文档
最新文档